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Abstract: Continuing the quest for exclusive Racah matrices, which are needed for evalua-

tion of colored arborescent-knot polynomials in Chern-Simons theory, we suggest to extract

them from a new kind of a double-evolution — that of the antiparallel double-braids, which

is a simple two-parametric family of two-bridge knots, generalizing the one-parametric fam-

ily of twist knots. In the case of rectangular representations R = [rs] we found an evidence

that the corresponding differential expansion miraculously factorizes and can be obtained

from that for the twist knots. This reduces the problem of rectangular exclusive Racah

to constructing the answers for just a few twist knots. We develop a recent conjecture on

the structure of differential expansion for the simplest members of this family (the trefoil

and the figure-eight knot) and provide the exhaustive answer for the first unknown case of

R = [33]. The answer includes HOMFLY of arbitrary twist and double-braid knots and

Racah matrices S̄ and S — what allows to calculate [33]-colored polynomials for arbitrary

arborescent (double-fat) knots. For generic rectangular representations fully described are

only the contributions of the single-floor pyramids. One step still remains to be done.
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1 Introduction

Construction of knot polynomials [1–8] is currently at the front-line of modern theoretical

physics, because this is an exactly solvable problem in quantum field theory, which remains

unsolved for years, despite tremendous effort by many distinguished researchers. Far ago it

was reformulated in terms of Chern-Simons theory [9]–[17], where (at least for the knots in

S3) it is basically reduced to a free-field calculation, and a formal answer is provided [18]–

[32] in terms of representation theory of quantum groups. This, however, does not help

to obtain explicit answers, except for the simplest situations, covered by the well-known

databases [33–35]. The problem is that group-theory methods themselves are undeveloped,

moreover, the crucial quantities, starting from Racah matrices, are ambiguously defined

in most interesting cases and thus do not attract attention of pure mathematicians. The

ambiguities drop out of the final answers for knot polynomials, but intermediate steps in-

volve less-invariant objects — what can in fact be interpreted as a kind of a new gauge

invariance of some effective field theory [36, 37], arising on the way from the fundamental
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Chern-Simons to Wilson-loop observables. This somewhat unexpected twist of the story

makes it even more similar to “real” Yang-Mills theories, like QCD, and confirms expec-

tations that the study of exactly-solvable models can shed light on the more complicated

physical problems.

Recent revival of interest and new fast progress in 2d conformal theories (CFT) [38]–

[57] attracted new attention to 3d Chern-Simons, which is its closest relative — and nat-

urally caused a progress there, which is, however, not so spectacular yet. The difference

is that knot polynomials are exact non-perturbative quantities, associated with modular

transformations of non-perturbative conformal blocks, which are still far from being well-

studied in conformal theory as well. Fortunately, modular transformations are simpler

than conformal blocks themselves, and one can proceed with knot polynomials even when

conformal-block issues remain unsolved. Recent achievements in this direction are largely

based on the new version [58]–[77] of the Reshetikhin-Turaev (RT) formalism, when quan-

tum R-matrices in the space of representations, rather than in representation spaces, and

Clebsh-Gordan coefficients are substituted by Racah and matrices (and their more compli-

cated convolutions, known as mixing matrices). An early example of the strength of such

approach was provided by the celebrated Rosso-Jones formula [78]–[93], which fully solves

the problem of colored knot polynomials for a distinguished case of torus knots. However,

despite a considerable progress, made in above references, nothing comparably impressive

is yet achieved beyond torus knots — the problem turns to be extremely complicated. A

new hope appeared with the introduction of the special class of double-fat knots in [94],

where knot polynomials are presumably made from monodromy matrices of 4-point con-

formal blocks — and thus the CFT methods can be directly applied. This class is rather

rich, in includes all the two-bridge and pretzel knots, moreover, it appeared to coincide

with the arborescent knots, well known in mathematical literature [95, 96]. In general such

knots are made by contractions of “fingers” and “propagators”, with just four lines/strands

inside, and their knot polynomials can be considered as correlators in some new effective

field theory [36, 37], which is in fact a gauge theory, as we already mentioned. What is

needed for arborescent knots is just a pair of Racah matrices,

S :
(

(R̄⊗R)⊗R −→ R
)

−→
(

R̄⊗ (R⊗R) −→ R
)

S̄ :
(

(R⊗ R̄)⊗R −→ R
)

−→
(

R⊗ (R̄⊗R) −→ R
)

(1.1)

called exclusive, to distinguish them from exclusive ones, where the “final state” is arbitrary

representation Q ∈ R⊗R⊗R̄, not just R. The problem, however, is that they are needed in

arbitrary representation R, if one wants to calculate R-colored knot polynomials. Modern

group theory is incapable to provide the answers beyond pure symmetric and antisymmetric

representations [97–100] — the record results, obtained by various direct methods are for

R = [2, 1] [101] and R = [2, 2] [102] (see also [103] and [104] for some inclusive Racah

matrices for R = [3, 1] and R = [2, 2] respectively). Further progress on these lines seems

to be beyond the current computer capacities.

However, the answers, when known, are pretty simple, and it is clear that they can be

found/guessed by some other, indirect methods. One of the obvious ideas is to extract the
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Racah matrices from the answers for some relatively simple knots and then apply them

to calculations of generic (at least, arborescent) knots. An illustration of this idea was

already given in [102] with the example of representation R = [22], where S and S̄ were

extracted from exclusive 3-strand Racah matrices, previously found from the difficult direct

calculation in [104], using the two-parametric family, which is simultaneously arborescent

and 3-strand. Despite impressive, this example just expands the small piece of knowledge

about a given R into a much bigger knowledge — but only about the same R. Given

problems with higher R, this is not enough.

An example of a very different kind was provided in [105]. One of the recent discov-

eries about knot polynomials is their spectacular internal structure, known as differential

expansion (DE) [106]–[110]. It goes back to discovery of “differentials” in [111], based on

the understanding of Khovanov-Rozansky calculus [112–131] — a conceptually important

alternative to RT approach. DE somehow lies at the intersection of two different formalisms

and, non-surprisingly, is a very powerful idea — unfortunately, underestimated and unde-

veloped. Still, whenever applied, it proves effective. In fact, the matrices S and S̄ for all

(anti)symmetric representations in [97–100] were obtained as generalization of the answers

for the figure-eight 41 and other twist knots in [106] and [107] — which were originally

guessed from the study of what later became the differential expansion. The suggestion

of [105] was to repeat this trick on the new level of knowledge: to look at newly available

results, reformulate them in terms of differential expansion and then, hopefully, generalize

— producing absolutely new knowledge, or at least conjectures, about the unknown. In

this respect [105] was a success: the Rosso-Jones answers for the trefoil for all rectangular

representations R were reformulated in terms of differential expansion, what allowed to

conjecture the rectangularly-colored HOMFLY for figure eight knot and, most important,

to conjecture the general shape of differential expansion in this case for all defect-zero [110]

knots. The purpose of this paper is to further built on this success and make a new step

towards finding the matrices S̄ and S for arbitrary rectangular representations. In fact

just one more guess remains to be done on this way after the present paper — but first an

independent examination of the already made conjectures is highly desirable.

Since [108] it is known, that differential expansion is much simpler for antiparallel

than antiparallel braids, i.e. for twist rather than torus knots (even 2-strand). The latter

have non-vanishing defect [110] and instead possess non-trivial next levels of DE [108], i.e.

an additional structure, which still needs to be understood. Here we concentrate on the

simpler — antiparallel — story, where defect is always zero and the structure of DE is fully

described in [105]. We demonstrate that it exhibits a new factorization property, relating

expansion coefficients for multi-braid knots through those for twist knots. This opens a

way to explicitly describe a double evolution, extract exclusive Racah matrices S and S̄

by a variation of the idea in [104] and apply the technique of [94]–[104] to find HOMFLY

polynomials for arbitrary arborescent knots. in arbitrary rectangular representation R =

rs]. The success of this program — once factorization is discovered — depends on the

possibility to guess the general shape of the DE coefficients for twist knots, which hopefully

will be possible in the near future.
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Generalization to non-rectangular diagrams faces additional (perhaps, related) prob-

lems: the structure of DE is more sophisticated, even for trefoil and the figure eight, and

non-trivial multiplicities arise, turning Racah matrices in more sophisticated operators,

which do not possess any canonical matrix form. Moreover, additional care is needed [36,

37] in this case to formulate the arborescent calculus of [94] for multi-finger knots — the

interaction vertices in the corresponding effective “field theory” are also not canonically

defined (or “non-local”). Thus non-rectangular case will be further elaborated on elsewhere.

Despite there is hardly any need to advertise the long-standing problem of calculating

at least some non-symmetrically-colored HOMFLY for at least some knots — any result

here is a breakthrough — we begin in section 2 from explaining that the particular two-

parametric family of antiparallel double-braids is especially important at the present stage

of knowledge: if found, it provides exclusive Racah matrices and thus allows to calculate

for arbitrary arborescent knots, what is already quite something. The idea is further

illustrated by the example of the fundamental representation in section 3. We switch to

DE only in section 4, where the coefficients of the expansion, structured in [105], are found

for the twist knots, by applying the evolution method [107] to the known [22]-colored-

HOMFLY from [104]. The culmination comes in section 5, where with available examples

we discover and illustrate the factorization property of DE for antiparallel double braids —

and reproduce from the approach of section 2 the exclusive Racah matrices S̄22, recently

found from a very different double evolution in [102]. In section 6 we make a formal

conjecture, that this property holds for arbitrary rectangular representations. Given all

the recent achievements after [94] this basically reduces rectangular arborescent calculus

to finding the DE coefficients in [105] for the rather simple one-parametric family of twist

knots. For them a separate conjecture is needed, of which we cook up just a prototype

in section 7: we make it in full generality for the single-floor pyramids. At two floors we

consider only the first unknown example of R = [33]. Further generalizations look rather

straightforward, but are left for the future work.

Throughout the text we use the standard notation {x} = x− x−1 and [n] = {qn}
{q} .

2 Exclusive Racah matrices from double evolutions

In [102] exclusive Racah matrices S were extracted from the double evolution family of

3-strand knots: they diagonalize the double evolution matrix. Then S̄ is obtained from

S̄ = T̄−1ST−1S†T̄−1 (2.1)

with diagonal matrices T and T̄ , made from the eigenvalues of the relevant R-matrices.

Instead, the double evolution family of double-braid two-bridge knots defines S̄ directly:

in the notation of [94]

H
{m,n}
R = dR · (S̄T̄ 2mS̄T̄ 2nS̄)∅∅ =

∑

X̄,Ȳ ∈R⊗R̄

dR
√

dX̄dȲ λ
2m
X̄ λ2n

Ȳ S̄X̄Ȳ (2.2)

and S is then extracted from (2.1) as a diagonalizing matrix of T̄ S̄T̄ .
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✁
✁

❆
❆

...

❍✟

✟❍✟✟ ❍❍✯ ❥

❑ ☛

✕ ❯

2n

2m

Thus a knowledge of rectangular HOMFLY for the double-braid family can be used to

obtain these Racah matrices in rectangular representations. In particular, this provides an

alternative derivation for R = [22] — and coincidence with the result of [102] can serve as

a check of our factorization hypotheses about the double-braid.

3 Fundamental representation

For double braids of above type (two antiparallel braids with even crossing numbers the

normalized fundamental HOMFLY are equal to

H
{m,n}
[1] = 1 +G

(m,n)
[1] {Aq}{A/q} = 1 +

(A2m − 1)(A2n − 1)

(A2 − 1)(A−2 − 1)
{Aq}{A/q} (3.1)

with A-independent factor F
(m,n)
[1] . Thus Alexander polynomial Al

(m,n)
[1] = 1 +mn{q}2 has

degree one, and defect [110] of the differential expansion is zero for the entire family. This

means that we can use the conjecture of [105] for the shape of differential expansions for

rectangular representations of the defect-zero knots. What needs to be found are the A, q-

dependent coefficients (F -factors), which should be guessed from the limited knowledge of
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HOMFLY for particular members of the family:

2m . . . −8 −6 −4 −2 0 2 4 6 8 . . .

2n

. . .

8 101 U 92
6 103 81 U 72 95
4 103 83 61 U 52 74 95
2 101 81 61 41 U 31 52 72 92
0 U U U U U U U U U

−2 92 72 52 31 U 41 61 81 101
−4 95 74 52 U 61 83 103
−6 95 72 U 81 103
−8 92 U 101
. . .

(3.2)

U means the unknot (all F -factors are zero), the lines/columns with 2m or 2n = ±2

contain twist knots. The table has obvious symmetries m ↔ n and (m,n) ↔ (−m,−n)

(in the latter case the knot turns into its mirror, and the change A, q −→ A−1, q−1 should

be made in knot polynomial), thus there are not too many different knots in the table.

Fortunately, some colored HOMFLY are also available beyond 10 crossings due to powerful

family method of [36, 37].

For the fundamental representation R = [1] with d[1] = [N ] we get from (3.1)

√
dXdY
dR

S̄XY =

(

1 0

0 1

)

− {Aq}{A/q}
{A}2

(

1 −1

−1 1

)

(3.3)

=
1

[N ]2

(

1 [N − 1][N + 1]

[N − 1][N + 1] −[N − 1][N + 1]

)

i.e.

S̄[1] =
1

[N ]

(

1
√

[N − 1][N + 1]
√

[N − 1][N + 1] −1

)

(3.4)

4 Twist knots for R = [22]

According to [105], for defect-zero knots K(0),

HK(0)

[22] = 1 + [2]2Z
(0)
[22] · F

K(0)

[1] (A) + [3]Z
(0)
[22]

(

Z
(1)
[22] · F

K(0)

[2] (A, q) + Z
(−1)
[22] · FK(0)

[2] (A, q−1)
)

+

+Z
(1)
[22]Z

(0)
[22]Z

(−1)
[22]

(

[2]2FK(0)

3 (A, q) + Z
(0)
[22] · F

K(0)

4 (A, q)
)

(4.1)

The two F -factors in the first line are known from differential expansions for symmetric

representations, the two F-factors in the second line are some q-deformations of the cube

and the forth power of F[1](A) — both symmetric under the change q ↔ q−1 (because

of the transposition symmetry of R = [22]), but very different from, say, F[3](A, q = 1)
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and F[4](A, q = 1). They should, however, satisfy the evolution rule with six eigenvalues

T̄[22] = diag
(

1,−A, q±2A2,−A3, A4
)

.

. . .

F [41]
3 = 1

F [U ]
3 = 0

F [31]
3 = −A6

F [52]
3 = −A6

(

A6 +
[6]

[2]
A4 + [3]A2 + 1

)

F [72]
3 = −A6

(

A12 +
[6]

[2]
A10 +

[8][6]

[4][2]
A8 + [7]A6 +

[4][3]

[2]
A4 + [3]A2 + 1

)

F [92]
3 = −A6

(

A18 +
[6]

[2]
A16 +

[8][6]

[4][2]
A14 +

[10][8]

[4][2]
A12 +

[10][6]

[5]
A10 +

[8][3]

[2]
A8

+
[5][4]

[2]
A6 +

[4][3]

[2]
A4 + [3]A2 + 1

︸ ︷︷ ︸
1

(1−q2A2)(1−A2)(1−q−2A2)

)

. . . (4.2)

. . .

F [41]
4 = 1

F [U ]
4 = 0

F [31]
4 = A8

F [52]
4 = A8

(

A8 + [2]2A6 +
[4][3]

[2]
A4 + [2]2A2 + 1

)

F [72]
4 = A8

(

A16 + [2]2A14 + ([3]2 + 1)A12 + [4]2A10

+

(
[6][5]

[2]
+ [3] + 1

)

A8 + [4]2A6 + ([3]2 + 1)A4 + [2]2A2 + 1

)

F [92]
4 = A8

(

A24 + [2]2A22 + ([3]2 + 1)A20 + ([4]2 + [2]2)A18 +

(
[5][4][3]

[2]
+ 1

)

A16 + ([6]2 + [2]2)A14 +

+
[4]

[2]
([11] + [5] + 2[3])A12 + ([6]2 + [2]2)A10 +

(
[5][4][3]

[2]
+ 1

)

A8

+([4]2 + [2]2)A6 + ([3]2 + 1)A4 + [2]2A2 + 1
︸ ︷︷ ︸

1
(1−q2A2)(1−A2)2(1−q−2A2)

)

. . . (4.3)

From this we deduce the evolution formulas for twist knots:

F
(m)
1 = A ·

(

−A2m

{A} +
1

{A}

)

F
(m)
2 = qA2 ·

(
q4mA4m

{Aq2}{Aq} − [2]A2m

{Aq2}{A} +
1

{Aq}{A}

)

F (m)
3 = A3 ·

(

− A6m

{Aq2}{A}{A/q2} +
[3]A4m

[2]{Aq2}{A/q2}

(
q4m

{Aq} +
q−4m

{A/q}

)

− [3]A2m

{Aq2}{A}{A/q2} +
1

{Aq}{A}{A/q}

)

– 7 –
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F (m)
4 = A4 ·

(
A8m

{Aq}{A}2{A/q} − [2]2A6m

{Aq2}{A}2{A/q2} +
[3]A4m(q4m + q−4m)

{Aq2}{Aq}{A/q}{A/q2}

− [2]2A2m

{Aq2}{A}2{A/q2} +
1

{Aq}{A}2{A/q}

)

(4.4)

while for symmetric representations we have [107] (note that eigenvalues are now different,

(−)iAiqi(i−1)):

F
(m)
3 = q3A3 ·

(

− q12mA6m

{Aq4}{Aq3}{Aq2} +
[3]q4mA4m

{Aq4}{Aq2}{Aq} − [3]A2m

{Aq3}{Aq2}{A} +
1

{Aq2}{Aq}{A}

)

F
(m)
4 = q6A4 ·

(

q24mA8m

{Aq6}{Aq5}{Aq4}{Aq3} − [4]q12mA6m

{Aq6}{Aq4}{Aq3}{Aq2} +

[4][3]
[2]

q4mA4m

{Aq5}{Aq4}{Aq2}{Aq}−

− [4]A2m

{Aq4}{Aq3}{Aq2}{A} +
1

{Aq3}{Aq2}{Aq}{A}

)

(4.5)

Of course, these formulas can be checked for other low-intersection twist knots 61, 81, 101,

respectively for m = −2,−3,−4.

5 Factorization of differential expansion for double-braids

Much more interesting are the non-twist knots from the double-braid family. Already in

the first two examples we obtain:

H83
[22] = 1− [2]2A−2Z

(0)
[22]F

(2)
1 (A)F

(−2)
1 (A) + [3]Z

(0)
[22]

(

G83
[2](A, q)Z

(1)
[22] +G83

[2](A, q
−1)Z

(−1)
[22]

)

−

−A−6[2]2Z
(1)
[22]Z

(0)
[22]Z

(−1)
[22] F (2)

3 F (−2)
3 +A−8Z

(1)
[22]

(

Z
(0)
[22]

)2

Z
(−1)
[22] F (2)

4 F (−2)
4

H103
[22] = 1− [2]2A−2Z

(0)
[22]F

(2)
1 (A)F

(−3)
1 (A) + [3]Z

(0)
[22]

(

G103
[2] (A, q)Z

(1)
[22] +G103

[2] (A, q
−1)Z

(−1)
[22]

)

−

−A−6[2]2Z
(1)
[22]Z

(0)
[22]Z

(−1)
[22] F (2)

3 F (−3)
3 +A−8Z

(1)
[22]

(

Z
(0)
[22]

)2

Z
(−1)
[22] F (2)

4 F (−3)
4 (5.1)

with G83
[2] = q−2A−4F

(2)
2 F

(−2)
2 and G103

[2] = q−2A−4F
(2)
2 F

(−3)
2 .

Clearly, the coefficients F factorize into products of the twist-family F-factors!

Assuming that this amusing factorization is always true for all double braids, we

conjecture:

H
(m,n)

[22] = 1− [2]2A−2Z
(0)

[22] · F
(m)
1 (A)F

(n)
1 (A) +

+[3]A−4Z
(0)

[22]

(

q−2Z
(1)

[22] · F
(m)
2 (A, q)F

(n)
2 (A, q) + q2Z

(−1)

[22] · F (m)
2 (A, q−1)F

(n)
2 (A, q−1)

)

−

−A−6[2]2Z
(1)

[22]Z
(0)

[22]Z
(−1)

[22] · F (m)
3 F (n)

3 + A−8Z
(1)

[22]

(

Z
(0)

[22]

)2

Z
(−1)

[22] · F (m)
4 F (n)

4 (5.2)

what can be tested in the other two available examples in table (3.2) — 74 and 95. This

conjecture provides a double-evolution matrix, which through (2.2) gives the entries of
√
dX̄dȲ S̄X̄Ȳ . This actually proves the conjecture, because the result reproduces the matrix

S̄, derived from a very different double evolution in [102]:
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S̄[2,2] =
1

d[2,2]

























√

d̄1
√

d̄2
√

d̄3
√

d̄4
√

d̄5
√

d̄6

12
D1D−1

[2]2D2D−2
γ1 −

√
D3D1D−1D0

[2]2D2D−2
γ2

√
D

−3D−1D0D1

[2]2D2D−2
γ3 −

√
D3D1D−1D−3D1D−1

[2]2[3]D2D−2
γ4 −15

13 23
D2

0
[2]2[3]D2D−2

γ5 −
√

D3D1D−1D−3D
2
0 [3]

[2]2D2D−2
−24 14

14 24 34 33 −23 13

15 25 −24 −23 22 −12

16 −15 14 13 −12 11

























with γ1 = [3]D2D−2 − [2]2, γ2 = D2D−3 − [2], γ3 = D3D−2 − [2], γ4 = D3D−3 − 2[3] − 1, γ5 =

D3D2D−2D−3 −D3D−3 + [2]2.

HereDi =
{Aqi}
{q} , while d̄i are quantum dimensions of the six irreducible representations

in the product [22]⊗ [22]:

d̄1 = 1, d̄2 = D1D−1, d̄3 =
D3D

2
0D−1

[2]2
,

d̄4 =
D1D

2
0D−3

[2]2
, d̄5 =

D3D
2
1D

2
−1D−3

[3]2
, d̄6 =

D3D
2
2D1D−1D

2
−2D−3

[3]2[2]4

The matrix has two symmetries: S̄i,j = S̄j,i and S̄i,j = ±S̄7−j,7−i, the signs are shown

explicitly in above table, where “12” at the place of S̄21 means that this element is equal

to S̄12 etc. Presented is the matrix, obtained by our new procedure: it differs a little (in

signs and order of lines — as allowed by conjugation freedom) from the one in [102].

As already mentioned, another inclusive Racah matrix S is obtained from (2.1), by

diagonalization of T̄ S̄T̄ with

T̄ = diag
(

1,−A, q2A2, q−2A2,−A3, A4
)

(5.3)

The eigenvalues are equal to

T−1 = A4 · diag
(

q8,−q4, q2, 1/q2,−1/q4, 1/q8
)

(5.4)

and the entries of SXY are then given by Cramer rule as minors of the matrix T̄ S̄T̄ − T ,

like in a similar procedure, described in [102].

Factorization property holds for symmetric and antisymmetric representations as well:

for typical examples

H
(m,n)

[3] = 1− [3]A−2Z
(0)

[4] · F (m)
1 (A)F

(n)
1 (A) +

+[3]q−2A−4Z
(1)

[3] Z
(0)

[4] · F (m)
2 (A, q)F

(n)
2 (A, q)− q−6A−6Z

(2)

[4] Z
(1)

[4] Z
(0)

[4] · F (m)
3 (A, q)F

(n)
3 (A, q)

and

H
(m,n)

[1111] = 1− [4]A−2Z
(0)

[1111] · F
(m)
1 (A)F

(n)
1 (A) +

[4][3]

[2]
q2A−4Z

(0)

[1111]Z
(−1)

[1111] · F
(m)
2 (A, q−1)F

(n)
2 (A, q−1)−
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−[4]q6A−6Z
(0)

[1111]Z
(−1)

[1111]Z
(−2)

[1111] · F
(m)
3 (A, q−1)F

(n)
3 (A, q−1)

+q12A−8Z
(0)

[1111]Z
(−1)

[1111]Z
(−2)

[1111]Z
(−3)

[1111] · F
(m)
4 (A, q−1)F

(n)
4 (A, q−1)

However, factorization is not extended to polynomials of the form

H
(m1,...,mk)
R = dR · (S̄T̄ 2m1 S̄T̄ 2m2 S̄ . . . S̄T̄ 2mk S̄)∅∅ (5.5)

with k 6= 2 — it fails already for the fundamental representations of the simplest knots of

thus type, like 51 = (1, 1, 1, 1) and 73 = (1, 1, 1, 2).

Instead we claim that it is extended to other rectangular representations — but only

for double antiparallel braids. This is, however, exactly what we need to get the matrices S̄.

6 Other rectangular representations R = [rs]

Now the plan is clear.

• We take general differential expansion of rectangular HOMFLY for defect-zero knots

from [105]. It has the form

HK(0)

[rs] =
∑

A,B

CA,B
[rs] · ZA,B · FK(0)

A,B (6.1)

where sum goes over peculiar multi-floor pyramids, labeled by pairs of the Young-like

diagrams A,B, All the coefficients F41
A,B = 1 for the figure-eight knot and F31

A,B are just

monomials (powers of q and A) for the trefoil.

• Guess a general formula for the coefficients F (m)
A,B in the case of twist knots.

• Assume that antiparallel double braids satisfy factorization

F (m,n)
A,B =

F (m)
A,BF

(n)
A,B

F (1)
A,BF

(−1)
A,B

(6.2)

where F (1)
A,B =

(

− q|A|−|B|A2
)|A,B|

and F (−1)
A,B = 1.

• Representing double-braid case (k = 2) in the form of a double evolution in m1 and

m2, use (2.2) to extract the Racah matrix S̄[rs].

• Diagonalizing T̄ S̄T̄ with the help of known eigenvalues and Cramer rule, as explained

in [102], obtain another Racah matrix S[rs].

• Calculate H[rs] for any desired arborescent knot by the technique of [36, 37, 94] (some

additional care/checks can be needed with effective vertices in the multi-finger case) and

make possible checks.

The most artful part for today is the second step: revealing the structure of F for twist

knots from very special examples — symmetric and antisymmetric representations R = [r]

and R = [1r] and the only double-floor example, provided by R = [22].
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More formally, complementing the conjecture of [105] by above suggestions, we look

for the [rs]-colored HOMFLY in the following form:

H
(m,n)
[rs]

?
=

min(r,s)
∑

F=0

∑

{A,B}

WA,B ·
F (m)
A,BF

(n)
A,B

F (1)
A,BF

(−1)
A,B

·





F∏

f=1

(

C
bf
af+bf

)2
C

pf
r+bf

C
pf
s+af



 (6.3)

·

aF . . . 0 . . .− bF

...

a3 . . . 1 0−1 . . . − b3

a2 . . . 1 0−1 . . . − b2

a1 . . . 1 0−1 . . . − b1

= 1 +

min(r,s)
∑

F=1

∑

0≤aF<...<a3<a2<a1<r

0≤bF<...<b3<b2<b1<s

F∏

f ′<f ′′

(
[af ′ − af ′′ ][bf ′ − bf ′′ ]

[af ′ + bf ′′ + 1][af ′′ + bf ′ + 1]

)2

·
F (m)
A,BF

(n)
A,B

F (1)
A,BF

(−1)
A,B

·

·
F∏

f=1





(
[af + bf ]!

([af ]![bf ]!

)2 [r + bf ]![s+ af ]!

[r − 1− af ]![s− 1− bf ]!
(
[af + bf + 1]!

)2

af∏

if=−bf

{Aqif+r}{Aqif−s}





and our new goal is to associate the evolution functions F (m)
A,B with every non-empty pyramid

{A,B} = {r > a1 > a2 . . . > af ≥ 0} ∪ {s > b1 > b2 > . . . > bf ≥ 0} (6.4)

These functions depend on the eigenvalues λc, which are powers of A and q. However, for

concrete pyramid {A,B} the function F (m)
A,B depends on only some of these eigenvalues —

and this subset depends on the pyramid and not on r and s (these parameters, however,

select particular pyramides that contribute to H[rs]). Schematically,

F (m)
A,B =

∑

c∈IA,B

λ2m
c · ξc

∏

i∈JA,B{Aqi}
(6.5)

The first two tasks are to describe the sets IA,B and JA,B, and the third is the finding

of the combinatorial coefficients ξc. In this paper they are fulfilled only partly — for the

single-floor diagrams {A,B}.

7 On the structure of F
(m)
A,B

7.1 Already known cases

To begin with let us remind this structure in the case of symmetric representations [r],

where the relevant diagrams are just single-floor boxes a . . . 0 with b = 0. Then,

from [107] we know the answer:

F (m)

a . . . 0
= q

a(a+1)
2 Aa+1

a+1∑

c=0

(−)c[a+ 1]!

[c]![a+ 1− c]!
· λ2m

c · {Aq2c−1}
∏c+a

i=c−1{Aqi}
(7.1)
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It depends on a+ 2 eigenvalues (of the quantum R-matrix) λc = (−)cqc(c−1)Ac. Likewise,

for the antisymmetric representations [1s] contributing are only the boxes 0 . . . − b with

a = 0, and

F (m)

0 . . . − b

= q−
b(b+1)

2 Ab+1
a+1∑

c=0

b+1∑

c=0

(−)c[b+ 1]!

[c]![b+ 1− c]!
· λ2m

−c · {Aq1−2c}
∏c+b

i=c−1{Aq−i}
(7.2)

with b+2 eigenvalues λ−c = (−)cq−c(c−1)Ac. In fact, it is already a challenge to unify (7.1)

and (7.2) into a single formula.

The knowledge of the R = [22] case adds to

F (m)

0
= A ·

(

λ2m
0

{A/q}
{A/q}{A} − λ2m

1
{Aq}

{A}{Aq}

)

= A · λ
2m
0 − λ2m

1

{A} =
1−A2m

1−A−2

F (m)

1 0
= qA2 ·

(

λ2m
0

{A/q}
{A/q}{A}{Aq} − [2]λ2m

1
{Aq}

{A}{Aq}{Aq2} + λ2m
2

{Aq3}
{Aq}{Aq2}{Aq3}

)

F (m)

0 − 1
= q−1A2 ·

(

λ2m
0

{Aq}
{Aq}{A}{A/q}−[2]λ2m

1
{A/q}

{A}{A/q}{A/q2}+λ2m
−2

{A/q3}
{A/q}{A/q2}{A/q3}

)

(7.3)

two more pyramids:

F (m)

1 0 − 1
= A3 ·

(
λ2m
0

{Aq}{A}{A/q} − [3]λ2m
1

{Aq2}{A}{A/q2} +
[3]λ2m

2

[2]{Aq2}{Aq}{A/q2}

+
[3]λ2m

−2

[2]{Aq2}{A/q}{A/q2} − λ2m
03

{Aq2}{A}{A/q2}

)

F (m)

0

1 0 − 1

= A4 ·
(

λ2m
0

{Aq}{A}2{A/q} − [2]2 λ2m
1

{Aq2}{A}2{A/q2} +
[3]λ2m

2

{Aq2}{Aq}{A/q}{A/q2}

+
[3]λ2m

−2

{Aq2}{Aq}{A/q}{A/q2} − [2]2 λ2m
03

{Aq2}{A}2{A/q2} +
λ2m
04

{Aq}{A}2{A/q}

)

(7.4)

with five and six eigenvalues, associated with the six irreducible representations in the

product [22]⊗ [22]:

λ0 = 1, λ1 = −A = λ−1, λ±2 = q±2A2, λ03 = −A3, λ04 = A4 (7.5)

7.2 The first unknown case: R = [33]

Now there are ten irreps in [33]⊗ [33] and ten eigenvalues: six “old” ones, the same as (7.5),

and four “new”:

λ+3 = −q6A3, λ+04 = q4A4, λ+05 = −q4A5, λ+06 = q6A6 (7.6)

(somewhat strange labels in λ+0c emphasize that the powers of q are smaller than c(c− 1)

in λ+c, familiar from symmetric representation case (7.1), see section 7.4 below for a more

systematic description). The “old” pyramids are described by the same formulas (7.3)

and (7.4), involving only “old” eigenvalues (7.5). Of the four “new” pyramids one is still

described by (7.1):

F (m)

2 1 0
= q3A3 ·

(

λ2m
0

{A/q}
{A/q}{A}{Aq}{Aq2} − [3]λ2m

1

{Aq}
{A}{Aq}{Aq2}{Aq3}+

+[3]λ2m
2

{Aq3}
{Aq}{Aq2}{Aq3}{Aq4} − λ2m

3

{Aq5}
{Aq2}{Aq3}{Aq4}{Aq5}

)

(7.7)
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while three more we should guess:

F (m)

2 1 0 − 1

?
= q2A4 ·

(
λ2m
0

{Aq2}{Aq}{A}{A/q} − [4]λ2m
1

{Aq3}{Aq2}{A}{A/q2} ++
[4]λ2m

2

{Aq4}{Aq2}{Aq}{A/q2}

+

[4]
[2]

λ2m
−2

{Aq3}{Aq2}{A/q}{A/q2}−
[4]
[3]

λ2m
+3

{Aq4}{Aq3}{Aq2}{A/q2} −
[4][2]
[3]

λ2m
03

{Aq4}{Aq2}{A}{A/q2} +

+
λ2m
+04

{Aq4}{Aq3}{Aq}{A/q2}

)

(7.8)

F (m)

0

2 1 0 − 1

?
= q2A5 ·

(
λ2m
0

{Aq2}{Aq}{A}2{A/q} − [4]λ2m
1

{Aq3}{Aq2}{A}2{A/q2} − λ2m
1

{Aq3}{Aq}{A}2{A/q2}+

+

[4][3]
[2]

λ2m
2

{Aq4}{Aq2}{Aq}{A/q}{A/q2} +
[4]λ2m

−2

{Aq3}{Aq2}{Aq}{A/q}{A/q2}−

−
[4]
[2]

λ2m
+3

{Aq4}{Aq3}{Aq2}{A/q}{A/q2} − [4][2]λ2m
03

{Aq4}{Aq2}{A}2{A/q2}+

+
[3]λ2m

+04

{Aq4}{Aq3}{Aq}{A}{A/q2} +

[4]
[2]

λ2m
04

{Aq4}{Aq}{A}2{A/q}

− λ2m
+05

{Aq4}{Aq2}{Aq}{A}{A/q}

)

(7.9)

F (m)

1 0

2 1 0 − 1

?
= q3A6 ·

(
λ2m
0

{Aq2}{Aq}2{A}2{A/q} − [3][2]λ2m
1

{Aq3}{Aq2}{Aq}{A}2{A/q2}+

+
[3]2λ2m

2

{Aq4}{Aq2}{Aq}2{A/q}{A/q2} +

[4][3]
[2]

λ2m
−2

{Aq3}{Aq2}2{Aq}{A/q}{A/q2}−

− [4]λ2m
+3

{Aq4}{Aq3}{Aq2}{A}{A/q}{A/q2} − [4][2]2λ2m
03

{Aq4}{Aq2}2{A}2{A/q2}+

+
[3]2λ2m

+04

{Aq4}{Aq3}{Aq}2{A}{A/q2} +

[4][3]
[2]

λ2m
04

{Aq4}{Aq3}{Aq}{A}2{A/q}−

− [3][2]λ2m
+05

{Aq4}{Aq2}2{Aq}{A}{A/q} +
λ2m
+06

{Aq3}{Aq2}2{Aq}2{A}

)

(7.10)

Such guesses are motivated by a number of requirements:

• similarity to (7.1), (7.2) and (7.4), implying that FA,B is a sum of powers λ2m
c with

nicely factorized coefficients,

• observation in these examples of certain regularity in the positions of poles, coming

from {Aqi} with −2b < i < 2a in denominators, for terms with different λ2m
c ,

• requirement that each term in the sum over λc depends on even powers q,

• requirement, that entire F (m)
A,B is a polynomial for any m, i.e. all poles cancel after

summation over c,

• vanishing F (0)
A,B = 0 at m = 0, i.e. for the unknot,

• F (−1)
A,B = 1 for m = −1, i.e. for the figure eight knot, see [105],
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• F (1)
A,B =

∏

f (−qaf−bfA2)af+bf+1 for m = 1, i.e. for the trefoil, see [105].

For the particular case of R = [33] these are rather restrictive requirements and the

above guess is actually less ambiguous, than it can seem. In any case, the real confirmation

comes a posteriori — from the final expressions for Racah matrices and reasonable answers

they provide for the [33]-colored knot polynomials.

With these guesses we can calculate

H
(m,n)

[33]

?
= 1− [3][2]Z

(0)

[33] ·A
−2F (m)

0
F (n)

0
+

+
(

[3]2Z
(+1)

[33] · q−2A−4F (m)

1 0
F (n)

1 0
+

[3][4]

[2]
Z

(−1)

[33] · q2A−4F (m)

0 − 1
F (n)

0 − 1

)

Z
(0)

[33] −

−
(

[4]Z
(+2)

[33] · q−6A−6F (m)

2 1 0
F (n)

2 1 0
+ [4][2]2 Z

(−1)

[33] ·A−6F (m)

1 0 − 1
F (n)

1 0 − 1

)

Z
(+1)

[33] Z
(0)

[33] +

+
(

[3]2 Z
(+2)

[33] · q−4A−8F (m)

2 1 0 − 1
F (n)

2 1 0 − 1
+

[3][4]

[2]
Z

(0)

[33] ·A
−8F (m)

0

1 0 − 1

F (n)

0

1 0 − 1

)

Z
(+1)

[33] Z
(0)

[33]Z
(−1)

[33] −

−[3][2]Z
(+2)

[33] Z
(+1)

[33]

(
Z

(0)

[33]

)2
Z

(−1)

[33] · q−4A−10F (m)

0

2 1 0 − 1

F (n)

0

2 1 0 − 1

+

+Z
(+2)

[33]

(
Z

(+1)

[33] Z
(0)

[33]

)2
Z

(−1)

[33] · q−6A−12F (m)

1 0

2 1 0 − 1

F (n)

1 0

2 1 0 − 1

(7.11)

for double braids and extract the 10× 10 matrix S̄[33], which is described in the appendix

to this paper. Using this matrix we can calculate H[3,3] for some arborescent knots, which

can be made without the use of the second exclusive matrix S[33]. In examples these

polynomials are consistent with available Vassiliev invariants and pass other checks from

the list in [103]. Building of S from S̄ with the help of (2.1) and thus extension to arbitrary

arborescent knots by the method of [36, 37, 94] is also straightforward.

For further generalizations to other rectangular representations we need to look at

the above requirements for F a little closer. Since it is still a guesswork, it is not really

formalized — thus we provide just some sketchy comments, followed by new conjectures.

7.3 On nullification for the unknot

Identities, necessary for nullification of F for the unknot, i.e.at m = 0 are rather simple and

already the first examples reveal their general structure: if Da = {Aqa}/{q} = [N+a], then

1 0 D2 − [2]D1 +D0 = 0

2 1 0 D4D3 − [3]D4D1 + [3]D3D0 −D1D0 = 0

1 0 − 1 D2D−2 − ([3] + 1
︸ ︷︷ ︸

[2]2

)D1D−1 +
[3]

[2]
D0D−1 +

[3]

[2]
D1D0

︸ ︷︷ ︸

[3]D2
0

= 0 (7.12)

3 2 1 0 D6D5D4 − [4]D6D5D1 +
[4][3]

[2]
D6D3D0 − [4]D5D1D0 +D2D1D0 = 0
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2 1 0 − 1 D4D3D−2 − [4]D4D1D−1 + [4]D3D0D−1 +
[4]

[2]
D4D1D0

− [4]

[3]
D1D0D−1 −

[4][2]

[3]
D3D1D−1

︸ ︷︷ ︸

−[4]D2D1D−1

+D2D0D−1 = 0

. . .

They are the first of the necessary ones for polynomiality of F at all m — for that purpose

above combinations should be proportional to the product of D-factors in denominators

of F , but these products have a higher degree in A, thus the proportionality coefficient is

just zero.

Identities (7.12) are linear combinations of

Da+b +Da−b =
[2b]

[b]
Da = (qb + q−b)Da

[b+ c][b− c]DaD−a + [c+ a][c− a]DbD−b + [a+ b][a− b]DcD−c = 0

. . . (7.13)

which are the q-deformations of identities

3∑

i=1

(N + ai) · (ai+1 − ai+2) = −
3∑

i=1

(N + ai) · det
(

1 1

ai+1 ai+2

)

= 0,

4∑

i=1

(−)i · (N + ai)(N + bi) · det





1 1 1

ai+1 + bi+1 ai+2 + bi+2 ai+3 + bi+3

ai+1 · bi+1 ai+2 · bi+2 ai+3 · bi+3



 = 0

. . .

n+2∑

i=1

(−)(n+1)i
n∏

j=1

(N + a
(i)
j )

︸ ︷︷ ︸

Nn+
∑

n
k=1 Nn−kµ

(i)
k

· det
(n+1)×(n+1)










1 1 1 . . . 1

µ
(i+1)
1 µ

(i+2)
1 µ

(i+3)
1 . . . µ

(i+n+1)
1

µ
(i+1)
2 µ

(i+2)
2 µ

(i+3)
2 . . . µ

(i+n+1)
2

. . .

µ
(i+1)
n µ

(i+2)
n µ

(i+3)
n . . . µ

(i+n+1)
n










= 0 (7.14)

where µ(i+n+1) = µ(i). These follow from the vanishing of det(n+2)×(n+2) Pi(xi′) for any

n + 2 polynomials of degree n — because this determinant has degree n in each variable

xi, while Vandermonde
∏n+2

i′<i′′(xi′ − xi′′), to which it is obviously proportional, has bigger

degree n+1. For our purposes we need peculiar collections of shifts a
(i)
j , when determinants

in (7.14) are actually binomial coefficients.

Note, however, that nullification of F for the unknot is not by itself enough restrictive.

For example, as indicated in (7.12), it would allow to change the two underlined terms

in (7.8) for a single − [4]λ2m
03

{Aq4}{Aq3}{A}{A/q2} — this, however, would give a wrong (and in fact,

non-polynomial) answer already for the trefoil 31.

7.4 Eigenvalues

In general the eigenvalues are parameterized as

λI,J =
F∏

f=1

(−qif−jfA)if+jf+1 (7.15)

– 15 –



J
H
E
P
0
9
(
2
0
1
6
)
1
3
5

with 0 ≤ if ≤ af and 0 ≤ jf ≤ bf and an additional embedding constraint

if+1 < if ≤ af , jf+1 < jf ≤ bf (7.16)

Also some upper floors f can be left empty, i.e. allowed is also if +jf +1 = 0. In particular,

λ0 = 1 is associated with all empty floors, thus it is more natural to call it λ∅. In this sense

all eigenvalues are associated with the ordered-by-(7.16) collection of boxes in the pyramids

— two per each floor f , except for degenerate cases when if + jf = 0 or if + jf + 1 = 0,

and the corresponding boxes coincide or are just absent. This implies an obvious change

of notation for the eigenvalue labeling.

Generic eigenvalue is labeled by a new pyramid: λI,J = λ
if jf

...
i1 j1

, and its contribution

to FA,B contains a product of inverse differentials D−1
k ∼ {Aqk}−1, which only slightly

depends on A and B, and a combinatorial factor, accounting for the embedding of pyramids

{I,J } ⊂ {A,B}.
In these pyramid notation the eigenvalues (7.5) and (7.6) fit into the big tower:

λ∅=λ0=1,

λ 0 0=λ1=λ−1=−A,

λ 1 0=λ2=q
2A2, λ 0 1=λ−2=q

−2A2,

λ 2 0=λ+3=−q6A3, λ 1 1=λ03=−A3, λ 0 2=λ−3=−q−6A3

λ 3 0=q
12A4, λ 2 1=λ+04=q

4A4, λ 0 0
1 1

=λ04=A
4, λ 1 2=q

−4A4, λ 0 3=q
−12A4

λ 4 0=−q20A5, λ 3 1=−q10A5, λ 0 0
2 1

=λ+05=−q4A5, λ 2 2=−A5, λ 0 0
1 2

=−q−4A5, . . .

λ 5 0=q
30A6, . . . λ 1 0

2 1
=λ+06=q

6A6, . . .

. . . (7.17)

7.5 Single-floor pyramids

Looking at a few explicit examples that we already possess, one can assume the following

structure for denominators, associated with particular eigenvalues:

λ2m
∅

∏

(i,j)∈(A,B){Aqi−j} =⇒
λ2m
∅

{Aqa} . . . {Aq}{A}{A/q} . . . {A/qb}






λ2m
0,0

{Aqa+1} . . . {Aq2} {A} {A/q2} . . . {A/qb+1}
λ2m
1,0

{Aqa+2} . . . {Aq4} {Aq2}{Aq} {A/q2} . . . {A/qb+1}
λ2m
2,0

{Aqa+3} . . . {Aq6} {Aq4}{Aq3}{Aq2} {A/q2} . . . {A/qb+1}
. . .

=⇒ λ2m
i,0

{Aqa+i+1} . . . {Aq2i+2} {Aq2i} . . . {Aqi} {A/q2} . . . {A/qb+1}
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λ2m
0,1

{Aqa+1} . . . {Aq2} {A/q}{A/q2} {A/q4} . . . {A/qb+2}
. . .

=⇒ λ2m
0,j

{Aqa+1} . . . {Aq2} {A/qj} . . . {A/q2j} {A/q2j+2} . . . {A/qb+j+1}






λ2m
1,1

{Aqa+2} . . . {Aq4} {Aq2} {A} {A/q2} {A/q4} . . . {A/qb+2}
. . .

=⇒ λ2m
i,1

{Aqa+i+1} . . . {Aq2i+2} {Aq2i} . . . {Aqi+1} {Aqi−1} {A/q2} {A/q4} . . . {A/qb+2}

Boxes contain products
∏

k{Aqk} over k with no gaps. They turn into unity when the

lower limit exceeds the upper one, like i+ 1 > 2i for i = 0 or 2i+ 2 > a+ i+ 1 for i = a.

Generalization to arbitrary λi,j , appearing in the single-floor pyramids, is now obvious.

More complicated is adjusting the combinatorial coefficients, which guarantee cancelation

of poles and matching with the unknot, figure eight and trefoil. By trial and error we get

the conjectural answer for arbitrary single-floor pyramid:

F(m)

a . . . 0 . . . − b

?
=

(

q
a−b
2 A

)a+b+1









1

{Aq
a} . . . {A/q

b}
+ (7.18)

+
a
∑

i=0

b
∑

j=0

(−)i+j+1
(

qi−jA
)2m·(i+j+1) [a]!

[a−i]!i!
· [b]!

[b−j]![j]!
· [a+b+1]

[i+j+1]

{Aq
a+i+1} . . . {Aq

2i+2} {Aq
2i} . . . {Aq

i+1} {Aqi−j} {A/q
j+1} . . . {A/q

2j} {A/q
2j+2} . . . {A/q

b+j+1}









which fits all the expectations. The item in the first line contains λ2m
∅ = 1 and can be

considered as associated with the zeroth floor. This item is directly read from the pyramid

itself, the eigenvalue leaves it intact.

7.6 Other floors

A natural generalization of peculiar A-dependent factor in front of the power of the eigen-

value λ ...
if jf

...
i1 j1

in the multi-floor analogue of (7.18) is

{Aq2i+1}{A/q2j+1}
{Aqi−j} −→

∏

f ′≤f ′′

{Aqif ′+if ′′+1}{A/qjf ′+jf ′′+1}
{Aqif ′−jf ′′}{Aqif ′′−jf ′}

·
∏

f

{Aq2if+1}{A/q2jf+1}
{Aqif−jf }

(7.19)

This gives the underlined “inter-floor interaction” factors like

λ 0,0
1 1

−→ D2D−2

D1D−1

λ 0,0
2 1

−→ D3D−2

D2D−1

λ 1,0
2 1

−→ D4D−2

D2D0

. . . (7.20)
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Note, that they all preserve parity of powers in q. Moreover, in empty cases, when if ′′ +

jf ′′ + 1 = 0 the underlined interaction factor drops away, because of the cancelations

between the numerator and denominator of (7.19).

Unfortunately, this is not exactly what needed — even if a floor in the eigenvalue is

empty, it still affects the shape of the contribution. This is already seen in the fully reliable

(not just conjectured) formulas (7.4): the non-trivial second-floor eigenvalue λ04 = λ 0 0
1 1

appears only in the last term of F
0

1 0 − 1

, but the two other terms — with the pure-first-floor

eigenvalues λ2 = λ 1 0 and λ−2 = λ 0 1 — are also not just the same as in F
1 0 − 1

.

Another way to suspect that the empty floor matters, is to compare the first two terms

in

F
2 1 0 − 1

= q2A4 ·
(

1

{Aq2}{Aq}{A}{A/q} −
[2]2 · λ2m

0,0

{Aq3}{Aq2}{A}{A/q2} + . . .

)

(7.21)

and the naive

F
0

2 1 0 − 1

???≈ q2A5 ·
(

1

{Aq2}{Aq}{A}2{A/q} −
c · λ2m

0,0

{Aq3}{Aq2}{A}2{A/q2} + . . .

)

(7.22)

The coefficient c in (7.22) should be a quantization of 5, but it should contain odd powers

of q, thus it can not be [5]. In (7.21) its analogue is a quantization of 4, which is made

out of even powers — and it is [2]2. However, there is no such simple way out for c

in (7.22) — and already the second term in this formula is a less-naive combination of

inverse differentials. Formula (7.9) is an example. In general, when one proceeds from

F (m)

a . . . 0 . . . − b

to F (m)

0

a . . . 0 . . . − b

the coefficient in front of λ2m
00 changes from [a+ b+1]D1D−1 to

a sum of two items: [a+ b+ 1]D1D−1 +DaD−b.

This demonstrates that (7.19) is not the whole story in the multi-floor situation, that

additional guesses are needed — and in fact easy to make. Still, we prefer to postpone

further speculations about the higher-floor contributions, waiting for independent exami-

nation of the already made sequence of conjectures.

8 Conclusion

To conclude, in this paper we made a new series of conjectures, which hopefully lead to

explicit formulas for exclusive Racah matrices S and S̄ and thus to construction of arbores-

cent knot polynomials in arbitrary rectangular representations. This is a long standing

problem, and its solution seems now within reach. After the structure of differential ex-

pansion for defect-zero knots (6.3) is revealed in this case in [105] and after the discovery

of further factorization (6.2) of its coefficients for double braids in the present paper, it

remains to conjecture these coefficients for just a relatively simple family of twist knots. To

demonstrate that this can actually be possible, we provided explicit expressions for all the
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contributions (7.3)–(7.10) in the case of the previously unknown representation R = [33]

and made a general conjecture (7.18) for the contributions for single-floor pyramids. Its

further extension to the second floor would provide the answers for arbitrary arborescent

knots in representations R = [rr] and R = [2r], while generic rectangular R = [rs] requires

min(r, s) floors, which will hopefully come as direct generalization. Hopefully, this last step

will be made soon enough.
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A Exclusive Racah matrix S̄
[3,3]

The Young diagram R = [33] is not symmetric and there is no additional symmetry in

Racah matrix: it is just symmetric S̄ij = S̄ji. The transformation S̄ij −→ ±S̄11−j,11−i

converts it into something else.

Standing in the first line/column are the square roots of quantum dimensions of the

ten irreducible representations, which constitute the product [33]⊗ [33], of which only six

were present in the case of [22]⊗ [22]:

d[33]S̄11 =
√

d̄∅ d∅ = 1

d[33]S̄21 =
√

d̄00 d00 = D1D−1

d[33]S̄31 =
√

d̄10 d̄10 =
D3D

2
0D−1

[2]2

d[33]S̄41 =
√

d̄01 d̄01 =
D1D

2
0D−3

[2]2

d[33]S̄51 =
√

d̄11 d̄11 =
D3D

2
1D

2
−1D−3

[3]2

d[33]S̄61 =
√

d̄20 d̄20 =
D5D

2
1D

2
0D−1

[3]2[2]2

d[33]S̄71 =
√

d̄ 00
1 1

d̄ 00
1 1

=
D3D

2
2D1D−1D

2
−2D−3

[3]2[2]4

d[33]S̄81 =
√

d̄21 d̄21 =
D5D

2
2D

2
0D

2
−1D−3

[4]2[2]2

d[33]S̄91 =
√

d̄ 00
2 1

d̄ 00
2 1

=
D5D

2
3D1D

2
0D−1D

2
−2D−3

[4]2[3]2[2]2

d[33]S̄10,1 =
√

d̄ 10
2 1

d̄ 10
2 1

=
D5D

2
4D3D

2
0D

3
−1D

2
−2D−3

[4]2[3]4[2]4

Most other entries are not fully factorizable and non-factorized pieces can be expressed

through Di = {Aqi}/{q} in different ways. The choices below are economic (with the

exception of S̄55), but not canonical :
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d[33]S̄12 = d[33]S̄21

d[33]S̄22 =
D1D−1

[3][2]D3D−2
·
(

([4]D1 +D2)D0 − [3]2[2]2
)

d[33]S̄32 =

√
D1D0D−1

[3][2]D2D−2

√
D3

·
(
[4]

[2]
D1D0 − [3]2[2]

)

d[33]S̄42 =
D1D0

√
D−3D−1

D3D−2
·
(

D2D0 − [3]2
)

d[33]S̄52 =
D1D−1

√
D1D−1D−3

[3][2]D−2

√
D3

·
(

D2D0 − [3][2]2
)

d[33]S̄62 =
D1D0D−1

√
D5D1

[3][2]2D3D−2
·
(

D2
0 − [3][2]2

)

d[33]S̄72 =
D2D1D−1

√
D−3

[3]2[2]2
√
D3

·
(

D3D0 − [3]2[2]
)

d[33]S̄82 =
D2D0D−1

√
D5D1D−1D−3

[4][3][2]D3D−2
·
(

D1D0 − [3]2[2]
)

d[33]S̄92 =
D2D1D0D−1

√
D5D−3

[4][3]2[2]2D2
·
(

D2D0 − [3]2[2]2
)

d[33]S̄10,2 = −D4D0D
2
−1

√
D5D1D−3

[4][3][2]
√
D3

d[33]S̄13 = d[33]S̄31

d[33]S̄23 = d[33]S̄32

d[33]S̄33 =
D2

0

[3]2[2]D4D−2
·
(
[4]

[2]
D4D3D−1D−3 − [4][2]D4D−1 + [3]2[2]

)

d[33]S̄43 =
D2

0

√
D1D−1D−3

[3][2]2D−2

√
D3

·
(

D3D0 − [4][2]2
)

d[33]S̄53 =
D1D0

√
D−1D−3

[3]2[2]2D4D−2
·
(

D5D1D0D−1 − [3]2([2]D4 +D3)D0 + [4][3]2[2]2
)

d[33]S̄63 =
D1D

2
0

√
D5

[3]2[2]2D4D−2

√
D3

·
(

D4D1D0D−3 − [2]3D1D0 + [3]3[2]2
)

d[33]S̄73 = −D2D0

√
D1D−3

[3][2]D4
·
(

D4D0 −
[4][3]

[2]

)

d[33]S̄83 =
D2D

2
0

√
D5D−1D−3

[4][3]2[2]2D4D−2

√
D3

·
(

D3D0 − [4][2]2
)(

D1D0 − [3]2[2]
)

d[33]S̄93 = −D2
0

√
D5D3D1D−3

[4][3][2]D4
·
(

D3D0 − [4][2]2
)

d[33]S̄10,3 =
D2

0D−1

√
D5D−3

[4][2]

d[33]S̄14 = d[33]S̄41

d[33]S̄24 = d[33]S̄42

d[33]S̄34 = d[33]S̄43

d[33]S̄44 =
D1D

2
0

[4][3][2]D3D2D−2
·
(

[3]D4D3D−2D−3 − [2]D2D−1 + [4][3][2]
)
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d[33]S̄54 =
D1D0D−1

√
D1

[4][3][2]D2D−2

√
D3

·
(

D4D2D−1D−2 − [4]2D1D0 + [4]2[2]3
)

d[33]S̄64 = − [4]D1D
2
0

√
D5D1D−1D−3

[3][2]2D3D−2

d[33]S̄74 =
D1D0

√
D3D−1

[4][3]2[2]2D3
·
(

D4D3D−1D−2 − [4]2D2D0 + [4]2[3][2]2
)

d[33]S̄84 = −D2
0D−1

√
D5D1

[3][2]D3D−2
·
(

D1D−1 − [3]2
)

d[33]S̄94 = −D1D
2
0

√
D5D−1

[3]2[2]2D2
·
(

D2D−1 − [3]2[2]
)

d[33]S̄10,4 =
D4D1D

2
0D−1

√
D5D−1

[3][2]2D2

√
D3D1

d[33]S̄15 = d[33]S̄51

d[33]S̄25 = d[33]S̄52

d[33]S̄35 = d[33]S̄53

d[33]S̄45 = d[33]S̄54

d[33]S̄55 =
D2

1D−1

[4][3]2[2]2D4D2D−2
·
(

D2
5D3D

2
−3D−1 − 3[3]2D5D2D0D−3 + [3]2[2]4D3D−1 −

−[3]2
(
3q8 + 10q6 + 18q4 + 23q2 + 25 + 23q−2 + 18q−4 + 10q−6 + 3q−8

))

d[33]S̄65 = − [4]D2
1D0

√
D5D−1D−3

[3]2[2]2D4D−2

√
D3

·
(

D2D0 − [3][2]2
)

d[33]S̄75 = −D1

√
D1D−1

[4][3][2]D4
·
(

D4D3D0D−2 − [4]2D3D0 + [4]2[3][2]
)

d[33]S̄85 = − D1D0D−1

√
D5

[3]2[2]2D4D−2

√
D3

·
(

D2D1D
2
0 − [3]2[2]2D1D0 + [3]3[2]3

)

d[33]S̄95 =
D1D0

√
D5D3D1D−1

[3][2]D4D2
·
(

D2D0 − [3][2]2
)

d[33]S̄10,5 = −D1D0D−1

√
D5D−1

[3]D2

d[33]S̄16 = d[33]S̄61

d[33]S̄26 = d[33]S̄62

d[33]S̄36 = d[33]S̄63

d[33]S̄46 = d[33]S̄64

d[33]S̄56 = d[33]S̄65

d[33]S̄66 =
D2

1D0

[4][3]2[2]2D4D3D−2
·
(

D5D4D2D0D−2D−3 − [2]2D5D4D−3D−2

+[2]2D2D0 − [4][3][2]3
)

d[33]S̄76 =
[4]D2D1D0

√
D5D1D−3

[3][2]2D4

√
D3

d[33]S̄86 = −D2D1D0

√
D−1D−3

[3]2[2]2D4D3D−2
·
(

D5D4D−1D−2 − [2]D3D0 + [4][2]3
)
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d[33]S̄96 =
D1D0

√
D1D−3

[3][2]2D4
·
(

D4D0 − [4][2]
)

d[33]S̄10,6 = −D1D0D−1

√
D−3

[3][2]
√
D3

d[33]S̄17 = d[33]S̄71

d[33]S̄27 = d[33]S̄72

d[33]S̄37 = d[33]S̄73

d[33]S̄47 = d[33]S̄74

d[33]S̄57 = d[33]S̄75

d[33]S̄67 = d[33]S̄76

d[33]S̄77 =
D2D1

[4][3][2]D4D3
·
(

[3]D5D4D−1D−2 − [2]D3D0 + [4][3][2]
)

d[33]S̄87 =
D2D0

√
D5D1D−1

[3][2]2D4

√
D3

·
(

D1D0 − [3]2[2]
)

d[33]S̄97 = −D1D0

√
D5

[3]D4

√
D3

·
(

D2D0 − [3]2
)

d[33]S̄10,7 =
D0D−1

√
D5D1

[2]D3

d[33]S̄18 = d[33]S̄81

d[33]S̄28 = d[33]S̄82

d[33]S̄38 = d[33]S̄83

d[33]S̄48 = d[33]S̄84

d[33]S̄58 = d[33]S̄85

d[33]S̄68 = d[33]S̄86

d[33]S̄78 = d[33]S̄87

d[33]S̄88 =
D2D0D−1

[3]2[2]D4D3D−2
·
(
[4]

[2]
D5D3D−1D−2 − [4][2]D3D−2 + [3]2[2]

)

d[33]S̄98 = −D0

√
D1D−1

[3][2]D4
·
(
[4]

[2]
D2D1 − [3]2[2]

)

d[33]S̄10,8 =
D0D−1

√
D−1

[2]
√
D3

d[33]S̄19 = d[33]S̄91

d[33]S̄29 = d[33]S̄92

d[33]S̄39 = d[33]S̄93

d[33]S̄49 = d[33]S̄94

d[33]S̄59 = d[33]S̄95

d[33]S̄69 = d[33]S̄96

d[33]S̄79 = d[33]S̄97

d[33]S̄89 = d[33]S̄98

d[33]S̄99 =
D1D0

[3][2]D4D2
·
((

[4]D4 +D3

)
D−1 − [3]2

)
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d[33]S̄10,9 = −D0D−1

√
D1

D2

√
D3

d[33]S̄1,10 = d[33]S̄10,1

d[33]S̄2,10 = d[33]S̄10,2

d[33]S̄3,10 = d[33]S̄10,3

d[33]S̄4,10 = d[33]S̄10,4

d[33]S̄5,10 = d[33]S̄10,5

d[33]S̄6,10 = d[33]S̄10,6

d[33]S̄7,10 = d[33]S̄10,7

d[33]S̄8,10 = d[33]S̄10,8

d[33]S̄9,10 = d[33]S̄10,9

d[33]S̄10,10 =
D0D−1

D3D2

The complementary matrix is

T̄[3,3] = diag
(

1, −A, q2A2, A2/q2, −A3, −q6A3, A4, q4A4, −q4A5, q6A6
)

(A.1)

Then the eigenvalues of the product T̄ [3,3]S̄[3,3]T̄ [3,3] in (2.1) are:

T−1
[3,3] = A6 · diag

(

q18, −q14, q12, q8, −q6, q2, −1, q−2, −q−6, q−12
)

(A.2)

and the diagonalizing matrix S[3,3] can be obtained by the Cramer rule, i.e. its entries are

minors of the matrix T̄ S̄T̄ − T−1. Cramer rule says, that any matrix Mij with eigenvalues

λi is diagonalized by a matrix Vjk = Minorjm(M − λk · I) with any m:
∑

j

MijVjk =
∑

j

Mij ·Minorjm(M−λk ·I) =
∑

j

λkδijMinorjm(M−λk ·I) = λkVik (A.3)

where the boxed equality comes from
∑

j

(M − λk · I)ij ·Minorjm(M − λk · I) = δim det(M − λk · I) = 0 (A.4)

and the r.h.s. vanishes because λk is an eigenvalue. In our case M = T̄ S̄T̄ and

Sij =
Minor im( T̄ S̄ T̄ − T−1

j · I)
σ
(m)
j

(A.5)

The r.h.s. is actually independent of m (modulo sign factors, depending on the def-

inition of minors). The matrix of minors is normalized by division over σ
(m)
j =

√
∑

i

(

Minor im( T̄ S̄ T̄ − T−1
j · I)

)2
to make S orthogonal (but not symmetric). Minors

are determinants and they are relatively easy to calculate (most important — to simplify

and factorize, what makes this diagonalization method most practical in our situation).

With the matrix S the first thing to calculate is H31
[3,3] = d[3,3] ·

(

S[33]T
−3
[33]S

)

∅∅
for the

trefoil. In this way we reproduce the right answer, which was the starting point for the

entire consideration in [105] — thus closing the circle of reasoning, at least in the first

previously unknown case of R = [33].

– 23 –
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