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1 Introduction and summary

The Ryu-Takayanagi area formula [1, 2] seeds many recent insights from quantum in-

formation into quantum gravity. This formula calculates the entanglement entropy of a

field theory region as the area of a minimal surface in the gravity dual, generalising the

Bekenstein-Hawking entropy.

Building on work by Casini, Huerta and Myers [3], Lewkowycz and Maldacena have

constructed a derivation of the Ryu-Takayanagi formula. This derivation, called ‘general-

ized entropy’ [4], uses the replica trick in field theory and its gravity dual, which is in the

Euclidean quantum gravity regime.
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In this context, the replica trick defines entanglement entropy S as the n → 1 limit

of Rényi entropies Sn. Using Euclidean techniques, the Sn can be related to field theory

partition functions on conically singular manifolds [5]. The conical singularity has support

on the entangling surface that bounds the partition whose entanglement is being calculated.

The period of the cycle contracting on the entangling surface is 2πn, and the conical

singularity is absent when n = 1.

In a CFT, conformal symmetry can be used to send this entangling surface to infinity.

Doing so leaves behind an Euclidean field theory geometry with a non-contractible cycle.

This makes the setup analogous to that of thermal field theory. When these thermal states

have black holes as gravity duals, arguments from Euclidean quantum gravity apply. An

area law emerges as a Gibbons-Hawking derivation of black hole entropy [6] — in which

regularity of the bulk Euclidean geometry for all values of the temperature (the period of

the thermal cycle) plays a central role.

[3] implemented these ideas for a spherical entangling surface in the vacuum of a CFT

in flat space. This conformally maps to the Euclidean thermal hyperboloid, whose gravity

dual is well known — it is the hyperbolic black hole [7]. Entanglement entropy in the flat

space picture is related to thermal entropy in the hyperboloid, in which case it is dual

to black hole entropy. Using Bekenstein-Hawking for the thermal case, a Ryu-Takayanagi

area follows for the entangling one.

[4] extended this picture to more general states and entangling regions. This involves

field theory geometries for which the entangling cycle no longer generates a symmetry, and

thus the connection to thermal physics weakens. The subtleties of the replica trick become

more prominent, and the analytic continuation of the dual geometries to non-integer values

of n, relevant for the n → 1 limit, is less direct and needs to be discussed in detail.

Both [3] and [4] work in ‘hyperbolic frames’, in which the boundary conical singularity

has been mapped to infinity. The primary goal of this paper is to carry out explicitly the

construction in the ‘entangling frame’, in which case the conical singularity of the boundary

at n 6= 1 remains within sight, but nevertheless has a regular gravity dual. We will exhibit

in detail these geometries, and discuss how exactly gravity in the bulk dynamically regulates

boundary conical singularities.1

The new geometries are regular Euclidean solutions of the Einstein equations with

a negative cosmological constant, subject to the boundary condition that the geometry

induced at the conformal boundary has a conical singularity on a specified surface. To

make analytic progress, we will find these geometries perturbatively in a double expansion

in the distance and strength of the singularity, (n− 1). The distance is measured in units

of the smallest lengthscale characterising the geometry of the background and surface

supporting the singularity. We focus on the case of five bulk dimensions for convenience.

An extension to general dimensions would be very interesting.

These geometries encode the vacuum polarisation of holographic conformal field theory

due to conical singularities on general surfaces. Although strictly speaking there is no

Fefferman-Graham expansion because the boundary metric is singular, we will extract an

1The fact that such bulk geometries are regular was emphasised in [8] and [9].
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expectation value for the stress tensor. In our approximations, and ignoring contact terms,

the stress tensor is traceless.

The Euclidean action of these bulk geometries relates to Rényi entropy Sn, that we

extract to first order in (n− 1). We find that, contrary to the entanglement entropy term

S1, the first order term does not have an area law. Also, in precise agreement with [10],

the logarithmic divergence of the first order term turns out to have a different structure

from the entanglement entropy one.

The specific way in which gravity regulates these singularities impacts the generali-

sation of the Ryu-Takayanagi formula to theories with higher derivatives. This formula

extends Wald’s black hole entropy to setups without U(1) symmetry. For theories with-

out explicit derivatives of the Riemann tensor in their lagrangian,2 it takes the schematic

form [12, 13]:

S =

∫

∂L

∂Riem
+

∫

∑

α

(

∂2L

∂Riem2

)

α

K2

1 + qα
, (1.1)

where L is the gravity lagrangian, K is the extrinsic curvature, and qα are coefficients

characterising how exactly the conical singularity is regulated in the bulk (this is reviewed

in section 7). We will see below that they differ from a minimal prescription.

The rest of this paper is organised as follows. Section 2 reviews the Casini-Huerta-

Myers construction and exhibits that Euclidean hyperbolic black holes can be written as

smooth gravity duals to straight conical singularities. In the rest of the paper we will deform

this cone away from straightness and explore the consequences of its gravity dual. Section 3

reviews the construction of Fermi-like coordinates adapted to codimension two surfaces, and

the natural implementation of the replica trick in these coordinates. Section 4 constructs

explicitly the gravity duals, and is the core of the paper. There are many ways to deform a

surface away from straightness (equivalently, many ways to squash a cone [14]), and, after

a general overview, we proceed in a casuistic way. To the order of Riemann curvature, this

results in thirteen subsections analysing different such deformations.3 Section 5 summarises

the results regarding the vacuum polarisation induced by these singularities, and section 6

explains how to reproduce the results of [10] regarding logarithmic divergences of Rényi

entropies in CFT. In section 7 we discuss the consequences of section 4 for the entropy

formula of theories of gravity with higher-derivative interactions. We conclude in section 8.

2 Hyperbolic black holes and boundary cones

This section reviews some aspects of the Casini-Huerta-Myers construction [3] and hyper-

bolic black holes. It also serves to set notation and discuss coordinates that we will be

using throughout.

2See [11] for a more general case.
3We take some advantage of conformal invariance in the boundary to reduce the number of cases from

2 + 18 to 1 + 13. Sections 6 and 7 only use the results of subsections 4.1 and 4.11–4.14, and some readers

may want to focus on these.
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Consider the Rényi entropy of a 4D conformal field theory in the vacuum across a

straight plane.4 The replica trick maps this quantity to the Euclidean partition function

on the conically singular geometry:

ds2 = r2dτ2 + dr2 + dζ dζ̄ , τ ∼ τ + 2πn , (2.1)

where we took complex coordinates ζ = σ1 + iσ2 on the entangling plane, at r = 0, and

the geometry is singular for n 6= 1 because of the period of τ .

A convenient way to write cone metrics uses complex coordinates also in the plane of

the cone. Define z = r1/neiτ/n. This is a good complex coordinate when τ has the period

in (2.1), and the cone becomes

ds2 = (zz̄)n−1n2dz dz̄ + dζ dζ̄ , (2.2)

which can be obtained from Euclidean space by the ‘quotient’ z → zn.

This conical geometry (2.1) is conformal to the Euclidean thermal hyperboloid S1×H3:

ds2 = dτ2 +
dr2 + dζ dζ̄

r2
, τ ∼ τ + 2πn , (2.3)

which is regular for all periods of τ .

If the CFT has a GR gravity dual, the geometry dual to the partition function on (2.3)

is the hyperbolic black hole [7]:5

ds2 =
dρ2

f(ρ)
+ f(ρ)dτ2 + ρ2

dr2 + dζ dζ̄

r2
, f(ρ) = ρ2 − 1− ρ2h(ρ

2
h − 1)

ρ2
, (2.4)

where

ρh =
1 +

√
1 + 8n2

4n
= 1− n− 1

3
+O

(

(n− 1)2
)

. (2.5)

The metric at the boundary, at ρ → ∞, is (2.3). τ closes smoothly at ρ = ρh when

τ ∼ τ + 2πn. Hence this is a good holographic dual to (2.3). The geometry becomes AdS

when n = 1, when the temperature is 1/2π in units of the radius of the hyperboloid.

Boundary conformal transformations are implemented by large diffeomorphisms in the

bulk, so there is a change of coordinates that writes the geometry (2.4) as the gravity dual

of the conical singularity (2.2), [9]. To leading order in (n−1), one such diffeomorphism is:

ρ →

√

1 + x

(

1 +
1

x

)
n−1
n
(

1− 1

3

(n− 1)

1 + x

)

+O
(

(n− 1)2
)

r → ρ

√

1 + x

(

1 +
1

x

)
n−1
n
(

1− 1

2

(n− 1)

1 + x

)

+O
(

(n− 1)2
)

τ → i
n

2
log

z̄

z
, (2.6)

4Given a density matrix ρ — for instance, constructed by restricting the vacuum to a subset of degrees

of freedom A, ρ = trĀ|0〉〈0| —, its Rényi entropy is defined:

Sn =
1

1− n
log (trρn) .

5Except in selected places, we work in units of the AdS radius, ℓ = 1.
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where

x ≡ (zz̄)n

ρ2
. (2.7)

Now (2.4) reads:

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2
+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄

ρ2
+O

(

(n− 1)2
)

. (2.8)

In these coordinates the boundary is at ρ → 0. Its geometry is indeed conically

singular, because for ρ → 0:

gzz̄ →
1

2

(zz̄)n−1n2

ρ2
, (2.9)

and we recover (2.2) as the boundary metric. The axis of the cone extends into the bulk

in a regular manner: at fixed ρ, as zz̄ → 0,

gzz̄ →
1

2

(

1− 2

3
(n− 1)

)

n2

ρ2/n
, (2.10)

a constant, and thus regular. The factors of (n−1)
1+x are bounded corrections that remain

small everywhere for small (n − 1). At fixed ρ, eq. (2.8) is a regularised version of the

boundary conical singularity, to which it tends far from the axis, x ≫ 1. Therefore,

eq. (2.8) is a boundary conical singularity that gravity dynamically regularises in the bulk.

3 Fermi coordinates for field theory replicas

Following the program of generalized entropy [4], we will find the gravity duals to cones on

entangling surfaces and backgrounds more general than the plane in flat space.

One can take coordinates adapted to a generic surface by shooting geodesics orthogonal

to it. In an expansion near such surface the metric can be written as:

ds2 =
(

γij +
[

2κKijzz + κ2Qijzzz
2 + κ2Qijzz̄zz̄ + c.c.

])

dσidσj + 2κAizz̄(z̄ dz − z dz̄) dσi

− 4

3
κ2 [Rizzz̄z − c.c.] (z̄ dz − z dz̄)dσi +

(

1 + 2κ2Rzz̄zz̄zz̄
)

dz dz̄ +O(κ3) , (3.1)

where, as above, we parametrise the transverse geodesics in complex coordinates: z, z̄.

The objects γij , Kijz, Qijzz̄, etc., characterise the embedding and background geometry

on the surface and may depend on its coordinates σi. c.c. stands for complex conjugation

within the square brackets. κ is a small book-keeping parameter counting powers of the

distance to the surface in units of the characteristic lengthscale of the geometry. As in

the previous section, it is convenient to take complex coordinates also in the surface and

analogously expand around their origin. By appropriately constructing these coordinates,

one can eliminate Aizz̄ and its symmetrised first derivatives at the origin, as well as the

– 5 –
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Christoffel symbols of the induced metric γij :

γijdσ
idσj = dζ dζ̄ − 1

3
κ2Rζζ̄ζζ̄

(

ζ̄ dζ − ζ dζ̄
)2

+O(κ3) ,

2κAizz̄dσ
i = −κ2Fζζ̄zz̄(ζ̄ dζ − ζ dζ̄) +O(κ3) , (3.2)

where κ now also keeps track of the distance to the origin in the surface, ζζ̄ = 0. Rµνρσ

denotes components of the background Riemann tensor, and Rijkl refers to the Riemann

tensor of γij — the intrinsic curvature of the zz̄ = 0 surface.

A convenient feature of complex coordinates is that trace and traceless elements of

symmetric tensors are readily distinguished. For example, Kζζ̄z belongs to the trace of

Kijz, whereas Kζζz belongs to its traceless part.

The use of these coordinates on entanglement entropy calculations in field theory was

pioneered in [15, 16], and [17] for Rényi entropy. We expand to O(κ2) because we are

interested in effects due to Riemann curvature. The Riemann tensor of (3.1)–(3.2) at

ζζ̄ = zz̄ = 0 is fully captured at this order, and reads (setting κ = 1):

Rij
kl = Rij

kl − 4Ki
[k
zK

l]
jz̄ − 4Ki

[k
z̄K

l]
jz

Rijk
z̄ = 2∂[iKj]k

z̄

Rij
zz̄ = Fij

zz̄ − 2K[i
kzKj]k

z̄

Ri
z
j
z̄ =

1

2
Fij

zz̄ −Qij
zz̄ +Ki

kz̄Kjk
z

Rizjz = Ki
k
zKjkz −Qijzz , (3.3)

Rizzz̄ and Rzz̄zz̄ coming directly from (3.1).

Only some combinations of the above objects transform covariantly under conformal

transformations. When working with CFTs, one may take advantage of such symmetries

to eliminate non-covariant elements. For example, one can choose to eliminate the trace of

the extrinsic curvature Kζζ̄z, as well as the intrinsic Riemann Rζζ̄ζζ̄ , and the traces Qζζ̄zz̄

and Qζζ̄zz. For reasons that will be clear, we will drop Kζζ̄z but will keep the R and Qs to

keep track of the topology of the surface (via Gauss-Bonnet) and as a device to check the

conformal covariance of our results. One check of such covariance will be the appearance

of the trace of the projection of the bulk Weyl on the entangling surface:

Wij
ij = γµργνσWµνρσ =

8

3

(

2Qζζ̄zz̄ −Rzz̄zz̄ −Rζζ̄ζζ̄

)

. (3.4)

Now, as earlier, replicating around the zz̄ = 0 surface is implemented by z → zn. We

will then be after the gravity duals of partition functions of CFTs on

ds2 =
(

γij +
[

2κKijzz
n + κ2Qijzzz

2n + κ2Qijzz̄(zz̄)
n + c.c.

])

dσidσj

+

(

2κAizz̄ −
4

3
κ2 [Rizzz̄z

n − c.c.]

)

n(zz̄)n−1(z̄ dz − z dz̄)dσi

+
(

1 + 2κ2Rzz̄zz̄(zz̄)
n
)

n2(zz̄)n−1dz dz̄ +O(κ3) , (3.5)

with γij and Aizz̄ as in (3.2).

– 6 –
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zn is multivalued for generic n, and so (3.5) is a geometry only for n a positive integer

(in particular, only then ds2 is continuous for z in the complex plane). We will nevertheless

treat n as a real number, expand ds2 in powers of (n− 1), and speak about a CFT in (3.5)

for real n. This is tantamount to speaking about a CFT on an ‘analytic continuation

of a geometry’, and it is an abuse of language. Quantities of interest for n ∈ R should

be thought as being analytically continued from n ∈ Z, as Rényi entropies in the replica

trick. The usefulness of this picture is that it picks the right analytic continuation for the

quantities of interest [4].

4 Gravity duals of squashed conical singularities

This section is the core of the paper, where the regular gravity duals to (3.5) are spelled

out, to first order in (n−1) and to second order in κ. We start by giving an overall picture

of these geometries and their properties.

The expansion in κ is a derivative expansion, and for this reason our results may

be reminiscent of other such expansions in gravity, as fluids/gravity [18, 19] or black-

folds [20, 21]. The strategy is to deform the boundary metric in (2.8) in the expansion

of (3.5). This generically does not solve the Einstein equations by itself, and one needs

to add a small correction to that end. We then solve for this correction subject to the

boundary conditions of normalisability and regularity.

The notion of bulk regularity we are alluding to at non-integer n is not a standard

one if there is squashing. The metrics we will call ‘regular’ have 1/r divergent curvature

invariants at the bulk axis,6 but (i) these divergences drop from the field equations, and

(ii) they are altogether absent at integer n. Condition (ii) is the usual AdS/CFT bulk

regularity at integer n, while (i) picks the right analytic continuation of the bulk metric to

non-integer n [4]. In a sense, this is the closest we can get to the usual notion of regularity

for n ∈ R.

We will assume that all the non-trivial dependence of the corrections is in the dimen-

sionless x of eq. (2.7). The geometry then does not have any more dependence on the

angle in which we approach the singularity other than the one following from the index

structures in (3.5). This reduces the equations for the corrections to ODEs. To leading

order in (n−1), our notion of regularity at the bulk axis, x = 0, boils down to the expand-

ability of the metric in non-negative powers of x
1
n and x

n−1
n [22];7 and that for gzz̄ such

expansion has a constant term, (2.10). This gives smoothness at positive n ∈ Z. Assuming

dependence just in x implies replica symmetry — a discrete rotational symmetry in the

plane of the cone, z → z eik/n for k ∈ Zn.
8

6These singular invariants are on top of the multivaluedness discussed above, that extends into the bulk.

In the presence of replica symmetry, multivaluedness can be eliminated by a quotient by that symmetry.

This returns a regular boundary and a conically singular bulk, that still has the same 1/r divergent curvature

invariants.
7That is, expandability in positive powers of zz̄ and (zz̄)n−1 near the bulk axis, at z = z̄ = 0 and finite ρ.
8Since we construct them by z → zn, the boundary metrics are automatically replica symmetric, but

the bulk could break the symmetry spontaneously [22].

– 7 –
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This dependence on x implies covariance under diffeomorphisms in the surface, that

we will maintain explicitly. This is a useful principle when writing ansatze for the bulk

corrections, because it forbids appearances of the surface coordinates ζ other than the

ones in (3.2).

The geometries we will find are exact in x ≡ (zz̄)n/ρ2. Given this and the expansion

in powers of κ, the range of ρ — the holographic radial coordinate — needs also be small

in units of the boundary curvature. This means that the expansion in κ is also an expan-

sion around the conformal boundary. The solutions we will write down are then analogs

to Fefferman-Graham expansions, but for conically singular boundary metrics. For this

reason, the field theory properties we will extract from them are approximate and belong

in a UV expansion.

We will also further fix the gauge by requiring that the metric has no derivative cor-

rections at the axis in the legs involving dz. That is, e.g., that there are no κ corrections

to eq. (2.10). As a gauge choice, this does not affect the geometry. Its advantage is that it

is straightforward to read the geometric properties of the bulk axis.

To illustrate this language, we now describe how the solution (2.8) would look like if

we were finding it in this way. Starting from AdS in Poincare coordinates, and introducing

a cone in the boundary by z → zn, we would write

ds2 =
dρ2

ρ2
+

n2(zz̄)n−1dz dz̄

ρ2
+

dζ dζ̄

ρ2
+ (n− 1)ds21 +O

(

(n− 1)2
)

, (4.1)

with ds21 a small correction. Taking the ansatz

ds21 = fρρ(x)
dρ2

ρ2
+ fzz̄(x)

n2(zz̄)n−1dz dz̄

ρ2
+ fζζ̄(x)

dζ dζ̄

ρ2
, (4.2)

Einstein equations plus boundary conditions give:

fρρ(x) = − 2/3

1 + x

fzz̄(x) = − 2/3

1 + x
+ log

(

1 +
1

x

)

fζζ̄(x) =
1/3

1 + x
, (4.3)

which is indeed the O(n − 1) expansion of (2.8). While the 1
1+x terms are clearly regular

at x → 0 and normalisable at x → ∞, the log term may look problematic at the axis.

However, this log is exactly what is needed to balance the zero of (zz̄)n−1 in (4.1), so that

we are left with the finite result of eq. (2.10). The key point is that the (zz̄)n−1 and the log

can be grouped into (1 + x)
n−1
n of eq. (2.8), exhibiting the desired contrasting behaviours

at small and large x — the axis is regular in the bulk but not in the boundary.

We will find similar log divergences below, and we will have to interpret whether they

reflect singular behaviour or not. They may just indicate that the ansatz following from

replicating at the boundary does not capture a specific regular behaviour near the bulk axis.

Sometimes this can be anticipated, like for gzz̄ above. Consider, e.g., the case of Fζζ̄zz̄ z dz̄.

– 8 –
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After replicating, this term is accompanied by a factor of (zz̄)n−1 at the boundary. In

the bulk, a minimal replica symmetric ansatz near the axis does not have such factor, and

we may expect that this is the behaviour chosen by dynamics [12, 13]. For these cases,

appropriate factors of (1+x)
n−1
n in the bulk ansatz can offset the appearance of logarithms

in ds21. We will anticipate so in a few cases below, except for the Rzz̄zz̄ and Qζζ̄zz̄ cases;

exhibiting their logarithms will be useful for understanding regularity in the more delicate

case of KζζzKζ̄ζ̄z̄.

Each term in the expansion in κ of (3.5) needs its own derivative corrections. For

readability, we will present all these contributions separately. It is straightforward to put

them together.

We will start in 4.1 with the O(κ) corrections, due to traceless extrinsic curvature —

we remind the reader that we exploit conformal symmetry in the boundary to drop the

trace of the extrinsic curvature. We will then move on to O(κ2) terms. Some of these

are seeded by squares of extrinsic curvatures, and others are sourced linearly by κ2 terms

in (3.5) — including those implicit in the derivatives of the extrinsic curvature.

We will present the O(κ2) contributions in an order that groups them by their tensorial

character in the parallel and transverse coordinates ζ and z. In 4.2 we present the correction

due to Kζζz,ζ , which might be called the 3|1 contribution, because it has three holomorphic

indices in ζ and one in z.9 In 4.3 we present the correction due to Fζζ̄zz̄, that may be called

axial-axial because it is antisymmetric in both pairs of indices. In 4.4 we move on to the

2|2 term, Qζζzz; followed in 4.5 and 4.6 by the 0|2 ones, Qζζ̄zz and KζζzKζ̄ζ̄z; 2|0 in 4.7,

Qζζzz̄; 4|0 in 4.8, KζζzKζζz̄; and 1|1 in 4.9 and 4.10, Kζζzζ̄ and Rζzzz̄. The last four

contributions 4.11–4.14 are the 0|0 ones: Rζζ̄ζζ̄ , Rzz̄zz̄, Qζζ̄zz̄ and KζζzKζ̄ζ̄z̄. The last one

has the subtlest log structure, and its regularity has consequences for the splitting problem.

Sections 6 and 7 only use the results of 4.1 and 4.11–4.14, and some readers may want

to focus on these.

Had we not used conformal symmetry to drop the trace of the extrinsic curvature,

there would be five more cases at second order: Kζζ̄z,ζ , Kζζ̄zKζζ̄z, Kζζ̄zKζζ̄z̄, Kζζ̄zKζζz,

and Kζζ̄zKζζz̄.

Reality implies that any geometry containing, e.g., the 0|2 correction KζζzKζ̄ζ̄z must

also contain the corrections leading to the 0|0 correction KζζzKζ̄ζ̄z̄. We will leave the latter

implicit when displaying the results for the former, which means that formally we will be

writing down complex metrics. This is just an artefact of the presentation in terms of ζ

and z tensor behaviour.

For all cases we will present the expectation value of the stress tensor due to the

particular squashing of the cone. This is obtained by conventional holographic methods

(see section 5 for more details, discussion, and a comprehensive expression for 〈T 〉).

9Sections 4.2 and 4.8 follow automatically from 4.1 and covariance in the ζ coordinates, but we still

present them separately for book-keeping.
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4.1 Kζζz

Before replicating, the boundary metric for this term is:

ds2∂ = dζ dζ̄ + 2κKζζzz dζ
2 + dz dz̄ +O(κ2) . (4.4)

We replicate by z → zn, leading to the bulk ansatz:

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄ + 2κKζζzz
ndζ2

ρ2

+ κ(n− 1)ds21 +O
(

κ2
)

+O
(

(n− 1)2
)

, (4.5)

with

ds21 = Kζζz f
K2|1
ζζ (x)

2zndζ2

ρ2
. (4.6)

In (4.5) we choose Kζζz to multiply the same 1
1+x factor as gζζ̄ for later convenience, but

that is not significant, as these factors are precisely what f
K2|1
ζζ (x) is designed to discover.

Notice that, since ds21 is linear in κ, it has to be proportional to Kζζz; and, since this

is traceless, it can only seed a dζ2 leg if we want to avoid explicit appearances of ζ —

which we do because of covariance in the entangling surface. The important feature of this

ansatz (4.5) is that the boundary metric, at ρ → 0, is different from the one in (2.8) by the

factor of Kζζzz
n of (3.5).

Einstein’s equations lead an ODE for f
K2|1
ζζ (x), whose normalisable solution is:

f
K2|1
ζζ (x) = CK2|1

(

1

x
− log

(

1 +
1

x

))

, (4.7)

with CK2|1 an integration constant. 1/x is singular at the axis, and regularity sets CK2|1=0.

Restoring the AdS radius ℓ, the stress tensor reads10

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
−1

6

(

dζ dζ̄ + κKζζzz
ndζ2 + (zz̄)n−1

(

−dz dz̄ +
z̄2dz2 + z2dz̄2

zz̄

))

+O(κ2) +O
(

(n− 1)2
)

. (4.8)

4.2 Kζζz,ζ

This term follows directly the one we just analysed, from covariance in the ζ coordinate.

Its boundary metric is, before replicating

ds2∂ = dζ dζ̄ + 2κ2Kζζz,ζ ζ z dζ
2 + dz dz̄ +O(κ2) . (4.9)

10The O(κ0) term agrees with [23]. The O(κ) term agrees with [10].
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The bulk dual is

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄ + 2κ2Kζζz,ζ ζ z
ndζ2

ρ2

+ κ2(n− 1)ds21 +O
(

κ2
)

+O
(

(n− 1)2
)

, (4.10)

with

ds21 = Kζζz,ζ ζ f
K3|1
ζζ (x)

2zndζ2

ρ2
. (4.11)

Einstein’s equations lead the same ODE for f
K3|1
ζζ (x) as for f

K2|1
ζζ (x), and we pick the

regular solution: f
K3|1
ζζ (x) = 0

The contribution to the stress tensor reads

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
−1

6

(

κ2Kζζz,ζ ζ z
ndζ2

)

, (4.12)

and follows from (4.8) by Kζζz → Kζζz,ζ ζ, as dictated by covariance in ζ.

4.3 Fζζ̄zz̄

The boundary metric for this term is, before replicating,

ds2∂ = dζ dζ̄ + dz dz̄ − κ2Fζζ̄zz̄(z dz̄ − z̄ dz)(ζ dζ̄ − ζ̄ dζ) +O(κ3) . (4.13)

After z → zn, a natural ansatz for the bulk is:

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n−1)

1+x

)

n2 (1+x)
n−1
n dz dz̄ − n (1+x)

n−1
n κ2Fζζ̄zz̄(z dz̄−z̄dz)(ζ dζ̄ − ζ̄dζ)

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄

ρ2

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.14)

with

ds21 = Fζζ̄zz̄ f
Faa
zζ (x)

(z dz̄ − z̄ dz)(ζ dζ̄ − ζ̄ dζ)

ρ2/n
. (4.15)

Notice the factor of (1 + x)
n−1
n , anticipating different behaviours of the Fζζ̄zz̄ term in

the boundary and bulk axes. In the boundary, we require the (zz̄)n−1 behaviour from the

replica trick (3.5); in the bulk, a minimal guess suggests (zz̄)0.

The normalisable solution we find is:

fFaa
zζ (x) = CFaa

(

1

x
− log

(

1 +
1

x

))

, (4.16)

and it should be set to zero because it is not regular at the bulk axis x → 0.
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The O(κ2) contribution to the stress tensor coming from this term is:

〈T 〉 = − ℓ3(n− 1)

4πG(zz̄)2n
κ2Fζζ̄zz̄

2
(zz̄)n−1(z dz̄ − z̄ dz)(ζ dζ̄ − ζ̄ dζ) . (4.17)

4.4 Qζζzz

This one comes from

ds2∂ = dζ dζ̄ + dz dz̄ + κ2Qζζzzz
2dζ2 +O(κ3) . (4.18)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄ + κ2Qζζzzz
2ndζ2

ρ2

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.19)

with

ds21 = Qζζzzf
Q2|2
ζζ (x)

z2n

ρ2
dζ2 . (4.20)

The normalisable solution to Einstein equations is:

f
Q2|2
ζζ (x) =

CQ2|2

x2
, (4.21)

which regularity sets to zero.

The contribution to the stress tensor vanishes:

〈T 〉 = 0 . (4.22)

4.5 Qζζ̄zz

This one comes from

ds2∂ = (1 + 2κ2Qζζ̄zzz
2)dζ dζ̄ + dz dz̄ +O(κ3) . (4.23)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

−
(

1− 2

3

(n− 1)

1 + x

)

4κ2Qζζ̄zz

zn n zn−1dz dρ

ρ

+

(

1 +
1

3

(n− 1)

1 + x

)

(

1 + 2κ2Qζζ̄zzz
2n
)

dζ dζ̄

ρ2

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.24)
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with

ds21 = 2Qζζ̄zz

z2n

ρ2

(

fQ0|2
ρρ (x)dρ2+f

Q0|2
zz̄ (x)(zz̄)n−1dz dz̄+f

Q0|2

ζζ̄
(x)dζ dζ̄ + fQ0|2

zρ (x)
ρ

z
dz dρ

)

.

(4.25)

This case has new features compared to the previous two.

First, (4.24) has a κ2 term in the dρ dz leg that remains finite as n → 1. This term does

not change the boundary metric and therefore is a bulk response to Qζζ̄zz, even before intro-

ducing any conical singularity. Its origin is, in fact, well known. In the Fefferman-Graham

expansion it is the Shouten term,11 which is indeed non-zero for (4.23). As explained in the

opening of this section, our gauge demands that gzz vanishes on the bulk axis. This places

this Shouten term in the dρ dz leg (in Fefferman-Graham coordinates this would have had

a dz2 leg).

Second, the scalar character of Qζζ̄zz in the ζ directions allows for many more terms

in ds21 compared to earlier. In fact, covariance would also allow for a dz2 leg that we have

not written down. As it turns out, a gauge transformation can move this correction from

the dz2 leg to dz dρ, and, as explained, our gauge fixing places it in the latter.

There are two normalizable zero modes to this ansatz:

fQ0|2
ρρ (x) = −2C

0|2
1

(

1

x
+

1

x2

)

f
Q0|2

ζζ̄
(x) = C

0|2
1

(

1

x
+

1

x2

)

f
Q0|2
zz̄ (x) = −C

0|2
2

4

1

x2
+ C

0|2
1

(

1

x
− 1

2

1

x2

)

fQ0|2
zρ (x) = C

0|2
2

1

x
, (4.26)

and they are banished by regularity at the axis.

The regular solution we find is:

fQ0|2
ρρ (x) =

4

9

(

1

1 + x
− 1

(1 + x)2

)

f
Q0|2

ζζ̄
(x) =

2

9

(

− 1

1 + x
+

1

(1 + x)2

)

f
Q0|2
zz̄ (x) =

−2

9

(

1

1 + x
+

2

(1 + x)2

)

fQ0|2
zρ (x) = 0 . (4.27)

11The Fefferman-Graham expansion of AAdS spacetimes reads, for small ρ [24]:

ds2 =
dρ2

ρ2
+

gµν(ρ, x)dx
µdxν

ρ2
, gµν(ρ, x) =

(0)gµν(x) +
(2)gµν(x)ρ

2 + · · · .

(2)gµν = 1
d−2

(

(0)Rµν −
(0)R

2(d−1)
(0)gµν

)

is the Shouten tensor of the boundary metric (for boundary dimension

d > 2). Notice that the Fefferman-Graham expansion is a derivative expansion, so the expansion in κ has

a FG character.
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The contribution of Qζζ̄zz to the stress tensor is:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
κ2Qζζ̄zz z

2n

9

(

dζ dζ̄ + (zz̄)n−1

(

−4dz dz̄ + 2
z2dz̄2 + 3z̄2dz2

zz̄

))

. (4.28)

4.6 KζζzKζ̄ζ̄z

This one comes from

ds2∂ = dζ dζ̄ + 2κ
(

Kζζzz dζ
2 +Kζ̄ζ̄zz dζ̄

2
)

+ dz dz̄ +O(κ3) . (4.29)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

(1 + x)
n−1
n n2dz dz̄

ρ2/n

+

(

1− 2

3

(n− 1)

1 + x

)

8κ2KζζzKζ̄ζ̄z

zn n zn−1dz dρ

ρ

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄ + 2κ
(

Kζζzz
ndζ2 +Kζ̄ζ̄zz

ndζ̄2
)

ρ2

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.30)

with

ds21 = 2KζζzKζ̄ζ̄z

z2n

ρ2

(

fK0|2
ρρ (x)dρ2 + f

K0|2
zz̄ (x)(zz̄)n−1dz dz̄

+f
K0|2

ζζ̄
(x)dζ dζ̄ + fK0|2

zρ (x)
ρ

z
dz dρ

)

. (4.31)

Again, the third line in (4.30) comes from the Shouten tensor, and there is no dz2 leg

because of gauge fixing.

Discarding the same zero mode as earlier, (4.26), the regular solution we find is:

fK0|2
ρρ (x) =

2

9

( −7

1 + x
+

4

(1 + x)2

)

f
K0|2

ζζ̄
(x) =

1

9

(

7

1 + x
− 4

(1 + x)2

)

f
K0|2
zz̄ (x) =

1

9x

(

7 +
10

1 + x
− 8

(1 + x)2

)

− 1

x2
log(1 + x)

fK0|2
zρ (x) =

4

x
log(1 + x) . (4.32)

The contribution to the stress tensor:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
κ2KζζzKζ̄ζ̄zz

2n

9

(

−5dζ dζ̄ + (zz̄)n−1

(

17dz dz̄ − 7z2dz̄2 + 30z̄2dz2

zz̄

))

.

(4.33)
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4.7 Qζζzz̄

This one comes from

ds2∂ = dζ dζ̄ + 2κ2Qζζzz̄zz̄ dζ
2 + dz dz̄ +O(κ3) . (4.34)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n−1)

1+x

)

[

n2 (1 + x)
n−1
n dz dz̄ + 2κ2Qζζzz̄ (1+x)

n−1
n zz̄ dζ2

ρ2/n
+ 2κ2Qζζzz̄dζ

2

]

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄

ρ2

+ κ2(n− 1)ds21 +O
(

κ3
)

+O
(

(n− 1)2
)

, (4.35)

with

ds21 = 2Qζζzz̄f
Q2|0
ζζ (x)dζ2 . (4.36)

Again, notice a Shouten correction in the brackets. Notice also that we have anticipated a

change of behaviour of Qζζzz̄ from the boundary, (zz̄)n, to the bulk axis, zz̄.

f
Q2|0
ζζ (x) = 0 is the regular solution we seek. There is also one singular normalisable

zero mode:

f
Q2|0
ζζ (x) = CQ2|0

(

1− (1 + x) log

(

1 +
1

x

))

. (4.37)

Stress tensor contribution:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
−κ2Qζζzz̄(zz̄)

n

3
dζ2 . (4.38)

4.8 KζζzKζζz̄

This one comes from

ds2∂ = dζ dζ̄ + 2κ (Kζζzz +Kζζz̄ z̄) dζ
2 + dz dz̄ +O(κ3) . (4.39)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄ + 2κ (Kζζzz
n +Kζζz̄ z̄

n) dζ2

ρ2

+ κ2(n− 1)ds21 +O
(

κ3
)

+O
(

(n− 1)2
)

, (4.40)

but ds21 = 0 because the four legs in ζ of KζζzKζζz̄ would force at least two contractions

with ζ, which clashes with covariance in ζ. This case, as the one in 4.2, follows from the

one in 4.1.

Therefore,

〈T 〉 = 0 . (4.41)
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4.9 Kζζz,ζ̄

This one comes from

ds2∂ = dζ dζ̄ + 2κ2Kζζz,ζ̄ ζ̄ z dζ
2 + dz dz̄ +O(κ3) . (4.42)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄ + 2κ2Kζζz,ζ̄ ζ̄ z
n dζ2

ρ2

+ 4κ2Kζζz,ζ̄

zn dζ dρ

ρ

+ κ2(n− 1)ds21 +O
(

κ3
)

+O
(

(n− 1)2
)

, (4.43)

with

ds21 = 2Kζζz,ζ̄

(

f
K1|1
ζz (x) zn−1dz dζ + f

K1|1
ζρ (x)

zn dζ dρ

ρ

)

. (4.44)

Notice a Shouten correction in the fourth line.

There are two normalisable zero-modes:

f
K1|1
ζz (x) = C

1|1
2

f
K1|1
ζρ (x) = 2C

1|1
2 +

C
1|1
1

x
. (4.45)

We set C
1|1
1 = 0 for regularity at the axis, and C

1|1
2 = 0 with the gauge condition gzµ = 0

at the axis.

The regular particular solution is:

f
K1|1
ζz (x) = −1

2

x

1 + x
(4.46)

f
K1|1
ζρ (x) = −1 +

1

6

1

1 + x
. (4.47)

Stress tensor contribution:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
−κ2Kζζz,ζ̄ z

n

6

(

ζ̄ dζ2 + (zz̄)n−1

(

3

2
z dz̄ dζ − 2z̄ dz dζ

))

. (4.48)

The first of these terms follows from covariance in (4.8). The rest are new.

4.10 Rζzzz̄

This one comes from

ds2∂ = dζ dζ̄ + dz dz̄ − 4

3
κ2Rζzzz̄ z(z̄ dz − z dz̄)dζ +O(κ3) . (4.49)
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Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

dζ dζ̄

ρ2

−
(

1− 2

3

(n− 1)

1 + x

)

4

3
κ2Rζzzz̄

zn n2 (1 + x)
n−1
n (z̄ dz − z dz̄)dζ

ρ2/n

+ 4κ2Rζzzz̄
zndρ dζ

ρ

+ κ2(n− 1)ds21 +O
(

κ3
)

+O
(

(n− 1)2
)

, (4.50)

with

ds21 = Rζzzz̄

(

f
R1|1a
ζz (x)

zn(z̄ dz − z dz̄) dζ

ρ2/n
+ f

R1|1a
ζρ (x)

zndζ dρ

ρ

)

. (4.51)

Notice a Shouten correction in the fourth line.

There are two normalisable zero-modes:

f
R1|1a
ζz (x) =

1

6

C
1|1a
1

x3/2

f
R1|1a
ζρ (x) =

C
1|1a
1

x1/2
+

C
1|1a
2

x
. (4.52)

We set C
1|1a
1 = 0 for regularity at the axis, and C

1|1a
2 with the gauge condition gzµ = 0.

The regular particular solution is:

f
R1|1a
ζz (x) =

5

6x

(

1

1 + x
− arctan

√
x√

x

)

(4.53)

f
R1|1a
ζρ (x) =

4

3

1

1 + x
− 5

arctan
√
x√

x
. (4.54)

Stress tensor contribution:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
κ2Rζzzz̄ z

n

36
(zz̄)n−1 (8z̄ dz dζ + 13z dz̄ dζ) . (4.55)

4.11 Rζζ̄ζζ̄

This one comes from

ds2∂ = dζ dζ̄ − 1

3
κ2Rζζ̄ζζ̄

(

ζ̄ dζ − ζ dζ̄
)2

+ dz dz̄ +O(κ3) . (4.56)
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Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)[

1− 4

3
κ2ρ2

]

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

[

dζ dζ̄ − 1
3κ

2Rζζ̄ζζ̄

(

ζ̄ dζ − ζ dζ̄
)2

ρ2
+ 2κ2Rζζ̄ζζ̄ dζ dζ̄

]

+ κ2(n− 1)ds21 +O
(

(κx)3
)

+O
(

(n− 1)2
)

, (4.57)

with

ds21 = −2Rζζ̄ζζ̄

(

fRζ
ρρ (x)dρ2 + fRζ

zz̄ (x)(zz̄)n−1dz dz̄ + fRζ
ζζ̄

(x)dζ dζ̄
)

. (4.58)

Notice again Shouten corrections within the brackets (see footnote 11).

There are two normalizable zero modes to this ansatz, that we will omit henceforth —

also for the three other 0|0 cases that follow. They look

f0|0
ρρ (x) = 2C

0|0
2 − 2C

0|0
1 (log x− 1)

f
0|0

ζζ̄
(x) = −C

0|0
2 + C

0|0
1 log x

f
0|0
zz̄ (x) = −C

0|0
2 + C

0|0
1 log x . (4.59)

C
0|0
2 = 0 with the gauge condition of no corrections in κ to gzz̄ at the axis, and C

0|0
1 = 0

with regularity. Notice that C
0|0
1 6= 0 would result in a logarithmic divergence at the axis

in, e.g., the dz dz̄ leg. This leg has no κ2 term surviving the n → 1 limit, so no candidate

to absorb the logarithmic divergence in a change of behaviour of the exponent, as is the

case for the logarithmic divergences that we have been allowing.

The regular solution is:

fRζ
ρρ (x) =

2

27

(

10− 5

1 + x
+

2

(1 + x)2
− 10 log(1 + x)

)

fRζ

ζζ̄
(x) =

−1

27

(

− 5

1 + x
+

2

(1 + x)2
− 10 log(1 + x)

)

fRζ
zz̄ (x) =

1

27

(

− 4

1 + x
+

4

(1 + x)2
+ 10 log(1 + x)

)

. (4.60)

Stress tensor contribution:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
κ2Rζζ̄ζζ̄

18

(

(ζ dζ̄ − ζ̄ dζ)2 − 10

3
(zz̄)2(n−1)(z2dz̄2 + z̄2dz2)

)

. (4.61)
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4.12 Rzz̄zz̄

This one comes from

ds2∂ = dζ dζ̄ + (1 + 2κ2Rzz̄zz̄ zz̄)dz dz̄ +O(κ3) . (4.62)

Then, after replicating, we write the following ansatz

ds2 =

(

1− 2

3

(n− 1)

1 + x

)[

1 +
8

3
κ2Rzz̄zz̄ρ

2

]

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n
(

1 + 2κ2Rzz̄zz̄(zz̄)
n
)

dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)[

dζ dζ̄

ρ2
− 2κ2Rzz̄zz̄ dζ dζ̄

]

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.63)

with

ds21 = 2Rzz̄zz̄

(

fRz
ρρ (x)dρ2 + fRz

zz̄ (x)(zz̄)n−1dz dz̄ + fRz
ζζ̄ (x)dζ dζ̄

)

. (4.64)

As earlier, Shouten corrections appear in brackets. Notice that we have not written down

(1+ x)
n−1
n factor in the Rzz̄zz̄ factor second line, even though we anticipate it. The reason

for not writing it will be clear in section 4.14.

The regular solution we find is:

fRz
ρρ (x) =

2

27

(

−1− 13

1 + x
+

7

(1 + x)2
− 17 log(1 + x)

)

fRz
ζζ̄ (x) =

−1

27

(

−18− 13

1 + x
+

7

(1 + x)2
− 17 log(1 + x)

)

fRz
zz̄ (x) =

1

27

(

−9− 5

1 + x
+

14

(1 + x)2
+ 17 log(1 + x)

)

+ x log

(

1 +
1

x

)

. (4.65)

Notice the appearance of the logarithm, that could be absorbed in the ansatz by writing,

instead of Rzz̄zz̄ (zz̄)
n in the second line of (4.63), Rzz̄zz̄ zz̄ (1 + x)

n−1
n ρ2

n−1
n . Thus, this

logarithm does not reflect singular behaviour.

Stress tensor contribution:

〈T 〉 = ℓ3(n−1)

4πG(zz̄)2n
κ2Rzz̄zz̄(zz̄)

n

3

(

2dζ dζ̄ + (zz̄)n−1

(

−dz dz̄+
4

9

z̄2dz2+z2dz̄2

zz̄

))

. (4.66)

4.13 Qζζ̄zz̄

This one comes from

ds2∂ = (1 + 4κ2Qζζ̄zz̄zz̄)dζ dζ̄ + dz dz̄ +O(κ3) . (4.67)
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Then, after replicating,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)[

dρ2

ρ2
+

8

3
κ2Qζζ̄zz̄ dρ

2

]

+

(

1− 2

3

(n− 1)

1 + x

)

(1 + x)
n−1
n n2dz dz̄

ρ2/n

+

(

1 +
1

3

(n− 1)

1 + x

)

(

1 + 4κ2Qζζ̄zz̄(zz̄)
n
)

dζ dζ̄

ρ2

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.68)

with

ds21 = 4Qζζ̄zz̄

(

fQ0|0
ρρ (x)dρ2 + f

Q0|0
zz̄ (x)(zz̄)n−1dz dz̄ + f

Q0|0

ζζ̄
(x)dζ dζ̄

)

. (4.69)

Notice again the Shouten correction inside the brackets, and the absence of a likely

(1 + x)
n−1
n factor in the third line of (4.68).

After discarding the singular zero mode of (4.59), we find the regular solution:

fQ0|0
ρρ (x) =

2

27

(

10− 5

1 + x
+

2

(1 + x)2
− 10 log(1 + x)

)

f
Q0|0

ζζ̄
(x) =

−1

27

(

27− 5

1 + x
+

2

(1 + x)2
− 10 log(1 + x)

)

+ x log

(

1 +
1

x

)

f
Q0|0
zz̄ (x) =

1

27

(

− 4

1 + x
+

4

(1 + x)2
+ 10 log(1 + x)

)

. (4.70)

The apparently singular log in f
Q0|0

ζζ̄
(x) can again be absorbed in the ansatz (4.68) by

replacing Qζζ̄zz̄ (zz̄)
n in the third line by Qζζ̄zz̄ zz̄ (1 + x)

n−1
n ρ2

n−1
n .

The contribution to the stress tensor:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n
−2κ2Qζζ̄zz̄(zz̄)

n

3

(

dζ dζ̄ − 5

9
(zz̄)n−1 z

2dz̄2 + z̄2dz2

zz̄

)

. (4.71)

4.14 KζζzKζ̄ζ̄z̄

This one comes from

ds2∂ = dζ dζ̄ + 2κ
(

Kζζzz dζ
2 +Kζ̄ζ̄z̄ z̄ dζ̄

2
)

+ dz dz̄ +O(κ3) . (4.72)

Then,

ds2 =

(

1− 2

3

(n− 1)

1 + x

)

dρ2

ρ2

+

(

1− 2

3

(n− 1)

1 + x

)

n2 (1 + x)
n−1
n

ρ2/n
dz dz̄

+

(

1 +
1

3

(n− 1)

1 + x

)

[

dζ dζ̄ + 2κ
(

Kζζzz
ndζ2 +Kζ̄ζ̄z̄ z̄

ndζ̄2
)

ρ2
− 4κ2KζζzKζ̄ζ̄z̄ dζ dζ̄

]

+ κ2(n− 1)ds21 +O(κ3) +O
(

(n− 1)2
)

, (4.73)
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with

ds21 = 2KζζzKζ̄ζ̄z̄

(

fK0|0
ρρ (x)dρ2 + f

K0|0
zz̄ (x)(zz̄)n−1dz dz̄ + f

K0|0

ζζ̄
(x)dζ dζ̄

)

. (4.74)

The κ2ρ2 terms correspond to the Shouten correction to AdS if we were using FG coordi-

nates. This just depends on the boundary geometry and appears at n = 1.

Discarding the zero mode of (4.59), we find:

fK0|0
ρρ (x) =

2

3

(

−5 +
1

1 + x
+ log(1 + x)

)

f
K0|0

ζζ̄
(x) =

−1

3

(

−16 +
1

1 + x
+ log(1 + x)

)

− 4x log

(

1 +
1

x

)

f
K0|0
zz̄ (x) =

1

3

(

−2 +
2

1 + x
− log(1 + x)

)

+ 2x log

(

1 +
1

x

)

. (4.75)

As advertised at the beginning of the section, regularity at the bulk axis now appears

to be subtler, as there are no obvious terms with which to absorb these logarithms into

(1 + x)
n−1
n factors.

It helps to notice, however, that the logarithms appear in the same legs as for the two

previous cases (4.65), (4.70). They can then be cancelled by adding them to the current

case, fine-tuned as

Rzz̄zz̄ = −2KζζzKζ̄ζ̄z̄ ,

Qζζ̄zz̄ = 2KζζzKζ̄ζ̄z̄ , (4.76)

leading to a regular solution. This solution implies, however, that whenever KζζzKζ̄ζ̄z̄ is

not zero there will be a part of Rzz̄zz̄ and Qζζ̄zz̄ that is not accompanied by the (1+x)
n−1
n

factors, unlike in sections 4.12 and 4.13. This part, unlike the rest, will have a factor of

(zz̄)n−1 near the bulk axis.

In practice, this amounts to absorbing the logs in (4.75) by adding to the ansatz (4.73)

the following:

ds2 → ds2+2κ2KζζzKζ̄ζ̄z̄

(

(zz̄)n − zz̄(1 + x)
n−1
n ρ2

n−1
n

)

(

4
dζ dζ̄

ρ2
− 2

n2(1 + x)
n−1
n dz dz̄

ρ2/n

)

.

(4.77)

Thus, the logs in (4.75) are not signalling singular behaviour. We will elaborate on this in

section 7.

The contribution to the stress tensor reads:

〈T 〉 = ℓ3(n−1)

4πG(zz̄)2n
(

−κ2KζζzKζ̄ζ̄z̄(zz̄)
n
)

(

−2dζ dζ̄ + (zz̄)n−1

(

2

3
dz dz̄ +

1

6

z̄2dz2 + z2dz̄2

zz̄

))

.

(4.78)
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4.15 Summary

In this section we have written down explicitly smooth gravity duals to all possible squash-

ings of a boundary cone, to the order of Riemann curvature — with the exception of those

involving the trace of the extrinsic curvature, that we set to zero without loss of generality

using conformal symmetry.

It is a rather lengthy section because of its exhaustiveness. The cases we have not

written down explicitly follow straightforwardly from the ones presented by exchanging

ζ ↔ ζ̄ and/or z ↔ z̄.

In the remainder of the paper we will discuss the consequences of these bulk geometries

and benchmark them against known features they should reproduce.

5 Vacuum polarisation

In the preceding section we presented the vacuum polarisation 〈T 〉 induced by a squashed

conical singularity in 4D holographic conformal field theory. This expectation value of

the stress tensor was obtained by conventional holographic techniques [24], which for us

simplify to reverting to Fefferman-Graham-like coordinates and selecting the coefficient of

the ρ4 term (see footnote 11).

However, strictly speaking the bulk geometries of this paper do not have well defined

Fefferman-Graham expansions, because the boundary metric is singular. It is then nec-

essary to explain in which sense the method used calculate this vacuum polarisation is

conventional and valid.

Let us first recall one aspect of the boundary metrics (3.5). These are obtained by

‘quotiening’ the regular ones in (3.1), by z → zn. The quotient is, away from zz̄ = 0,

locally a change of coordinates. As such, it does not alter local properties of the geometry,

as the curvature. Hence, the Riemann tensor is regular away from zz̄ = 0. However, the

quotient does introduce singular, delta-like, contributions to the curvature at the origin —

the tip of the cone.

Up to these contributions and the multivaluedness discussed at the end of section 3,

the boundary geometry behaves regularly, and one can formally develop the Fefferman-

Graham expansion and extract a stress tensor. But one needs to bear in mind that the

stress tensor calculated in this way ignores contact terms.

As emphasised in the beginning of section 4, the 〈T 〉 we have extracted should be

thought of as belonging to a UV expansion. Indeed, notice that it diverges at the origin as

〈T 〉 ∼ n− 1

r4n
(

〈T 〉0 + κ rn 〈T 〉1 + κ2r2n〈T 〉2 +O(κ3)
)

+O
(

(n− 1)2
)

, (5.1)

where we momentarily reverted to polar coordinates r2 = zz̄.

The 〈T 〉k contributions we have presented are all local functions of the geometry. Such

local probes are characteristic of UV expansions.12 The r → 0 divergences conform one

such expansion. Generically, one also expects there to be finite, non-local dependence on

12For example, UV divergences of regulated partition functions are local functions of the geometry.
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the geometry (as, say, in the ratio of two characteristic lengthscales), but these are missed

in the expansion in κ, because it is around a point. In Fefferman-Graham language, this

is concordance with the fact that the range of ρ needs to be small in units of κ.

For reference, we now collect the full expectation value of the stress tensor:

〈T 〉 = ℓ3(n− 1)

4πG(zz̄)2n

{

−1

6

(

γijdσ
idσj + (zz̄)n−1

(

−dz dz̄ +
z̄2dz2 + z2dz̄2

zz̄

))

− κ

[

Kζζzz
ndζ2 +Kζζz̄ z̄

ndζ2

6
+ c.c.

]

− κ2
Fζζ̄zz̄

2
(zz̄)n−1(z dz̄ − z̄ dz)(ζ dζ̄ − ζ̄ dζ)

+ κ2

[

Qζζ̄zz z
2n

9

(

dζ dζ̄ + (zz̄)n−1

(

−4dz dz̄ + 2
z2dz̄2 + 3z̄2dz2

zz̄

))

+ c.c.

]

+ κ2

[

KζζzKζ̄ζ̄zz
2n

9

(

−5dζ dζ̄ + (zz̄)n−1

(

17dz dz̄ − 7z2dz̄2 + 30z̄2dz2

zz̄

))

+ c.c.

]

− κ2
[

Qζζzz̄(zz̄)
ndζ2

3
+ c.c.

]

− κ2
[

Kζζz,ζ̄z
ndζ

6
(zz̄)n−1

(

3

2
z dz̄ − 2z̄ dz

)

+ ζ ↔ ζ̄ + c.c.

]

+ κ2
[

Rζzzz̄z
ndζ

36
(zz̄)n−1 (8z̄ dz + 13z dz̄) + ζ ↔ ζ̄ + c.c.

]

− κ2
5Rζζ̄ζζ̄

27
(zz̄)2(n−1)(z2dz̄2 + z̄2dz2)

+ κ2
Rzz̄zz̄(zz̄)

n

3

(

2dζ dζ̄ + (zz̄)n−1

(

−dz dz̄ +
4

9

z̄2dz2 + z2dz̄2

zz̄

))

− κ2
2Qζζ̄zz̄(zz̄)

n

3

(

dζ dζ̄ − 5

9
(zz̄)n−1 z

2dz̄2 + z̄2dz2

zz̄

)

− κ2
(

KζζzKζ̄ζ̄z̄ + ζ ↔ ζ̄
)

(zz̄)n
(

−2dζ dζ̄ + (zz̄)n−1

(

2

3
dz dz̄ +

1

6

z̄2dz2 + z2dz̄2

zz̄

))

+O(κ3)

}

+O
(

(n− 1)2
)

, (5.2)

which is traceless. We have left implicit that the metric on the surface γij may have intrinsic

curvature, and that the extrinsic curvature may have dependence on the position on the

surface. This expression may be seen as encoding a number of response coefficients of the

field theory to the presence of the squashed cone.

Not having fixed the conformal frame completely, we can perform the sanity check

that this stress tensor transforms covariantly under Weyl rescalings.13 Consider the case

in which only the following squashing is turned on: Rzz̄zz̄ = 2Qζζ̄zz̄ = 1
2 . This is

conformally flat:

ds2∂ =
[

1 + κ2zz̄
] (

dζ dζ̄ + dz dz̄
)

+O(κ3) . (5.3)

13The conformal anomaly gets activated at O(κ4) (O(κ2) in the contact terms), so it plays no role here.
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The stress tensor induced by the introduction of the cone on (5.3) (by z → zn) can be read

from (5.2). Its dependence on κ also displays conformal flatness:

〈T 〉 =
[

1

1 + κ2(zz̄)n

]

ℓ3(n− 1)

4πG(zz̄)2n
−1

6

(

γijdσ
idσj + (zz̄)n−1

(

−dz dz̄ +
z̄2dz2 + z2dz̄2

zz̄

))

+O(κ3) +O
(

(n− 1)2
)

, (5.4)

providing a check of the good conformal covariance properties of (5.2). Similarly, the other

two locally conformally flat cases, Rζζ̄ζζ̄ = −Rzz̄zz̄ and Qζζ̄zz 6= 0, can also be seen to

follow from the one without bending, κ = 0.

6 Logarithmic divergences of holographic Rényi entropy

The metrics dual to squashed cones reproduce the results of [10] regarding logarithmic

divergences of Rényi entropy for holographic CFTs.

Entanglement entropy is known to be UV divergent in field theory. This divergence

is due to correlations across the entangling surface between infinitely many short distance

degrees of freedom. It is therefore localised around the entangling surface. Taming it with

a short distance cutoff, it reads, for the vacuum of a 4D CFT [25]:

S =
Area

ǫ2
+

(

a

2π

∫

R√
γd2σ+

c

2π

∫

(

K{ij}aK
{ij}a−Wij

ij
)√

γ d2σ

)

log ǫ+ . . . , (6.1)

where the area and the integrals are on the entangling surface. R is the Ricci scalar of

the induced metric γij ; Wij
ij is the contraction of the projection of the Weyl tensor on

the surface; and K{ij}aK
{ij}a is the contraction of the square of the traceless part of the

extrinsic curvature. The last two are conformal invariant.

While the coefficient of the area term is sensitive to the choice of cutoff, the logarithmic

divergence is not. It therefore has a physical character. a and c are the central charges —

the logarithmic divergence can be derived from the conformal anomaly, when the latter is

written as the logarithmic divergence of the regulated effective action [25].

Rényi entropies are conjectured to have a similar UV behavior [26]:

Sn = · · ·+
(

fa(n)

2π

∫

R√
γ d2σ +

fb(n)

2π

∫

K{ij}aK
{ij}a√γ d2σ

−fc(n)

2π

∫

Wij
ij√γ d2σ

)

log ǫ+ . . . . (6.2)

There are known relations between fa(n) and fc(n) [17, 27], but less is known about fb(n),

apart from fb(1) = c. Free field theory results prompted the conjecture that fb(n) =

fc(n) [28]. However, this relation fails for holographic theories [10]. The method of [29]

applied to our metrics for duals to squashed cones reproduces this failing. This method

builds on [9] and [4] to argue that a certain derivative of Rényi entropy with respect to the

index n is given, for theories holographically dual to General Relativity, by the area of the

bulk axis:

n2∂n

(

n− 1

n
Sn

)

=
Area(axis)

4G
. (6.3)
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This formula is analogous to the fact that, in thermodynamics, the thermal derivative of

the free energy is the entropy.14 In General Relativity, this entropy is an area.

We thus need to calculate the area of the bulk axis (at zz̄ → 0) of the metrics of

section 4. Given that these metrics are precise to O(κ2) and O(n− 1), we can extract the

curvature contributions to the Rényi entropy to first order in (n− 1).

Given eq. (2.8), O(κ2) contributions to the area of the axis can come only from gζζ̄
and gρρ at zz̄ = 0. These are non-zero only for the 0|0 cases studied in sections 4.11–4.14.

There is a class of such contributions that remains finite in the n → 1 limit — the Shouten

terms. In this limit, Sn in (6.3) becomes just entanglement entropy. Therefore, the Shouten

terms determine the shape dependence of entanglement entropy [30, 31].

At O(n− 1), there is an interplay between the Shouten terms multiplied by the (n−1)
1+x

factors of (2.8), that do not vanish at the axis; and from the fact that the functions

in (4.60), (4.65), (4.70) and (4.75) do not vanish at x → 0. Collecting all terms, one gets

the following area density at the axis:

a(axis) =

(

1

ρ3
+

Rζζ̄ζζ̄

ρ

(

4

3
− 20

27
(n− 1)

)

+
Qζζ̄zz̄

ρ

(

4

3
− (n− 1)

68

27

)

+
Rzz̄zz̄

ρ

(

−2

3
+

34

27
(n−1)

)

+
KζζzKζ̄ζ̄z̄ +Kζζz̄Kζ̄ζ̄z

ρ

(

−4 +
22

3
(n− 1)

)

)

√
γ

+O(κ3) +O
(

(n− 1)2
)

, (6.4)

where we include the Kζζz̄Kζ̄ζ̄z contribution that was left implicit in section 4. Its presence

follows from covariance. From this, a ‘Rényi entropy density’ follows by integrating in (6.3).

This density is to be integrated in the three directions that span the axis: ρ, ζ and ζ̄.

Performing the integral in ρ from a cutoff ρ = ǫ inwards, and using (3.4), we get

Sn =
1

16G

1

ǫ2

∫ √
γ d2σ +

κ2

16G

[

(

1− 1

2
(n− 1)

)
∫

R√
γ d2σ

+

(

1− 11

12
(n− 1)

)
∫

K{ij}aK
{ij}a√γ d2σ

−
(

1− 17

18
(n− 1)

)
∫

Wij
ij √γ d2σ

]

log ǫ

+O(κ3) +O
(

(n− 1)2
)

. (6.5)

Notice that the area divergence does not have a correction in (n − 1). In fact, it is easy

to argue that in holography such area divergence does not have dependence in n, as this

divergence follows from the leading term at small ρ of gρρ and gζζ̄ , and these do not change

under z → zn.

Upon restoring units of ℓ and using that a = c = πℓ3/8G, (6.5) reproduces [10]. For

this theory, indeed, fb 6= fc.

14Here, Rényi entropy is analogous to thermodynamic free energy, not thermodynamic entropy.
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7 Splitting problem and singularity resolution in the bulk

This section discusses the impact of the analysis of section 4.14 on the holographic en-

tanglement entropy formula of higher-derivative theories of gravity. We will conclude, in

precise agreement with [32], that the ‘splitting problem’ has a non-minimal solution in a

class of theories, resulting in a slightly different entropy formula from previously antici-

pated in [12, 13]. This difference is visible only beyond curvature squared interactions,

and does not impact the entropy of Lovelock nor f(R) interactions. We include a brief

but self-contained description of the entropy formula for higher-derivative gravity and its

splitting problem.

The application of generalized entropy to higher-derivative theories of gravity results in

a new holographic entanglement entropy formula. For the class of theories with a lagrangian

depending on the Riemann tensor but not on its derivatives,15

I =

∫

L(Riem)
√
g d5x+ Boundary terms, (7.1)

this formula is

S = 2π

∫

{

∂L

∂Rzz̄zz̄
+ 8

∑

α

(

∂2L

∂Rzizj∂Rz̄kz̄l

)

α

KijzKklz̄

qα + 1

}

√
γ d3x . (7.2)

Here Rzz̄zz̄, Rzizj , Kijz and their complex conjugates refer to an expansion of the type (3.1)

around the bulk entangling surface, at zz̄ → 0. This surface is what we called the ‘bulk

axis’ in previous sections. In contrast to the use of the expansion (3.1) in section 3, i and

j now run over three values, that in the coordinates of that section would be ζ, ζ̄ and ρ.

The first term in this holographic entropy formula is Wald entropy [33], and the second

one can be thought of as a correction to it. Wald entropy was constructed on bifurcation

surfaces of event horizons, which necessarily have vanishing extrinsic curvature. The en-

tropy of (7.2) applies also to situations in which the extrinsic curvature may be non-zero.

To explain the meaning of the sum in α in (7.2) we need to discuss some details of the

application of generalized entropy to the class of theories (7.1). This application involves

evaluating actions of bulk geometries16 that regulate conical singularities. The prescription

of [12, 13] for the sum in α assumes a ‘minimal’ regulation, of the type discussed below

eq. (4.3). Here minimal means that, in an expansion around the axis (at zz̄ = 0), the

metric of the regulated cone takes the form:

ds2 =
(

γij+
[

2κKijzz
n+κ2Qijzzz

2n+κ2Qijzz̄zz̄+c.c.
])

dσidσj+2κAizz̄(z̄ dz − z dz̄) dσi

− 4

3
κ2 [Rizzz̄z

n − c.c.] (z̄ dz − z dz̄)dσi +
(

1 + 2κ2Rzz̄zz̄zz̄
)

dz dz̄ +O(κ3) . (7.3)

This follows from taking (3.1) and promoting any holomorphic factors of z and dz that

are not paired with antiholomorphic ones to zn and d(zn) = nzn−1dz, respectively. This

15For continuity with the rest of this paper we consider five bulk dimensions, although the applicability

is more general.
16Rather, actions of ‘analytic continuations of geometries’ (see comments after eq. (3.2)).
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achieves a replica symmetric metric (7.3) that is regular at the axis for integer n, and for

which the exponents in z differ minimally from the ones before replicating (3.1).

The entropy following from the evaluation of the action of such cone-regulating geome-

tries involves integrals of the type

lim
n→1

∂n

∫ ∞

0
(n− 1)2

(

rn

r2

)2

r2qα(n−1)e−r2r dr =
1

2

1

qα + 1
, (7.4)

where we used polar coordinates r =
√
zz̄. The role of the exponential function is to

localise around the axis, and this function could be replaced without change in the r.h.s.

by any other regulating function, interpolating smoothly between 1 at the origin and 0 at

infinity — e.g., 1
1+r2

.

The integral in eq. (7.4) is dominated by a logarithmic divergence at the lower end

as n → 1. That explains the independence from the regulating function. The outcome is

sensitive to the details of the expansion of the geometry around the axis, that are encoded

in the qα in (7.4). qα parametrises n−dependence in the power of r in the integrand,

reflecting n−dependent exponents of z and z̄ in the geometry (7.3).

Terms in the expansion (7.3) that are accompanied by different powers of z and z̄

contribute differently to qα. That is what the sum in α in (7.2) captures. In this for-

mula we need to decompose the second derivative of the lagrangian in monomials of the

curvature, that α labels. These monomials are, however, not in the background Riemann

tensor, as may appear natural for L(Riem). Rather, its constituents are the quantities

appearing (7.3), in terms of which one can write the Riemann tensor (3.3): Rijkl, Kijz,

Qijzz, Qijzz̄, Rizzz̄, Fijzz̄ and Rzz̄zz̄ (and complex conjugates). Each monomial α is then

assigned a value of qα, and the sum is performed with the 1
qα+1 weight. Constituents of

α contribute additively to qα with a weight that depends on the exponent of z and z̄ that

they are accompanied by around the axis of the regulated cone. For the regulation of (7.3),

qα is contributed 1/2 for each Kijz and Rizzz̄, 1 for Qijzz, and 0 otherwise.

Note, however, that exchanging, e.g., the zz̄ factor accompanying Rzz̄zz̄ in (7.3) for

(zz̄)n would also achieve a regular replica symmetric metric, although with a different

weight of this term in (7.2). Now, Rzz̄zz̄ would contribute 1 to qα, instead of 0. The

obvious such ambiguities are in terms with a zz̄ pair in their indices: Qijzz̄, Fijzz̄, Rizzz̄

and Rzz̄zz̄; although there may be more [22]. These ambiguities have been called ‘the

splitting problem’ [32].

A lesson that follows from the analysis in section 4.14 is that, in General Relativity,

the expansion around the bulk axis does not take the form of eq. (7.3). Rather, the Qζζ̄zz̄

and Rzz̄zz̄ terms look:17

ds2 = . . .+ 4κ2
[

Q′
ζζ̄zz̄ zz̄ + 2

(

KζζzKζ̄ζ̄z̄ +Kζζz̄Kζ̄ζ̄z

)

(zz̄)n
]

dζ dζ̄

+ 2κ2
[

R′
zz̄zz̄ zz̄ − 2

(

KζζzKζ̄ζ̄z̄ +Kζζz̄Kζ̄ζ̄z

)

(zz̄)n
]

dz dz̄ + · · ·+O(κ3) , (7.5)

17The new terms compared to eq. (4.76) follow from covariance. Strictly speaking, eq. (7.5) is not

dimensionally correct. To avoid clutter, we omit the factors of ρ2
n−1
n that would render it so. These are

finite at the bulk axis.
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with

Q′
ζζ̄zz̄ = Qζζ̄zz̄ − 2

(

KζζzKζ̄ζ̄z̄ +Kζζz̄Kζ̄ζ̄z

)

(7.6)

R′
zz̄zz̄ = Rzz̄zz̄ + 2

(

KζζzKζ̄ζ̄z̄ +Kζζz̄Kζ̄ζ̄z

)

. (7.7)

Notice that upon taking n → 1 the extrinsic curvature contributions cancel and we re-

cover (3.1).

Let us for a moment discuss what is the σi−covariant version of eqs. (7.6) and (7.7).

Recall that, in this section, σi encompasses ζ, ζ̄ and ρ. This is irrelevant for the second

term, that can be written

R′
zz̄zz̄ = Rzz̄zz̄ +

1

2
KijzK

ij
z̄ , (7.8)

because for the configurations we studied in section 4, Kρiz = 0. Notice also that in this

section Kijz can not have a trace — as the Ryu-Takayanagi surface is a minimal surface.

For Q′ a similar argument implies that the covariantisation should read:

Q′
ijzz̄ = Qijzz̄ −Kikzγ

klKjlz̄ −Kikz̄γ
klKjlz . (7.9)

Equivalent expressions for the analogs of Q′ and R′ were found in [32] by solving the

Einstein equations around the bulk axis.18

Since the factors of (zz̄)n in (7.5) are different from those in (7.3), we conclude that

the splitting problem has a non-minimal solution in General Relativity. This translates

into the α sum of (7.2) meaning something different than it would in the minimal case

of (7.3). Now, α labels monomials in terms of Rijkl, Kijz, Qijzz, Q
′
ijzz̄, Rizzz̄, Fijzz̄ and

R′
zz̄zz̄; instead of Qijzz̄ and Rzz̄zz̄. Explicit factors of Kijz and Rizzz̄ still contribute 1/2 to

qα; Qijzz contributes 1; and the rest, including Q′
ζζ̄zz̄

and R′
zz̄zz̄, contribute 0.

This may appear irrelevant, since the lagrangian of GR has a vanishing second deriva-

tive in the Riemann and therefore no splitting problem; its entropy is just the area. How-

ever, this splitting does have consequences for the entropy formula of theories that contain

perturbative higher-derivative corrections to General Relativity. For these corrections there

is a splitting problem, and the splitting is fixed by the leading result — the GR one we

just discussed.

This affects Riemk interactions for k ≥ 3, but does not have consequences for Lovelock

interactions, because in those ∂2L
∂Rzizj∂Rz̄kz̄l

does not depend on Qζζ̄zz̄ nor Rzz̄zz̄;
19 or for

f(R) interactions, for which the second derivative vanishes identically.

As an illustration of the consequences of this resolution of the splitting problem,

consider

L = − 1

16πG
R− λ

26
Rµν

ρσRρσ
τωRτω

µν +O(λ2) . (7.10)

For this theory (leaving implicit the O(λ2)):

∂2L

∂Rzizj∂Rz̄kz̄l
= −3

8
λ (δilRzjz̄k + δjkRziz̄l) , (7.11)

18In comparison to that reference, we have used conformal symmetry to eliminate the trace of the extrinsic

curvature.
19This comment is non-trivial only when the bulk dimension is D ≥ 6, when the Lovelock term of order

> 2, and thus with a splitting ambiguity, becomes non-trivial.
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where the 3 is a symmetry factor and there is a factor of 23 from three gzz̄. From here

we get
∂2L

∂Rzizj∂Rz̄kz̄l
Kij

zK
kl
z̄ = −3λRzζz̄ζ̄KζζzKζ̄ζ̄z̄ + ζ ↔ ζ̄ , (7.12)

and with the splitting of (7.5):

∑

α

(

∂2L

∂Rzizj∂Rz̄kz̄l

)

α

KijzKijz̄

qα + 1

= −3λ
∑

α

(

Rzζz̄ζ̄

)

α

KζζzKζ̄ζ̄z̄

qα + 1
+ ζ ↔ ζ̄

= −3λ
∑

α

(

1

2
Fζζ̄zz̄ −Qζζ̄zz̄ + 2Kζζz̄Kζ̄ζ̄z

)

α

KζζzKζ̄ζ̄z̄

qα + 1
+ ζ ↔ ζ̄

= −3λ
∑

α

(

1

2
Fζζ̄zz̄ −Q′

ζζ̄zz̄ − 2KζζzKζ̄ζ̄z̄

)

α

KζζzKζ̄ζ̄z̄

qα + 1
+ ζ ↔ ζ̄

= −3λ

(

1

2
Fζζ̄zz̄ −Q′

ζζ̄zz̄ −
2

2
KζζzKζ̄ζ̄z̄

)

KζζzKζ̄ζ̄z̄ + ζ ↔ ζ̄

= −3λ

(

1

2
Fζζ̄zz̄ −Qζζ̄zz̄ +KζζzKζ̄ζ̄z̄ + 2Kζζz̄Kζ̄ζ̄z

)

KζζzKζ̄ζ̄z̄ + ζ ↔ ζ̄

= −3λ
(

Rzζz̄ζ̄ +KζζzKζ̄ζ̄z̄

)

KζζzKζ̄ζ̄z̄ + ζ ↔ ζ̄ +O(λ2) , (7.13)

in agreement with [32]. This could be simplified further using the 0th order back-

ground eoms (Einstein’s).20 For the second line we have used eq. (3.3), and for the

third, (7.6). In the fourth line we summed over α with the splitting we have discussed,

and in the fifth and sixth we have used eqs. (7.6) and (3.3) again. For the ‘minimal split-

ting’, we would perform the sum in α directly from the second line, getting in the end

−3λ
(

Rzζz̄ζ̄ −Kζζz̄Kζ̄ζ̄z

)

KζζzKζ̄ζ̄z̄ + ζ ↔ ζ̄, for which the K4 term is a different tensor

structure altogether.

8 Outlook

This paper has described the regular GR duals to CFTs on squashed cones. These metrics

show how bulk gravity regulates a conical singularity in the boundary. We have worked to

first order in the strength of the cone (n− 1), and to second order in κ, parametrising an

ultralocal expansion around the cone. Going to second order allows sensitivity to Riemann

curvature — although only within a UV expansion.

A quantity that follows from these geometries is (the UV expansion of) the vacuum po-

larisation in the presence of these cones (5.2), up to contact terms. This stress tensor bears

some resemblance to those of fluids/gravity, and one can interpret its many coefficients

as response coefficients to the squashing of the cone. The number of such second-order

coefficients is large compared to [19] because the entangling surface breaks O(4) symmetry

20We have used the simplification Kζζ̄z = 0; the Ryu-Takayangi surface is extremal in General Relativity

(λ = 0).
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to two planes (parallel and transverse). Since we did not take full advantage of conformal

symmetry, three of the contributions to (5.2) can be generated via covariance under con-

formal transformations, as we saw in section 5. For closure, it would be interesting to write

down the missing contact terms, that may be interpreted as defect degrees of freedom.

Our setup should not be confused with that of holographic entanglement entropy

across surfaces with singular shapes [34]. In that setup, the background boundary metric

is regular.

The metric of a conical singularity at the boundary is simple both in complex coordi-

nates (2.2) and in hyperbolic ones (2.3). (2.3) has a simple gravity dual for all values of n,

eq. (2.4), while for (2.2) we have worked only to leading order in (n−1), (2.8). It is natural

to suspect that there should be a simple gravity dual to (2.2) for all values of n, and a

correspondingly simple generalisation of our results non-linearly in n. Such generalisation

would be applicable, e.g., to negativity as the n → 1/2 limit [35]. We plan to investigate

this elsewhere. It should also be possible to generalise the results of this paper to other

bulk dimensions, and to other theories of gravity.

The detailed mechanism by which the bulk regulates the boundary cone is in agreement

with [32]. There, this structure was derived by solving the finite part of Einstein’s equations

around the Ryu-Takayanagi surface (the infinite part gives that the surface is minimal [4]).

That suggests that the addition of matter may change the detailed regulation, and therefore

the solution of the splitting problem we presented in section 7. It may be interesting to

explore this possibility, and whether it impacts the log divergence of Rényi entropy we

discussed in section 6 — perhaps there is after all a gravity dual for which fb(n) = fc(n)

is realised.
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