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1 Introduction

Massless higher spin theories can be constructed consistently on AdS backgrounds [1],

and they are believed to describe a consistent subsector of string theory at the tensionless

point [2–4]. Via the AdS/CFT duality, the tensionless limit of string theory corresponds, on

the dual field theory side, to the limit in which the CFT becomes free, and the higher spin

degrees of freedom correspond to those of a vector-like CFT. The AdS/CFT correspondence

therefore predicts dualities between higher spin theories and vector-like CFTs, and explicit

examples of such relations were first proposed for the case of AdS4/CFT3 in [5, 6], and

more recently in one dimension lower in [7]. These dualities provide a useful approach

towards analysing string theory at a very symmetrical point in its moduli space where

many of its underlying symmetries are unbroken. They may also allow one to prove the

AdS/CFT correspondence since they are weak-weak dualities.

In order to utilize the duality for either of these purposes it is important to understand

the embedding of the higher spin AdS/CFT duality into the usual stringy AdS/CFT cor-

respondence in detail. For the 4d/3d case, a proposal was made some time ago in [8], while

for the case of AdS3/CFT2 a somewhat different picture emerged in [9]. The CFT duals

of string theory on AdS3 × S3 × T4 lie on the moduli space that contains the symmetric

– 1 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
8

orbifold of T4, and the orbifold theory itself contains a vector-like CFT as a closed subsec-

tor. In turn, this vector-like CFT was shown to emerge naturally in the CFT dual of the

N = 4 version [10] of the higher spin AdS/CFT duality. More specifically, the CFT dual

of the higher spin theory is a subsector of the untwisted sector of the symmetric orbifold,

and the entire untwisted sector can be understood in terms of a vastly extended higher

spin symmetry, the so-called Higher Spin Square (HSS), as well as its scalar field excita-

tions [11, 12], see also [13, 14] for related discussions. On the other hand, it has been more

difficult to characterize the twisted sector of the symmetric orbifold from a higher spin

perspective — see however [12, 15, 16] for first steps in this direction. This is an important

problem if we want to use the higher spin perspective for the description of string theory

at its highly symmetrical tensionless point.

The present work revisits the original bosonic duality of [7] in order to analyse the

relevant twisted sectors from a higher spin perspective. The bosonic theory is a useful

toy model since it exhibits all the essential features of the supersymmetric version. The

identification of the twisted sectors in terms of coset representations was done before for

the N = 2 and N = 4 cases [9, 17], partially using the BPS condition as a guide, but the

description in the bosonic case has so far not been worked out. In fact, the structure of the

bosonic coset is somewhat different from that of the supersymmetric versions, and thus it

was not clear how to generalize the results directly.

In this paper we attack this problem using a new tool that was recently discovered

for the bosonic W∞ algebras. A few years ago it was shown in a series of papers [18–20]

that the representation theory of the quantum toroidal algebra of gl1 can be described

in terms of plane partitions, and that the associated characters are, up to an overall q-

Pochhammer symbol, identical to those of the bosonic WN,k minimal models. More re-

cently, Procházka [21] realized that this gives rise to a powerful method to analyse the

bosonic W∞ representations. In particular, he showed that the triality symmetry of the

W∞ algebra, which played an important role in establishing the duality [22], is inherent and

manifest in the plane partition description. Finally, since quantum toroidal algebras re-

duce to their corresponding affine Yangian algebras (in a suitable degenerate limit) [23, 24],

plane partitions also describe the representation theory of a Yangian algebra. On the other

hand, Yangian algebras are one of the hallmarks of integrability, and hence this viewpoint

may help us establish the precise connection between higher spin theories and integrable

field theories proposed for AdS3 in [25–27] (see [28] for a review).

The N = 4 construction of [9] relates the Wolf space cosets to the symmetric orbifold

(and hence to string theory) for the case where the cosets can be described in terms of

free fields (λ = 0). The free field constructions of the bosonic W∞[λ] algebras arise for

both λ = 0 and λ = 1, where they can be realized in terms of free fermions and bosons,

respectively [29–33]. Moreover, the λ = 0 (λ = 1) bosonic coset theory can be described by

a continuous orbifold theory, where N fermions (k bosons) are orbifolded by the unitary

group U(N) (U(k)). Since the symmetric group Sn+1 is a subgroup of the unitary group

U(n), the twisted sectors of the symmetric orbifold are a subset of the twisted sectors of

the continuous orbifold.
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For the case of λ = 0, the free field realization of the coset model was already made

fairly explicit in [34], where the k → ∞ (i.e. λ → 0) limit was described as a continuous

orbifold. However, the precise description of the twisted sectors was not understood at the

time — in general, the twisted sector of the orbifold is not directly accessible, even if one has

a good understanding of the untwisted sector. In this paper we find the coset description

of the twisted sectors both at the free fermion (λ = 0) and the free boson point (λ = 1). It

is important to have both of these cases simultaneously under control since the extended

W-algebra that is believed to arise in string theory (and whose wedge algebra is the Higher

Spin Square) is in some sense a combination of both of these constructions [11]. The main

technical advance of our analysis is the systematic use of the plane partition viewpoint

advocated in [21], which enabled us to find the correct twisted sector representations. We

also test our proposals using the techniques of [17].

The paper is organized as follows. We begin in section 2 with a discussion of the bosonic

theory corresponding to λ = 1, i.e. N →∞ at fixed k. We first find closed form expressions

for the wedge characters of the twisted sectors, and then use the plane partition viewpoint

to propose the form of the corresponding coset representations. This proposal is then

tested in some detail: in sections 2.3 the null-vector structure of the corresponding hs[λ]

representations are studied from a microscopic viewpoint, i.e. by calculating the relevant

Kac determinants, and in section 2.4 the conformal dimension and excitation spectrum

is computed in the coset and found to agree with the orbifold predictions; this also fixes

the precise identification with the coset representations. In section 3 the corresponding

analysis is performed for the fermionic theory corresponding to λ = 0. We end with a

discussion on future directions in section 4. There are three appendices where aspects of

the null-vector analysis (appendix A), the determination of the higher spin charges using

the Drinfeld-Sokolov approach (appendix B), and combinatorial identities that arise in the

plane partition analysis (appendix C) are explained in more detail.

2 The twisted sector in the free boson description

We are interested in the cosets
su(N)k ⊕ su(N)1

su(N)k+1
, (2.1)

and we shall mainly be considering the ’t Hooft limit, where we take N and k to infinity,

while keeping the ratio

λ =
N

N + k
(2.2)

fixed. The case where we take N → ∞ first then corresponds to the theory at λ = 1.

This limit theory can be described by a free boson construction, see e.g. [32, 33]. More

specifically, for k complex bosons φi and φ̄i that transform in the fundamental and anti-

fundamental representation of U(k), respectively, we consider the chiral U(k) singlets that

are of the form

W s(z) = m(s)

s−1∑
l=1

(−1)l

(s− 1)

(
s− 1

l

)(
s− 1

s− l

)
∂lφj ∂s−lφ̄j , (2.3)
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where m(s) is an s-dependent normalization constant. These currents then generate the

W∞[1] algebra with c = 2k. Formally, the λ = 1 theory can therefore be thought of as

a continuous orbifold, where we divide the free boson theory by the orbifold group U(k),

see [34]. The theory should then also contain twisted sectors where the different complex

bosons are twisted, and these twisted sectors are representations of W∞[1].

Since the symmetric group Sk+1 is a subgroup of the unitary group U(k), the above

currents are also invariant under Sk+1. The symmetric orbifold theory, where we divide

the k bosons by Sk+1, has a much bigger chiral algebra — namely the stringy extension of

the W∞[1] algebra, whose wedge algebra is the Higher Spin Square [11] — which contains

W∞[1] (i.e. the chiral algebra of the continuous orbifold) as a subalgebra. Furthermore,

the twisted sectors of the symmetric orbifold are a subset of the twisted sectors of the

continuous orbifold. More specifically, a twisted sector of the symmetric orbifold is labeled

by a conjugacy class of Sk+1: (1)k1(2)k2 . . . (m)km with
∑

i iki = k+1. The n-cycle twisted

sector (as a building block of any twisted sector) has then twist {ν1, ν2, . . . , νn} with νi = i
n

where i = 0, 1, . . . n − 1. On the other hand, a twisted sector of the continuous orbifold

is labeled by the conjugacy class of U(k), i.e. by the twist {ν1, ν2, . . . , νk}, where each

νi ∈ [0, 1) is arbitrary and νi ≤ νi+1.

Therefore, we will first focus on the case of a continuous orbifold twist where only one

complex boson is twisted by an arbitrary ν ∈ [0, 1) (with all remaining k − 1 bosons un-

twisted). Then we will tensor multiple bosons together to form more generic twisted sector

states of the continuous orbifold, and thereby also describe those of the symmetric orbifold.

The twisted sector where only one complex boson is twisted by ν ∈ [0, 1) contains

the modes

αn−ν and ᾱn+ν with n ∈ Z , (2.4)

as well as untwisted modes from the remaining directions. The contribution of the twisted

modes (2.4) to the chiral character equals

χ[ν](q, y) = qh
∞∏
n=1

(1− y qn−1+ν)−1(1− y−1 qn−ν)−1 , (2.5)

where the power of y keeps track of the number of α modes minus that of ᾱ modes, and h is

the conformal dimension. As shown in [12], the chiral character (2.5) is in fact a character

of the wedge algebra hs[1], where h = 1
2ν(1 − ν). The contribution of the outside-the-

wedge modes comes from the remaining untwisted bosons, whose chiral character equals

the vacuum character of W∞[1].

In the full orbifold theory, this chiral representation comes together with a correspond-

ing anti-chiral representation, and on the full space (involving both chiral and anti-chiral

twisted states) the invariance under the orbifold group is to be imposed. In particular,

not just those states survive this orbifold projection that are separately invariant under

the orbifold action; instead the correct condition is that the left-moving states transform

in the conjugate representation to that of the right-moving states. The powers of y keep

track of the action under the cyclic group corresponding to the twist itself, and hence the

states corresponding to a given fixed power of y correspond to different representations of
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the hs[1] algebra,

χ
(`)
[ν](q) ≡ χ[ν](q, y)

∣∣
y`
. (2.6)

In the following we shall identify the coset representations that describe these twisted

sector states. We shall first use character considerations to make a proposal for the cor-

responding coset representation, see sections 2.1 and 2.2. In section 2.3 we study the

representation corresponding to ` = 0 using the commutation relations of the hs[λ] alge-

bra, and confirm in particular, that the representation we have identified in section 2.1

leads to the correct eigenvalues for arbitrary λ. (As will become clear in the following,

these representations can also be defined for general λ; however, we do not have a direct

interpretation in terms of an orbifold unless λ = 1.) Finally, in section 2.4, we confirm

that the representations have the correct ground state conformal dimension and excitation

spectrum.

2.1 Wedge characters and their combinatorial interpretation

In order to use the characters to identify the corresponding coset representations, it is

enough to consider the wedge characters, for the following reason. In the limit of large

central charge, the wedge algebra hs[λ] (spanned by W s
m with |m| ≤ s− 1) form a proper

subalgebra of the full W∞[λ] algebra [35], see also [36]. In this limit, the full W∞[λ]

character factorizes into a product of the wedge character and the contribution from the

outside-the-wedge modes. In fact, the character is not sensitive enough to detect all details

of the algebra, and this factorization of the full character holds even for finite (but generic)

central charge. Finally, the factor accounting for the outside-the-wedge modes is identical

to the vacuum character, thus is the same for all representations. Therefore we can use the

wedge character defined in eq. (2.6) to determine the corresponding coset representation.

In order to do so, we first compute these wedge characters. In particular, we want

to find closed form expressions whose combinatorial interpretation can help us identify

their corresponding plane partition configurations. There are two factors in the wedge

character (2.5), corresponding to modes associated to φ and φ̄, respectively. Both of them

resemble the refined version of the generating function of partition numbers defined by

Z(q, y) =

∞∏
n=1

1

(1− y qn)
=

∞∑
m=0

ym
∞∑
n=m

p(n,m) qn , (2.7)

where p(n,m) counts the number of Young diagrams which have n boxes and whose height

is m. Summing over all Young diagrams with the same fixed height m we have

∞∑
n=m

p(n,m) qn = qm
m∏
n=1

1

(1− qn)
. (2.8)

Expanding both factors in the wedge character χ[ν](q, y) as in (2.7) and (2.8) and collecting

the coefficient of y` term, we obtain the expression for the wedge characters

χ
(`)
[ν](q) = qh+δh(`,ν)

∞∑
m=0

qm
m+|`|∏
n=1

1

(1− qn)

m∏
n=1

1

(1− qn)
, (2.9)
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Figure 1. Gluing two Young diagrams along their first columns: the difference in height is ` = 1

and the total number of visible boxes after gluing is n = 17.

where

δh(`, ν) =

{
` ν ` ≥ 0

` (ν − 1) ` < 0
(2.10)

corresponds to the excitation spectrum, and ` enters the combinatorial part of the character

only as |`|. The explicit q-expansions of the first few values of |`| are

χ
(0)
[ν] (q) = qh

(
1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 38q6 + 63q7 + · · ·

)
χ

(1)
[ν] (q) = qh+ν

(
1 + 2q + 4q2 + 8q3 + 15q4 + 27q5 + 47q6 + 79q7 + · · ·

)
χ

(2)
[ν] (q) = qh+2ν

(
1 + 2q + 5q2 + 9q3 + 18q4 + 31q5 + 55q6 + 91q7 + · · ·

)
χ

(3)
[ν] (q) = qh+3ν

(
1 + 2q + 5q2 + 10q3 + 19q4 + 34q5 + 60q6 + 100q7 + · · ·

)
.

(2.11)

For the ` = 0 representation, there is one descendant at level one, while for ` 6= 0, the

representation has two descendants at level one. This property is also directly visible

in (2.9) since the first product only contributes a state at level 1 if |`| > 0.

Analogous to the counting in eq. (2.8), the wedge character χ
(`)
[ν](q) has a combinatorial

interpretation

χ
(`)
[ν](q) = qh+δh(`,ν)

∞∑
n=0

p2(n, `) qn , (2.12)

where p2(n, `) counts pairs of Young diagrams Γ± whose height difference is `, i.e. c+
1 −c

−
1 =

`. Here c±i are the number of boxes in the i’th row of Γ±, and n is the combined number

of boxes in the two Young diagrams except that, for the first column of each of the two

Young diagrams, only the boxes of the shorter diagram are counted, i.e.

n = min(c+
1 , c
−
1 ) +

∑
i=2

(c+
i + c−i ) . (2.13)

The reason for this unusual condition is that in the first factor of χ[ν](q, y) the prefactor

is y q−1 (instead of y). A useful way to visualize this configuration is by first raising the

shorter Young diagram (with height m) to the same height as that of the taller one (with

height m + |`|), then gluing the two Young diagrams together along their first columns,

and finally removing the |`| boxes in the first column of the taller Young diagram that are

not covered by the shorter diagram, see figure 1.

There is an alternative formula for the wedge character that makes the connection to

the original complex boson more transparent,

χ
(`)
[ν](q) = qh+δh(`,ν)

( ∞∑
m=0

(−1)m q
∑|`|+m
k=|`|+1

k

)
·
∞∏
n=1

1

(1− qn)2
. (2.14)

– 6 –
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This can be obtained from eq. (2.12), using the combinatorial identity

p2(n, `) =

∞∑
m=0

(−1)m p2

n− |`|+m∑
k=|`|+1

k

 , (2.15)

where p2(n) counts pairs of Young diagrams whose total number of boxes is n via the

generating function of the complex boson

Zcplx bos(q) =

∞∏
n=1

1

(1− qn)2
=

∞∑
n=0

p2(n) qn

= 1 + 2q + 5q2 + 10q3 + 20q4 + 36q5 + 65q6 + 110q7 + · · · .
(2.16)

A proof of (2.15) for ` = 0 is given in [37]; we give the generalization of the proof to

arbitrary ` in appendix C. In this formula the property that the wedge character only has

a single descendant at level one for ` = 0 comes from the fact that the first factor starts

with 1− q|`|+1 + · · · , i.e. it removes a state at level one for ` = 0 but not otherwise.

As an aside we also mention that the asymptotics of the two-partition function

p2(n) is [38]

p2(n) ∼ 3
1
4

12
· n−

5
4 · exp

(
2√
3
π
√
n

)
, (2.17)

whereas p2(n, `) with ` = 0, 1 — we expect that the same is true for general ` — grows

half as fast:

p2(n, `) ∼ 1

2
p2(n) . (2.18)

Neither of them grows much faster than the ordinary partition numbers [39]

p(n) ∼ 1

4
√

3
· 1

n
· exp

(√
2

3
π
√
n

)
, (2.19)

since the exponential in both cases is proportional to
√
n. On the other hand, the growth

behaviour of these characters is much faster than that of the finite tensor powers of the

minimal representation (for which the growth is polynomial).

2.2 The plane partition viewpoint

We have seen in the previous section that the wedge characters of the twisted sector eq. (2.6)

can be interpreted as counting the configurations of two Young diagrams that are glued

together along their first columns. This viewpoint now allows us to determine the corre-

sponding coset representation, using the description of the W∞ representations in terms of

plane partitions, which we shall now review.

Just as the partition of n counts the number of ways of drawing Young diagrams with

n boxes, the plane partition of n counts the number of ways of stacking n boxes in the

corner of a room (such that the number of boxes is non-increasing along all three directions,

– 7 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
8

i.e. the sections parallel to the xy, yz, zx planes all have the shape of a Young diagram).

The generating function of the plane partitions is the MacMahon function

M(q) ≡
∞∏
s=1

∞∏
n=s

1

(1− qn)
=

∞∏
n=1

1

(1− qn)n
=

∞∑
n=0

m(n) qn

= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + 86q7 + · · · .
(2.20)

From the definition of the MacMahon function, it is immediate that it is identical to the

vacuum character of the W1+∞ algebra — for each spin s = 1, 2, . . ., the modes that

contribute to the vacuum Verma module are those with n = −s,−s − 1, . . .. It has the

asymptotic behaviour [40]

m(n) ∼ ζ(3)
7
36 2

25
36

√
12π

eζ
′(−1) · n−

25
36 · exp

(
3ζ(3)

1
3

2
2
3

n
2
3

)
. (2.21)

Because of the ‘n
2
3 ’ in the exponent, it grows much faster than the ordinary partition (2.19)

or the two-partition (2.17), whose exponents are proportional to
√
n.

What is more interesting is that we can also consider the set of plane partitions that

share a given asymptotic behaviour described by (Λx,Λy,Λz), where Λa with a = x, y, z

is the Young diagram to which the plane partition asymptotes in the limit a → ∞. For

a given asymptotic (Λx,Λy,Λz), there exists a unique plane partition configuration that

has the least number of boxes — let’s call it the minimal configuration with this boundary

condition. The character of plane partitions NΛx,Λy ,Λz(q) counts the number of ways of

stacking boxes starting from this minimal configuration.

When all three asymptotics are trivial, the character N plane
Λx,Λy ,Λz

(q) reduces to the

MacMahon function — the vacuum character of the W1+∞ algebra. When at least one of

the three Young diagrams is trivial — without loss of generality we may take Λz = 0 —

the generating function of the plane partition reproduces precisely the W1+∞ character for

the coset representation (Λx,Λy) [18–21]1

N plane
Λx,Λy ,0

(q) = χ
W1+∞
(Λx;Λy)(q) . (2.22)

Here the representations of the coset (2.1) are labelled by the pairs (Λ+; Λ−), where Λ+

denotes a representation of su(N)k in the numerator, while Λ− denotes a representation of

su(N)k+1 in the denominator.2 (The representation of the su(N)1 is then uniquely fixed by

the selection rules.) The interpretation of the representations with three non-trivial Young

diagrams is not yet entirely clear, although [21] has argued that the exchange of the three

asymptotic directions reflects precisely the ‘triality’ symmetry of [22].

1Note that this identification holds only for generic values of the central charge c and the ’t Hooft

parameter λ, which is in particular true in the t’ Hooft limit. At special values of (c, λ), null vectors might

appear, which modify the right-hand-side of the equation.
2The plane partitions describe representations of W1+∞, while the coset defines a W∞ algebra in the

large N limit. These two algebras are, however, closely related since one can always decouple the spin

1 current, and hence W1+∞ ∼= u(1) ⊕ W∞. Therefore every plane partition asymptotics gives rise to a

representation of W∞. Furthermore, their wedge representations coincide since the only wedge mode of the

spin 1 current is a central zero mode.

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
8

(a) (b)

Figure 2. The minimal configuration of plane partitions that describes (a) the terms with y0

in eq. (2.5); and (b) the terms with y3 in eq. (2.5). The corresponding coset representations are

described by (2.23).

We will now use the map between the generating function of the plane partitions and

the W1+∞ characters (2.22) to identify the coset representations which correspond to the

twisted sector states. First of all, the configurations of two glued Young diagrams that are

counted by p2(n, `), see eq. (2.12) above, can be described, in the plane partition language,

as the plane partitions with a pit dug at (x, y) = (2, 2) [41]. Here, the presence of a ‘pit’

means that one cannot place a box at that position. But since a plane partition has to

give Young diagrams upon the projection along all three directions, a ‘pit’ at (x, y) = (2, 2)

means that we cannot place any box at a position with x ≥ 2 or y ≥ 2. The plane partitions

with this ‘pit’ condition therefore reduce to a pair of Young diagrams that are glued along

their first columns, where the two Young diagrams sit in the zx and yz planes, respectively,

and the shared first column is along the z-direction.

Next we recall that eq. (2.12), i.e. the plane partition with the ‘pit’ condition, only

counts the wedge character. The full character is obtained by multiplying the wedge

character with the vacuum character. Since the first one is given by the ‘pit’ partition

function, whereas the second equals the MacMahon function — the plane partition starting

from an empty corner — the full coset character is then described by the window sill

configuration of figure 2 in the limit in which the height of the walls are taken to infinity.3

Indeed, in this limit, there is a natural separation between the configurations that involve

boxes being stacked on the ‘floor’ — these are counted by the MacMahon function, and

hence describe the contribution of the W1+∞ modes outside the wedge — and those that

are stacked on the high ‘window-sill’, and which are counted by the plane partition with

pit at (x, y) = (2, 2).

It remains to relate the height b of the window sill to the twist of the corresponding

bosonic representation. By comparing conformal dimensions, see section 2.4, we find that

3Note that in figure 2 the two walls are infinite in the x and y directions, respectively, even before we

take the large k limit, since we have non-trivial asymptotics along these two directions. The z direction is

infinite only in the large k limit. Therefore a descendent of this twisted sector ground state will have boxes

added along the z-direction, both on top of the window sill and on the floor; however it is not allowed to

add boxes at the end of the x or y direction.
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(a) (b)

Figure 3. The minimal configuration of plane partitions that captures the situation where two

complex bosons are twisted. Case (a) describes the ground state representation, while (b) describes

the representation appearing at some excited level.

the relevant coset representations are

(Λ+; Λ−) =
(
[0b−1, 1, 0, . . . , 0]; [0b+`−1, 1, 0, . . . , 0]

)
, (2.23)

where

b = νN . (2.24)

(In this paper, we label the su(N) representations by their Dynkin labels [λ1, λ2, . . . ], whose

corresponding Young diagram has λi number of columns with i boxes.)

Furthermore, the case where more than one boson is twisted is described by putting the

relevant window-sills together, see figure 3 for an example where two bosons are twisted.

The generalization to the situation where some or all bosons are twisted is then straight-

forward, where the height of each window-sill should be identified with νiN , where νi is

the twist parameter of the corresponding boson. In particular, there is then a natural

separation for the different box configurations into the boxes on the ‘floor’ — again these

configurations describe the contributions of the outside-the-wedge modes — and the boxes

stacked on the individual window-sills.4 The wedge character in the multi-twist case is

therefore just the product of the individual wedge characters (2.14).

These considerations therefore suggest that the coset representation (Λ+; Λ−) that cor-

responds to the ground state of the multi-twisted sector associated to the twist (ν1, . . . , νk)

with ν1 ≥ ν2 ≥ · · · ≥ νk is of the form (Λ+; Λ−), where

Λ+ = Λ− = Λ with ci = νiN boxes in the i’th column. (2.25)

4As long as the twists νi are pairwise disjoint, the height-differences also scale with N , and hence the

different window-sill contributions ‘decouple’. On the other hand, if two twists agree precisely, actually

fewer states in the twisted sector survive since then the centralizer includes the exchange of the two bosons

with the same twist. For example, for the ground state of the two-twist sector with identical twists, there is

only a single descendant of the wedge representation at level one. Furthermore, the symmetric products of

the single twist wedge representation are not irreducible hs[λ] representations — the first additional hs[λ]

representation appears at level two.
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Furthermore, the various twisted excitations (corresponding to the non-trivial powers of y`ii )

are described by the coset representations for which a finite number of boxes (corresponding

to the number of twisted excitation modes) are added to or removed from Λ− (but not

Λ+). Namely, the column heights of Λ+ and Λ− are

c+
i = νiN , c−i = νiN + `i , (2.26)

where `i is finite (and does not scale with N). These predictions will be tested below, see

section 2.4, following the techniques of [17].

2.3 The null-vector analysis

One of the key results of the previous two subsections is that the coset representation

corresponding to the ground state of the single-twist sector is of the form (2.23), i.e. given

by two totally anti-symmetric Young diagrams both with b boxes, where b → ∞ in the ’t

Hooft limit. This was based on a character analysis and used the description of the coset

representations in terms of plane partition. In this subsection, we approach this problem

from a ‘microscopic’ viewpoint, by studying the null-vector structure of the relevant family

of representations. As we shall see, this will nicely confirm the above results. We shall

concentrate on the ground state representations, i.e. the representations of the form (2.23)

with ` = 0, since for them the analysis is simplest; the excitation spectrum will be studied

in more detail in the following subsection (albeit from a slightly different viewpoint).

Since our considerations are only valid in the ’t Hooft limit we can decouple the outside-

the-wedge modes and think of these representations as representations of the wedge algebra

hs[1]. We are therefore looking for the hs[1] representation, whose character is the wedge

character χ
(`)
[ν] with ` = 0, where

χ
(0)
[ν] (q) = qh

∞∏
n=1

(1− y qn−1+ν)−1(1− y−1qn−ν)−1

∣∣∣∣∣
y0

= qh
(
1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 38q6 + 63q7 + · · ·

)
.

(2.27)

Although the wedge character χ
(0)
[ν] was computed using the free boson viewpoint which

corresponds to hs[1], we shall see below that an hs[λ] representation with this character

can be constructed for any value of λ, not just for λ = 1. One way to do this is to start

with an arbitrary highest weight state φ, and determine the structure of the null-vectors it

must possess in order to lead to a character of the form (2.27).

Let us denote the modes of the hs[λ] algebra by V
(s)
m , where s = 2, 3, . . . and |m| ≤ s−1.

Furthermore, we denote by w(s) the eigenvalue of V
(s)

0 acting on a highest weight state φ.

A generic highest weight representation of hs[λ] can be specified by its charges w(s) for all

s ≥ 2. However, the representation given by (2.27) is very special: it has only a single

descendant at level one — this type of representations was named ‘level-one representation’

in [12]. For a level-one representation, the condition that it has only a single state at level

1 is so strong that it fixes all w(s) with s ≥ 4 in terms of its conformal dimension w(2) ≡ h
and its spin-3 charge w(3).
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In order to see this, we first note that having only a single state at level 1 means that

all V
(s)
−1 φ must be proportional to one another, and in particular, to V

(2)
−1 φ:

V
(s)
−1 φ =

sw(s)

2h
V

(2)
−1 φ , (2.28)

where the proportionality factor is fixed by the requirement that these relations hold upon

applying V
(2)

1 ≡ L1 to both sides. Then, by taking the commutator with V
(3)

0 , we can

recursively determine the various w(s) eigenvalues in terms of h and w(3). It is more

convenient to use h and the ratio

α ≡ 3w(3)

2h
(2.29)

to express the result, and for the first few spins we find explicitly

w(3) =
2h

3
α

w(4) =
h

2

[
α2 +

4− λ2

20

]
w(5) =

2h

5
α

[
α2 +

20− 3λ2

28

]
w(6) =

h

3

[
α4 + α2

(
10− λ2

6

)
+
λ4 − 20λ2 + 64

336

]
.

(2.30)

The expressions agree with those for the free boson obtained in eqs. (B.5)–(B.7) of [12]

upon setting λ = 1.5

The level-one condition not only fixes all higher charges in terms of (h, α), together with

the structure of hs[λ] it also imposes very strong constraints on the number of descendants

for every level. It has been shown recursively in [12] that the wedge character of a generic

level-one representation is precisely the MacMahon function (2.20). More specifically, the

full representation is generated by the modes V
(s)
−nφ, where s = n + 1, . . . , 2n, and this

matches then with another form of the MacMahon function, M(q) =
∏∞
n=1

1
(1−qn)n .

Comparing now the q expansion of the wedge character (2.27) with the MacMahon

function (i.e. the hs[λ] character of a generic level-one representation), we see that the

ground state of the twisted sector does not lead to a generic level-one representation: it

has a first additional null-vector at level 4 — this was already noted in [12]. This property

can now be used to determine constraints on the parameters (h, α). To do this, we study

the structure of the null vectors systematically, from level 2 up to level 5. Here we only

give a brief summary of the results; the details can be found in appendix A.

At each level, we have worked out the inner product matrix of the corresponding basis

states and determined its determinant. If this vanishes, this signals the appearance of a

null-vector at that level. Any null-vector at level l will also give rise to descendant null-

vectors at higher level; it is therefore of primary interest to describe the new null-vectors

5Here we have worked with a different normalization of higher spin charges w(s) relative to that of [12]:

w
(s)
here = 42−sw

(s)
there, and in particular, αhere = 1

4
αthere.
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that appear at each level. Up to level 5, these new null-vectors arise for the following values

of (h, α):

Level 2: α = ±
(

1± λ

2

)
, α = ±1

2

√
8h+ λ2 ;

Level 3: α = ±
(

2± λ

2

)
, α = ±1

2

√
4h+ λ2 ;

Level 4: α = ±
(

3± λ

2

)
, α = ±1

2

√
8

3
h+ λ2 ,

α = ±1

2

√
λ2 − 8h ;

Level 5: α = ±
(

4± λ

2

)
, α = ±1

2

√
2h+ λ2 .

(2.31)

For the case at hand, we are interested in the three new roots (not counting multiplicities

and conjugations) at level 4; as we have explained before, the ground state of the twisted

sector has to satisfy (at least) one of these relations.

All the roots, except for the third pair of roots at level 4, follow a simple pattern, and as

is explained in appendix A, all of these ‘standard’ roots are attained by finite tensor powers

of the minimal representation. It is thus very suggestive that the additional null-vector

that appears in the twisted sector representation corresponds to this ‘special’ root.

To confirm this, we have computed the value of (h, α) for the representation of the form

(Λ+; Λ−) =
(
[0b−1, 1, 0, . . . , 0]; [0b−1, 1, 0, . . . , 0]

)
, (2.32)

using the Drinfeld-Sokolov approach, see appendix B for details. In particular, it follows

from eqs. (B.15) and (B.16), that the eigenvalues take the form

h =
λ2 b(N + 1)(N − b)

2N2(N + λ)

‘t Hooft
≈ λ2

2

(
1− b

N

) b

N

α =
λ (N + 2)(N − 2b)

2N
√
N(N + λ)

‘t Hooft
≈ λ

2

(
1− 2

b

N

)
,

(2.33)

where we have first replaced k in terms of λ, using (2.2), and then considered the ’t Hooft

limit. Using 0 ≤ λ ≤ 1 and demanding 0 < b < N — only Young diagrams of height

at most N are allowed — we see that neither of the first two roots can be solved by

representations of this type, whereas the last one

α = ±1

2

√
λ2 − 8h , (2.34)

is solved for any 0 < b < N . If we further demand that h > 0 in the ’t Hooft limit (i.e.

that they are not light states) then we conclude that6

b = νN with ν < 1 . (2.35)

6Note that under ν → 1− ν, (h, α)→ (h,−α) in eq. (2.33). Thus we may restrict ourselves to the range

0 < ν < 1
2

if we include also the conjugate representations.
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It only remains to understand the meaning of ν, for which we go back to the special case of

λ = 1 (i.e. the free boson) from where we started. At λ = 1, (2.33) with (2.35) reduces to

h =
1

2
ν(1− ν) and α =

1

2
(1− 2ν) , (2.36)

which agrees with the result for the twisted sector representation of the free boson from [7],

see its eq. (4.4) and (4.5).7 Thus we conclude that ν can indeed be identified with the twist

parameter.

2.4 The ground state conformal dimension and the excitation spectrum

In this section we confirm the identification between the coset representations and the

twisted sector states given in eq. (2.25) (for the ground state) and (2.26) (for the excited

states) by matching their conformal dimensions in the large N limit. The analysis follows

the same strategy as what was done for the N = 2 case in [17].

The conformal dimension of the ground state of the coset representation (Λ+,Λ−) is

h(Λ+; Λ−) =
C2(Λ+)

N + k
+
C2(µ)

N + 1
− C2(Λ−)

N + k + 1
+ n , (2.37)

where C2 is the quadratic Casimir, µ is the su(N)1 weight that is uniquely determined by

the condition that Λ+ + µ−Λ− lies in the root lattice, and n denotes the first descendant

level where Λ− appears in the affine representation of the numerator. The Casimir can be

written in terms of the number of boxes in rows ri and columns cj as

C2(Λ) =
1

2
BN +

1

2

∑
i

r2
i −

∑
j

c2
j

− B2

2N
, (2.38)

where B =
∑

i ri =
∑

j cj is the total number of boxes.

Let us start with analysing the conformal dimension of the ground state of the twisted

sector. In this case, since Λ+ = Λ− = Λ, the su(N)1 representation µ is trivial and n = 0,

and therefore the ground state conformal dimension equals

h =
C2(Λ)

(N + k)(N + k + 1)
. (2.39)

We are interested in the large N behaviour at fixed k; since ri ≤ k, the r2
i term is subleading

at large N , and since the total number of boxes scales linearly with N , the same is true

for the B2/2N term. Thus, to leading order in the N →∞ limit, we have

C2
∼=

1

2
BN − 1

2

∑
j

c2
j =

N2

2

∑
j

νj(1− νj) . (2.40)

Dividing by the denominator in (2.39) then leads to

h =
1

2

∑
j

νj(1− νj) , (2.41)

7As remarked earlier in footnote 2, the normalization of W (3) differs by a factor of 4 from that of [7].
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which agrees precisely with the usual ground state energy of a multi-twist sector associated

to the twist (ν1, . . . , νk) with ν1 ≥ ν2 ≥ · · · ≥ νk.
Having checked that the large N limit of the coset representation (Λ,Λ) of the

form (2.25) agrees with the ground state energy of the twisted sector, we now compute

the excitation spectrum above this ground state. For a generic twisted sector correspond-

ing to ν1 ≥ ν2 ≥ · · · ≥ νk, the different bosonic generators will have mode numbers −νj+m,

where j = 1, . . . , k and m ∈ Z. Thus the lowest excitations raise the conformal dimension

by νj . These different excitations should now correspond to the different ways in which we

can add a single box to Λ−, without modifying Λ+.

To compute the difference in conformal dimension of the coset representation (Λ; Λ(i)),

where Λ(i) differs from Λ by adding a single box to the i’th column, and that of the ground

state (Λ; Λ), we now use eq. (2.37). For (Λ; Λ(i)), the su(N)1 representation µ equals

the fundamental representation while n remains n = 0. Thus the difference in conformal

dimension equals

h(Λ; Λ(i))− h(Λ; Λ) =
C2( )

N + 1
− C2(Λ(i))− C2(Λ)

N + k + 1
. (2.42)

The Casimir of the fundamental is C2( ) = N2−1
2N , and the difference of the two Casimirs,

to leading order in N , can be computed using (2.40)

C2(Λ(i))− C2(Λ) ∼=
N

2
− ci , (2.43)

where ci = νiN is the number of boxes in the i’th column of Λ. Hence, in the N → ∞
limit the excitation energy above the ground state takes the form

h(Λ; Λ(i))− h(Λ; Λ) ∼= νi (2.44)

as expected.

We should also note that if we remove a box from the i’th column of Λ−, then the

whole contribution from (2.43) changes sign, and the excitation energy is δh = (1 − νi).
This describes the action of the complex conjugate mode. These results thus reproduce the

excitation spectrum in the twisted sector, see, in particular, eq. (2.10), where ` > 0 and

` < 0 corresponds to the excitation by the boson and its complex conjugate, respectively.

In terms of plane partitions, ` is the difference in height of the window sills of Λ− relative

to Λ+; thus the action of the boson and its conjugate can be thought of as adding a box

to Λ− and Λ+, respectively.8 This identification is, however, only valid in the large N

limit, where we have a ‘Fermi sea’ of boxes and where the action of the anti-boxes can

be described as creating a hole. In general, the plane partition viewpoint only describes

the representations that are made from boxes, and anti-boxes do not appear directly in

this language.

8Since the window sills have heights that are proportional to N , removing a box from Λ− is equivalent

to adding a box to Λ+ in the large N limit.
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3 The twisted sector in the free fermion description

The bosonic coset theories also have a free field description for λ = 0, where free fermions

emerge. More precisely, λ = 0 corresponds to taking k → ∞ at fixed N , see eq. (2.2),

and the resulting theory can be identified with the u(1) coset of the theory of N complex

fermions, see [33]. These fermions give rise to bilinear currents of the form

W s(z) = n(s)

s−1∑
l=0

(−1)l
(
s− 1

l

)2

∂s−1−lψ∗j ∂lψj , (3.1)

where n(s) is an s-dependent normalization constant. The modes of these fields generate

the linear W1+∞ algebra [29–31].

The bilinear currents are invariant under a SU(N) subgroup, and one can therefore

think of the resulting theory as a continuous orbifold by this group [34]. There are therefore

again twisted sectors that should admit a coset description. In the following we shall work

out the details of this correspondence.

For the case of a single twisted complex fermion with modes

ψr−ν and ψ∗r+ν with r ∈ Z +
1

2
, (3.2)

the wedge character is given by the fermionic analogue of (2.5),

φ[ν](q, y) = qh
∞∏
n=1

(1 + y qn−1/2+ν)(1 + y−1 qn−1/2−ν) , (3.3)

where the twist is taken to lie in the interval −1
2 < ν ≤ 1

2 . As for the bosonic case, the

power of y keeps track of the action under the cyclic group, and thus the states with a

given power of y furnish a representation of the hs[0] algebra, with character

φ
(m)
[ν] (q) ≡ φ[ν](q, y)

∣∣
ym
. (3.4)

In contrast to the bosonic case, the fermionic wedge character φ(`)(q) is much easier to

compute. Using the Jacobi triple product identity,

∞∏
n=1

(1− qn)(1 + y qn−1/2)(1 + y−1 qn−1/2) =

∞∑
n=−∞

ynqn
2/2 , (3.5)

we immediately have

φ
(m)
[ν] (q) = qh+mν+m2/2

∞∏
n=1

1

(1− qn)

= qh+mν+m2/2
(
1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + . . .

)
.

(3.6)

In the following we shall use the plane partition viewpoint to identify the corresponding

coset representations.
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3.1 The plane partition viewpoint

Recall from the bosonic analysis of section 2.2 that, from the plane partition perspective,

the coset character factorizes into two pieces: one corresponding to stacking boxes on the

window sill — this accounts precisely for the wedge character — and one corresponding

to staking boxes on the empty floor — this gives the MacMahon function that counts the

outside-the-wedge modes. In the present situation we expect to find a similar situation,

except that now the wedge character φ(m)(q) is the generating function of the partition

number, i.e. it counts the number of Young diagrams with n boxes. (This is in fact true

for all m — the only m-dependence of (3.6) appears in the overall exponent of q.)

The most naive guess for the correct plane partition configuration seems to be a single

layer window sill along the x-direction, say. In this scenario, stacking boxes on top of

this window sill, which is equivalent to drawing usual two-dimensional Young diagrams,

gives rise to the wedge character (3.6); whereas stacking boxes on the floor gives the

MacMahon function, counting the outside-the-wedge modes of W1+∞. However, this guess

turns out to be wrong since the coset representation corresponding to this plane partition,

i.e. ([0b−1, 1, 0, . . . , 0]; 0) with b→∞, has conformal dimension (see eq. (B.8))

h([0b−1, 1, 0, . . . , 0]; 0) =
b(N − b)

2N
· 2N + k + 1

N + k
, (3.7)

which diverges in the ’t Hooft limit.9

However, we can also reverse the roles of the window sill and the floor, i.e. we can

let the floor count the wedge character, and the window sill the outside-the-wedge modes.

Then if we take the window sill to be only one box high, it can restrict the box-stacking

on the floor to be a counting of Young diagrams. This leads us to the choice of plane

partitions with a window-sill that is only one box high, but has a fat ‘L’ shape, whose

widths b and b+ m are taken to be large, see figure 4. In particular, since the widths are

large, the boxes that are placed on top of the window-sill, near the origin, are again counted

by the MacMahon function (and hence describe the outside-the-wedge modes of W1+∞).

On the other hand, the configurations involving only boxes on the floor are counted again

by plane partitions that satisfy a (generalized) ‘pit’ condition, where the pit is now located

at (x, y, z) = (1, 1, 2) and prevents any boxes from being stacked vertically.

The coset representations corresponding to this type of plane partition asymptotics are(
[b, 0, . . . , 0]; [b+m, 0, . . . , 0]

)
(3.8)

for sufficiently large b. The neutral sector, whose wedge character is φ
(0)
[ν] (q), corresponds

to m = 0, see figure 4(a); the higher representations with m > 0 are shown in figure 4(b).

In all of these cases, the relevant representations are level-one representations that

have one null-vector at level 2, i.e. there are only 2 rather than 3 states at the second

descendant level. In fact, all of these representations have α = 1
2

√
8h+ λ2 in the ’t Hooft

limit, as follows from the analysis of appendix B, see e.g. eq. (B.20).

9Naively, the only exception is the choice b = N − a, where a is a finite positive integer, but this then

describes finitely many anti-boxes, i.e. does not have the correct coset character.
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(a) (b)

Figure 4. The minimal configuration of plane partitions that describes the single-twist case for

complex fermions. Case (a) corresponds to the ground state representation, while (b) corresponds

to the representation appearing at some excited level.

Figure 5. The minimal configuration of plane partitions that corresponds to the ground state of

the twisted sector where two complex fermions are twisted.

It is also not difficult to guess which plane partition asymptotics describe now the case

where more than one fermion is twisted: as in the bosonic case, we simply put different

such diagrams together, see figure 5 for the case where two fermions are twisted.

The coset representation describing the ground state of a generic twist is then of

the form (
[b1, b2, b3, . . . , bN−1]; [b1, b2, b3, . . . , bN−1]

)
, (3.9)

where the associated twists are

k νi =
B

N
− ri , (3.10)

and ri is the number of boxes in the i’th row, i = 1, . . . , N , while B =
∑

i ri is the

total number of boxes. This identification implies that the sum of all N twists is zero, as

has to be the case for a group element in SU(N). We also note that by applying a field

identification transformation, if necessary, we may assume that all ri ≤ k
2 , thus implying

that −1
2 < ν1 ≤ ν2 · · · ≤ νN ≤ 1

2 .

3.2 The ground state conformal dimension and the excitation spectrum

As in the bosonic case, we can confirm these claims by direct CFT calculations. We begin

with showing that the coset representation (3.9) has the correct conformal dimension,

namely

h =
1

2

N∑
i=1

ν2
i (3.11)
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in the k →∞ limit. Note that there are N complex fermions, and each ν-twisted fermion

contributes ν2/2 to the ground state conformal dimension. In relating the free fermion

theory to the coset at λ = 0, we need to take the u(1) orbifold, i.e. we need to subtract

from the conformal dimension of the numerator −u2/2N , where u is the u(1)-charge of the

state, see eq. (3.15) below. Since
∑

i νi = 0, the u(1)-charge is however u = 0, and hence

we arrive at (3.11).

In order to derive this formula from the coset viewpoint, we note that the coset rep-

resentation of the ground state is of the form (Λ; Λ), where the row lengths ri of Λ sat-

isfy (3.10). In the orthogonal basis of appendix B, see in particular eq. (B.1), the quadratic

Casimir of Λ is

C(Λ) =
1

2

N∑
i=1

(
ri −

B

N

)(
ri −

B

N
+N + 1− 2i

)
∼=

1

2

N∑
i=1

(
ri −

B

N

)2
=
k2

2

N∑
i=1

ν2
i . (3.12)

Alternatively, this can also be seen from (2.38) since the r2
i and the −B2/2N terms are

the only expressions proportional to k2. Dividing by (N + k)(N + k+ 1) ∼= k2 in the large

k limit, then leads to the desired expression for the conformal dimension, eq. (3.11).

Next, we study the excitation spectrum, following the same logic as above for the

bosonic case, i.e. eq. (2.42). From the difference of Casimirs we now find, to leading

order in k,

C2(Λ(i))− C2(Λ) ∼=
1

2

(
(ri + 1)2 − r2

i

)
− (B + 1)2 −B2

2N
∼= ri −

B

N
= −kνi , (3.13)

where Λ(i) is now the representation that has an additional box in the i’th row. Thus the

excitation spectrum is

h(Λ; Λ(i))− h(Λ; Λ) ∼= νi +
N − 1

2N
. (3.14)

For the free fermion theory one would have expected the answer to be νi + 1
2 ; the reason

for the discrepancy is that in order to obtain the W∞[0] theory that is described by the

coset in the k → ∞ limit, one has to divide out a u(1) algebra — this was explained in

detail in [33]. In particular, the decoupled stress energy tensor is

T̃ = T − 1

2N
: JJ : , (3.15)

and since the individual fermions carry unit u(1) charge, they define primary fields of

conformal dimension

h̃ =
1

2
− 1

2N
=
N − 1

2N
(3.16)

in the decoupled theory. (Another way of reaching the same conclusion is by observing

that the conformal dimension of the (0; ) representation equals

h(0; ) =
(N − 1)

2N

(
1− N + 1

N + k + 1

)
∼=

(N − 1)

2N
(3.17)

in the large k limit.) In either case, this then accounts precisely for the additional term

in (3.14). Finally, we also note that removing a box from the i’th row changes simply the

sign in (3.13), and thus leads to −νi+ N−1
2N instead of (3.14). This then describes the action

of the conjugate fermionic mode, see eq. (3.3).
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4 Conclusions

In this paper we have identified the twisted sector states of the bosonic symmetric orbifold

theory in terms of coset representations of the higher spin CFT; more precisely, we identified

the twisted sectors of the corresponding continuous orbifold, of which the twisted sectors of

the symmetric orbifold are special cases. The main idea was to use the description of W∞
representations in terms of plane partitions [18–21]. Our analysis demonstrates that this

method provides a very powerful approach for the characterization of these representations,

and this perspective is likely to have other important applications.

The plane partition configurations that are crucial to this analysis allow for a natural

separation into the contribution associated to the wedge modes on the one hand, and

those coming from the outside-the-wedge modes on the other, see e.g. the discussion in

section 2.2. In particular, the former had a nice combinatorial description in terms of

plane partitions with a (generalized) pit condition. It would be interesting to see whether

this observation generalizes, and whether the representation theory of the wedge algebra

hs[λ] can in general be captured by plane partitions with suitable ‘pit’ conditions.

At present, the plane partition viewpoint has only been developed for the W∞ algebra

that appears in the duality to bosonic higher spin theory; it would be very interesting

to generalize this technique to the supersymmetric cases. In particular, the N = 2 case

where Young super tableaux [46, 47] naturally appear (see e.g. [48]) should allow for a nice

generalization.

Given that the plane partitions also describe the representation theory of the affine

Yangian algebra of gl1, which is believed to contain W∞ as a subalgebra [21], this view-

point relates higher spin symmetries to Yangian symmetries that typically arise in inte-

grable systems. This approach may therefore pave the way towards understanding the

relation between higher spin symmetries and integrability. As with the embedding into

string theory, it is likely that the sharpest results will be possible in the maximally su-

persymmetric N = 4 case, and hence it would be very interesting to find the appropriate

N = 4 supersymmetric generalization of the affine Yangian.

The coset representations we have found exist for generic values of N and k, while a

direct twisted sector interpretation is only possible for the free field cases which correspond

to λ = 0 (free fermions) and λ = 1 (free bosons). It would be interesting to understand

whether these representations also have a natural interpretation away from these points,

for example in terms of parafermions. Finally, it is intriguing that the structure of the

coset representations is very similar in both cases to those representations that appear in

the extension from the higher spin algebra to the Higher Spin Square, see eqs. (3.1) and

(3.10) in [11]. It would be very interesting to understand the reason underlying this.
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A The general form of level-1 representations

In this appendix we study the structure of a generic level-1 representation at arbitrary λ.

This can be done level by level from their Kac determinants. In the following, V
(s)
m denotes

the hs[λ] generator of spin s and mode m.

Level 2. At level 2, a general level-1 representation has three hs[λ] descendants, namely

V
(3)
−2 φ , V

(4)
−2 φ , V

(2)
−1

2
φ . (A.1)

[It is not difficult to show that any other hs[λ] descendant can be written as a linear

combination of these, using the commutation relations of the hs[λ] algebra, as well as the

fact that there is only a single state at level-1.] We have worked out the inner product

matrix of these states, and its determinant is of the form

det(M2) = 16h3

(
α− 1− λ

2

)(
α− 1 +

λ

2

)(
α+ 1− λ

2

)(
α+ 1 +

λ

2

)(
2h− α2 +

λ2

4

)
.

(A.2)

Thus the zeros appear at

Level 2: α = ±
(

1± λ

2

)
, α = ±1

2

√
8h+ λ2 , (A.3)

where each root has a single multiplicity (and for the first expression the two minus signs

are uncorrelated, i.e. this describes 4 different roots). The overall sign of α relates conjugate

representations to one another (since the eigenvalue of V
(3)

0 has opposite sign for conjugate

representations, while the conformal dimension remains the same).

These roots have a simple interpretation in terms of familiar coset representations. It

follows from the analysis of [35] that the minimal representations ( ; 0) and (0; ) (as well

as their conjugates) have the eigenvalues

h
(
( ; 0)

)
=

1

2
(1 + λ) , w(3)

(
( ; 0)

)
= −1

6
(1 + λ)(2 + λ) , (A.4)

h
(
(0; )

)
=

1

2
(1− λ) , w(3)

(
(0; )

)
=

1

6
(1− λ)(2− λ) . (A.5)

The corresponding α values are then

α
(
( ; 0)

)
= −

(
1 +

λ

2

)
, α

(
(0; )

)
=
(

1− λ

2

)
. (A.6)

These therefore account for the first four zeros of (A.3), including the corresponding con-

jugate representations. However, they actually also solve the last two equations of (A.3)

since for h = 1
2(1± λ),

1

2

√
8h+ λ2 =

1

2

√
4± 4λ+ λ2 = ±1

2
(2± λ) . (A.7)
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This reflects the fact that the minimal representations ( ; 0) and (0; ) (or their conjugates)

have two null-vectors at level 2 — they only have a single wedge descendant at this level.

In order to identify the representations that have only a single null-vector (correspond-

ing to a single zero) at level 2, we note that the symmetric tensor powers of the minimal

hs[λ] representations10 satisfy

h
(
([0m−1, 1, 0, . . . , 0]; 0)

)
=
m

2
(1 + λ) ,

w(3)
(
([0m−1, 1, 0, . . . , 0]; 0)

)
= −m

6
(1 + λ)(2 + λ) , (A.8)

h
(
(0; [0m−1, 1, 0, . . . , 0])

)
=
m

2
(1− λ) ,

w(3)
(
(0; [0m−1, 1, 0, . . . , 0])

)
=
m

6
(1− λ)(2− λ) . (A.9)

These representations therefore account for one of the first four zeros of (A.3), including

also the corresponding conjugate representations. However, for m ≥ 2, they do not satisfy

the last two zeros any longer. This is compatible with the fact that the corresponding wedge

representations have two states at level 2, i.e. only have a single null-vector at that level.

On the other hand, a representation for which only one of the last two zeros is satisfied

is given by the two-fold anti-symmetric tensor power of the minimal representation. Indeed,

it follows from appendix B.3 of [42] that for example

h
(
([2, 0, . . . , 0]; 0)

)
= 2 + λ , w(3)

(
([2, 0, . . . , 0]; 0)

)
= −1

3
(2 + λ)(4 + λ) , (A.10)

where we have noted that the normalization of W (3) in [42] differs by a factor of 1
6 from

the conventions of [35], see in particular eq. (5.8) of [42]. Thus α takes the value

α
(
([0, 1, 0, . . . , 0]; 0)

)
= −1

2
(4 + λ) = −1

2

√
8(2 + λ) + λ2 . (A.11)

Level 3. We have similarly determined the Kac-determinant (and in particular its zeros)

at higher levels. At level 3, there are generically 6 independent vectors, for which a basis

is given by

V
(4)
−3 φ , V

(5)
−3 φ , V

(6)
−3 φ , V

(2)
−1 V

(3)
−2 φ , V

(2)
−1 V

(4)
−2 φ , V

(2)
−1 V

(2)
−1 V

(2)
−1 φ . (A.12)

The corresponding Kac determinant is then

det(M3) =
3h6

16384
(2α− λ− 4)(2α− λ− 2)3(2α− λ+ 2)3(2α− λ+ 4)(2α+ λ− 4)

(2α+ λ− 2)3(2α+ λ+ 2)3(2α+ λ+ 4)
(
−4α2 + 4h+ λ2

)(
−4α2 + 8h+ λ2

)3
, (A.13)

and its 24 zeros arise for

α = ±
(

1± λ

2

)
, ± 1

2

√
8h+ λ2,

±
(

2± λ

2

)
, ± 1

2

√
4h+ λ2 . (A.14)

10Recall that there is a transpose in relating the symmetrization or anti-symmetrization of the hs[λ] repre-

sentations to the Young diagrams appearing the coset, see the discussion in section 2.2 of [42], e.g. eq. (2.18).
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Here each of the zeros that appeared already at level 2 — these are the zeros of the first

line — has multiplicity 3, while the new zeros have multiplicity one. The new roots are

satisfied for the anti-symmetric two-fold tensor product of the minimal representation,

see e.g. eq. (A.11) — together with the representation associated to the other minimal

representation as well as their conjugates, this accounts for the first four new roots. The

last two new roots are attained for the 2-fold symmetric tensor power of the minimal

representation, see eqs. (A.8) and (A.9) with m = 2.

Level 4. At level 4, there are generically 13 states, and the 78 roots of the corresponding

Kac determinant (including multiplicities) are

α = ±
(

1± λ

2

)
, ± 1

2

√
8h+ λ2 , (A.15)

±
(

2± λ

2

)
, ± 1

2

√
8

2
h+ λ2 , (A.16)

±
(

3± λ

2

)
, ± 1

2

√
8

3
h+ λ2 , (A.17)

± 1

2

√
λ2 − 8h . (A.18)

The roots in (A.15) appear already at level 2, while those in (A.15) and (A.16) appear at

level 3; these roots therefore each have higher multiplicity.11 The new roots (that appear

with multiplicity one) are therefore associated to the solutions in (A.17) and (A.18). The

roots in (A.17) are associated to the totally anti-symmetric three-fold tensor product of the

minimal representation — this accounts for the first four roots of (A.17) — and the totally

symmetric three-fold tensor product of the minimal representation — this accounts for the

last two roots of (A.17). On the other hand, the roots in line (A.18) are of a different

form, and they are the ones that are relevant for the bosonic twisted representation, see

eqs. (B.15)–(B.16).

Level 5. We have also performed the corresponding analysis at level 5, where the generic

level-one representation has 24 states, and where the Kac determinant has 192 roots (in-

cluding multiplicities). In addition to the roots that appeared already at level 4, see

eqs. (A.15)–(A.18), the new roots that appear at level 5 are of the form

±
(

4± λ

2

)
, ±1

2

√
8

4
h+ λ2 , (A.19)

and are hence of the same structural form as in (A.15)–(A.17). In particular, they corre-

spond to the totally symmetric and anti-symmetric four-fold tensor product of the minimal

representation.

11The 4 roots ±(1± λ
2

) each have multiplicity 9, while the 2 roots ± 1
2

√
8h+ λ2 have multiplicity 8. The

6 roots in (A.16) all have multiplicity 3.
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B The spin 3 charge of some simple representations

In order to identify the appropriate representations that realize these roots, we need to

calculate both the conformal dimension as well as the w(3) eigenvalue of level-one repre-

sentations. In this section we recall how the spin 3 charge can be determined, using the

Drinfeld-Sokolov approach.

The coset representations are labelled by pairs of su(N) representations (Λ+; Λ−). For

each such Λ, we denote by ri the number of boxes in the i’th row of the corresponding

Young diagram. Then, in the orthonormal basis, the weight Λ has components (see e.g.

appendix A of [42])

Λi = ri −
B

N
, i = 1, . . . , N , (B.1)

where B is the total number of boxes
∑

i ri and (rN ≡ 0). The Weyl vector ρ has the

components

ρi =
N + 1

2
− i , i = 1, . . . , N . (B.2)

Note that, by construction, we have
∑

i Λi = 0 and
∑

i ρi = 0. Following [43], we also

define the vector θ as

θ = α+(Λ+ + ρ) + α−(Λ− + ρ) , where α+ =

√
N + k + 1

N + k
, α− = − 1

α+
,

and introduce the power sums Cs(θ) [43–45]

Cs(θ) =
1

s

∑
i

(θi)
s =

(−1)s−1

s

∑
i1<i2<···<is

θi1θi2 · · · θis . (B.3)

In terms of these quantities, the conformal dimension and spin 3 charge of (Λ+; Λ−) in the

‘primary basis’ is then [43, 45]

h
(
(Λ+; Λ−)

)
= C2(θ) +

c−N + 1

24
(B.4)

w(3)
(
(Λ+; Λ−)

)
= C3(θ) . (B.5)

As a consistency check we note that, for the minimal representation Λ+ = , we find

h( ; 0) =
N − 1

2N

1 + k + 2N

N + k
(B.6)

w(3)( ; 0) =
(N − 1)(N − 2)

6N2

(1 + k + 2N)(2 + 2k + 3N)

(N + k)3/2(N + k + 1)1/2
. (B.7)

Similarly, we find for example for the representation ([0b−1, 1, 0, . . . , 0]; 0)

h([0b−1, 1, 0, . . . , 0]; 0) =
b(N − b)

2N

1 + k + 2N

N + k
(B.8)

w(3)([0b−1, 1, 0, . . . , 0]; 0) =
b(N − b)(N − 2b)

6N2

(1 + k + 2N)(2 + 2k + 3N)

(N + k)3/2(N + k + 1)1/2
, (B.9)
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so that in the ’t Hooft limit (for finite b� N, k)

h([0b−1, 1, 0, . . . , 0]; 0) = b h( ; 0) ∼=
b

2
(1 + λ) (B.10)

w(3)([0b−1, 1, 0, . . . , 0]; 0) = bw(3)( ; 0) ∼=
b

6
(1 + λ)(2 + λ) . (B.11)

This approach also allows us to calculate the charges of representations for which both

Λ+ and Λ− are non-trivial. For example, for the representation ( ; ) we find

h( ; ) =
(N − 1)(N + 1)

2N(N + k)(N + k + 1)
(B.12)

w(3)( ; ) =
(N − 2)(N − 1)(N + 1)(N + 2)

6N2(k +N)3/2(k +N + 1)3/2
(B.13)

α( ; ) =
3w(3)

2h
=

(N − 2)(N + 2)

2N
√
k +N

√
k +N + 1

‘t Hooft
≈ 1

2

N

N + k
=
λ

2
, (B.14)

where we have taken the ’t Hooft limit in the last step. Note that the correct value of α in

the ’t Hooft limit can only be determined from the exact expression of h and w(3) at finite

(N, k) since the ’t Hooft limit of both h and w(3) separately vanishes.

For the representations that describe the ground states of a single twisted boson, i.e.

the representations with Dynkin labels ([0b−1, 1, 0, . . . , 0]; [0b−1, 1, 0, . . . , 0]), we then find

h =
b(N + 1)(N − b)

2N(k +N)(k +N + 1)
(B.15)

α =
(N − 2b)(N + 2)

2N
√
k +N

√
k +N + 1

. (B.16)

As explained in eq. (2.33), in the ’t Hooft limit this solves the root of eq. (A.18) that

appears first at level 4.

For the representations that describe the ground states of a single twisted fermion, i.e.

the representations with Dynkin labels ([b, 0, . . . , 0]; [b, 0, . . . , 0]), we find instead

h =
b(N − 1)(N + b)

2N(k +N)(k +N + 1)
(B.17)

α =
(N + 2b)(N − 2)

2N
√
k +N

√
k +N + 1

. (B.18)

Upon setting b = νk, we have (in the ‘t Hooft limit)

h(b = νk) ∼=
ν

2
(1− λ)(λ(1− ν) + ν) (B.19)

α(b = νk) ∼=
1

2
(λ(1− 2ν) + 2ν) =

1

2

√
λ2 + 8h(b = νk) , (B.20)

which is a root that first appears at level 2, see eq. (A.3).
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C Combinatorial description of wedge characters

In this appendix we outline a proof for the combinatorial identity between p2(n, `) and

p2(n) of eq. (2.15). The identity for ` = 0 is given and proven in [37]; in the following we

will generalize it to generic `. Let us first consider the case of ` ≥ 0.

Recall that p2(n, `) counts the configurations that can be obtained from a pair of Young

diagrams 〈Γ+; Γ−〉n,` with first columns of height c+
1 = c−1 + ` by gluing them along their

common first column, and removing the ` superfluous boxes of Γ+ from the bottom, see

figure 1. Here n is the number of ‘visible’ boxes after the gluing.

On the other hand, p2(n) counts (ordered) pairs of Young diagrams (Γ(1),Γ(2))n whose

total number of boxes is n. To each such pair we can associate an element 〈Γ+; Γ−〉n,`,
by shifting Γ(2) ` steps upwards and then placing it to the right of Γ(1), without letting

any columns overlap. As long as c
(1)
1 ≤ c

(2)
1 + `, we choose the first column of Γ(2) as the

‘shared’ column of 〈Γ+; Γ−〉n,`; otherwise we move ` boxes from the bottom of the first

column of Γ(1) to the top so that this column becomes the ‘shared’ column.

This map is well-defined and surjective, but it is not injective. In particular, if c−1 >

c−2 + ` there are precisely two pairs of Young diagrams (Γ(1),Γ(2))n that give rise to the

same configuration 〈Γ+; Γ−〉n,` — we can move ` boxes from the top of the first column

of Γ(2) to the bottom, and then adjoin the corresponding column to Γ(1). Therefore, if we

start with p2(n), we now have to subtract p2(n− `−1) from it, since the diagrams that are

overcounted in this manner can all be constructed from configurations (Γ(1),Γ(2))n−`−1: we

simply add `+ 1 boxes to the first column of Γ(2), and thus guarantee that after joining we

have c−1 > c−2 +` in the resulting 〈Γ+; Γ−〉n,` configuration. But subtracting p2(n−`−1) is

an overkill — we now have to add back those configurations for which c−1 > c−2 +` > c−3 +`,

and these cases are captured by (Γ(1),Γ(2))n−(`+1)−(`+2) since now we have to put ` + 1

boxes on the second column of Γ(2), and ` + 2 boxes on the first so as to guarantee that

we end up with a configuration with c1 > c−2 + ` > c−3 + `. Recursively proceeding in this

manner we then arrive at the formula

p2(n, `) =
∑
m=0

(−1)m p2

(
n−

`+m∑
k=`+1

k

)
` ≥ 0 . (C.1)

This proves eq. (2.15) for ` ≥ 0; the argument for ` < 0 is identical upon interchanging the

roles of Γ+ ↔ Γ− and Γ(1) ↔ Γ(2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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