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1 Introduction

The explanation of the observed baryon asymmetry in the universe poses an interesting

and challenging task to cosmology and particle physics. Since any ab-initio imbalance

between particles and anti-particles in the very early universe has been likely washed-out

after the inflationary epoch, a dynamical generation of the present baryon asymmetry, or

baryogenesis, appears favoured.

Baryogenesis requires typically out-of-equilibrium decays of heavy particles. A first

realization was proposed within the framework of the Grand Unified Theories (GUTs) [1–4].

The heavy gauge bosons predicted in the GUTs, with masses of the order of 1015-1016GeV,

are the source of the baryon asymmetry once baryon number, C and CP violating processes

are introduced in the model [5]. The decays of these heavy states produce different amounts

of particles and anti-particles providing the desired imbalance. Two major issues affect

this scenario. First, the final asymmetry depends on too many free parameters limiting the

predictive power. Second, the reheating temperature after the inflationary epoch cannot be

higher than 1015GeV as accounted for by the Cosmic Microwave Background analysis [6],

which could affect the thermal production of the heavy particles predicted by the GUTs

undermining the very basis of such a scenario [7].
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On the other hand, baryogenesis via leptogenesis [8] is an attractive class of models that

avoids some of the issues related to GUT baryogenesis. The original and minimal version

of leptogenesis requires heavy right-handed neutrinos in addition to the Standard Model

(SM) particles. Right-handed neutrinos may be embedded into Majorana fields. Because

of the CP-violating phases of their Yukawa couplings with Higgs bosons and leptons, they

decay into different amounts of leptons and anti-leptons. Sphaleron transitions convert

eventually the lepton asymmetry into a baryon asymmetry [9]. Moreover, heavy neutrinos

may participate in the type I seesaw mechanism [10–12], providing a natural explanation

of the small masses of the three SM neutrinos. Indeed the discovery of the neutrino oscilla-

tions and mixing has shown that neutrinos do have masses [13] and some mechanism that

generates such masses is necessary. Also, the solution of the Boltzmann equations provides

hints to the highest temperature needed for a successful leptogenesis. This is found to be up

to ten times lower than the reheating temperature after inflation, depending on the values

of the Yukawa couplings among heavy neutrinos and SM Higgs bosons and leptons [14].

We will not discuss further neither the theoretical foundation and mechanism of lep-

togenesis nor the phenomenology of right-handed/Majorana neutrinos, which are widely

addressed in exhaustive reviews, e.g., in [15, 16] and [17]. Here we will focus on one particu-

lar aspect. Since the heavy-neutrino dynamics occurs in a thermalized medium made of SM

particles, namely the universe in its early stages, we will study the impact of thermal effects

on the CP asymmetry originated in the neutrino leptonic decays. When the temperature is

smaller than the neutrino masses one may exploit this hierarchy to construct suitable effec-

tive field theories (EFTs) and compute observables in a systematic expansion in the inverse

of the neutrino masses [18]. In this framework, we have recently derived the CP asymmetry

at finite temperature for the case of two heavy Majorana neutrinos with nearly degenerate

masses [19]. In the present work, we compute the leading thermal corrections to the CP

asymmetry for the case of a hierarchically ordered mass spectrum of Majorana neutrinos.

Some finite temperature studies of the CP asymmetry can be found in [20, 21]. Sev-

eral investigations of the lepton-number asymmetry have been carried out either within

the Boltzmann rate equations and their quantum version known as Kadanoff-Baym equa-

tions [22–25]. Thermal effects are typically accounted for by including thermal masses and

thermal distributions for the Higgs bosons and leptons appearing as decay products of heavy

Majorana neutrinos. In the present work, we provide a systematic derivation of the ther-

mal corrections to the CP asymmetry in terms of an expansion in the SM couplings and in

T/MI , whereMI are the masses of the heavy Majorana neutrinos and T is the temperature.

More precisely we consider the simplest realization of leptogenesis often called vanilla

leptogenesis in the literature. In this scenario one assumes one Majorana neutrino, with

mass M1, much lighter than the other heavy neutrinos. Under this assumption, the final

CP asymmetry is produced by the lightest neutrino decays. Moreover, we assume that

different lepton (anti-lepton) flavours are resolved by the thermal bath during leptogenesis.

This regime is called flavoured in contrast to the unflavoured regime that describes the

situation when the different flavours are not resolved by the thermal bath. The flavoured

regime applies to a larger range of temperatures than the unflavoured one. For instance,

the three lepton flavours are resolved by charged Yukawa coupling interactions already at
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temperatures of the order of 109GeV [26, 27], whereas the unflavoured regime is found

to be an appropriate choice only at very high temperatures, in particular T & 1012GeV.

In the flavoured case it makes sense to define a CP asymmetry for each lepton flavour;

the CP asymmetry generated by the lightest Majorana neutrino decaying into leptons and

anti-leptons of flavour f reads

ǫf =
Γ(νR,1 → ℓf +X)− Γ(νR,1 → ℓ̄f +X)

∑

f Γ(νR,1 → ℓf +X) + Γ(νR,1 → ℓ̄f +X)
. (1.1)

In (1.1) νR,1 stands for the lightest right-handed/Majorana neutrino, ℓf is a SM lepton with

flavour f and X represents any other SM particle not carrying a lepton number. When

summing over the flavours also in the numerator of (1.1), we recover the CP asymmetry

in the unflavoured vanilla leptogenesis scenario. In this scenario, experiments looking at

neutrino oscillations and mixing parameters can put constraints on some of the leptogenesis

parameters. An example is the Davidson-Ibarra bound that provides a lower bound on the

lightest heavy-neutrino mass [28, 29], M1 & 109GeV. It is obtained combining the observed

baryon asymmetry and the light neutrino masses. This bound sets the energy scale of

leptogenesis, at least in its simplest realization, together with the typical temperatures

needed for the heavy-neutrino thermal production. In the flavoured regime, the lower

bound on the lightest Majorana neutrino mass can be relaxed down to M1 & 106GeV, due

to modifications of the heavy-neutrino dynamics induced by different flavour effects [30].

A crucial transition for the generation of the lepton asymmetry happens when the

temperature of the thermal plasma, T , equals the mass of the lightest Majorana neutrino:

T ∼ M1. In fact, while for T > M1, the originated CP asymmetry can be efficiently

erased if the so-called strong wash-out is assumed, which seems to be the favoured scenario

according to the present values of solar and atmospheric neutrino oscillation data, this is

no more the case for T < M1. Hence, the final asymmetry turns out to be independent

of the initial abundance of the lightest Majorana neutrinos and is effectively generated at

temperatures smaller than the lightest neutrino mass [7, 14]. For T < M1, the lightest

neutrino is out-of-equilibrium with the thermal bath, a necessary condition for the matter-

antimatter asymmetry. Moreover, its dynamics is non-relativistic.

We consider three species of heavy neutrinos, though in general the model may ac-

count for a generic number of species.1 We call M1 the mass of the lightest right-handed

neutrino and Mi, i = 2, 3, the masses of the heavier neutrinos. Moreover, we assume the

temperature, T , of the thermal plasma in the early universe to be much smaller than the

mass of the lightest neutrino and larger than the electroweak scale, MW . This means that

we assume the following hierarchy of energy scales2

Mi ≫ M1 ≫ T ≫ MW , for i = 2, 3 . (1.2)

1At least two heavy-neutrino species are necessary to have non-vanishing CP asymmetries.
2Thermal modes are associated to the Matsubara frequencies of the plasma, hence the relevant thermo-

dynamical scale is proportional to πT . Through the paper we will assume T and πT to be parametrically

equivalent scales. We will restore the scale πT in figure 10.
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Mi

M1

T

FT = SM + (ψ1, ψi)

EFT1 = SM + ψ1

EFT2 = SM + N

Figure 1. The relevant hierarchy of energy scales is shown together with the corresponding hier-

archy of EFTs. FT stands for the fundamental theory (2.1), whose degrees of freedom are the SM

particles and all three species of heavy Majorana neutrinos (ψ1, ψi). By integrating out the scales

Mi and M1 one obtains sequentially the EFTs: EFT1 (3.1) and EFT2 (4.1). In the former the

degrees of freedom are the SM particles and the lightest Majorana neutrino (ψ1), whereas in the

latter only SM particles and non-relativistic modes of the lightest neutrino (N) are dynamical.

The last inequality, setting the temperature above the electroweak scale, ensures that the

SM sector is described by an unbroken SU(2)L×U(1)Y gauge symmetry, which implies that

all SM particles are massless.

We exploit the hierarchy of energy scales (1.2) by constructing a hierarchy of two

EFTs. In a first EFT, we integrate out modes with energy and momentum of the order of

the heavier neutrino masses, Mi. The degrees of freedom of the EFT are the SM particles

and the lightest Majorana neutrino. The EFT contains effective vertices between SM

leptons and Higgs bosons [32]. We call it EFT1 throughout the paper. In a second EFT,

we integrate out modes with energy and momentum of the order of the lightest neutrino

mass, M1. The degrees of freedom are the SM particles and the non-relativistic modes of

the lightest Majorana neutrino, which appears as an initial state in the observable that we

compute. We call this second EFT, EFT2. The hierarchy of EFTs is shown in figure 1.

In the paper, we compute the leading thermal corrections to the CP asymmetry in

the leptonic decays of the lightest Majorana neutrino at first order in the SM couplings.

The most suitable EFT for performing this computation is EFT2. The calculation can be

done using the techniques developed in [18, 19]. Moreover, some of the results may be

checked against intermediate expressions obtained in [19]. At first order in the Higgs self-

coupling and in the gauge couplings, the leading thermal correction to the CP asymmetry

is of relative order (T/M1)
2 and encoded in one dimension-five operator of the EFT2. At

first order in the top-quark Yukawa coupling, the leading thermal correction to the CP

asymmetry is of relative order (T/M1)
4 and encoded in four dimension-seven operators of

the EFT2. The dimension-five and -seven operators were identified in [18], but here we

need to compute the contributions to their Wilson coefficients that are relevant for the
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CP asymmetry. This computation is new. Since T ≪ M1 the matching of the Wilson

coefficients can be done setting the temperature to zero. This amounts at evaluating two-

loop cut diagrams in vacuum matching the dimension-five and -seven operators. Once the

Wilson coefficients are known, thermal corrections are encoded in the thermal expectation

values of the corresponding operators. Their computation requires that of a simple tadpole

diagram. The final expression of the CP asymmetry follows from the definition (1.1).

Thermal corrections to the CP asymmetry and to the heavy-neutrino production rate

enter the rate equations for the heavy-neutrino and lepton-asymmetry number densities.

Thermal corrections to the right-handed neutrino production rate have been derived in [33]

for the relativistic and ultra-relativistic regimes, whereas the non-relativistic case has been

addressed in [34, 35] and [18]. In order to connect those results with leptogenesis, Boltz-

mann equations in the non-relativistic regime have been derived in [36]. The thermally cor-

rected production rate has been used to solve the rate equations for the out-of-equilibrium

dynamics. Studies in this direction may be further improved by using the thermally cor-

rected expression for the CP asymmetry that we compute here.

The paper is organized as follows. In section 2 we summarize the results for the CP

asymmetry at zero temperature. In section 3 we derive the EFT1 (details can be found in

appendix A). The most original results of the paper are in sections 4 and 5. In section 4

we build the EFT2 and compute the relevant Wilson coefficients (details of the matching

are in appendix B). In section 5 we derive the thermal corrections to the CP asymmetry.

Conclusions and discussions are collected in section 6.

2 CP asymmetry at zero temperature

We consider an extension of the SM that includes three heavy Majorana neutrinos coupled

to the SM Higgs boson and lepton doublets. The Lagrangian of our fundamental theory

reads [8]

L = LSM +
1

2
ψ̄I i/∂ ψI −

MI

2
ψ̄IψI − FfI L̄f φ̃PRψI − F ∗

fI ψ̄IPLφ̃
†Lf , (2.1)

where LSM is the SM Lagrangian (B.1), ψI = νR,I +νcR,I stands for the I-th Majorana field

embedding the right-handed neutrino field νR,I , with mass MI and I = 1, i (i = 2, 3) is the

mass eigenstate index. The fields Lf are lepton doublets with flavour f , φ̃ = iσ2 φ∗, where

φ is the Higgs doublet, and FfI is a (complex) Yukawa coupling. The left-handed and right-

handed projectors are PL = (1− γ5)/2 and PR = (1 + γ5)/2 respectively. We consider the

case of one heavy Majorana neutrino species much lighter than the other ones: M1 ≪ Mi.

The CP asymmetry at zero temperature can be calculated at leading order from the

interference between the tree-level and one-loop diagrams shown in figure 2. Diagram b)

is referred to as the vertex diagram, whereas diagrams c) and d) are often called self-

energy diagrams, diagram c) being relevant only for the flavoured CP asymmetry. Their

contribution to the CP asymmetry depends on the heavy-neutrino mass spectrum. It is

known that in the case of a hierarchical neutrino mass spectrum the two contributions are

of the same order and, in particular, the one originated by the self-energy diagram is twice

as big as the vertex one [37, 38].
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νR,I

ℓf

φ

φ

νR,I

ℓf

νR,JνR,I

φ

ℓf

νR,J

νR,I
νR,J

ℓf

φ

a) b)

c) d)

Figure 2. CP asymmetry is originated from the interference between tree-level and one-loop

vertex and self-energy (or wave-function) diagrams. Solid double lines stand for heavy right-handed

neutrinos, solid lines for SM lepton doublets and dashed lines for Higgs bosons. The neutrino

propagator with forward arrow corresponds to 〈0|T (ψψ̄)|0〉, whereas the neutrino propagators with

forward-backward arrows correspond to 〈0|T (ψψ)|0〉 or 〈0|T (ψ̄ψ̄)|0〉.

The interference between the tree-level and one-loop diagrams in figure 2 may be

computed from the imaginary part of the heavy-neutrino self-energy at fourth-order in the

Yukawa couplings. We have presented in detail how this works for the vertex topology in

the nearly degenerate case in [19], including also the treatment of flavour effects. In the

hierarchical case we may use the same arguments to write the CP asymmetry (1.1) for the

decays into lepton species of flavour f due to the vertex diagram, ǫf,direct, and due to the

self-energy diagram, ǫf,indirect, in the general form

ǫf = ǫf,direct + ǫf,indirect = −2
∑

I

Im(Bdirect +Bindirect)
Im

[

(F ∗
1FI)(F

∗
f1FfI)

]

|F1|2

−2
∑

I

Im(B̃indirect)
Im

[

(F1F
∗
I )(F

∗
f1FfI)

]

|F1|2
, (2.2)

where (F ∗
1FI) ≡

∑

f F
∗
f1FfI . The functions Bdirect, Bindirect and B̃indirect can be calculated by

cutting the two-loop diagrams shown in figure 3 and 4, first and second raw, respectively.

These diagrams contribute to the propagator of the lightest Majorana neutrino

− i

∫

d4x eip·x 〈Ω|T
(

ψµ
1 (x)ψ̄

ν
1 (0)

)

|Ω〉
∣

∣

∣

∣

pα=(M1+iǫ,~0 )

, (2.3)

where |Ω〉 stands for the ground state of the fundamental theory. The term in the second

line in (2.2), which originates from the two diagrams in the lower row of figure 4, vanishes

in the unflavoured regime because
∑

f Im[(F1F
∗
I )(F

∗
f1FfI)] = 0.

– 6 –
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νR,1 νR,1νR,1 νR,1

νR,i νR,i

Figure 3. Self-energy diagrams for the lightest Majorana neutrino, νR,1, corresponding to the mass

eigenstate with mass M1. The imaginary parts of the diagrams provide the interference between

the tree-level and the one-loop vertex diagram in figure 2.

νR,1 νR,1νR,iνR,1 νR,1νR,i

νR,1 νR,1νR,i νR,1 νR,1νR,i

Figure 4. Self-energy diagrams for the lightest Majorana neutrino. The imaginary parts of the

diagrams provide the interference between the tree-level and the one-loop self-energy diagrams in

figure 2.

At zero temperature the CP asymmetry induced by the diagrams in figure 3 is given

by [15, 38]

ǫT=0
f,direct =

Mi

M1

[

1−
(

1 +
M2

i

M2
1

)

ln

(

1 +
M2

1

M2
i

)] Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

8π|F1|2

=
M1≪Mi

− 1

16π

M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

|F1|2
+O

(

M1

Mi

)3

. (2.4)

A sum over the intermediate heavy Majorana neutrino species, labeled by i (i = 2, 3), is

understood (this will be always the case in the following, if not specified differently); note,

however, that we do not sum over the flavour, f , of the leptons.

The CP asymmetry generated at zero temperature by the diagrams in figure 4 is [15, 38]

ǫT=0
f,indirect =

M1Mi

M2
1 −M2

i

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

8π|F1|2
+

M2
1

M2
1 −M2

i

Im
[

(F1F
∗
i )(F

∗
f1Ffi)

]

8π|F1|2

=
M1≪Mi

− 1

8π

M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

|F1|2
− 1

8π

(

M1

Mi

)2 Im
[

(F1F
∗
i )(F

∗
f1Ffi)

]

|F1|2

+O
(

M1

Mi

)3

. (2.5)

In (2.5) the combination Im[(F ∗
1Fi)(F

∗
f1Ffi)] is originated by the upper-raw diagrams in

figure 4, whereas Im[(F1F
∗
i )(F

∗
f1Ffi)] comes from the lower-raw diagrams. The latter com-

bination, which contributes at order (M1/Mi)
2, vanishes in the unflavoured regime. The

assumption M1 ≪ Mi selects implicitly a situation where the neutrino mass difference,

Mi−M1, is much larger than the heavy neutrino widths and mixing terms, preventing a res-

onant behaviour from happening. We note that ǫT=0
f,indirect = 2ǫT=0

f,direct at first order inM1/Mi.

– 7 –
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+νR,i −→ ηiff ′

νR,i

ℓf

ℓ̄f ′

ℓ̄f ′

ℓf

Figure 5. Tree-level matching between the fundamental theory and a two-Higgs-two-lepton vertex

of the EFT1. The two diagrams in the left-hand side are the t-channel and s-channel interactions

appearing in the diagrams of figures 3 and 4 (upper raw). In the right-hand side, the four-particle

diagram stands for the effective two-Higgs-two-lepton interaction in the EFT1.

−→ η̃iff ′

νR,i

ℓ̄f

ℓ̄f ′

Figure 6. Tree-level matching between the fundamental theory and a two-Higgs-two lepton vertex

of the EFT1. The diagram in the left-hand side is the s-channel interaction appearing in the

diagrams of figure 4 (lower raw). In the right-hand side, the four-particle diagram stands for the

effective two-Higgs-two-lepton interaction in the EFT1.

3 EFT1

As our first task we derive the EFT1, which is the EFT that follows from the fundamental

theory (2.1) by integrating out degrees of freedom with energies and momenta of order

Mi ≫ M1 (i = 2, 3). The EFT1 will be our starting point for the construction of the

EFT2, where only degrees of freedom with energies and momenta smaller than M1, the

lightest Majorana neutrino mass, remain active. EFT2 will be derived in section 4.

Since we assume the temperature to be much smaller than the heavy-neutrino masses,

see (1.2), we can set it to zero in the matching between the full theory (2.1) and the

EFT1. Moreover, momenta and energies of external particles (in our case Higgs bosons and

leptons) are taken much smaller than the masses Mi. The relevant operators to match are

dimension-five and -six two-Higgs-two-lepton operators. Indeed, looking at the diagrams in

the figures 3 and 4, we see that the intermediate interaction involving the heavy Majorana

neutrinos with masses Mi reduces to an effective two-Higgs-two-lepton vertex if we cannot

resolve energies of the order of Mi or higher. At the accuracy that we compute the CP

asymmetry, we do not need to match loop diagrams to the EFT1.

In figure 5 we illustrate the matching of the dimension-five two-Higgs-two-lepton op-

erator in the EFT1. The left-hand side shows the lepton-number violating scattering

ℓ̄ + φ → ℓ + φ mediated by heavy neutrinos of mass Mi both in the t- and s-channels

(the diagrams with the anti-lepton (lepton) outgoing (ingoing) are not shown, but con-

tribute to the Hermitian conjugate operator).

– 8 –
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νR,1νR,1

ηiff ′

νR,1νR,1

ηi∗ff ′

a) b)

νR,1νR,1

η̃iff ′

νR,1νR,1

η̃iff ′

c) d)

Figure 7. Two-loop self-energy diagrams for the lightest neutrino, νR,1, in the EFT1. The blue

squared vertices correspond to the effective vertices of figure 5 and 6. Diagram a) reproduces the

first diagram of figure 3 and the first diagram of figure 4. Diagram b) reproduces the second diagram

of figure 3 and the second diagram of figure 4. Diagram c) reproduces the third diagram of figure 4

and diagram d) the fourth diagram of figure 4.

In figure 6 we illustrate the matching of the dimension-six two-Higgs-two-lepton op-

erator in the EFT1. The left-hand side shows the lepton-number conserving scattering

ℓ̄+φ → ℓ̄+φ mediated by heavy neutrinos of mass Mi in the s-channel. The dimension-six

operator in the EFT1 in the right-hand side depends on the momentum of the anti-lepton-

Higgs-boson pair. A detailed account of the matching can be found in appendix A.

The difference between vertex and self-energy diagrams in the fundamental theory

amounts to a difference in the kinematical channel of the exchanged neutrinos of mass Mi.

Specifically, an exchanged neutrino in the t-channel identifies a vertex diagram and an

exchanged neutrino in the s-channel identifies a self-energy one. For in the EFT1 we cannot

resolve the exchanged neutrinos, these two kinds of diagrams become indistinguishable.

This is best shown in figure 5, where both type of diagrams contribute to the very same

effective vertex. As a consequence, at the level of the EFT1 we cannot distinguish anymore

between direct and indirect contributions to the CP asymmetry. In figure 7 we reproduce

in the EFT1, up to order (M1/Mi)
2, the diagrams in the fundamental theory shown in

figure 3 and 4. They will be computed in appendix A.1, see figures 11 and 12.

The EFT1 Lagrangian including the dimension-five and -six two-Higgs-two lepton op-

erators matched in figure 5 and 6 respectively reads

LEFT1
= LSM +

1

2
ψ̄1 i/∂ ψ1 −

M1

2
ψ̄1ψ1 − Ff1 L̄f φ̃PRψ1 − F ∗

f1 ψ̄1PLφ̃
†Lf

+

(

ηiff ′

Mi
L̄f φ̃ CPR φ̃T L̄T

f ′ +H. c.

)

+
η̃iff ′

M2
i

L̄f φ̃PR i/∂(φ̃†Lf ′) + . . . , (3.1)

where C is the charge conjugation matrix, H. c. stands for Hermitian conjugate, T for

transpose and the dots for higher-order terms in the 1/Mi expansion. The coefficients ηiff ′

and η̃iff ′ are the Wilson coefficients of the dimension-five (lepton-number violating) and

dimension-six (lepton-number conserving) operators respectively. At leading order they

– 9 –
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a) b)

Figure 8. One-loop self-energy diagrams for the Higgs, diagram a), and lepton-doublet propaga-

tors, diagram b), in the fundamental theory (2.1). The solid double line in the loop stands for the

propagators of the heavier Majorana neutrinos with masses Mi (i = 2, 3).

read (from figures 5 and 6 and appendix A)

ηiff ′ =
1

2
FfiFf ′i , η̃iff ′ = FfiF

∗
f ′i , (3.2)

where, in this case, the index i is not summed on the right-hand side of each Wilson

coefficient. Note that the Lagrangian (3.1) contains as degrees of freedom only the SM

fields and the lightest Majorana neutrino field, ψ1.

Within the EFT1 one may reproduce the sum of the CP asymmetries (2.4) and (2.5),

ǫT=0
f = ǫT=0

f,direct + ǫT=0
f,indirect, order by order in 1/Mi, see appendix A.1 and equation (A.10).

This was first realized in [32], where the EFT1 Lagrangian and the CP asymmetry were

computed up to order 1/Mi.

3.1 Effective Higgs mass

At the level of the EFT1 a finite Higgs mass is generated from matching loop corrections

to the Higgs propagator in the fundamental theory, which involve heavy Majorana neutri-

nos with mass Mi, with the EFT1 operator −m2
φφ

†φ. The relevant one-loop diagram is

diagram a) of figure 8. Note that, because of chiral symmetry, the one-loop correction to

the lepton-doublet propagator vanishes (see diagram b) of figure 8).

From the self-energy diagram a) of figure 8 one obtains, after renormalizing in the MS

scheme,

m2
φ = 2

M2
i |Fi|2
(4π)2

[

1 + ln

(

µ2

M2
i

)]

. (3.3)

A sum over the index i is understood. Implications of the above formula for bounds on

the heavy neutrinos masses and Yukawa couplings can be found in [39]. The correction

induced to the width and to the CP asymmetry by the finite Higgs mass is of relative order

m2
φ/M

2
1 ∼ |Fi|2M2

i /M
2
1 , hence it is parametrically suppressed by two Yukawa couplings

with respect to the other corrections considered in this work. Since we systematically

neglect higher-order corrections in the Yukawa couplings, in the following we will also

neglect the effects due to the finite Higgs-boson mass (3.3).

4 EFT2

In this section we compute the effective field theory EFT2, which is the EFT that follows

from the EFT1 (3.1) by integrating out degrees of freedom with energies and momenta of

– 10 –
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order M1. By integrating out energy modes of order M1, we end up with a quantum field

theory whose degrees of freedom are non-relativistic Majorana neutrinos of type 1 and SM

particles with typical energies much smaller than M1. As regards thermal corrections to

the CP asymmetry, we set our accuracy at leading order in the M1/Mi expansion, namely

we restrict to those diagrams with the effective vertices induced by the dimension-five

operators in (3.1) (see figure 5) only.

To compute the Wilson coefficients of the EFT2 it is necessary to match it to the

EFT1. As in the case of the matching of the EFT1, the temperature can be set to zero

and one needs to compute only in-vacuum matrix elements since, according to the scale

hierarchy (1.2), the matching can be performed at a scale larger than T . The EFT2

Lagrangian is organized as an expansion in the inverse of the lightest Majorana neutrino

mass, M1, and its expression, relevant for the Majorana neutrino decay, reads [18]

LEFT2
= LSM + N̄

(

iv · ∂ + i
ΓT=0

2

)

N +
L(1)

N-SM

M1
+

L(3)
N-SM

M3
1

+ . . . . (4.1)

The field N describes the low-energy modes of the lightest Majorana neutrino. The vector

vµ with v2 = 1 identifies the reference frame. In the following we choose the reference frame

where the Majorana neutrino is at rest in the infinite mass limit; this amounts at setting

vµ = (1,~0). The terms L(1)
N-SM and L(3)

N-SM comprise dimension-five and dimension-seven

operators respectively and the dots stand for higher-order operators further suppressed in

1/M1. We do not write L(2)
N-SM because it contains operators not contributing to thermal

tadpoles [18]. Hence these operators do not contribute to the thermal width and CP

asymmetry either.

The term L(1)
N-SM contains just one dimension-five operator that reads [18]

L(1)
N-SM = a N̄N φ†φ , (4.2)

where a is a Wilson coefficient. Contributions to the CP asymmetry are of order F 4, and,

at leading order, depend on the SM couplings λ, the Higgs self-coupling, and g and g′,

the gauge couplings of the SU(2)L and U(1)Y gauge groups respectively. Diagrams give a

leptonic contribution, aℓ, when cutting through a lepton line and an anti-leptonic contri-

bution, aℓ̄, when cutting through an anti-lepton line. The diagrams and the corresponding

cuts are listed and computed in appendix B.1. The calculation is close to that one carried

out in the case of two heavy neutrinos with nearly degenerate masses in [19].

In the present work, we investigate also the leading thermal effects that depend on

the top Yukawa coupling, λt. These are generated by some dimension-seven operators in

L(3)
N-SM. Despite these effects being parametrically suppressed by (T/M1)

2 with respect to

those induced by the operator in (4.2), differences in the value of the SM couplings and

numerical factors may alter their relative relevance at high temperatures. As a reference,

for T = 109GeV, the SM couplings are found to be λ ≈ 0.004, (2g2 + g′2) ≈ 0.824 and

|λt|2 ≈ 0.316 [40, 41]. We elaborate more on this in the conclusions.
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The dimension-seven operators whose Wilson coefficients get contributions propor-

tional to |λt|2 are [18]3

L(3)
N-t = c3 N̄N (t̄PL vµvνγµ iDνt) , (4.3)

L(3)
N-Q = c4 N̄N

(

Q̄PR vµvνγµ iDνQ
)

, (4.4)

L(3)
N-L = chh

′

1c

(

N̄PR iv ·DLc
h′

) (

L̄c
hPLN

)

+ chh
′

1

(

N̄PL iv ·DLh

) (

L̄h′PRN
)

, (4.5)

where t is the top-quark singlet field and Q is the heavy-quark SU(2) doublet. We note that

at the order we are working here, namely at order F 4 in the Yukawa couplings, we have to

distinguish the Wilson coefficients relative to the two operators in (4.5). Indeed, they are

responsible for different contributions to the neutrino thermal widths: the former encodes

cuts on leptons whereas the second encodes cuts on anti-leptons only (see appendix B.2

for details). On the other hand, at order F 2 the two operators share the same Wilson

coefficient [18].

The difference between the decay widths of the lightest Majorana neutrino into a

lepton, ℓ, and an anti-lepton, ℓ̄, with flavour f can be split into a vacuum and thermal part:

Γ(νR,1 → ℓf +X)− Γ(νR,1 → ℓ̄f +X) =
(

Γℓ,T=0
f − Γℓ̄,T=0

f

)

+
(

Γℓ,T
f − Γℓ̄,T

f

)

. (4.6)

The in-vacuum part can be taken from appendix A.1 (equations (A.8) and (A.9)). It reads

at first order in 1/Mi

Γℓ,T=0
f − Γℓ̄,T=0

f = − 6

(16π)2
M2

1

Mi
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

. (4.7)

From (4.2)–(4.5) the thermal part of (4.6) can be written as

Γℓ,T
f = Γℓ,T

f,φ + Γℓ,T
f,fermions , (4.8)

with (for vµ = (1,~0))

Γℓ,T
f,φ = 2

Im aℓf
M1

〈φ†(0)φ(0)〉T , (4.9)

Γℓ,T
f,fermions = 2

Im cℓ3,f
M3

1

〈t̄(0)PLγ
0iD0t(0)〉T + 2

Im cℓ4,f
M3

1

〈Q̄(0)PRγ
0iD0Q(0)〉T

−
Im chh

′,ℓ
1c,f

4M3
1

〈L̄h′(0)γ0iD0Lh(0)〉T , (4.10)

where 〈· · · 〉T stands for the thermal average of SM fields weighted by the SM partition

function. Similar expressions hold for Γℓ̄,T
f after replacing the leptonic contributions to the

Wilson coefficients in (4.9) and (4.10) with the anti-leptonic ones.

3We do not consider operators that would give rise to an interaction between the heavy-neutrino spin

and the medium. They do not contribute to thermal tadpoles in an isotropic medium. We also do not

consider dimension-seven operators involving gauge fields, since their contribution proportional to |λt|
2

would be subleading. All dimension-seven operators are listed in equation (4.6) of [18].
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The thermal part of (4.6) depends on the imaginary parts of the Wilson coefficients aℓf ,

aℓ̄f , c
ℓ
3,f , c

ℓ̄
3,f , c

ℓ
4,f , c

ℓ̄
4,f , c

hh′,ℓ
1c,f and chh

′,ℓ̄
1,f appearing in (4.9), (4.10) and in the corresponding

anti-leptonic widths. The method to compute the imaginary parts of the Wilson coefficients

has been presented in detail in [18, 19], hence we recall it here only briefly. Four-particle

two-loop diagrams in the EFT1 are matched to four-particle effective vertices in the EFT2.

In the case of the dimension-five operator, one has to consider diagrams with two Higgs

bosons and two heavy Majorana neutrinos as external legs. The external Higgs bosons have

typical momentum qµ ∼ T , which can be set to zero in the matching. The complete set

of diagrams is shown and computed in appendix B.1. Leptons and anti-leptons of flavour

f can be put on shell by properly cutting each diagram, so to select the contributions to

aℓf and aℓ̄f respectively. The result reads at leading order in 1/Mi and in the SM couplings

(only terms contributing to the CP asymmetry are displayed):

Im aℓf = −Im aℓ̄f =
3

(16π)2
M1

Mi

[

8λ−
(

2g2 + g′2
)

4

]

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

. (4.11)

The result for anti-leptons can be obtained by substituting F1 ↔ Fi in the leptonic result.

The dimension-seven operators in (4.3)–(4.5) generate the leading thermal contribution

to the CP asymmetry proportional to the top-quark Yukawa coupling, which is of relative

order |λt|2(T/M1)
4. The list of relevant diagrams and details of the computation are given

in appendix B.2. The imaginary parts of the Wilson coefficients of the dimension-seven

operators at leading order in 1/Mi read:

Im cℓ3,f = −Im cℓ̄3,f = − 5|λt|2
2(16π)2

M1

Mi
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

, (4.12)

Im cℓ4,f = −Im cℓ̄4,f = − 5|λt|2
4(16π)2

M1

Mi
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

, (4.13)

Im chh
′,ℓ

1c,f = −Im chh
′,ℓ̄

1,f =− 9|λt|2
(16π)2

M1

Mi
Im

[

(F ∗
f1Ffi)(F

∗
h1Fh′i)−(Ff1F

∗
fi)(Fh′1F

∗
hi)

]

, (4.14)

where we show only terms proportional to |λt|2 that contribute to the CP asymmetry. Our

convention here and in the following is to label with h and h′ the flavours of the lepton

doublets in the dimension-seven operators (these leptons belong to the thermal medium

and will eventually contribute to the thermal average), and to label with f the flavour

of the lepton (anti-lepton) that appears in the final state of the Majorana neutrino decay

(this is a highly-energetic lepton contributing to the CP asymmetry).

5 CP asymmetry at finite temperature

In this section, we compute the leading thermal corrections to the CP asymmetry propor-

tional to the SM couplings, λ, g2, g′2 and |λt|2. In the framework of the EFT2, thermal

corrections are encoded in the thermal averages appearing in (4.9) and (4.10). At leading

order, the thermal averages may be computed from the tadpole diagrams shown in figure 9.
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φ

N

t,Q, L

N

a c

Figure 9. Tadpole diagrams providing the leading thermal corrections to the thermal averages

appearing in (4.9) and (4.10). Particles belonging to the thermal plasma are shown in red: Higgs

bosons on the left, and top quarks, heavy-quark doublets and leptons on the right. With the vertex

labeled a we mean the vertex induced by the operator (4.2), whereas with the vertex labeled c we

mean one of the vertices induced by the operators (4.3)–(4.5).

They read

〈φ†(0)φ(0)〉T =
T 2

6
, 〈t̄(0)PLγ

0iD0t(0)〉T =
7π2T 4

40
, (5.1)

〈Q̄(0)PRγ
0iD0Q(0)〉T =

7π2T 4

20
, 〈L̄h′(0)γ0iD0Lh(0)〉T =

7π2T 4

30
δhh′ . (5.2)

We assume the thermal bath to be at rest with respect to the lightest Majorana neutrino

and we choose the reference frame such that vµ = (1,~0).

We split both the neutrino width and the CP asymmetry into a vacuum and a thermal

part: Γ = ΓT=0 + ΓT and ǫf = ǫT=0
f + ǫTf . The decay width of the lightest Majorana

neutrino reads, see [35] and [18],

Γ = ΓT=0 + ΓT =
|F1|2M1

8π

[

1− λ

(

T

M1

)2

− 7π2

60
|λt|2

(

T

M1

)4
]

, (5.3)

which is valid at leading order in the SM couplings in the vacuum part, ΓT=0 =
∑

f Γ
ℓ,T=0
f +

Γℓ̄,T=0
f = |F1|2M1/(8π), and at relative order λ(T/M1)

2 and |λt|2(T/M1)
4 in the thermal

part. In the thermal part we do not show corrections of relative order g2(T/M1)
4 and

g′2(T/M1)
4 that are beyond the accuracy of the present work.

The in-vacuum part for the CP asymmetry, ǫT=0
f , at leading order in M1/Mi, can be

taken from (A.10). The difference between the leptonic and anti-leptonic thermal widths

defined in (4.8)–(4.10) depends on the Wilson coefficients (4.11)–(4.14) and on the thermal

averages (5.1) and (5.2). Taking them into account, it reads

Γℓ,T
f −Γℓ̄,T

f =
1

64π2

M2
1

Mi
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

[

(

4λ− 2g2 + g′2

8

)

T 2

M2
1

− 7π2

20
|λt|2

(

T

M1

)4
]

.

(5.4)

Finally, from (4.7), (5.3) and (5.4) we obtain at order M1/Mi

ǫTf = − 3

16π

M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

|F1|2

[

(

−5

3
λ+

2g2 + g′2

12

)(

T

M1

)2

+
7π2

20
|λt|2

(

T

M1

)4
]

.

(5.5)
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This expression is valid at leading order in the SM couplings and for each SM coupling it

provides the leading thermal correction. The thermal correction is of relative order (T/M1)
2

for the Higgs self-coupling and the gauge couplings, and of relative order (T/M1)
4 for the

top Yukawa coupling. At relative order (T/M1)
4 there are also corrections depending on

the other SM couplings besides the top Yukawa coupling. Since they would provide for

each coupling subleading thermal corrections with respect to those computed at relative

order (T/M1)
2, they have not been included in the present analysis.

We conclude this section by computing the leading effect to the CP asymmetry due

to the Majorana neutrino motion. So far we have considered the neutrino at rest, for we

have not included neutrino-momentum dependent operators in our list of operators. The

leading neutrino-momentum-dependent operator relevant for the neutrino decay is [18, 35]

LN-mom. dep. = − a

2M3
1

N̄
[

∂2 − (v · ∂)2
]

Nφ†φ . (5.6)

The Wilson coefficient a in (5.6) is the same Wilson coefficient of the dimension-five op-

erator in (4.2). This can be inferred from the relativistic dispersion relation or using the

methods of [42]. When the Wilson coefficient a is calculated at second order in the Yukawa

couplings, one obtains from (5.6) a momentum dependent thermal correction to the total

neutrino width that reads [18]

ΓT
φ,mom. dep.

=
|F1|2M1

8π

λ

2

~k2 T 2

M4
1

. (5.7)

In this work, we have evaluated the CP-asymmetry relevant part of a at fourth order in the

Yukawa couplings. Hence the operator in (5.6) can also induce a momentum dependent

asymmetry, which at leading order in the SM couplings reads

Γℓ,T
f,φ,mom. dep.

− Γℓ̄,T
f,φ,mom. dep.

= − 1

64π2

M2
1

Mi
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

[

(

2λ− 2g2 + g′2

16

) ~k2 T 2

M4
1

]

.

(5.8)

or (accounting for (4.7) and (5.7))

ǫTf,mom. dep.
= − 3

16π

M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

|F1|2
(

5

6
λ− 2g2 + g′2

24

) ~k2 T 2

M4
1

. (5.9)

The parametric size of this correction depends on the Majorana neutrino thermodynamics.

For instance, if the neutrino is decoupled from the plasma, then k ∼ T and the relative

size of (5.9) is of order (T/M1)
4, whereas if the neutrino is in thermal equilibrium with the

plasma, then k ∼
√
M1T and the relative size of (5.9) is of order (T/M1)

3.

6 Conclusions

In an extension of the SM that includes Majorana neutrinos heavier than the electroweak

scale coupled to Higgs bosons and leptons through complex Yukawa couplings, we have

computed the thermal corrections to the CP asymmetry (1.1) originated in the leptonic
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decays of the lightest Majorana neutrinos. We have assumed the temperature, T , to be

smaller than the lightest neutrino mass, M1, which in turn is much smaller than the other

neutrino masses, Mi (i = 2, 3). Thermal corrections have been computed in terms of

an expansion in the Yukawa and SM couplings, M1/Mi and T/M1. The original result

of the work is in the expression of the CP asymmetry (5.5) (in addition, equation (5.9)

provides the leading thermal correction depending on the Majorana neutrino momentum).

That expression is accurate at fourth-order in the Yukawa couplings, at order M1/Mi, at

leading order in the SM couplings and for each coupling it provides the leading thermal

correction. The present study complements an analogous recent study [19] for the case

of two heavy Majorana neutrinos with nearly degenerate masses relevant for resonant

leptogenesis. Thermal corrections at zeroth order in SM couplings of the type given in [22–

24] are exponentially suppressed in the non-relativistic regime and, therefore, not accounted

for by an expansion in T/M1. Nevertheless, as discussed in appendix C of [19], one could

easily retain the leading exponentially suppressed terms by a suitable modification of the

calculation. This may be of some numerical relevance for temperatures not much smaller

than the neutrino mass. In [19] we have shown how this works for the neutrino production

rate. The same technique could be implemented also in the case of the CP asymmetry.

We perform the calculation of the CP asymmetry in the flavoured regime, i.e., we

assume that the flavour of the leptons and anti-leptons is resolved by the thermal medium.

This case is relevant when the temperature at the onset of leptogenesis is smaller than

1012GeV. A quantitative study of leptogenesis requires, indeed, flavour to be resolved to

describe a wider range of temperatures. The expressions for the CP asymmetry in the

unflavoured case can be recovered from (5.5) (and from (5.9)) by summing over the flavour

index f in the Yukawa couplings.

The expansion in the inverse of the Majorana neutrino masses has been implemented

at the Lagrangian level by replacing the starting theory (2.1) with a hierarchy of two EFTs.

In the first EFT, called EFT1, energy modes of the order of the heavier neutrino masses

have been integrated out. Consequently the Lagrangian (3.1) is organized as an expansion

in 1/Mi. The EFT1 is characterized by operators made of two-Higgs and two-lepton fields

that encompass t- and s-channel neutrino exchanges. Because of this, at the energy scale

of the EFT1, the difference between direct and indirect CP asymmetry cannot be resolved.

We have computed the operators of dimension five and six. Operators of dimension five

have been considered in this framework also in [32]. They contribute both to the flavoured

and unflavoured CP asymmetry. Dimension-six operators are suppressed by M1/Mi and

contribute to the flavoured CP asymmetry only. At the accuracy we are working, when

computing thermal corrections to the CP asymmetry we neglect their contribution. In the

second EFT, called EFT2, energy modes of the order of the lightest neutrino mass have

been integrated out. The Lagrangian (4.1) is organized as an expansion in 1/M1, while its

dynamical degrees of freedom live at the energy and momentum scale of the thermal bath.

The matching of the EFT2, relevant for the CP asymmetry in the leptonic decays of the

lightest neutrino, is an original contribution of this work.

Thermal corrections to the CP asymmetry in the lightest Majorana neutrino decays

have been computed within the EFT2. We have computed them at leading order in the

SM couplings and for each coupling we have provided the leading thermal corrections,

– 16 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
6

1.0 10.05.02.0 3.01.5 7.0
10-7

10-6

10-5

10-4

0.001

0.01

M1�HΠTL

Ε
T
�Ε
T
=
0

ÈΛHT�M1L
2È

H2g2+g' 2LHT�M1L
2

ÈΛt
2HT�M1L

4

Èmom. dep.È, k = T

Èmom. dep.È, k=HM1TL
1�2

Figure 10. Thermal corrections to the CP asymmetry of a Majorana neutrino decaying into leptons

and anti-leptons as a function of the temperature. The orange dashed line shows the contribution

proportional to the Higgs self-coupling (the sign of the contribution has been changed to make

it positive), the blue dotted line shows the contribution proportional to the gauge couplings and

the red continuous line shows the contribution proportional to the top Yukawa coupling. These

three contributions can be read from (5.5) and refer to a neutrino at rest. The green lines show the

leading thermal contribution proportional to the neutrino momentum, which can be read from (5.9)

(also in this case the sign of the contribution has been changed to make it positive). For the green

continuous line we take the neutrino momentum to be T , whereas for the green dashed line we take

it to be
√
M1T . The SM couplings have been computed at πT with one-loop running [41]. The

different thermal contributions to the CP asymmetry have been normalized with respect to (A.10)

at leading order in M1/Mi. The neutrino mass has been taken M1 = 107 GeV.

see (5.5). The leading thermal corrections proportional to the Higgs self-coupling, λ, and

to the gauge couplings, 2g2+g′2, are of relative order (T/M1)
2, whereas those proportional

to the top Yukawa coupling, |λt|2, are of relative order (T/M1)
4. We show the different

contributions in figure 10. At low temperatures, thermal corrections proportional to the

Higgs self-coupling and to the gauge couplings dominate. However, at temperatures closer

to the neutrino mass, the suppression in T/M1 becomes less important and the numerically

most relevant corrections turn out to be those proportional to the top Yukawa coupling.

In figure 10 we also show the thermal contribution to the CP asymmetry due to a moving

Majorana neutrino, which has been computed in (5.9). We plot this contribution for the

case of a neutrino with momentum T and for the case of a neutrino in thermal equilibrium

with momentum
√
M1T . We see that for the considered momenta the effect of a moving

neutrino on the thermal CP asymmetry is tiny.
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A Matching EFT1

In this appendix we perform the tree-level matching of the operators of dimension five and

six appearing in the EFT1. To keep the notation simple, we drop the propagators on the

external legs, and we re-label the so-obtained amputated Green’s functions with the same

indices used for the unamputated ones.

We start with calculating the Wilson coefficient ηiff ′ of the dimension-five operator

in (3.1). In order to carry out the tree-level matching, we consider the following matrix

element of time-ordered operators in the fundamental theory (2.1) and in the EFT1 (3.1):

− i

∫

d4x eip1·x
∫

d4y eik1·y
∫

d4z eik2·z 〈Ω|T (Lµ
f,m(x)Lν

f ′,n(0)φr(y)φs(z))|Ω〉 , (A.1)

where µ and ν are Lorentz indices, m, n, r and s SU(2) indices and f, f ′ flavour indices.

When evaluating the matrix element in the fundamental theory, the result reads

FfiFf ′i

Mi
(PRC)µν(σ2

mrσ
2
ns + σ2

msσ
2
nr) , (A.2)

whereas the result in the EFT1 is

2ηiff ′

Mi
(PRC)µν(σ2

mrσ
2
ns + σ2

msσ
2
nr) . (A.3)

Comparing (A.2) with (A.3), we find the matching condition for ηiff ′ given in (3.2).

The Wilson coefficient of the dimension-six operator in (3.1) can be obtained in a

similar fashion from the matrix element

− i

∫

d4x eip1·x
∫

d4y eik1·y
∫

d4z e−ik2·z 〈Ω|T (Lµ
f,m(x)L̄ν

f ′,n(0)φr(y)φ
†
s(z))|Ω〉 , (A.4)

which computed in the fundamental theory gives

FfiF
∗
f ′i

M2
i

Pµν
R (/p1 + /k1)σ

2
mrσ

2
sn , (A.5)

while computed in the EFT1 is

η̃iff ′

M2
i

Pµν
R (/p1 + /k1)σ

2
mrσ

2
sn . (A.6)

Comparing (A.5) with (A.6), we find the matching condition for η̃iff ′ given in (3.2).

A.1 CP asymmetry at zero temperature in the EFT1

In the EFT1 we compute now the zero temperature CP asymmetry in the leptonic decays

of the lightest Majorana neutrino, νR,1, at first and second order in 1/Mi. To calculate

the asymmetry we have to compute CP violating contributions to the Majorana neutrino

decay widths into leptons and anti-leptons. This requires to compute imaginary parts of

Feynman diagrams and isolate the contributions from the leptonic and anti-leptonic decays.
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Furthermore, to contribute to the CP asymmetry the diagrams must be sensitive to the

complex phase of the Majorana neutrino Yukawa couplings. This restricts the computation

to the imaginary parts of (at least) two-loop Feynman diagrams in the EFT1, which are

of fourth order in the Majorana neutrino Yukawa couplings and sensitive to their complex

phase through the interference of two different neutrino species, see (2.2).

Given a Feynman diagram D, the imaginary part Im(−iD) can be computed by means

of the cutting equation [48–51]

Im(−iD) = −Re(D) =
1

2

∑

cuts

D , (A.7)

where the sum runs over all possible cuts of the diagram D. If we are interested in leptonic

decays, we may restrict the cuts to include leptonic lines. Viceversa, if we are interested in

anti-leptonic decays, we may restrict the cuts to include anti-leptonic lines. We will repre-

sent a cut by a blue thick dashed line. The cut equation requires that vertices on the right

of the cut are circled. Circled vertices have opposite sign than uncircled vertices. Propaga-

tors between uncircled vertices are the usual Feynman propagators, propagators between

circled vertices are the complex conjugate of the uncircled propagators and propagators

between one circled and one uncircled vertex describe an on-shell particle. By means of

the cutting equation and the above cutting rules, we may isolate from two-loop diagrams

the relevant contribution to the CP asymmetry in the leptonic and anti-leptonic decays.

A detailed description of the technique applied to the present case can be found in [19].

The CP violating contributions to the decay of a Majorana neutrino, νR,1, into a

lepton of flavour f (and a Higgs boson) at zero temperature, whose width is Γℓ,T=0
f , can

be computed from the imaginary parts of the diagrams shown in figure 11. The relevant

leptonic cuts are also displayed. An explicit calculation up to relative order (M1/Mi)
2 gives

δµν
Γℓ,T=0
f

2
= Im

[

−i
5

∑

n=1

(Dℓ
n,figure 11)

]

= (A.8)

= δµν
M1

16π







|Ff1|2
2

−3
M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

32π
−2

(

M1

Mi

)2 Im
[

(F1F
∗
i )(F

∗
f1Ffi)

]

32π
+ . . .







,

where the dots stand both for terms that do not contribute to the CP asymmetry at fourth-

order in the Yukawa couplings (e.g., the real part of the Yukawa-coupling combination),

and for higher-order terms in the M1/Mi expansion. The term proportional to |Ff1|2,
which comes from the one-loop diagram, contributes only to the leptonic width, but not

to the CP asymmetry.

In order to compute the decay width into anti-leptons we have to consider the diagrams

and the corresponding cuts on anti-lepton lines shown in figure 12. The calculation up to
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1) 2) 3)

4) 5)

Figure 11. One-loop and two-loop self-energy diagrams in the EFT1 that admit cuts on a lepton

line. Cuts are represented by vertical blue dashed lines. Vertices on the right of the cuts are circled;

we have suppressed the symbol for the effective vertex when the vertex is circled. Two-Higgs-two-

lepton effective vertices in the upper raw come from the dimension-five operators in (3.1) (vertex

defined in figure 5), whereas two-Higgs-two-lepton effective vertices in the lower raw come from the

dimension-six operator in (3.1) (vertex defined in figure 6).

1) 2) 3)

4) 5)

Figure 12. One-loop and two-loop self-energy diagrams in the EFT1 that admit cuts on an anti-

lepton line. Further explanations and comments are like in figure 11.

relative order (M1/Mi)
2 gives

δµν
Γℓ̄,T=0
f

2
= Im

[

−i
5

∑

n=1

(Dℓ̄
n,figure 12)

]

= (A.9)

= δµν
M1

16π







|Ff1|2
2

+3
M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

32π
+2

(

M1

Mi

)2 Im
[

(F1F
∗
i )(F

∗
f1Ffi)

]

32π
+. . .







,

where the only difference with respect to (A.8) is in a change of sign for each coefficient

with four Yukawa couplings. The one-loop diagram contributes only to the anti-leptonic

width, but not to the CP asymmetry.

Hence the CP asymmetry at zero temperature, as defined in (1.1), reads at leading

order in the SM couplings, at fourth-order in the Yukawa couplings and up to relative order
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(M1/Mi)
2 in the heavy Majorana neutrino mass expansion

ǫT=0
f =

Γℓ,T=0
f − Γℓ̄,T=0

f
∑

f Γ
ℓ,T=0
f + Γℓ̄,T=0

f

= (A.10)

= − 3

16π

M1

Mi

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

|F1|2
− 1

8π

(

M1

Mi

)2 Im
[

(F1F
∗
i )(F

∗
f1Ffi)

]

|F1|2
.

The result coincides with the sum of the direct and indirect contributions obtained in the

hierarchical limit from the general expressions given in (2.4) and (2.5).

B Matching EFT2

In this appendix we compute the Wilson coefficients (4.11)–(4.14) of the EFT2. The Wilson

coefficients are obtained by matching four-point Green’s functions calculated in the EFT1

with four-point Green’s functions calculated in the EFT2. Since we are going to consider

effects that are of first order in the SM couplings, we need to specify the SM Lagrangian,

which reads

LSM = L̄fPR i /DLf + Q̄PR i /DQ+ t̄PL i /D t− 1

4
W a

µνW
aµν − 1

4
FµνF

µν

+(Dµφ)
† (Dµφ)− λ

(

φ†φ
)2

− λt Q̄ φ̃ PRt− λ∗
t t̄PL φ̃†Q+ . . . , (B.1)

where the dots stand for terms irrelevant for our calculation. The Lagrangian exhibits an

unbroken SU(2)L× U(1)Y gauge symmetry, according to the assumption T ≫ MW . The

covariant derivative in (B.1) reads, when acting on left-handed doublets (only the coupling

with Bµ has to be considered for right-handed fermions)

Dµ = ∂µ − igAa
µτ

a − ig′Y Bµ , (B.2)

where τa are the SU(2)L generators and Y is the hypercharge (Y = 1/2 for the Higgs boson,

Y = −1/2 for left-handed leptons). The couplings g, g′, λ and λt are the SU(2)L and U(1)Y
gauge couplings, the Higgs self-coupling and the top Yukawa coupling respectively. The

fields Lf are the SU(2)L lepton doublets with flavour f , QT = (t, b) is the heavy-quark

SU(2)L doublet, Aa
µ are the SU(2)L gauge fields, Bµ the U(1)Y gauge fields and W aµν , Fµν

the corresponding field strength tensors, φ is the Higgs doublet, t is the top quark field.

As mentioned in the main body of the paper, when matching EFT2 with EFT1 we

can set the temperature to zero. This comes from the fact that we integrate out only

high-energy modes of order M1 ≫ T . Dimensional regularization is used throughout all

calculations. As a consequence all loop diagrams in the EFT2 side of the matching are scale-

less, and therefore vanish in dimensional regularization. The operators that we match are

the dimension-five operator (4.2) and the dimension-seven operators (4.3)–(4.5) (of which

we consider only the top Yukawa coupling contributions). Therefore we need to consider

matrix elements with two external heavy neutrinos and two external Higgs bosons, two

external top-quarks, two external heavy-quark doublets and two external lepton doublets.
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B.1 Matching the dimension-five operator

In order to determine the CP violating contributions to the Wilson coefficient of the

dimension-five operator of the EFT2, we consider the following matrix element in the

Majorana neutrino rest frame

− i

∫

d4x eip·x
∫

d4y

∫

d4z eiq·(y−z) 〈Ω|T (ψµ
1 (x)ψ̄

ν
1 (0)φm(y)φ†

n(z))|Ω〉
∣

∣

∣

∣

pα=(M1+iǫ,~0 )

, (B.3)

where µ and ν are Lorentz indices, and m and n are SU(2) indices. The matrix ele-

ment (B.3) can be understood as a 2 → 2 scattering in the EFT1 between a heavy Ma-

jorana neutrino at rest and a Higgs boson carrying momentum qµ much smaller than M1

that can be eventually set to zero. We divide the calculation as follows. First, we compute

Feynman diagrams involving the Higgs self-coupling, λ, and, then, we compute Feynman

diagrams with gauge bosons.

In figure 13 and 14 we list the diagrams contributing to the Wilson coefficient of

the dimension-five operator that involve the Higgs self-coupling. In each raw we show a

diagram and its complex conjugate and we draw explicitly the cuts that put a lepton on

shell (dashed blue line). The diagrams in figure 13 are obtained by adding a four-Higgs

vertex to the diagrams a) and b) in figure 7. On the other hand, one can also open up one

of the Higgs propagators in those diagrams, keep one Higgs line as an external line and

connect the other one to a four-Higgs vertex added to the remaining internal Higgs line.

These diagrams are shown in figure 14.

Starting from the diagrams in figure 13, we obtain

Im (−iDℓ
1,figure 13)+Im (−iDℓ

2,figure 13)=
λ

Mi

9

(16π)2
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

δµνδmn+. . . , (B.4)

Im (−iDℓ
3,figure 13) + Im (−iDℓ

4,figure 13) + Im (−iDℓ
5,figure 13) + Im (−iDℓ

6,figure 13) =

=
λ

Mi

9

(16π)2
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

δµνδmn + . . . , (B.5)

where the subscripts of D refer to the diagrams as listed in figure 13 and the superscript, ℓ,

stands for leptonic contributions only. The dots in (B.4) and (B.5) stand for terms that are

of higher order in the neutrino mass expansion and for terms that cancel in the calculation

of the CP asymmetry. The result for the anti-leptonic contributions differs for an overall

minus sign, and may be obtained by replacing F1 ↔ Fi in the above expressions.

The diagrams shown in figure 14 give

Im (−iDℓ
1,figure 14)+Im (−iDℓ

2,figure 14)=
λ

Mi

6

(16π)2
Im

[

(F ∗
1Fi)(F

∗
f1Ffi)

]

δµνδmn+. . . , (B.6)

Im (−iDℓ
3,figure 14)+Im (−iDℓ

4,figure 14)=0 . (B.7)

We can understand the result in (B.7) as follows. After the cut on the lepton line the

remaining loop amplitude gives a vanishing imaginary part, what we called Im(B) in (2.2).

Indeed, as we noticed in an analogous situation in [19], the momentum of the external

Higgs boson can be put to zero and hence, after cutting the remaining loop amplitude to
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1) 2)

3)

5) 6)

4)

Figure 13. First set of diagrams involving the Higgs self-coupling with cuts on the lepton lines.

Vertices on the right of the cuts are circled. External Higgs bosons are in red.

1) 2)

3) 4)

Figure 14. Second set of diagrams involving the Higgs self-coupling with cuts on the lepton lines.
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a) b) c)

d) e) f)

g)

Figure 15. Diagrams of order (F ∗

1
Fi)(F

∗

f1Ffi) and leading order in the gauge couplings relevant for

the CP asymmetry in the matching of aℓf and aℓ̄f (complex conjugate diagrams are not displayed).

b) c)a)

Figure 16. Some diagrams of order (F ∗

1
Fi)(F

∗

f1Ffi) and first order in the gauge couplings that

do not contribute to the CP asymmetry. Diagram c) contains a top-quark-heavy-quark-doublet

loop instead of a gauge boson (it would be a potential contribution of order |λt|2 to the operator

of dimension five), but falls in the same topology class as the first two diagrams and does not

contribute to the CP asymmetry. Complex conjugate diagrams are not displayed.

get the imaginary part, we have three on-shell massless particles entering the same vertex.

In such a case the available phase space vanishes in dimensional regularization.

We consider now Feynman diagrams with gauge bosons. They contribute to the Wilson

coefficient of the dimension-five operator, and provide a dependence on the couplings of

the unbroken SU(2)L and U(1)Y gauge groups, g and g′ respectively. The topologies of

the diagrams that could potentially contribute to the CP asymmetric part of the Wilson

coefficients aℓf and aℓ̄f are shown in figures 15 and 16. We have discussed extensively how to

address the calculation of diagrams involving the gauge bosons in [19], and, for this reason,

we recall here only the main outcomes.

To perform calculations with gauge bosons we need to fix a gauge. We can distinguish

two different cases when cutting a lepton line in the diagrams of figure 15: first, a lepton

is cut with a Higgs boson, second, a lepton is cut with a gauge boson. These different cuts

correspond to different physical processes, one without and one with gauge bosons in the

final states, that we can treat within different gauges.
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We adopt the Landau gauge for diagrams in which the lepton is cut together with a

Higgs boson (the gauge boson is uncut), while we use the Coulomb gauge when a gauge

boson is cut. According to this choice, we can neglect all the diagrams with a gauge

boson attached to an external Higgs boson leg. Indeed, the vertex interaction between a

gauge and a Higgs boson is proportional to the momentum of the latter both in Landau

and Coulomb gauge (see (B.1) and (B.2)). If it depends on the external momentum, it

will contribute to the matching of higher-order operators containing derivatives acting on

the Higgs fields. On the other hand, if it depends on the internal momentum then its

contraction with the propagator vanishes both in Coulomb gauge, if the gauge boson is

cut, and in Landau gauge if the gauge boson is uncut. Note that in Coulomb gauge only

transverse gauge bosons can be cut.4

Diagram c) in figure 15 is similar to one diagram, diagram c) of figure 15 in [19],

studied in the case of nearly degenerate neutrino masses and vanishes for the same reason.

The diagram may be cut in two different ways in order to put on shell a lepton together

with a Higgs boson. The only difference between the imaginary parts of the remaining

one-loop subdiagrams is in the number of circled vertices that leads to two contributions

with opposite signs eventually cancelling each other. Diagram g) contains a sub-diagram

that vanishes in Landau gauge after having cut the Higgs and lepton lines, see diagram 5)

in figure 4 and equation (A.8) in [18].

The three diagrams in figure 16 do not develop an imaginary part for the remaining loop

amplitude, Im(B) in (2.2), after having cut the lepton line. This has also been discussed in

the case of nearly degenerate neutrino masses in [19]. The different heavy-neutrino mass

arrangement does not change the argument. Let us consider, for instance, diagram a) in

figure 16, and let us cut it in all possible ways that put a lepton on shell. A first cut

through the gauge boson separates the diagram into tree-level sub-diagrams. Since there

is no loop uncut, we cannot generate any additional complex phase. A second and third

cut are such to leave an uncut one-loop sub-diagram. However no additional phase is

generated by this sub-diagram either. The incoming and outgoing particles are on shell

and massless, and the particles in the loop are massless as well. The imaginary part of

the sub-diagram corresponds to a process in which three massless particles enter the same

vertex, whose available phase space vanishes in dimensional regularization. Therefore the

diagrams in figure 16 can give rise only to terms proportional to Re
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

that

do not contribute to the CP asymmetry.

We finally compute the diagrams that are not excluded by the above arguments. They

are shown in figure 17 and 18, where the lepton line is cut together with a Higgs boson

or a gauge boson respectively. In each raw we show a diagram and its complex conjugate.

We start with the diagrams in figure 17 and we recall that they are computed in Landau

4An explicit check of gauge invariance is left to a future publication.
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1)

3) 4)

2)

Figure 17. In each raw we draw the diagrams a) and b) of figure 15 together with their complex

conjugate when a lepton propagator is cut with a Higgs boson propagator.

gauge. The results read

Im (−iDℓ
1,figure 17)+Im (−iDℓ

2,figure 17)=0, (B.8)

Im (−iDℓ
3,figure 17)+Im (−iDℓ

4,figure 17)=−3
(

g2+g′2
)

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

8(16π)2Mi
δµνδmn+. . . , (B.9)

where the superscript ℓ stands for leptonic contribution and the subscript refers to the

diagram label as listed in figure 17. The dots stand for higher-order terms in the heavy-

neutrino mass expansion and for terms that do not contribute to the CP asymmetry.

The diagrams in figure 18, where a gauge boson appears in the final state, are computed

in Coulomb gauge. The results read

Im (−iDℓ
1,figure 18)+Im (−iDℓ

2,figure 18)=3
(

g2 + g′2
)

Im
[

(F ∗

1
Fi)(F

∗

f1Ffi)
]

8(16π)2Mi

δµνδmn + . . . , (B.10)

Im (−iDℓ
3,figure 18)+Im (−iDℓ

4,figure 18)=−3
(

g2 + g′2
)

Im
[

(F ∗

1
Fi)(F

∗

f1Ffi)
]

8(16π)2Mi

δµνδmn + . . . , (B.11)

Im (−iDℓ
5,figure 18)+Im (−iDℓ

6,figure 18)=−3
(

3g2 + g′2
)

Im
[

(F ∗

1
Fi)(F

∗

f1Ffi)
]

8(16π)2Mi

δµνδmn + . . . , (B.12)

where again the superscript ℓ stands for leptonic contribution and the subscripts refer to

the diagram label as listed in figure 18.

The Wilson coefficient of the dimension-five operator can now be computed. In the

EFT2 the matrix element (B.3) reads, isolating the contribution from the Majorana neu-

trino decaying into a lepton of flavour f ,

Im aℓf
M1

δµνδmn . (B.13)
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3) 4)

1) 2)

5) 6)

Figure 18. In each raw we draw the diagrams d), e) and f) of figure 15 together with their complex

conjugate when a lepton propagator is cut with a gauge boson propagator.

An analogous expression holds for the decay into an anti-lepton. Summing up (B.4)–(B.12)

and matching with (B.13), we obtain (4.11).

B.2 Matching dimension-seven operators proportional to |λt|
2

Here we compute the CP-violating contributions to the dimension-seven operators of the

EFT2 proportional to |λt|2. We will first match the operators (4.3) and (4.4), and then the

operators (4.5).

A quite limited number of diagrams allows to completely specify the CP violating terms

in the Wilson coefficient of the heavy-neutrino-top-quark (heavy-quark doublet) operator.

We show them in figure 19. The external fermion legs have to be understood as top quarks

or heavy-quark doublets, as explicitly indicated.

We consider the following matrix elements in the EFT1:

−i

∫

d4x eip·x
∫

d4y

∫

d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0) tσ(y)t̄λ(z))|Ω〉
∣

∣

∣

∣

pα=(M1+iǫ,~0 )

, (B.14)

−i

∫

d4x eip·x
∫

d4y

∫

d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)Qσ
m(y)Q̄λ

n(z))|Ω〉
∣

∣

∣

∣

pα=(M1+iǫ,~0 )

. (B.15)

They describe respectively a 2 → 2 scattering between a heavy Majorana neutrino at rest

and a right-handed top quark carrying momentum qµ, and a 2 → 2 scattering between a

heavy Majorana neutrino at rest and a left-handed heavy-quark doublet carrying momen-

tum qµ. The indices µ, ν, σ and λ, are Lorentz indices, and m and n are the SU(2) indices
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a)

t(Q)

b)

t(Q)

Figure 19. Diagrams a) and b) are the two diagrams contributing to the heavy-neutrino-top quark

(heavy quark doublet) operator with the combination of Yukawa couplings (F ∗

1
Fi)(F

∗

f1Ffi) (complex

conjugate diagrams are not displayed). Top (heavy-quark doublet) external legs are shown as solid

red lines. We drop the arrow for the internal heavy-quark doublet (top quark) in order to avoid

confusion with lepton lines (arrows kept).

1)

t(Q)

2)

t(Q)

Figure 20. We show diagram a) of figure 19 and its complex conjugate with cuts on the lepton

and the Higgs boson lines.

of the heavy-quark doublet. Differently from the former matching of the dimension-five

operator, the external momentum of the SM particles cannot be put to zero in the following

calculation, since we match operators with derivatives acting on the external fields.

We denote diagrams contributing to (B.14) and (B.15) with Dt and DQ respectively.

We, first, consider diagram a) of figure 19. In this case, we can perform only one cut

through the lepton line as shown in figure 20. The results read

Im (−iDℓ
t,1,figure 20) + Im (−iDℓ

t,2,figure 20) = (B.16)

= − |λt|2
MiM2

1

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

(16π)2
δµν

(

PLγ
0
)σλ

q0 + . . . ,

Im (−iDℓ
Q,1,figure 20) + Im (−iDℓ

Q,2,figure 20) = (B.17)

= − |λt|2
MiM2

1

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

2(16π)2
δµνδmn

(

PRγ
0
)σλ

q0 + . . . ,

where the dots stand for terms irrelevant for the CP asymmetry, for higher-order terms in

the neutrino mass expansion and for terms that depend on the spin coupling of the heavy

Majorana neutrino with the medium. These last ones do not contribute if the medium is

isotropic, as it is assumed in this work.

We, then, consider diagram b) of figure 19. In this case the lepton line can be cut in

the three different ways shown in figure 21. Although contributions coming from single
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2)1)

3)

5)

4)

6)

t(Q)

t(Q)

t(Q)

t(Q)

t(Q)

t(Q)

Figure 21. We show diagram b) of figure 19 and its complex conjugate with cuts on the lepton

line and a heavy-quark doublet (top-quark) or Higgs boson line.

cuts may be infrared divergent, the sum of all cuts is finite. The results read

6
∑

n=1

Im (−iDℓ
t,n,figure 21)=−3

2

|λt|2
MiM2

1

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

(16π)2
δµν

(

PLγ
0
)σλ

q0 + . . . , (B.18)

6
∑

n=1

Im (−iDℓ
Q,n,figure 21)=−3

4

|λt|2
MiM2

1

Im
[

(F ∗
1Fi)(F

∗
f1Ffi)

]

(16π)2
δµνδmn

(

PRγ
0
)σλ

q0+. . . , (B.19)

where the dots stand for terms irrelevant for the CP asymmetry and powers of q0/M1 not

contributing to the matching of the dimension-seven operators (4.3) and (4.4).

In the EFT2 the matrix element (B.14) reads (assuming an isotropic medium)

Im cℓ3,f
M3

1

δµν
(

PLγ
0
)σλ

q0 , (B.20)

and the matrix element (B.15)

Im cℓ4,f
M3

1

δµνδmn

(

PRγ
0
)σλ

q0 . (B.21)

Comparing the sum of (B.16) and (B.18) with (B.20), and the sum of (B.17) and (B.19)

with (B.21) we obtain (4.12) and (4.13) respectively. The result for anti-leptonic decays

may be obtained from the substitution F1 ↔ Fi in the above expressions, which leads to

an overall sign change in the expression of the corresponding Wilson coefficients.
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Figure 22. Diagrams proportional to |λt|2 contributing to the matching of the first operator (4.5)

with cuts on the lepton and the Higgs boson lines. Each diagram is the complex conjugate of the

other. The closed continuous loop is a top-quark-heavy-quark-doublet loop. Lepton doublets as

external legs are shown as solid red lines.

We finally match the operators (4.5). This requires computing in the EFT1 the fol-

lowing matrix element

− i

∫

d4x eip·x
∫

d4y

∫

d4z eiq·(y−z) 〈Ω|T (ψµ(x)L̄λ
h,m(z)Lσ

h′,n(y)ψ̄
ν(0))|Ω〉

∣

∣

∣

∣

pα=(M1+iǫ,~0 )

,

(B.22)

where h and h′ are flavor indices, µ, ν, σ and λ are Lorentz indices, and m and n SU(2)

indices. The matrix element (B.22) describes a 2 → 2 scattering between a heavy Majorana

neutrino at rest and a lepton doublet carrying momentum qµ.

We consider only the diagrams proportional to |λt|2. Differently from the diagrams

discussed so far, we have to treat separately the diagrams that admit a cut on a lepton

line from those that allow for a cut on an anti-lepton line: leptonic cuts contribute to
(

N̄PR iv ·DLc
h′

) (

L̄c
hPLN

)

only, whereas cuts on anti-leptons contribute to
(

N̄PL iv ·DLh

)

×
(

L̄h′PRN
)

only. We start from the diagrams in figure 22, where we can select a lepton

in the final state.5 The result reads

Im (−iDℓ
1,figure 22) + Im (−iDℓ

2,figure 22) = (B.23)

= − 9|λt|2
(16π)2

Im
[

(F ∗
f1Ffi)(F

∗
h1Fh′i)− (Ff1F

∗
fi)(Fh′1F

∗
hi)

] q0
M2

1Mi

(C PR)
µσ(PLC)λν δmn .

The combination of Yukawa couplings Im[(F ∗
1Fi)(F

∗
f1Ffi)] is recovered in the CP asymme-

try after computing the lepton tadpole in (5.2). In the EFT2 the leptonic contribution to

the matrix element (B.22) reads

Im(chh
′,ℓ

1c,f )

M3
1

q0 (C PR)
µσ(PLC)λν δmn . (B.24)

Comparing (B.23) with (B.24) we obtain the first coefficient in (4.14).

Contributions from decays into anti-leptons come from the diagrams in figure 23 by

cutting on anti-lepton lines. They go into the Wilson coefficient chh
′,ℓ̄

1,f of the second oper-

5A diagram similar to diagram c) of figure 16, but with external leptons instead of Higgs bosons, does

not contribute for the same reason as that diagram does not contribute.

– 30 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
6

1) 2)

Figure 23. Diagrams proportional to |λt|2 contributing to the matching of the second operator (4.5)

with cuts on the anti-lepton and the Higgs boson lines. The rest is as in figure 22.

ator (4.5). The result reads

Im (−iDℓ̄
1,figure 23) + Im (−iDℓ̄

2,figure 23) = (B.25)

= − 9|λt|2
(16π)2

Im
[

(Ff1F
∗
fi)(Fh′1F

∗
hi)− (F ∗

f1Ffi)(F
∗
h1Fh′i)

] q0
M2

1Mi

(PL)
µλ(PR)

σν δmn .

In the EFT2 the anti-leptonic contribution to the matrix element (B.22) reads

Im(chh
′,ℓ̄

1,f )

M3
1

q0 (PL)
µλ(PR)

σν δmn . (B.26)

Comparing (B.25) with (B.26) we obtain the second coefficient in (4.14).
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