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1 Introduction

The discovery that black holes carry an entropy [1, 2] proportional to the area of the

event horizon has led to view black holes as thermodynamic objects. This point of view

provides a simple set of quantities, such as the mass M , the entropy S and the angular

momenta Ja, which can be used to characterise many of the properties of black holes. For

an uncharged black hole in asymptotically flat spacetime, these quantities satisfy the first

law of thermodynamics

dM = TdS +
∑
a

ΩadJa , (1.1)

where T is the Hawking temperature and Ωa is the set of horizon angular velocities. The

study of (1.1) leads to a deeper understanding of the dynamics, stability and uniqueness

of these objects. Therefore, from a purely gravitational point of view it is important to

understand what types and kinds of physical modifications can occur in (1.1).

Many of such modifications are known and they arise due to other intrinsic properties

that black holes can have, such as an electric/magnetic charge or scalar hair [3]. Other

intrinsic properties such as horizon topology can allow for other types of charges, as in

the case of the five-dimensional charged black ring [4, 5], which can carry dipole charge.1

However, there are also extrinsic properties that can affect (1.1) such as the length scales

characterizing the asymptotic region of a given black hole, or alternatively, the curvature

scales characterising the resulting spacetime once the black hole is removed (i.e. when its

horizon radius is set to zero).2

A concrete physical set up which we have in mind, with potential astrophysical impli-

cations, is to understand what the modification of (1.1) is when a black hole is immersed in

the gravitational field of another black hole, as in a black hole binary system. In this case,

each of the black hole horizons will satisfy a first law of thermodynamics of the form (1.1)

in which the mass (or horizon radius) of the other black hole appears as an external param-

eter.3 A natural question to ask is then: how is the first law (1.1) modified when there are

variations in the gravitational field, in which the black hole is immersed, due to variations

in the mass (or size) of the other black hole?

This question would be easily addressed if there existed exact analytic solutions of

black hole binary systems. In four dimensional asymptotically flat spacetime no such

solutions are known, however, perturbative solutions where a small black hole is orbiting a

large black hole do exist up to several high orders [9]. Unfortunately, these distorted black

hole solutions have only been constructed near the horizon and hence are not suitable

1For other non-trivial topologies, generalisations of dipole charge were found in [6].
2Another external factor that can affect (1.1) is non-trivial spacetime topology when, for example, there

are fluxes present in the spacetime [7].
3Below we derive modified first laws for each individual horizon in a black hole binary system in a

certain perturbative regime where one black hole can be seen as a probe in the background of the other. In

section 4 we show that this holds, beyond the leading order in this perturbative regime, for the black saturn

solution [8], where the black ring can be seen as a probe in the background of the centre Myers-Perry black

hole. While we are of the opinion that such individual first laws can be assigned to each individual horizon

irrespective of such perturbative regime, further work is required in order to verify it.
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for studying thermodynamic properties. Luckily, there are several exact or approximate

analytic solutions that can be used as toy models for this kind of physics. This includes

the first-order corrected solution [10] for localized Kaluza-Klein black holes [11], which

due to the periodicity of one of the coordinates and by the method of images, can be

viewed as being immersed in their own gravitational field. Moreover, in five spacetime

dimensions there are several examples of exact and analytic black hole binary systems in

asymptotically flat spacetime. The simplest of these being the black saturn solution [8],

in which a black ring horizon orbits the centre Myers-Perry black hole.4 Furthermore, the

blackfold construction [16, 17] provides a general tool to analytically construct perturbative

solutions of large classes of black holes in non-trivial backgrounds, such as those considered

in [18, 19] along with the novel solutions with non-trivial spacetime asymptotics constructed

in this paper. Indeed, we will use these examples to study the modifications to (1.1).

When studying the modifications to (1.1) due to the presence of external gravitational

fields, one wishes to introduce/observe new quantities which: (1) have a geometric/physical

meaning, (2) have a thermodynamic interpretation, (3) can be defined in the presence of

any gravitational field and (4) reduce to the same universal result once the gravitational

field is removed. We wish to qualify these statements.

By property (1) we mean that the quantities appearing in (1.1) can be obtained, for

a given black hole spacetime, e.g. by some integration over the horizon involving Killing

vector fields (e.g. the Komar mass) or by looking at the asymptotic fall-off of the metric

fields (such as the ADM mass). By property (2) we mean that all such quantities are clear

analogues of classical thermodynamic quantities as the entropy S or temperature T and

can be obtained by taking appropriate derivatives of the free energy. By property (3) we

mean that such quantities can be defined for all black holes immersed in any gravitational

field, regardless of what the source of that field might be. In fact, we seek to introduce a set

of thermodynamic quantities which can be universally defined, regardless of the field being

created by another black hole, by a star or by some cosmological fluid. Finally, by property

(4) we mean that such quantities must have a universal limit when the gravitational field

that surrounds the black hole is removed. Intuitively, one might think that any such extra

quantity appearing in (1.1) must vanish when the gravitational field is removed since in

that case there are no other quantities characterising the (uncharged) black hole. However,

for reasons that will become apparent later, we will not require from the start that such

quantities must vanish in that limit but we will ultimately argue that the correct physical

picture is one where such quantities do vanish in that limit.

1.1 Pressure and volume for Anti-de Sitter black holes

As we have mentioned, we look for modifications of (1.1) regardless of what is the source of

the gravitational field. One can think of Anti-de Sitter (AdS) black holes in D spacetime

dimensions as being immersed in the gravitational field created by a cosmological fluid

with pressure

Pe = − Λ

8πG
, Λ = −(D − 1)(D − 2)

2L2
, (1.2)

4Other examples are bi-rings, di-rings and several multiple combinations of these [12–15].
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which sources Einstein equations. In this case, variations in the gravitational field are

controlled by variations of the cosmological constant Λ, or alternatively, by variations of

the AdS radius L. In order to analyse the modifications of (1.1) we consider the simplest

case of the Schwarzschild-AdS black hole in D = 4 with mass, entropy and temperature

given by

M =
r+

2G

(
1 +

r2
+

L2

)
, S =

π

G
r2

+ , T =
1

4πr+

(
1 + 3

r2
+

L2

)
, (1.3)

where r+ is the horizon radius. Allowing for variations of the length scale L, one can easily

verify that these black holes satisfy the first law of thermodynamics

dM = TdS +BkdLk , (1.4)

where Lk is proportional to some power of L such that Lk = λLk, where λ is an arbitrary

constant which can depend on Newton’s constant G but otherwise cannot depend on any of

the thermodynamic variables of the solution such as temperature T . In turn, the response

Bk is given by

Bk =

(
∂F
∂Lk

)
T

, (1.5)

where F is the Gibbs free energy F = M − TS. Moreover, this leads to a corresponding

Smarr relation which follows from the Euler scaling argument

(D − 3)M − (D − 2)TS = kBkLk . (1.6)

From this point of view, any particular choice of k, from the infinite set of quantities Bk and

their infinite set of conjugate variables Lk, is as good as any other in describing variations

of the external gravitational field - a consideration which has not been previously stated

in the literature.

A very popular choice in describing these variations in AdS has been the choice k = −2

and the identification L−2 of the extrinsic spacetime pressure, i.e. L−2 = Pe [20–26].5 In

this case, L−2 has dimensions of pressure and the quantity B−2 = Vi has dimensions of

volume. For the particular case of the Schwarzschild-AdS black hole in D = 4, this intrinsic

black hole volume takes the form

Vi =
4

3
πr3

+ . (1.7)

There are several interesting aspects of this particular choice. First of all, the quantities Pe
and Vi have direct analogues with classical thermodynamic systems, they have dimensions

of pressure and volume, respectively [36–38]. In particular the phase diagram Pe(Vi) for

Schwarzschild-AdS black holes can be recast as a van der Waals equation [24]6

Pe =
T

v
− 1

2πv2
, v = 2

(
3Vi
4π

) 1
3

, (1.8)

5There is a large literature on considering the cosmological constant as a thermodynamic variable,

starting with the early papers [27–29] and also for example the later work [30–35].
6For earlier work in the same spirit see [30, 39].
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strengthening further the analogy with classical thermodynamic systems. Furthermore, the

quantity Pe is physically meaningful, since it is the pressure of the cosmological fluid, while

Vi has a geometric interpretation, as it can be obtained for a given black hole in AdS by

means of evaluating the Killing potential [20]. Moreover, there is something peculiar to the

volume Vi. As it may be seen from (1.7), the volume remains constant as the cosmological

constant is sent to zero. The fact that this is the case and that the volume (1.7) coincides

with the naive volume7 in the flat spacetime limit has been seen as further strengthening

the case for introducing the pair of thermodynamic variables (Pe, Vi), despite the fact that

no such quantity enters the first law (1.1) for asymptotically flat black holes.

1.2 A different point of view: gravitational tension

We would like to understand whether or not the introduction of the set of variables (Pe, Vi)

is unique to AdS or can actually satisfy the desired properties (1)-(4) which we have

described above. Regarding property (2) it is clear that it is satisfied by this set of variables,

which also has property (3) since the exercise that we have performed for the Schwarzschild-

AdS black hole can be carried out for any black hole with non-trivial asymptotics and

because extra terms in the first law of the form (1.4) can be obtained by performing the

Legendre transform

M →M +BkLk , (1.9)

therefore moving onto extended phase space in which the length scale Lk is allowed to vary.

However, property (1) is not satisfied in a straightforward way. By this we mean that

one cannot use Killing potentials to obtain the volume Vi for any black hole in an arbitrary

gravitational field, since the volume obtained by a suitable integral of the Killing potential

is non-zero if there is a non-zero cosmological constant [20]. As we will show in the course

of this work, defining Vi does not require a cosmological constant nor introducing matter

in Einstein equations. In fact, it can be defined in backgrounds with non-trivial length

scales which are solutions of the vacuum Einstein equations, such as plane wave solutions

or black hole solutions. Moreover, the pair of variables (Pe, Vi) does not satisfy property

(4), since as we will show in this paper, the volume Vi in flat spacetime, obtained via the

limit in which the background length scales are removed, is meaningless. We show this by

taking two different charged black hole solutions both of which, when the length scales are

removed, reduce to the same charged rotating asymptotically flat black hole but lead to

two different volumes. In addition, one may study asymptotic plane wave black holes with

an arbitrary number of length scales La which, when La = 0, lead to an arbitrary number

of volumes describing an asymptotically flat black hole.8 In this sense, one would have to

argue that an asymptotic flat black hole is characterized by an infinite set of volumes.

7By the naive volume we mean the volume that can be obtained by taking the metric and performing

a volume integration up to the horizon radius. For other black holes like rotating black holes there have

been proposals for how to define the volume [40–42] and we refer the reader to the review [43] for a more

detailed explanation of these cases.
8The idea of associating different pressures and conjugate volumes to different fields has been explored

in [44, 45]. However, the approach of these works requires that the Einstein equations are sourced by extra

fields, while here we take a more general point of view which does not require any extra source fields.
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These considerations demand another point of view and the introduction of new quan-

tities which can be generally applied to any context where a gravitational field surrounding

the black hole is present. We consider borrowing a concept which has its roots in the

study of black branes and Kaluza-Klein (KK) black holes, namely, gravitational tension

(or gravitational binding energy) [46–48] and applying it in a broader context.

Gravitational tension can be thought of as the contribution to the black hole energy

due to the energy stored in the surrounding gravitational field. In the case of the black hole

being a black brane, it is the same as the brane tension associated with a given non-compact

direction. This notion of energy is described by the simplest choice of quantities in (1.4),

namely, k = 1 and λ = 1 for which L1 = L and B1 = T . The first law of thermodynamics

then takes the following form

dM = TdS +
∑
a

ΩadJa + ΦHdQ(p) +
∑
a

T adLa , (1.10)

where we have allowed for the presence of a p-form charge Q(p) and corresponding chemical

potential ΦH as well as the existence of several length scales La and their corresponding

tensions per unit length T a. The corresponding Smarr relation (1.6) reads

(D − 3)M − (D − 2)

(
TS +

∑
a

ΩaJa

)
− (D − 3)ΦHQ = T̂ , (1.11)

where T̂ is the total tension (or gravitational binding energy) given by

T̂ =
∑
a

T aLa =
∑
a

La

(
∂F
∂La

)
T,Ωa,ΦH

. (1.12)

From here we note that the total tension is obtained by summing the result of acting with

the scaling operators d/d logLa on the free energy. If we apply this to the case of the

Schwarzschild-AdS black hole in D = 4 for which L1 = L and T 1 = T we obtain

T = −
r3

+

L3
. (1.13)

This quantity vanishes, as well as T̂ , in the limit L → ∞, in which the surrounding

gravitational field is removed.

The introduction of these new pairs of variables (La,T a) has several advantages. First

of all, they have a well defined physical and thermodynamic meaning. If we take AdS

spacetime as an example then L1 = L is a measure of the spacetime volume associated with

each spacetime direction,9 while T a is a measure of the energy stored per unit spacetime

volume. In fact, when considering the case of black branes, T a is the brane tension per unit

length, which is equal to minus the brane pressure. The variables (La,T a) can be thought

Moroever, these works introduce further ad hoc assumptions such as that there is no pressure associated

with components of the electromagnetic field.
9Note that since we are using the word volume associated to a given spacetime direction then this is

equivalent to using the word length.
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as the reverse of the variables (Pe, Vi), in which brane tension has replaced spacetime

pressure and spacetime volume has replaced black hole volume. Indeed, such point of view

had already been taken in [11, 49–51] for the particular case of KK black holes.

The variables (La,T a) besides having a physical meaning, also have a well defined

geometrical meaning. The length scales La are simply the length scales associated with the

curvature of spacetime along given spacetime directions. The gravitational tensions T a, in

turn, can be obtained in several different ways. If the spacetime has a compact direction,

such as KK spacetimes, or if the the horizon is non-compact then one can simply apply

the prescription of [48].10 If the black hole admits a blackfold limit, as large classes of

higher-dimensional black holes do [6, 52–58], then the prescription of [48] also applies, once

we zoom locally into the horizon rendering it brane-like. The total tension is subsequently

obtained by integrating the local tension over the blackfold worldvolume. If the black

hole does not admit such limit, as is the case of the Schwarzschild-AdS black hole, then

the prescription of [48] needs to be generalised and we leave this generalization for future

work. For the moment, when dealing with these cases, we simply apply (1.12).

Finally, the set of variables (La,T a) can be introduced in the presence of an arbitrary

gravitational field and in this respect it is not different than the set of variables (Pe, Vi).

However, the variables (La,T a) satisfy property (4) which the set (Pe, Vi) does not. More

precisely, when removing the gravitational field we find the universal result T a → 0, which

naturally does not lead to extra quantities describing an asymptotically flat black hole.

1.3 Brief summary

In order to illustrate the ideas expressed above we will first consider the case of distorted

black holes in section 2, i.e., localized KK black holes which can be seen as black objects

surrounded by the presence of their own gravitational field. In this context, we will show

that the concept of tension is much more natural to introduce than the notion of black hole

volume and we will already give evidence for the non-universality of black hole volume in

the flat spacetime limit.

In section 3 we construct a series of new non-trivial and perturbative charged black

hole solutions in Anti-de Sitter, plane wave and Lifshitz spacetimes using the blackfold

approach. In here we study examples of spacetimes with multiple length scales, such as

plane waves, and construct analogues of the higher-dimensional Kerr-Newman solution

of [55] in Anti-de Sitter and plane wave spacetimes. These new black hole solutions are

interesting in their own right, in particular, the Kerr-Newman solution in AdS for which

there is no corresponding exact solution. Furthermore, we provide the first example of

a black hole which is rotating and moreover has non-trivial horizon topology in Lifshitz

spacetimes. The reader may skip this section entirely if he/she is only concerned with the

implications of these results to the modifications of (1.1).

In section 4 we construct perturbative solutions in backgrounds with a black hole. One

of these solutions corresponds to a specific limit of the black saturn solution. We then study

in detail the example of this black hole binary system in five spacetime dimensions using

10We note that this prescription does not require introducing Killing potentials.
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the exact and analytic solution of [8]. Here we focus on the case in which the Myers-Perry

black hole in the centre is not rotating and show that the black ring horizon satisfies a first

law of the form (1.10).

Finally, in section 5, we briefly use the new solutions of section 3 to show that the

notion of volume in flat spacetime is non-universal, while in section 6 we discuss some of the

limitations of this work and future extensions of these research directions. We also provide

some interesting results in the appendices, namely, in appendix A we have collected all

the thermodynamic properties of the new perturbative solutions constructed in this paper,

while in appendix B we have the explicit construction of a family of black holes carrying

string charge. In appendix C we give the thermodynamic quantities of the black saturn

solution in the blackfold regime and compare it with our blackfold constructions.

2 Black holes on cylinders: the Kaluza-Klein case

In this section we analyse the thermodynamic properties of localized KK black holes which

were constructed in a perturbative expansion in dimensions greater than four [10]. These

objects provide examples of black holes immersed in their own non-trivial gravitational field.

We review that the thermodynamics of these objects follow (1.10), as noted in [10, 49, 50],

and that the tension can be extracted from the free energy using (1.12). We then show

that the concept of black hole volume is not the desirable one when analysing variations

in the surrounding gravitational field, which are controlled by variations in L - the KK

compactification parameter. In the end, we also take a look at the case of KK black

strings.

2.1 The localised black hole

The localised black hole in KK spacetime is a static and perturbative solution found in [10]

in D ≥ 5, obtained by perturbing the Schwarzschild black hole to leading order in the

parameter r0/L where r0 is the horizon radius and L the size of the KK circle. Its ther-

modynamic properties can be found in [10] and read

M =
Ω(D−2)

16πG
(D − 2)rD−3

0

(
1 +

1

2
β
(r0

L

)D−3
)

, (2.1)

T =
(D − 3)

r0

(
1− (D − 2)

(D − 3)
β
(r0

L

)D−3
)

, (2.2)

S =
Ω(D−2)

16πG
rD−2

0

(
1 +

(D − 2)

(D − 3)
β
(r0

L

)D−3
)

, (2.3)

where we have defined11

β =
ζ(D − 3)

(2π)D−3
. (2.4)

As noted already in [10, 11], even though it is a localised black hole, it has a tension which

can be obtained via the Smarr relation (1.11) and the above thermodynamic quantities.

11Here ζ(s) is the Riemann Zeta function defined as ζ(s) =
∑∞

m=1m
−s.
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It reads

T̂ =
Ω(D−2)

32πG
β(D − 2)(D − 3)rD−3

0

(r0

L

)D−3
. (2.5)

We note that this quantity vanishes once we take the decompactification limit L → ∞.

This result can also be obtained using (1.12) by evaluating the free energy

F =
Ω(D−2)

16πG
rD−3

0

(
1 +

1

2
(D − 2)β

(r0

L

)D−3
)

, (2.6)

and provides a non-trivial check of formula (1.12). The existence of this tension justifies

the thermodynamic interpretation in terms of brane tension per unit length T = T̂ /L and

spacetime volume L.

Defining spacetime pressure and black hole volume. We now consider the possi-

bility of defining a spacetime pressure and black hole volume. As we have noted in the

previous section, black holes in spacetimes with non-trivial length scales satisfy (1.1) for

an infinite set of quantities. Following the same footsteps as in the introduction, we can

attempt to define the black hole volume by choosing k = −2. This leads to the pressure

Pe = λL−2G−1 and the volume

Vi = −
Ω(D−2)

64π

L2

λ
β(D − 2)(D − 3)rD−3

0

(r0

L

)D−3
. (2.7)

Looking at the above expression, we notice that in dimensions D > 5, the volume Vi goes to

zero in the decompactification limit L→∞, when one would expect that it would reduce

to the non-zero volume of the Schwarzschild black hole in D > 5 (see e.g. [59]) which

was obtained by taking the flat spacetime limit of the volume of the Schwarzschild-AdS

black hole,

V sch
i =

Ω(D−2)

16π(D − 1)
rD−1

0 . (2.8)

In D = 5 we find that Vi ∝ r4
0 and hence we could choose λ appropriately so that Vi for

KK black holes in D = 5 would be equal to (2.8) for the Schwarzschild black hole in the

same number of spacetime dimensions.

This definition of black hole volume, besides only making some sense in D = 5, would

also loose its geometric interpretation since in D = 5 one would expect the black hole

volume to be Vi ∝ r3
0L. It is possible to attempt defining the black hole volume by

introducing a new length scale and defining a shifted mass. This new length scale L̃ leads to

the right scaling of the volume in the decompactification limit L̃→∞ (or L→∞), namely,(
L̃

r0

)2

=

(
L

r0

)D−3

. (2.9)

In this way, we introduce the spacetime pressure Pe = λG−1L̃−2 and define a new mass M̃

by shifting the mass M by a fraction b of the tension such that

M̃ = M + bT̂ . (2.10)

– 9 –
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By requiring the correct thermodynamic behaviour, namely,

∂M̃

∂S
|Pe = T , (2.11)

this implies that we must choose

b =
1

D − 3
− 2

D − 1
. (2.12)

Using (1.5) with k = −2 and L̃ as the new length scale we obtain the black hole volume

Vi = −
Ω(D−2)

16π

β

λ

(D − 2)(D − 3)

(D − 1)
rD−1

0 . (2.13)

Comparing this volume with the volume of the Schwarzschild black hole in D dimen-

sions (2.8) we fix the factor λ such that

λ = −β(D − 2)(D − 3) . (2.14)

While we see that introducing a new mass M̃ , with a priori no inherent physical meaning,

allows us to recover the Schwarzschild black hole volume, we believe that such possibility

is not so natural. The concept of black hole volume and spacetime pressure is useful if

the ADM mass M would satisfy the first law (1.10). However, this is not the case for this

particular example. Consequently, we propose that the concept of tension T̂ is a more

useful one for studying variations in the external gravitational field for KK black holes.

2.2 The black string

Here we briefly consider the case of the KK black string. This solution is simply obtained

by taking an asymptotically flat Schwarzschild black string and compactifying the infinitely

extended direction on a circle of radius L. The resulting free energy for D ≥ 5 is given by

F =
Ω(n+1)

16πG
rD−4

0 L , (2.15)

and once applying formula (1.12) leads to the tension T̂ = F . This tension naturally

behaves like T̂ →∞ when we take the decompactification limit L→∞. This is expected

since the total tension of an asymptotically flat black string diverges while the tension

density T = T̂ /L remains finite. This exercise had the purpose of showing that the tension

per unit length of asymptotically flat black branes can be obtained by compactifying the

infinitely extended directions on a circle and applying formula (1.12).

As in the previous case, we could introduce a naive definition of volume Vi ∝ rD−4
0 L3

or, by introducing a new length scale L̃ = r2
0L
−1 and a new mass M̃ as in (2.10), define a

new volume of the form Vi ∝ rD−4
0 L̃, which would give rise to (2.8) in D − 1 dimensions

once we take the limit L̃→ 0 and evaluate the black hole volume per unit length Vi/L̃. The

latter would require b = −2/(D− 2) and λ = (D− 4)/2. However, for the same reasons as

for the localized black hole, we find both of these possibilities unnatural.

– 10 –
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3 Blackfolds in background spacetimes with intrinsic length scales

In this section we construct new perturbative (charged) black hole solutions in (Anti)-de

Sitter, plane wave and Lifshitz spacetimes using the blackfold approach, which we first

describe in section 3.1. Of special importance is the perturbative construction of the Kerr-

Newman solution in higher-dimensions both in (Anti)-de Sitter and plane wave spacetimes.

Furthermore, we introduce the pair of variables (T , La) for all these solutions in order to

describe variations in the surrounding gravitational field. This pertubative black hole

solutions are interesting in their own right and provide evidence for the existence of a

rich phase space of black hole solutions in these non-trivial spacetimes. If the reader is

interested in the implications of these solutions to the notion of spacetime pressure and

black hole volume, he/she can skip this section entirely and move on to section 4.

3.1 Blackfold essentials

In the blackfold approach [16, 17], one constructs stationary black objects with com-

pact horizons by starting with black brane solutions, with horizon scale r0, of some (su-

per)gravity theory and wrapping these on compact submanifolds with a characteristic scale

R. In the regime r0 � R the near-horizon region is well approximated by a perturbed black

brane geometry and can be corrected order-by-order in a derivative expansion [60–65]. The

prototypical case to keep in mind is the construction of an asymptotically flat black ring

in any dimension D ≥ 5 by wrapping a thin black string with horizon radius r0 on a large

circle with radius R� r0 [60].

This construction, however, is completely general and can be applied to the wrapping

of black branes in any asymptotic background. Since it is convenient to work with known

exact black brane solutions, the explicit examples studied so far in the literature involve

the bending/wrapping of asymptotically flat black branes. In this work, we are interested

in bending asymptotically flat black branes carrying electric charge, which were found

in [55].12 These are black branes which are exact solutions of the following Einstein-

Maxwell-dilaton action

I =
1

16πG

∫
dDx
√
−g
(
R− 2(∇φ)2 − 1

4
e−2aφF 2

)
, (3.1)

where φ is the dilaton field, with a being the dilaton coupling and F is the two-form

field strength dA, with A being the 1-form gauge field. It is convenient to introduce the

parameter N defined as

a2 =
4

N
− 2(D − 3)

(D − 2)
. (3.2)

The perturbative black hole solutions constructed from these brane geometries are not

exclusively solutions of the action (3.1). Instead, other terms, such as the cosmological

constant and other field content, can be added to the above action without affecting this

construction as long as the curvature scales associated with each new field are much larger

12We consider one example of branes carrying string charge in appendix B.
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than the horizon size r0. More precisely, if the blackfold is being constructed in backgrounds

with a set of intrinsic length scales La then we must require that r0 � min(R,La).
13 This

implies that to leading order neither the curvature of the worldvolume nor the curvature

associated with background scales are felt near the horizon and hence that locally the

blackfold is still described by an asymptotically flat black brane solution of the action (3.1).

In order to locally wrap black branes, and in the absence of couplings to gauge/dilaton

external fields, one must satisfy the local constraint equation, which can be derived from

Einstein equations [60, 62], namely,

T abKab
i = 0 , (3.3)

where Kab
i is the extrinsic curvature tensor of the embedding geometry and T ab is the

stress-energy tensor corresponding to the charged black brane, which in this case takes the

perfect fluid form [55]

T ab = (ε+ P )uaub + Pγab , (ε+ P ) = − nP + ΦQ ,

P = −
Ω(n+1)

16πG
rn0 , Φ = tanhα , Q =

Ω(n+1)

16πG
rn0n
√
N sinhα coshα .

(3.4)

Here we have introduced the fluid pressure P , energy density ε, chemical potential Φ,

electric charge density Q and the induced metric on the (p + 1)-dimensional geometry

γab in dimensions D = n + p + 3. The fluid variables P, ε,Q depend only on the local

temperature T and the local chemical potential Φ, which are in turn functions of the

coordinates σa along the world volume. We have also introduced α, which is the charge

parameter of the brane and sometimes more convenient to parameterise blackfold solutions

than the chemical potential Φ.

In stationary equilibrium, which is the case we are interested here, as they give rise to

stationary black holes, the fluid velocities ua must be aligned with a world volume Killing

vector field ka with modulus k, which we can write, without loss of generality, as

ka∂a = ∂τ +
∑
â

Ωâ∂φâ , (3.5)

where τ is the time-like world volume direction and Ωâ is the angular velocity associated

with each of the Cartan angles φâ.
14 Furthermore, in equilibrium we also have that the

global temperature T and global chemical potential ΦH are determined via a redshift of

the local thermodynamic potentials such that T = kT and ΦH = kΦ. This leads to the

relation between the horizon size r0 and the global thermodynamic potentials [55],

r0 =
n

4πT
k

(
1−

Φ2
H

Nk2

)N
2

. (3.6)

A given stationary blackfold configuration is thus described by an induced world volume line

element ds2 = γabdσ
adσb, a world volume Killing vector field ka and the global potentials

T and ΦH.

13A more rigorous determination of the regime of validity of blackfold configurations consists in evaluating

second order world volume scalar invariants [57].
14The Killing vector field (3.5) is required to map to a background Killing vector field [17].

– 12 –



J
H
E
P
0
9
(
2
0
1
6
)
1
2
4

Stationary configurations may also have boundaries. In this case, the constraint equa-

tion (3.3) must also be supplemented by the boundary condition

k|∂Wp+1 = 0 , (3.7)

which, in the uncharged case (ΦH = 0) translates into the condition that the fluid must be

moving at the speed of light on the boundary, while for non-zero charge, it has the physical

interpretation that the brane must be extremal at the boundary. Stationary configurations

have topologies of the form RoB(p) oS(n+1), where B(p) is the topology of the spatial part

Bp of the world volume geometry Wp+1 and S(n+1) denotes the topology of the transverse

spherical space associated with the black brane geometry with properties (3.4).15 In the

case of the existence of boundaries, B(p) is not the topology of Bp but instead the result of

a non-trivial fibration over Bp.
In global thermodynamic equilibrium, the constraint equation (3.3) can be equally

derived from an effective free energy functional F given by [6, 54, 55]

F [Xi] = −
∫
Bp
R0P (T ,Φ) , (3.8)

where Xi denotes the set of transverse scalars describing the position of the surface in the

ambient space and R0 is the modulus of the time-like worldvolume Killing vector field ∂τ .

Given the effective free energy, one can easily extract the conjugate global thermodynamic

potentials to T,Ωâ,ΦH of the blackfold configuration, namely, the entropy S, the angular

momenta Jâ and the electric charge Q via the corresponding relations

S = −∂F
∂T

, Jâ = − ∂F
∂Ωâ

, Q = − ∂F
∂ΦH

. (3.9)

These thermodynamic properties can also be obtained via the integration of appropri-

ate conserved currents [17, 55]. With these quantities introduced, we note that the free

energy (3.8) satisfies

F = M − TS −
∑
a

ΩaJa − ΦHQ(p) . (3.10)

The total tension can also be obtained using (1.12), and using appropriate conserved cur-

rents, it is possible to derive its general form

T̂ = −
∫
Wp+1

dV(p)R0

(
γab + nanb

)
Tab , na∂a = R−1

0 ∂τ . (3.11)

By the same token, it is possible to derive, from general principles, the Smarr relation (1.11)

and the first law (1.10). The Smarr relation (1.11) with the tension (3.11) was first derived

in [52] and using the Euler argument, it follows that the first law (1.10) is satisfied. We thus

see that blackfolds naturally exhibit this universal thermodynamic behavior in spacetimes

with non-trivial asymptotics.

15Here we have assumed that the world volume geometry is of the form R× Bp.
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3.2 (Anti)-de Sitter background

Here we construct novel black holes with electric charge in global (A)dS and in appendix B

we consider the case of black holes with dipole charge. We write the global (A)dS metric

in the form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
(D−2) , f(r) = 1 +

r2

L2
, (3.12)

where L is the AdS radius. In order to obtain the de Sitter metric we simply perform the

Wick rotation L→ iL.

3.2.1 Charged black odd-spheres

This type of configurations are obtained by embedding a p-dimensional sphere with radius

R in the background (3.12). We set the configuration to rotate with equal angular velocity

Ω in each of the [(p+ 1)/2] Cartan angles of the p-dimensional sphere, labelled by φâ. The

embedded geometry and the corresponding Killing vector field are given by

ds2 = −f(R)dτ2 +R2dΩ2
(p) , ka∂a = ∂τ + Ω

[(p+1)/2]∑
â=1

∂φâ , f(R) = 1 + R2 , (3.13)

where we have defined the dimensionless radius R = R/L. We choose to parametrise the

resulting configuration in terms of the variables r0,R, α. In terms of these, the free energy

takes the simple form

F [R] =
Ω(n+1)V(p)

16πG
f(R)rn0 , (3.14)

where V(p) = Ω(p)R
p. Upon variation of this with respect to R, restricting to the cases

where p is odd, and solving the resulting equation leads to the equilibrium condition

Ω2R2 = (1 + R2)
R2
(
nN sinh2 α+ n+ p+ 1

)
+ p

R2
(
nN sinh2 α+ n+ p+ 1

)
+ nN sinh2 α+ n+ p

. (3.15)

This expression connects to several others in the literature. In the uncharged limit α = 0,

this yields the result obtained in [53], while in the flat space limit L→∞, this yields the

result of [55]. When taking both limits, α→ 0 and L→∞ we obtain the result of [52].

Properties of the solution. There are several interesting cases that should be noted.

First of all, these black holes with horizon topology R × S(p) × S(n+1) admit an extremal

limit. Taking α→∞ we obtain the equilibrium condition

Ω2R2 =
1 + R2

2
, (3.16)

for extremal black odd-spheres. In the flat space case for which R = 0 this reduces to the

analysis of [55].
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Secondly, in the deSitter case for which L → iL and hence R → iR, not all values of

R are allowed. In fact we find the two possible regimes

R ≤ 1 ∨ p

nN sinh2 α+ n+ p+ 1
≤ R ≤ nN sinh2 α+ n+ p

nN sinh2 α+ n+ p+ 1
. (3.17)

The extremal branch of solutions lies within the regime R ≤ 1. Furthermore, as noted

in [53], in deSitter spacetime there can exist static solutions (Ω = 0) and, as noted in [57],

they are valid for all p ≥ 1 and not only for odd p. These are solutions for which the radius

takes the specific value of

R =
p

nN sinh2 α+ n+ p+ 1
. (3.18)

We note here that this branch of static solutions does not admit an extremal limit.

Gravitational tension. Using (3.14) we can obtain all thermodynamic properties which

we collect in appendix A while here we present expressions for the tension. Using for-

mula (1.12) together with (3.14), we obtain the total tension given by

T̂ = −
Ω(n+1)V(p)

16πG
rn0 R2

√
1 + R2

(
nN sinh2 α+ n+ p+ 1

)
, (3.19)

which is a function of T,Ω and L, where Ω was given in (3.15). From here we can introduce

the tension per unit spacetime volume such that

T =
T̂
L

= −
Ω(n+1)V(p)

16πG

rn0
L

R2
√

1 + R2
(
nN sinh2 α+ n+ p+ 1

)
. (3.20)

These quantities satisfy the first law (1.10) and the Smarr relation (1.11). Furthermore,

both these quantities vanish once we take the limit L → ∞, leaving their corresponding

asymptotically flat counterparts with no extra quantities characterizing them.

3.2.2 Charged black discs: analogue of the Kerr-Newman black hole

In this section we make a perturbative construction of the analogue of the Kerr-Newman

black hole in higher-dimensional (A)dS with one single angular momentum. This cor-

responds, in the blackfold approximation, to an electrically charged rotating disc with

induced metric and Killing vector field

ds2 = −f(ρ)dτ2 + f(ρ)−1dρ2 + ρ2dφ2 , ka∂a = ∂τ + Ω∂φ , f(ρ) = 1 +
ρ2

L2
. (3.21)

This geometry develops a boundary when k = 0, for which the brane becomes locally

extremal, corresponding to the maximum of ρ given by

ρmax =

√
1− Φ2

H/N

Ω
√
ξ

, ξ = 1− 1

L2Ω2
, (3.22)
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which implies in the AdS case that ΩL ≥ 1. This disc configuration trivially solves the

blackfold equations (3.3) since it is a minimal surface [57]. The thickness of the disc and

the charge parameter are given by

r0(ρ) =
n

4πT

(
1− ξρ2Ω2

) 1−N
2

(
1− ξρ2Ω2 −

Φ2
H

N

)N/2
,

tanhα(ρ) =
ΦH/
√
N√

1− ξρ2Ω2
.

(3.23)

Therefore, at the boundary ρmax the thickness r0 of the disc vanishes and hence the re-

sulting black holes have topology R × S(D−2). The thickness remains finite for all values

of ξ and hence this configuration lies within the regime of validity r0 � L.16 In the un-

charged case ΦH = 0, this reduces to the construction of [53] and when L → ∞, hence

when ξ → 1, it reduces to the higher-dimensional Kerr-Newman solution perturbatively

constructed in [55].

This configuration has several interesting properties. In particular, it admits an ex-

tremal limit, for which ΦH →
√
N . In this case it seems that the size of the disc (3.22)

would shrink to zero. As noted in [55] for the asymptotically flat case, one must also have

that Ω → 0 such that the ratio
√

1− Φ2
H/N/Ω remains finite. However, in the presence

of the cosmological constant this is not possible. Instead, attaining extremal regimes is

only possible in AdS for which one must send ΩL → 1, hence ξ → 0, such that the ratio√
1− Φ2

H/N/
√

Ω2L2 − 1 remains constant. From (3.23) it implies that the temperature

must also approach zero such that the ratio (1 − Φ2
H/N)N/2/T remains finite. In this sit-

uation, the disc is not rotating at very slow speeds as in the flat space case. This is not

possible in deSitter spacetime as there one has that ξ ≥ 1. On the other hand we note that

in dS, static solutions where the disc has finite size exist for which its size is given by

ρmax|Ω→0 = L
√

1− Φ2
H/N . (3.24)

When the disc is uncharged and static, it ends on the cosmological horizon as noted in [53].

However, we observe here that if the disc is charged it does not reach the cosmological

horizon. One may also conclude from here that static and extremal discs do not lie within

the regime of validity of our method.

We now proceed and evaluate the free energy for these configurations from which all

thermodynamic properties can be obtained. This is given by

F =
Ω(n+1)

8G
r̃n0

2F1

(
1, 1

2(N − 1)n; Nn2 + 2; 1− Φ2
H
N

)
ξΩ2(2 +Nn)

, (3.25)

where we have defined

r̃n0 =
( n

4πT

)n(
1−

Φ2
H

N

) 2+Nn
2

. (3.26)

16The boundary of the blackfold deserves special attention, see [57] for a discussion of its validity.
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The thermodynamic properties are given in appendix A. From here we also extract

the tension

T̂ = −
Ω(n+1)

4G
r̃n0

2F1

(
1, 1

2(N − 1)n; Nn2 + 2; 1− Φ2
H
N

)
(2 +Nn)ξ2L2Ω4

, (3.27)

which, as expected, vanishes in the limit L → ∞. Its thermodynamic properties sat-

isfy (1.10) and (1.11).

3.3 Plane wave background

In this section we consider the perturbative construction of new black holes in a plane wave

background with metric

ds2 = −

(
1 +

D−2∑
q=1

Aqx
2
q

)
dt2 +

(
1−

D−2∑
q=1

Aqx
2
q

)
dy2 − 2

D−2∑
q=1

Aqx
2
qdtdy +

D−2∑
q=1

dx2
q . (3.28)

Here the constants Aq define the curvature length scales 1/
√
Aq of the spacetime. We

furthermore assume that this is a solution of the vacuum Einstein equations, which requires

that TrAq = 0. This background is of special importance, since contrary to (A)dS, it is

in general anisotropic as there is a set of (D − 3) independent length scales, each of them

associated with a particular spacetime direction.

The configuration studied in (A)dS in section 3.2.1 is also a solution in the back-

ground (3.28) as long as it is embedded such that y = 0 [57]. To leading order in this pertur-

bative construction all the solution properties are the same provided we define R = R
√
A1

where A1 is the value of Aq for all the directions involved in the planes of rotation of

the odd-sphere. In order to exhibit the differences between this spacetime and (A)dS, we

consider the case of product of odd-spheres, to highlight its multi-scale properties, and the

analogue of the disc solution of section 3.2.2.

3.3.1 Products of black odd-spheres: a multi scale example

In this section we consider the simple case of the product of m uncharged odd-spheres

in the background (3.28). The corresponding black holes solutions have horizon topology

R ×
∏n
â=1 S(pâ) × S(n+1) and were in fact constructed in [57]. These are described by the

induced metric and Killing vector field

ds2 = −R2
0dτ

2 +

m∑
â=1

R2
âdΩ2

(pâ) , R
2
0 = 1+

m∑
â=1

AâR
2
â , ka∂a = ∂τ +

[(p+1)/2]∑
â=1

Ωâ∂φâ , (3.29)

where Ωâ is the angular velocity associated with all the [(pâ + 1)/2] Cartan angles of each

pâ-dimensional sphere. It’s free energy is given by

F [Râ] = −V(p)R0P , V(p) =
m∏
â=1

Ω(pâ)R
pâ
â , (3.30)
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while the equilibrium condition reads [57]

(Ωâ)2R2
â = R2

0

p̂a + R2
â(n+ p+ 1)

(n+ p) + (n+ p+ 1)R2
, R2

â = AâR
2
â , R =

m∑
â=1

R2
â . (3.31)

The thermodynamic properties, namely, the mass, angular momenta and entropy can actu-

ally be found in [53] since these configurations to leading order exhibit the same properties

as in (A)dS if one identifies Aâ = L−2 for all â = 1, . . . ,m. Note that here we assume that

there is another non-zero scale Am+1 such that TrAq = 0 but which does not enter in the

thermodynamics of the configuration due to the choice of embedding. Hence all the scales

Aâ with â = 1, . . . ,m are independent scales.

We now proceed and analyse the total tension T̂ from (3.30), which is given as a sum

of tensions, one for each pâ-sphere, which we label by T̂ â. We find the simple result17

T̂ â = −
Ω(n+1)V(p)

16πG
rn0 R2

â

√
1 + R2 (n+ p+ 1) , (3.32)

which vanishes when Aâ → 0. This example shows that these black holes are characterised

by a set of tensions, satisfying the first law (1.10).

3.3.2 Charged black discs

In this section we construct the analogue of the disc solution of section 3.2.2, which will

reveal the non-universal character of the spacetime pressure for a given spacetime. These

configurations are charged versions of those found in [57], obtained via an embedding such

that y = 0 with induced metric and Killing vector field

ds2 = −R2
0dτ

2 + dρ2 + ρ2dφ2 , R2
0 = 1 +A1ρ

2 , ka∂a = ∂τ + Ω∂φ , (3.33)

where we have chosen A2 = A1 such that the Killing vector field presented above is a

Killing vector field of the background (3.28). This is trivially a solution of the blackfold

equations as it also represents a minimal surface in these spacetimes [57]. The thickness

and charge parameter of the disc are given by (3.23) but with the replacement A1 = L−2.

Hence, the disc has a maximum size given by (3.22) and the discussion regarding extremal

limits in AdS also holds in this case provided A1 > 0. The case A1 < 0 is similar to

deSitter spacetime.

The thermodynamic properties, due to the different induced metric, are however alto-

gether distinct from its (A)dS counterpart. It is possible to derive them for any N , however,

the resulting expressions are slightly cumbersome. Therefore we focus on the simplest case

of N = 1 which captures all the essential physics.18 In this case, the free energy takes the

following form

F =
Ω(n+1)

8G
r̃n0

2F1

(
−1

2 , 1; n+4
2 ;

A1(Φ2
H−1)

Ω2−A1

)
(n+ 2) (Ω2 −A1)

, r̃n0 =
( n

4πT

)n (
1− Φ2

)n
2

+1
, (3.34)

17Note that here we had to use instead the formula T̂ â = −2Aâ
∂F
∂Aâ

due to the the fact that Aâ has

dimensions of inverse length square.
18The case N = 1 corresponds to a Kaluza-Klein reduction.
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while the remaining thermodynamic properties are given in appendix A. From here we

extract, as previously, the total tension and find

T̂ =−
Ω(n+1)

2G
r̃n0

Γ
(
n
2 + 3

)
(n+ 2)(n+ 4) (A1 − Ω2)2

(
Ω2

2F̃1

(
−1

2
, 2;

n+ 4

2
;
A1(Φ2

H − 1)

Ω2 −A1

)
+
(
A1 − Ω2

)
2F̃1

(
−1

2
, 1;

n+ 4

2
;
A1(Φ2

H − 1)

Ω2 −A1

))
,

(3.35)

which vanishes, as expected, when A1 → 0.

3.4 Lifshitz background

We now consider one of the Lifshitz spacetimes found in [66] as the background for pertur-

batively constructing new solutions. This spacetime has a spherically symmetric metric of

the form

ds2 = − r
2z

L2z
f(r)dt2 +

L2

r2
f(r)−1dr2 + r2dΩ2

(D−2) , f(r) = 1 + β
L2

r2
, (3.36)

where we have defined the constant β as

β =

(
(D − 3)

(D + z − 4)

)2

. (3.37)

Here, z is the Lifshitz exponent which can lie in the interval z ≥ 1. In the limit z → 1 we

obtain the AdS metric (3.12). This spacetime is in fact supported by several gauge fields

and dilaton in order to be a solution of the model studied in [66]. However, since we will be

constructing an uncharged solution, we do not need to take into account possible couplings

to these background fields.

We focus on the analogue configurations of the odd-spheres of section 3.2.1, hence of

a class of black holes with horizon topology R × S(p) × S(n+1) which includes the case of

the black ring (p = 1). This configuration has an induced metric and Killing vector field

given by

ds2 = −R
2z

L2z
f(R)dτ2 +R2dΩ2

(p) , f(R) = 1 + β
L2

R2
, ka∂a = ∂τ + Ω

[(p+1)/2]∑
â=1

∂φâ . (3.38)

The blackfold equations (3.3) are easily solved. By defining R = R/L we obtain the

equilibrium condition

ΩR =

√
β + R2Rz−1

√
(n+ 2) (R2z + β(z − 1)) + p (β + R2)√

(β + R2) .(n+ p+ 2z − 1)− β
. (3.39)

With this we evaluate the horizon size of the odd-sphere and find

r0 =
n

4πT

(
−
n
(
β + R2

)
R2z−2

(
R2(z − 1) + β(z − 2)

)
(β + R2) (n+ p+ 2z − 1)− β

)n/2
. (3.40)
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We see that for this to take real values we must require that

R2(z − 1) + β(z − 2) < 0 , (3.41)

which implies that we must restrict to values of z within the interval 1 ≤ z < 2. This we

assume from now on and in the remaining of this section.

With this we obtain the total tension which takes the form

T̂ = −
Ω(n+1)

16πG
V(p)r

n
0

(n+ p+ z)
√
β + R2

(
z
(
β + R2

)
− β

)
Rz−1

|R2(z − 1) + β(z − 2)|
, (3.42)

which vanishes when L→∞. The thermodynamic quantities non-trivially satisfy the first

law (1.10). This is the first example of a black hole solution with non-trivial topology in

these spacetimes.

4 Blackfolds in background spacetimes with a black hole

In this section we present the perturbative construction of toy models of black hole binary

systems, namely, the generalisation of the black saturn solution to higher-dimensions and

with electric charge. Focusing on the case in which the centre black hole is not rotating

and is surrounded by a black ring, leaving the rotating case for future work, we consider

introducing a definition of black hole volume. We show that such definition does not

give rise to the expected scaling once the centre black hole is removed. Therefore, using

gravitational tension as the natural modification of (1.1), we take the exact black saturn

solution in five dimensions and extract the tension to one higher-order in the ultraspinning

regime. This requires enforcing the first law (1.10) to hold on the black ring horizon.

Finally, we also consider the generalisation of these solutions to AdS backgrounds,

thereby illustrating the case in which there are two different tensions, where one is associ-

ated with the centre black hole mass and the other with the cosmological constant.

4.1 Schwarzschild black hole background

We begin with the Schwarzschild black hole background which has a spherically symmetric

metric as in (3.12) but with a function f(r) given by

f(r) = 1− µD−3

rD−3
, (4.1)

where µ is the horizon location of the Schwarzschild black hole. In this background we

place a charged odd-sphere geometry at a fixed r = R and hence the induced metric and

Killing vector field are the same as in section 3.2.1 as well as the free energy (3.14) but with

the function (4.1). It is straightforward to obtain the equilibrium condition, which reads

Ω2R2 = f(R)
2pf(R) + (1 + n+ nN sinh2 α)Rf ′(R)

2(nN sinh2 α+ n+ p)f(R) +Rf ′(R)
. (4.2)

This equilibrium condition is in fact valid for any spherically symmetric spacetime of the

form (3.12) for some function f(r). In the limit α→ 0 it reduces to that obtained in [53].
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Defining the dimensionless ratio R = µ/R, which vanishes when the black hole is removed

µ→ 0, and using (4.1) we can rewrite the above condition as

Ω2R2 =
(Rn+p − 1)

(
Rn+p

(
nN sinh2 α(n+ p) + n(n+ p+ 1)− p

)
+ 2p

)(
2nN sinh2 α (Rn+p − 1) + (n+ p) (Rn+p − 2)

) . (4.3)

From here we see that extremal configurations exist when α→∞. Furthermore, using the

free energy (3.14) in order to compute the conserved charges of this configuration, which

are presented in appendix A, and the Smarr relation (1.11), we obtain the total tension

T̂ = −
Ω(n+1)V(p)r

n
0

16πG
Rn+p

√
1−Rn+p

(n+ p)
(
nN sinh2 α+ n+ p+ 1

)
2−Rn+p(n+ p+ 2)

, (4.4)

where we have defined V(p) = Ω(p)R
p. We note that in D = 5 and for a ring geometry

(p = 1), that is, n = 1, and in the uncharged limit (α = 0), this describes the black ring

surrounding the spherical black hole in the black saturn solution of [8]. In appendix C we

show explicitly, by taking the blackfold limit of [8], that this is indeed the case.19 We note

that the thermodynamic properties of this solution and considering the tension per unit

length T = T̂ /µ, it is straightforward to check that the first law (1.10) is satisfied and,

furthermore, both T and T̂ vanish when µ→ 0.

Spacetime pressure and black hole volume in black hole backgrounds. As we

have shown in the introduction, these solutions satisfy the first law (1.1) for an infinite set

of quantities. We may introduce a notion of black hole volume by choosing k = −2, which

leads to the black hole volume

Vi =
Ω(n+1)V(p)

32πG

rn0
λ
µ2Rn+p

√
1−Rn+p

(n+ p)
(
nN sinh2 α+ n+ p+ 1

)
2−Rn+p(n+ p+ 2)

. (4.5)

From here we see that once we remove the black hole µ → 0, the volume (4.5) vanishes.

This is not the expected result for the volume in this limit. More precisely, the volume for

the black ring (p = 1) has been computed in [59] by taking the flat spacetime limit of the

perturbative construction of an uncharged AdS black ring in the ultraspinning regime [18].

The volume for this case scales like Vi ∝ rn0R
2 in the flat spacetime limit. Since this

solution corresponds to the case µ → 0 and α = 0, p = 1 in (4.5), we see that the volume

introduced in (4.5) does not scale in the expected way. We could introduce by hand a new

length scale L̃ such that (L̃/R)2 = (µ/R)D−3 which would lead to the right scaling in the

flat spacetime limit. However, this would not satisfy the first law (1.1) with a pressure of

the form Pe = λL̃−2, even if we would try to define a new mass M̃ as in section 2. Again,

therefore, we conclude that the notion of gravitational tension is more natural than the

notion of black hole volume.

Blackfold mass in asymptotically flat black hole backgrounds. We note that

the definition of gravitational tension is related to the generalised first law of thermody-

namics (1.10), and hence to a specific definition of mass/energy, namely, the definition

19In the charged case for Kaluza-Klein coupling (N = 1) this potentially describes a particular limit of

the charged black saturn solution obtained in [67]. We leave this check for future work.
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of mass that enforces (1.10) for a given black hole horizon in the presence of surround-

ing gravitational fields. When using the free energy (3.14) and the thermodynamic rela-

tions (3.9), (3.10) we obtain the mass of this blackfold construction, which is given by

M =
Ω(n+1)V(p)

8πG
rn0 (1−Rn+p)

3
2

(
nN sinh2 α+ n+ p+ 1

)
2−Rn+p(n+ p+ 2)

. (4.6)

However, as we show in appendix C this mass, with the appropriate values of the several

constants involved, does not correspond to the Komar mass MBR measured near the black

ring horizon of the black saturn solution. In fact we find that

MBR = M − T̂
(D − 3)

. (4.7)

This is expected since the authors of [8] have shown that the first law (1.1) holds for the

black saturn solution where M is the total ADM mass, which is the sum of the Komar

masses of the centre black hole and of the black ring. However, if we require the existence

of a first law that holds for each individual horizon then we must introduce a new mass

measured in connection with each separate horizon. For the black ring horizon, this is

precisely (4.6), that is, the mass that is directly obtained from the blackfold approach,

which already takes into account the contribution from the gravitational binding energy

due to the presence of the centre black hole. Note that this is rather different than the KK

case of section 2, since there both the original mass M and the shifted mass M̃ satisfied

the first law of thermodynamics. In this case, only the blackfold mass (4.6), obtained from

general principles, satisfies the first law.

Free energy for the black ring in the black saturn solution. From the above

discussion about the mass we are lead to an intriguing consequence for the thermody-

namics of disconnected horizons, namely, the free energy for a given horizon, obtained via

local computations of the conserved quantities, does not behave in a thermodynamically

correct way.

In the case of the black saturn solution in D = 5, if we denote the black ring mass and

angular momentum, which can be obtained via Komar integrations near the horizon [8],

by MBR and JBR , and furthermore, denoting the black ring horizon temperature, angular

velocity and entropy by TBR, ΩBR and SBR, then the free energy FBR = MBR−TBRSBR−
ΩBRJBR can be seen as the free energy of a black ring in a non-trivial background for which

the background length scale is that associated with the mass MBH of the black hole in the

center. However, we find that the following expected thermodynamic relations do not

hold, i.e.,

SBR|MBH,ΩBR 6= −
∂FBR

∂TBR
, JBR|MBH,TBR 6= −

∂FBR

∂ΩBR
. (4.8)

Indeed this could have been anticipated, due to the fact that in the ultraspinning limit, the

black ring mass, obtained from the blackfold approach, does not coincide with the Komar

integration on the black ring horizon. Therefore, in order to define a proper free energy
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for a given horizon in a black hole solution with multiple disconnected horizons, we must

introduce another notion of mass for that specific horizon.

We now give an explicit construction of this mass for the black ring in the black

saturn solution for which the angular momentum of the center black hole vanishes. All

thermodynamic quantities can be parametrised by 3 parameters L, β, k2 (see appendix C),

where β controls the mass of the center black hole. If β = 0 we obtain the pure black

ring solution. The relation between these parameters, in the ultraspinning limit, and those

used to parametrize the solution (4.3), is given in (C.14)–(C.15). We now proceed by

introducing a new mass M by adding to the Komar mass MBR a term proportional to a

function f(β, k2) such that

M =
3π

4G
L2 (k2 + f(β, k2)) , (4.9)

and we want to demand that the resulting free energy F = M−TBRSBR−ΩBRJBR satisfies

the thermodynamic relations (4.8). Due to the cumbersome expressions inherent to the

black saturn solution, we will show how this is done to first order in the ultraspinning

approximation, i.e., in an expansion around k2 = 0. We first decompose f(β, k2) as

f(β, k2) = k2f(β)(0) + k2
2f(β)(1) +O(k3

2) . (4.10)

To leading order in the ultraspinning limit, there is already a correction, as we have seen

above, which one can easily corroborate from the analytic solution and hence obtaining

f(β)(0) = β/(β − 2). With this value of f(β)(0), the mass (4.9) to order O(k2
2) yields (4.6)

in the uncharged case (α = 0), as shown in appendix C. Proceeding to next order we find,

f(β)(1) =
β (β(17 + β(2β − 5))− 12)

6(β − 2)3(β − 1)
. (4.11)

Now, using the Smarr relation (1.11) we find the total tension

T̂ = −3πL2

2G
k2β

(
1

(2− β)
+

(β(17 + β(2β − 5))− 12)

6(β − 2)3(1− β)
k2 +O(k2

2)

)
, (4.12)

which when using (C.14)–(C.15), to leading order in k2, coincides with (4.4). This pro-

cedure can be iteratively continued to arbitrary orders in k2. It would be interesting to

obtain an exact expression for the shifted mass to all orders, and consequently obtain the

exact gravitational tension for the black ring in the black saturn solution. Furthermore,

a similar analysis can be carried out for the free energy of the centre black hole horizon,

which can be thought of as a black hole placed in the gravitational field of a black ring.

We leave this interesting analysis for future work.

4.2 Schwarzschild-(A)dS black hole background

We now briefly consider a similar construction in (A)dS spacetimes by placing a ring

surrounding a Schwarzschild-(A)dS black hole. The metric of the Schwarzschild-(A)dS

black hole takes the same form as in (3.12) but with the blackening factor

f(r) = 1 +
r2

L2
−
(µ
r

)n+p
, (4.13)
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where µ is the horizon location of the Schwarzschild black hole and L is the size of (A)dS.

In this background we place a neutral odd-sphere geometry at a fixed r = R and hence

the induced metric and Killing vector field are the same as in section 3.2.1 as well as the

free energy (3.14), but with the function (4.13). The equilibrium angular velocity is given

by (4.2) and using (4.13) we can rewrite the equilibrium condition as

Ω2R2 =

(
1 + R2−R̃

n+p
)(

(n+ 1)
(

2R2+(n+ p)R̃
n+p
)

+ 2p
(

1+R2−R̃
n+p
))

((
2R2 + (n+ p)R̃

n+p
)

+ 2(n+ p)
(

1 + R2 − R̃
n+p
)

+ 2p
) , (4.14)

where we have defined the dimensionless quantities R = R/L and R̃ = (µ/R). We now

proceed and analyse the total integrated tension T̂ from (3.30), which is given as sum

of tensions, one for the black hole and one for the the (A)dS radius. The results are

the following

T̂ µ =
V(p)Ω(n+1)

16πG
rn0 R̃

n+p (n+ p+ 1)(n+ p)

√
1 + R2 − R̃

n+p

(n+ p+ 2)R̃
n+p − 2

, (4.15)

T̂ L =
V(p)Ω(n+1)

8πG
R2 (n+ p+ 1)

√
1 + R2 − R̃

n+p

(n+ p+ 2)R̃
n+p − 2

rn0 . (4.16)

Since each scale is independent, we can view this spacetime as having two distinct ten-

sions: the one associated with AdS spacetime and the one associated with Schwarzschild

spacetime. By defining the corresponding tensions per unit length, it is straightforward to

see that the first law (1.10) holds. The remaining thermodynamic properties can also be

easily obtained as in the previous examples.

5 Non-universality of black hole volume

In this section we analyse the consequences of the existence of the perturbative solutions of

section 3 to the notion of black hole volume. We have already argued that this notion was

unnatural and did not lead to he expected scaling for both the KK black holes of section 2

and the higher-dimensional black saturn solutions of section 4.1. However, since a sceptic

reader might consider those examples too exotic or far removed from the case of black holes

in AdS, we focus in this section on two simpler examples. In particular, we look at the

family of (charged) black odd-spheres of sections 3.2.1, 3.3.1 and 3.4 in AdS, plane wave

and Lifshitz spacetimes respectively, as well as the family of charged rotating black holes

in sections 3.2.2 and 3.3.2 in AdS and plane wave spacetimes respectively.

Our methodology consists in analysing the flat spacetime limit of each of these families

of solutions. Since in this limit all the different cases within each familiy reduce to the

same flat spacetime black hole solution, then, if the notion of black hole volume is to be

meaningful in this limit, it must be universal. If we denote the black hole volume for a

given family of solutions in the flat spacetime limit by Ṽi, then we must require that

Vi|La→∞ → Ṽi . (5.1)
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However, as we will see, if we require this to be the case for the family of black odd-spheres

(which contains black rings as a particular case) then we are forced to accept that black

odd-spheres in flat spacetime are characterized by an infinite set of volumes. Furthermore,

we will see that it is not possible to demand (5.1) for the family of charged black discs

(charged rotating black holes).

5.1 Black odd-spheres

We first consider the case of the black odd-spheres in AdS, which we constructed in sec-

tion 3.2.1. Since we are in AdS, we take (1.8) as a working definition of pressure in AdS.

Therefore we find the black hole volume

Vi =
Ω(n+1)V(p)

2(n+ p+ 1)(n+ p+ 2)
rn0R

2
√

1 + R2
(
nN sinh2 α+ n+ p+ 1

)
, (5.2)

for this particular class of AdS solutions. In the uncharged case (α = 0) and for the ring

(p = 1) this volume had been obtained in [59]. From here we obtain the non-zero flat

spacetime limit of the volume (5.2) by taking R → 0. For simplicity, focusing on the

uncharged case α = 0, we obtain

Ṽi =
Ω(n+1)V(p)

2(n+ p+ 2)
rn0R

2 . (5.3)

We now consider, by the same token, obtaining the black hole volume for the class of Lifshitz

solutions of section 3.4. We note that in Lifshitz spacetimes, the authors of ref. [68] have

recently proposed the following definition of the spacetime pressure

Pe =
(D + z − 2)(D + z − 3)

16πL2
, (5.4)

which reduces to (1.8) when z = 1. Using (5.4), the black hole volume for this class of

solutions is given by

Vi =
Ω(n+1)

2
V(p)r

n
0

√
α+ R2

(
z
(
β + R2

)
− β

)
Rz−1

(n+ p+ z + 1) |R2(z − 1) + β(z − 2)|
. (5.5)

This indeed reduces to the volume (5.2) when z = 1 and hence has the same flat spacetime

limit (5.3). This corroborates the choice of spacetime pressure (5.4) by the authors [68].

However, let us consider the case of the odd-spheres in plane wave spacetimes con-

structed in section 3.3.1. These solutions reduce to the same flat spacetime odd-spheres as

the previous two cases when Aâ → 0. Since in plane wave spacetimes we have m length

scales and each length scale is independent, then, associated with each tension computed

in (3.32), we have a specific black hole volume V â
i . Taking the pressure on each direction

to be given by

P âe =
(D − 1)(D − 2)

16π
Aâ , (5.6)

we obtain a set of black hole volumes

V â
i =

Ω(n+1)V(p)

2(n+ p+ 2)
rn0R

2
â

√
1 + R2 , (5.7)
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each associated with one of the pâ-spatial parts of the worldvolume. The existence of this

set of volumes is a direct consequence of the anisotropy of the spacetime. The definition

of pressures (5.6) is indeed the correct one for these configurations since the flat spacetime

limit of the volume (Aâ → 0) coincides with (5.3). However, since we have an arbitrary

number of volumes V â
i associated with each non-trivial plane wave direction, then we must

conclude that the corresponding flat spacetime black holes would be characterised by an

arbitrary number of black hole volumes. For this reason, we argue that it is more natural to

work with the gravitational tension associated with each spacetime direction, all of which

vanish when taking the flat spacetime limit.

5.2 Charged rotating black holes

We first consider the analogue of the Kerr-Newman solution in higher-dimensions in AdS

constructed in 3.2.2. Using the results of that section we obtain black hole volume

(Vi)AdS =
2Ω(n+1)

(D − 1)(D − 2)
r̃n0

2F1

(
1, 1

2(N − 1)n; Nn2 + 2; 1− Φ2
H
N

)
(2 +Nn)ξ2Ω4

, (5.8)

where we have used the definition of pressure (1.8). This volume in the limit L→∞ and

for ΦH = 0 yields the black hole volume corresponding to the Myers-Perry black hole in the

ultraspinning regime in D ≥ 6, which has been analysed in [22]. In the uncharged case and

in (A)dS, this volume has also been computed in [22, 25, 59] for the entire family of higher-

dimensional Kerr-(A)dS black holes. The exact form obtained here for the ultraspinning

regime was only analysed in [59] and for the special case where ξ → 0 for which the black

hole saturates the BPS bound [69] in AdS.

We now consider the case of the charged black holes in plane wave spacetimes con-

structed in section 3.3.2 which have the same flat spacetime limit as the case above. In

this case we take the pressure to be of the form Pe = λA1G
−1. Using (3.35), we express

the black hole volume in terms of λ and the tension T̂ such that

(Vi)pp = − GT̂
2λA1

. (5.9)

In order to obtain the correct factor λ we compare the volume (5.8) in the flat spacetime

limit L → ∞ and the volume (5.9) in the same flat spacetime limit A1 → 0. We find

the ratio

(Ṽi)AdS

(Ṽi)pp

=
16πλ

(n+ 3)(n+ 5− Φ2
H)

. (5.10)

If we demand the black hole volume to be universal in the flat spacetime limit we must

require the above ratio to be equal to unity. However, we would have to require λ to

have a dependence on the chemical potential ΦH which is not possibe since λ is a constant

by definition. If we were to allow such dependence then the first law (1.1) would bot be

satisfied. Therefore, we conclude, thermodynamic black hole volume in the flat spacetime

limit is not universal. This indeed suggests that the definitions of black hole volume

introduced in the literature [40–42] are not fundamentally related to the thermodynamic

black hole volume.
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6 Outlook

In this paper we have shown that there is an infinite set of conjugate thermodynamic

variables (Bk,Lk) that can be introduced in order to describe the modifications in the

first law (1.1) due to variations of external gravitational fields. We have argued that

the most natural quantity that describes these variations is the gravitational tension (or

gravitational binding energy) that describes the extra energy associated to a black hole due

to the presence of surrounding gravitational fields. We have furthermore argued that the

popular choice of black hole volume and spacetime pressure used to describe such variations

in AdS spacetimes is not the most natural one and leads to non-universal results in the flat

spacetime limit.

In order to reach these conclusions we have proposed in section 1 that modifications

to (1.1) should satisfy four different properties. We could, in principle, not demand property

(4), namely, the existence of a universal result when the external gravitational field is

removed. Imposing it, selects the introduction of gravitational tension instead of black

hole volume to describe the modifications of (1.1), namely, via (1.10). Not imposing it,

would in principle render any of the choices of k in (1.4) as good as any other. However, we

must also recall property (1), which requires the existence of a geometrical interpretation.

Since we have shown that the notion of black hole volume can be defined in spacetimes

which are solutions of the vacuum Einstein equations, then the geometrical interpretation

in terms of Killing potentials [20] does not hold. On the other hand, there is a well-defined

prescription for evaluating the gravitational tension, following [48], that works for arbitrary

black hole spacetimes, at least when there are periodic or non-compact horizon directions

or whenever the black hole admits a blackfold regime. In order to complete this picture, we

would need generalise the prescription of [48] to black holes which do not admit a blackfold

regime. This interesting task we leave for future work.

Furthermore, when considering complete UV theories of gravity, we must in fact add an

extra property, namely, (5) the existence of a microscopic description. As it is well known,

the entropy of black holes has played a central role in developing and testing theories of

quantum gravity. In particular, it has led to the celebrated holographic principle [70, 71]

as embodied in the AdS/CFT correspondence [72]. The existence of a macroscopic entropy

poses the challenge of a microscopic explanation, and one of the successes of string theory

has been to provide this for classes of supersymmetric black holes [73]. Similarly, one may

expect that such microscopic description should also exist for the quantities describing

variations in the gravitational field. In the particular case of AdS, recent work [74] has

given a possible CFT interpretation of black hole volume. However, we think that a similar

interpretation could be given for gravitational tension and this research direction would be

very interesting to pursue.

We conclude with some interesting observations and future research directions.

A van der Waals interpretation. We would also like to comment on the van der Waals

interpretation (1.8) in terms of the quantities (Bk,Lk) for general k. In fact, this inter-

pretation relies only on a rewriting of the horizon radius r+ in terms of the the quantities
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(Bk,Lk), including k = −2, for which the specific volume v in (1.8) is given by v = 2r+.

In fact, using (1.5) for the Schwarzschild-AdS black hole we find

Bk = −
r3

+

kλLk+2
, (6.1)

which is a result that also holds for the Reisnner-Nordström-AdS black hole (see e.g. [24]

for the explicit thermodynamic quantities). Using (6.1) we can introduce what is usually

referred to as specific volume v [24]

v = 2(−kλ−
2
kL

2+k
k

k Bk)
1
3 = 2r+ , (6.2)

where the k-dependence in the second expression has been chosen in order to make v

L-independent (with k 6= 0). The resulting equation of state Lk = Lk(T,Q, v) for the

Reisnner-Nordström-AdS black hole is then

L
2
k
k =

3λ
2
k

4

v2

2πvT + Q2

v2
− 1

, (6.3)

where Q is its electric charge. If one chooses k = −2 then this equation takes a form

that resembles a van der Waals-type equation and in general it can be seen as a van der

Waals-type equation to some power dependent on k. We may obtain the critical points for

any k by requiring (
∂Lk
∂v

)
T,Q

= 0 ,

(
∂2Lk
∂v2

)
T,Q

= 0 . (6.4)

This leads to (Lk)c = λ6kQk as well as to the universal result for any value of k 6= 0, namely,

Tc =

√
6

18πQ
, vc = 2

√
6Q , (6.5)

which had been previously obtained in [24] for k = −2. Therefore, we are not surprised

that the work of [75] observed a transition in the entanglement entropy for several charge

configurations, in the context of STU black holes, at a critical temperature which was

computed using k = −2 since the critical temperature is independent of the value of k that

one selects.

First law for black holes with multiple disconnected horizons. In section 4 we

have studied black saturn configurations in both flat and AdS spacetimes. In flat spacetime,

the first law of black hole mechanics was derived in [76] for multiple disconnected horizons

and relates variations of the total mass MT of the combined system to variations of the

entropy and angular momentum measured near each individual horizon, in particular,

dMT =
∑
î

(
T îdS î + ΩîdJ î

)
, (6.6)

where the index î runs over each disconnected horizon. In vacuum flat spacetime, the total

mass MT is given by the sum of the individual Komar masses, in this case MBH and MBR.
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Using this into (6.6) one can trivially define first laws for each individual horizon by moving

the contribution of one of the Komar masses to the r.h.s., however, as shown in section 4,

this notion of mass is not consistent with the notion of free energy F î = M î− T îS î−ΩîJ î

defined for each individual horizon. To reconcile this, we have argued that the appropriate

notion of mass defined for each individual horizon is the one that takes into account the

gravitational binding energy due to the presence of the other horizon.20 This mass, in the

ultraspinning limit, is the mass computed from first principles using the blackfold approach

and we have shown that it is possible to obtain it from the exact black saturn solution to

higher orders in the ultraspinning limit.

It would be worthwhile obtaining this mass, that takes into account the binding en-

ergy, exactly (i.e. to all orders in the blackfold expansion) for the black saturn solution. We

think that this perspective, namely, of defining individual first laws to each disconnected

horizon, is a perspective that can contribute to the understanding of the thermodynamics

of disconnected horizons and be applicable to cases where these are inherently present, such

as in the case of asymptotically deSitter black holes. Furthermore, these cases are examples

of cases satisfying the first law (1.4) but where variations associated with the background

length scales do not change the theory. In contrast to variations of the cosmological con-

stant, variations due to the black hole mass do not change the theory as they are controlled

by parameters in the solution and not in the Lagrangian. Therefore, toy models of black

hole binary systems provide an excellent testing ground for new thermodynamic behaviour.

New black hole solutions. In this paper, we have constructed novel perturbative black

hole solutions in AdS, plane wave and Lifshitz spacetimes. In particular we constructed

the analogue of the higher-dimensional Kerr-Newman solution in AdS and we gave the

first example of a class of black hole solutions in Lifshitz spacetimes that is stationary

and furthermore has non-trivial horizon topology. These solutions were found using the

blackfold approach and their consequences for the universality of black hole volume in

the flat spacetime limit were studied. This exercise is yet another illustration of how the

blackfold approach can be used in a very simple way to study interesting properties of

higher-dimensional black holes.

In connection with the novel Lifshitz solutions that we have obtained, we note that

since Lifshitz spacetimes play a role in holography for field theory systems with anisotropic

scaling between time and space [77, 78], it would be interesting to generalise the perturba-

tive Lifshitz solutions of this paper in order to include charge. In particular, an interesting

family would be the analogue of the Kerr-Newman solutions of sections 3.2.2, 3.3.2 in

Lifshitz spacetimes. These would be the rotating versions of the black holes constructed

in [66]. Since for these solutions the Lifshitz vacuum is supported by non-trivial matter

fields, this would require the use of the generalisation of the blackfold equations of motion

to such backgrounds [79].

Other backgrounds and Taub-Nut-AdS/Taub-Bolt-AdS black holes. We also

briefly mention a number of more general settings in which it would be interesting to

20We have given evidence in section 4 that this argument also holds in AdS backgrounds.
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examine the gravitational tension perspective proposed in this paper. These include Taub-

NUT spacetimes,21 KK bubbles [81] and the more general sequences of bubbles and holes

(see e.g. [82]), other limits of the black saturn configuration, black holes in flux bagrounds,

and high-derivative gravity theories.22 As a proof of concept and to finalise this discussion,

we quickly consider the case of D = 4 uncharged black holes in Taub-Nut-AdS (TN) and

Taub-Bolt-AdS (TB) spacetimes studied in [84]. The free energy in these cases can be

written as [84]

F =
4πN

L2

(
L2m2 + 3N2r+ − r3

+

)
, (6.7)

where N is the Nut parameter, related to the temperature T via T = 1/(8πN), m is the

mass parameter and r+ the horizon radius. For each of the two cases, the mass parameter

m and the horizon radius r+ are determined in terms of N and L [84] and hence the free

energy can be expressed as a function of T and L . We consider applying formula (1.5)

with k = 1, i.e. L1 = L. We find the respective tensions

T TN =
2N3

GL3
, T TB = −15N3

2GL3
+O

(
N5

L5

)
, (6.8)

where, for simplicity, we have given the result for Taub-Bolt-AdS for small Nut parameter N

(or equivalently large AdS radius L). These black holes satisfy, as all previous examples,

the first law (1.4) with their respective tensions. Furthermore, they exhibit the correct

universal limit of the tension in flat spacetime, namely, if either N → 0 or L → ∞ the

tension vanishes.23 This provides good evidence that all black hole spacetimes can be

treated within the framework developed here.

Acknowledgments

We would like to acknowledge important discussions with Roberto Emparan, Troels Har-

mark, Jelle Hartong, Cynthia Keeler and Vasilis Niarchos. We also thank the referee for

useful comments on the paper which have been incorporated in the final version. JA ac-

knowledges the current support of the ERC Starting Grant 335146 HoloBHC. JA is grateful

to the COST network for a short term mission grant. The work of NO and MS is supported

in part by the Danish National Research Foundation project “New horizons in particle and

condensed matter physics from black holes”.

A Thermodynamic properties of blackfold configurations

Here we collect and present most of the thermodynamic properties of the configurations

found in the core of this paper.

21Black hole volume and spacetime pressure have been considered for such spacetimes in e.g. [80].
22See e.g. [83] for RN-AdS black holes in Gauss-Bonnet gravity.
23In the case of Taub-Bolt-AdS there are two branches of black hole solutions [84]. The (−) branch,

which was the one used in (6.8), connects to flat spacetime when L → ∞. The (+) branch is analogous

to large black holes in AdS and hence does not have a flat space counterpart. For this reason it cannot be

used to argue for a universal limit of the tension in the flat space limit. However, the tension can also be

introduced in such case (for small N it has the behaviour T TB ∼ L3/N3) and the first law (1.4) is satisfied.
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Electrically charged black odd-spheres in (A)dS. The thermodynamic properties

of the configurations found in section 3.2.1 can be easily obtained from (3.14) using formu-

lae (3.9), (3.10) and written in terms of r0, R, α. These read

M =
Ω(n+1)V(p)

16πG
rn0
(
1 + R2

)3/2 (
nN sinh2 α+ n+ p+ 1

)
,

J =
Ω(n+1)V(p)

16πG
rn0R

√(
R2(nN sinh2 α+ n+ p+ 1) + p

)
n

×

√(
(nN sinh2 α+ n+ p)(1 + R2) + R2

)
n

,

S =
Ω(n+1)V(p)

4G
rn+1

0 coshN α

√
R2
(
nN sinh2 α+ n+ p+ 1

)
+ nN sinh2 α+ n+ p

n
(
1 +N sinh2 α

) ,

Q =
Ω(n+1)V(p)n

16πG

√
Ng(α)rn0

√
R2
(
nN sinh2 α+ n+ p+ 1

)
+ nN sinh2 α+ n+ p

n
(
1 +N sinh2 α

) ,

(A.1)

where g(α) = sinhα coshα while the temperature T and chemical potential ΦH are given

in terms of r0, R, α via the expressions

T =
n

4πr0

√
n (R2 + 1)

(
N sinh2 α+ 1

)
R2
(
nN sinh2 α+ n+ p+ 1

)
+ nN sinh2 α+ n+ p

,

ΦH = tanhα

√
n (R2 + 1)

(
N sinh2 α+ 1

)
R2
(
nN sinh2 α+ n+ p+ 1

)
+ nN sinh2 α+ n+ p

.

(A.2)

Black discs in (A)dS: analogue of Kerr-Newmann black holes. For these black

holes found in section 3.2.2, the thermodynamic properties can be extracted from (3.25)

and read

J =
Ω(n+1)

4G
r̃n0

2F1

(
1, 1

2n(N − 1); nN2 + 2; 1− Φ2
H
N

)
Ω3ξ2(2 + nN)

,

S =
nΩ(n+1)

8TG
r̃n0

2F1

(
1, 1

2n(N − 1); nN2 + 2; 1− Φ2
H
N

)
Ω2ξ(2 + nN)

,

Q =
Ω(n+1)

32G

nΦHr̃
n
0 Γ
(
nN
2

)
Ω2ξ

(
1− Φ2

H
N

)(nN 2F̃1

(
1,

1

2
n(N − 1);

nN

2
+ 2; 1−

Φ2
H

N

)

+ 2 2F̃1

(
2,

1

2
n(N − 1);

nN

2
+ 2; 1−

Φ2
H

N

))
.

(A.3)

The mass of the black hole can be readily obtained using (3.10) together with the free

energy (3.25) and the above quantities.
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Electrically charged black discs in plane wave background. Here we collect the

thermodynamic properties of the configurations of section 3.3.2. These are given by

M =
Ω(n+1)

8G
r̃n0

(n+ 2)
(
Ω2 −A1

)
−
(
Φ2

H − 1
) (

2A1 + Ω2
)

2F1

(
−1

2 , 1; n+4
2 ;

A1(Φ2
H−1)

Ω2−A1

)
(n+ 2)(1− Φ2

H) (A1 − Ω2)2 ,

J =
Ω(n+1)

8G
r̃n0

ΩΓ
(
n
2 + 1

)
2F̃1

(
−1

2 , 2; n+4
2 ;

A1(Φ2
H−1)

Ω2−A1

)
(A1 − Ω2)2 ,

S =
nΩ(n+1)

8TG
r̃n0

2F1

(
−1

2 , 1; n+4
2 ;

A1(Φ2
H−1)

Ω2−A1

)
(n+ 2) (Ω2 −A1)

,

Q =
Ω(n+1)

16G
r̃n0

ΦHΓ
(
n
2 + 1

) (
n 2F̃1

(
−1

2 , 1; n+4
2 ;

A1(Φ2
H−1)

Ω2−A1

))
(1− Φ2

H)(Ω2 −A1)

+
2 2F̃1

(
−1

2 , 2; n+4
2 ;

A1(Φ2
H−1)

Ω2−A1

)
(1− Φ2

H)(Ω2 −A1)
.

(A.4)

Black odd-spheres in Lifshitz background. The thermodynamic properties of the

Lifshitz black holes found in section 3.4 are given by

M =
Ω(n+1)

16πG
V(p)r

n
0

(β + R2)3/2Rz−1

|R2(z − 1) + β(z − 2)|
,

J =
Ω(n+1)

16πG
V(p)r

n−2
0 n

√
β + R2Rz−1

×

√
(β + R2) (R2((n+ 2)z + p− 1) + β(n(z − 1) + p+ 2z − 2))

R2(n+ p+ 2z − 1) + β(n+ p+ 2z − 2)
,

S = n
Ω(n+1)

16πTG
V(p)r

n
0

√
β + R2Rz−1 ,

(A.5)

where we have assumed that (3.41) holds and where β and r0 are given by (3.37) and (3.40)

respectively.

Black odd-spheres in Schwarzschild background. In this section we collect the

conserved charges for the black odd-spheres constructed in section 4.1. These are given by

J =
Ω(n+1)V(p)

16πG
rn0
R
√

R̃n+p(nN sinh2 α(n+ p) + n(n+ p+ 1)− p) + 2p

2− R̃n+p(n+ p+ 2)

×
√

2
(
nN sinh2 α+ n+ p

)
− R̃n+p

(
2nN sinh2 α+ n+ p

)
,

S = n
Ω(n+1)V(p)

16πTG
rn0 (1− R̃n+p)1/2 ,

Q√
nN

=
Ω(n+1)V(p)

16πG
rn0 g(α)

√
R̃n+p

(
2nN sinh2 α+ n+ p

)
− 2

(
nN sinh2 α+ n+ p

)√(
1 +N sinh2 α

) (
(n+ p+ 2)R̃n+p − 2

) ,

(A.6)
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while the mass was given in (4.6). Also the horizon radius and the chemical potential are

given by

T =
n

4πr0 coshN α

√√√√√n
(

1− R̃n+p
)(

(n+ p+ 2)R̃n+p − 2
) (
N sinh2 α+ 1

)
2nN sinh2 α

(
R̃n+p − 1

)
+ (n+ p)

(
R̃n+p − 2

) , (A.7)

ΦH =
√
nN tanh(α)

√√√√√n
(

1− R̃n+p
)(

(n+ p+ 2)R̃n+p − 2
) (
N sinh2 α+ 1

)
2nN sinh2 α

(
R̃n+p − 1

)
+ (n+ p)

(
R̃n+p − 2

) . (A.8)

Since we will need to compare this with the black saturn solution in appendix C it is

convenient to provide these thermodynamic properties in the uncharged limit. In this case

we have

M =
Ω(n+1)V(p)

8πG
rn0 (1− R̃n+p)3/2 (n+ p+ 1)

2− R̃n+p(n+ p+ 2)
,

J =
Ω(n+1)V(p)

16πG
rn0
R
√

R̃n+p(n(n+ p+ 1)− p) + 2p

2− R̃n+p(n+ p+ 2)

√
(n+ p) (2− R̃n+p) ,

S = n
Ω(n+1)V(p)

16πTG
rn0 (1− R̃n+p)1/2 ,

T =
n

4πr0

√√√√√n
(

1− R̃n+p
)(

(n+ p+ 2)R̃n+p − 2
)

(n+ p)
(
R̃n+p − 2

) ,

Ω2R2 =

(
R̃n+p − 1

)(
R̃n+p (n(n+ p+ 1)− p) + 2p

)
(

(n+ p)
(
R̃n+p − 2

)) ,

T = −
Ω(n+1)V(p)r

n
0

16πG
R̃n+p

√
1− R̃n+p

(n+ p) (n+ p+ 1)

2− R̃n+p(n+ p+ 2)
.

(A.9)

B Black odd-spheres with string dipole

In this appendix we consider a related configuration to the one studied in section 3.2.1 where

instead of an electric charge, the black hole has a string dipole charge. The geometry is

still characterised by (3.13) and the free energy (3.14), but it must be supplemented with

the polarisation vector [55],

va∂a =
γ

R

[(p+1)/2]∑
â=1

∂φâ + ΩR2∂τ

 , γ =
1√

1− Ω2R2
. (B.1)

Using the free energy (3.14) where now the dependence of α on R is different than in the

previous case, we obtain the equilibrium condition

Ω2R2 = (1 + R2)
R2
(
n+ p+ 1 + 2nN sinh2 α

)
+ p+ nN sinh2 α

R2
(
n+ p+ 1 + 2nN sinh2 α

)
+ n+ p+ nN sinh2 α

. (B.2)
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Again, in the flat space limit, this reduces to the result obtained in [55]. A discussion of

the different limits and static cases follows similarly to the previous section. Furthermore,

we obtain the tension

T̂ = −
V(p)Ω(n+1)

16πG
rn0 R2

√
1 + R2

(
2nN sinh2 α+ n+ p+ 1

)
. (B.3)

The thermodynamic properties can be easily obtained. In terms of the parameters r0,R, α,

these read

M =
Ω(n+1)V(p)

16πG
rn0
(
1 + R2

)3/2 (
2nN sinh2 α+ n+ p+ 1

)
,

J =
Ω(n+1)V(p)

16πG
rn0R

√(
R2(2nN sinh2 α+ n+ p+ 1) + p

)
n

×

√(
(2nN sinh2 α+ n+ p+ 1)(1 + R2) + R2

)
n

,

S =
Ω(n+1)V(p)

4G
rn+1

0 coshN α

√
R2
(
2nN sinh2 α+ n+ p+ 1

)
+ nN sinh2 α+ n+ p

n
,

Q =
Ω(n+1)V(p)

32π2RG
rn0n
√
N sinhα coshα ,

(B.4)

while the temperature and chemical potential are given by

T =
n3/2

4πr0 coshN α

√
R2 + 1

n
(
N (2R2 + 1) sinh2 α+ R2 + 1

)
+ (p+ 1)R2 + p

,

ΦH = 2πR
√
N
√

1 + R2 tanhα .

(B.5)

C The blackfold limit of the static black saturn

In this section we take the blackfold limit of the black saturn solution of [8] for which the

spherical black hole in the centre is static and compare this with the results of section 4.1.

We are interred in the case for which the angular momentum of the black hole in the

middle vanishes. Following the notation of [8], this means that JBH = 0 which in practice

amounts to set the constant c̄2 = 0. In this case we have the following thermodynamic

properties for the black ring surrounding the black hole

MBR =
3πL2

4G
k2 , JBR =

πL3

G

√
k3k2

2k1
, ΩBR =

1

L

√
k1k3

2k2
, (C.1)

TBR =
1

2πL

√
k1(1− k3)(k1 − k3)

2k2(k2 − k3)
, SBR =

L3π2

G

√
2k2(k2 − k3)3

k1(k1 − k3)(1− k3)
. (C.2)

It is also important to take a look at the mass of the black hole in the centre. This is

given by

MBH =
3πL2

4G
(1− k1) . (C.3)
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The constants k1, k2, k3 are related to the rod intervals of the seed structure used in [8] in

order to obtain the solution. These are required to satisfy

0 ≤ k3 < k2 < k1 ≤ 1 , (C.4)

but only two of them are independent. The balancing condition, in order to avoid conical

singularities, fixes one of them in terms of the others . This condition reads

(k1 − k2) =
√
k1(1− k2)(1− k3)(k1 − k3) , (C.5)

and has two solutions but only one satisfies (C.4), which reads

k3 =
1

2


√
−k1(k2 − 1)

(
−k1((k1 − 2)k1 + 9)k2 + k1(k1 + 1)2 + 4k2

2

)
k1(k2 − 1)

+ k1 + 1

 . (C.6)

Limits. From the mass of the middle black hole (C.3), we see that the limit in which we

recover the black ring, and hence the middle black hole disappears, is the limit for which

k1 = 1. It is indeed useful to consider the reparametrization k1 = 1 − β where now the

black ring limit is achieved when β = 0. An expansion in powers of β is thus a weak

background gravitational field expansion which can be thought of an expansion in powers

of β/L where β is related to the middle black hole horizon and L is the radius of the black

ring. Here we fix the radius L which formally can be set equal to one.

Furthermore, we wish to know the limit in which the black ring is ultraspinning and

hence becomes effectively thin. Since we have fixed the radius L, this limit is achieved

by sending k2 → 0 for which the black ring mass (C.1) is small and hence we have an

expansion of the form k2/L where k2 is proportional to the black ring horizon radius.

Therefore, to first order β and to leading order in k2 we find the following thermody-

namic expressions

ΩBR =
1

2L

(
1 +

1

4
β

)
+O(β2, k2) , JBR =

L3πk2

2G

(
1 +

5

4
β

)
+O(β2, k2

2) , (C.7)

TBR =
1

2πLk2

(
1− 1

4
β

)
+O(β2, 1) , SBR =

L3π2k2
2

2G

(
1− 5

4
β

)
+O(β2, k4

2) . (C.8)

Furthermore, note that MBR does not get corrected with these expansions, neither does

MBH. To all orders in this expansion, they are given by

MBR =
3πL2

4G
k2 , MBH =

3πL2

4G
β . (C.9)

If we set β = 0 in these expressions we recover the thermodynamics of 5D ultraspinning

black rings. Here we have performed a weak-field expansion in order to gain intuition

regarding ultraspinning regimes of the black saturn. However, this is not necessary. To all

orders in β and to first order in k2 we obtain

ΩBR =
1√
2L

√
1− β2

2− β
, JBR =

L3πk2√
2G

√
1 + β

2− 3β + β2
, (C.10)

TBR =
1

2Lπk2

√
(2− β)(1− β)2

2− 4β
, SBR =

√
2L3π2k2

2

(1− β)G

√
(1− 2β)3

(2− β)3
. (C.11)
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Comparison with the blackfold construction. We now compare this analytic so-

lution with the construction of section 4.1. Using the thermodynamic charges obtained

in (A.9) and taking the particular values D = 5, p = 1, n = 1 we find

Ω =
1

R

√
1− R̃4

2− R̃2
, J =

πR2r0

2G

√
2 + R̃2 − R̃4

1− 2R̃2
, (C.12)

T =
1

4πr0

√
1− 3R̃2 + 2R̃4

2− R̃2
, S =

2π2Rr2
0

G

√
2− R̃2

1− 2R̃2
. (C.13)

If we now compare the angular velocity Ω given in (C.12) with the analytic solution ΩBR

in (C.10) we find that we must have

R =
√

2L , R̃2 = β . (C.14)

Furthermore, comparing the temperature T in (C.13) with TBR in (C.11) we find that we

must have

r0 =
Lk2√

2

√
(1− 3R̃2 + 2R̃4)(1− 2R̃2)

(2− R̃2)2(1− R̃2)2
. (C.15)

Indeed, this identification is enough to match both the entropy and the angular momentum

of the analytic solution with the blackfold approach. As for the mass, we refer to the

discussion at the end of section 4.1, in which we have noted that the mass of the blackfold

construction does not match the mass of the analytic solution MBR. Instead we find that,

in the particular case of D = 5, we have an agreement by subtracting an appropriate factor

of the tension, namely,

MBR = M − 1

2
T . (C.16)
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