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superconformal group SU(1, 1|2) in mechanics. Remarking that SU(1, 1|2) is a particular

member of a chain of supergroups SU(1, 1|n) parametrized by an integer n, here we begin

a systematic study of SU(1, 1|n) multi-particle mechanics. A representation of the super-

conformal algebra su(1, 1|n) is constructed on the phase space spanned by m copies of the

(1, 2n, 2n−1) supermultiplet. We show that the dynamics is governed by two prepotentials

V and F , and the Witten-Dijkgraaf-Verlinde-Verlinde equation for F shows up as a con-

sequence of a more general fourth-order equation. All solutions to the latter in terms of

root systems reveal decoupled models only. An extension of the dynamical content of the

(1, 2n, 2n−1) supermultiplet by angular variables in a way similar to the SU(1, 1|2) case is

problematic.
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1 Introduction

The recent increase of interest in dynamical realizations of the superconformal group

SU(1, 1|2) [1]–[14] and its D(2, 1|α) extension [15]–[23] was motivated by the proposal

in [24, 25] that a study of superconformal mechanics may have applications to the quan-

tum mechanics of black holes. In particular, according to [25] the large-m limit of the

m-particle SU(1, 1|2) superconformal Calogero model may provide a microscopic descrip-

tion of the extreme Reissner-Nordström black hole in the near-horizon limit.

The explicit construction of the m-particle SU(1, 1|2) superconformal Calogero model

reduces to solving a variant of the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equa-

tion [1, 4]. Although plenty of interesting solutions to the WDVV equation were found in

terms of root systems and their deformations [1, 6, 7, 26–29], the construction of interacting

models seems unfeasible beyond m = 3. Since, in the context of [25], it is the structure of

the superconformal group which matters, any multi-particle SU(1, 1|2) mechanics appears

to be a good candidate. Yet, no attempt has been made to link the large-m limit of any

known superconformal many-body quantum mechanics to the extreme Reissner-Nordström

black hole in the near-horizon limit.

The studies in [1]–[23] proved useful for understanding the structure of interactions of

various SU(1, 1|2) and D(2, 1|α) supermultiplets. Supersymmetric couplings in d=1 are of

interest on their own right because of novel features which are absent in higher dimensions.

The superconformal group SU(1, 1|2) is a particular member of a chain of super-

groups SU(1, 1|n) parametrized by an integer n. The corresponding superconformal alge-

bra su(1, 1|n) involves n2+3 bosonic and 4n fermionic generators. In particular, its bosonic

sector includes so(2, 1) and su(n) subalgebras. The natural question arises whether the in-

teresting features revealed for the SU(1, 1|2) case persist for higher values of n. Interacting

many-body SU(1, 1|n) mechanics may also have applications to the quantum mechanics

of higher-dimensional black holes. Specifically, the bosonic subgroup SO(2, 1) × SU(n) of
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SU(1, 1|n) coincides with the near-horizon symmetry group of the Myers-Perry black hole

with all rotation parameters set equal (see, e.g., the discussion in [30, 31]).

In this work, we initiate a systematic study of SU(1, 1|n) many-body mechanics. There

are two competing approaches to analyzing superconformal mechanics, namely the direct

construction of an su(1, 1|n) representation within the Hamiltonian framework, and the su-

perfield approach combined with the method of nonlinear realizations. In [32] for example,

the second approach has been used to describe a single supermultiplet of type (1, 2n, 2n−1).

Although the superfield formulation is more powerful, the Hamiltonian approach yields

on-shell components and allows one to comprehend the basic dynamical features and the

structure of interactions in a simpler and more transparent way. In some instances it also

offers notable technical simplifications in building interacting models [14]. In this work we

thus adhere to the Hamiltonian formalism.

The paper is organized as follows. In section 2 we fix our notation and represent

the structure relations of the superconformal algebra su(1, 1|n) in a form analogous to

the previously studied case of su(1, 1|2). Section 3 is devoted to the construction of an

su(1, 1|n) representation on the phase space spanned by m copies of the (1, 2n, 2n − 1)

supermultiplet. It is shown that similarly to the SU(1, 1|2) case the dynamics is governed

by two prepotentials V and F . However, the WDVV equation appears as a consequence of

a more general fourth-order equation for F . The latter is absent in SU(1, 1|2) mechanics

because of a specific Fierz identity which exists for SU(2) spinors only. In section 4 we

consider prepotentials F constructed from root systems. It is demonstrated that the fourth-

order structure equation characterizing SU(1, 1|n) mechanics forces all root vectors to be

mutually orthogonal. This implies decoupled dynamics. In section 5 we try to generalize

also the analysis of [14] from SU(1, 1|2) to SU(1, 1|n). More specifically, we attempt to

extend an arbitrary phase-space representation of su(n) to an su(1, 1|n) representation,

with a negative result. The concluding section 6 contains a summary and an outlook.

Throughout the paper summation over repeated indices is understood.

2 Superconformal algebra su(1, 1|n)

The superconformal algebra su(1, 1|n) involves n2+3 bosonic and 4n fermionic generators.

Its even part is the direct sum so(2, 1)⊕ su(n)⊕u(1). The generators of so(2, 1), which we

designate as H, D, K, correspond to the time translation, dilatation and special conformal

transformation, respectively. The R-symmetry subalgebra su(n)⊕u(1) is generated by Ja,

with a = 1, . . . , n2−1, and L. The odd part of the superalgebra includes the supersymmetry

generators Qα, Q̄
α, where α = 1, . . . , n, and their superconformal partners Sα, S̄

α. It is

assumed that the fermions are hermitian conjugates of each other

(Qα)
† = Q̄α, (Sα)

† = S̄α. (2.1)

Qα and Sα transform as su(n) spinors. The structure relations of su(1, 1|n) read

{H,D} = H, {H,K} = 2D,

{D,K} = K, {Ja, Jb} = fabcJc,
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{Qα, Q̄
β} = −2iHδα

β , {Qα, S̄
β} = 2(λa)α

βJa +

(

2iD −
n−2

n
L

)

δα
β ,

{Sα, S̄
β} = −2iKδα

β , {Q̄α, Sβ} = −2(λa)β
αJa +

(

2iD +
n−2

n
L

)

δβ
α,

{D,Qα} = −
1

2
Qα, {D,Sα} =

1

2
Sα,

{K,Qα} = Sα, {H,Sα} = −Qα,

{Ja, Qα} =
i

2
(λa)α

β
Qβ , {Ja, Sα} =

i

2
(λa)α

β
Sβ ,

{D, Q̄α} = −
1

2
Q̄α, {D, S̄α} =

1

2
S̄α,

{K, Q̄α} = S̄α, {H, S̄α} = −Q̄α,

{Ja, Q̄
α} = −

i

2
Q̄β(λa)β

α
, {Ja, S̄

α} = −
i

2
S̄β(λa)β

α
,

{L,Qα} = iQα, {L, Sα} = iSα,

{L, Q̄α} = −iQ̄α, {L, S̄α} = −iS̄α, (2.2)

where fabc are the totally antisymmetric structure constants of su(n) and λa are the her-

mitian and traceless n× n-matrices which obey the (anti)commutation relations

[λa, λb] = 2ifabcλc, {λa, λb} =
4

3
δab + 2dabcλc, (2.3)

with the totally symmetric coefficients dabc. In what follows the Fierz identity

1

2
(λa)α

β(λa)γ
σ = −

1

n
δα

βδγ
σ + δγ

βδα
σ (2.4)

proves to be helpful.

3 Realization of su(1, 1|n) in many-body mechanics

In order to realize the su(1, 1|n) superconformal algebra in many-body mechanics, let us

consider a phase space parametrized by m bosonic canonical pairs (xi, pi), and m self-

conjugate fermions (ψi
α)

†
= ψ̄iα, i = 1, . . . ,m, α = 1, . . . , n, which obey the conventional

Poisson brackets

{xi, pj} = δij , {ψi
α, ψ̄

jβ} = −iδα
βδij . (3.1)

It is assumed that each fermion belongs to the fundamental representation of SU(n).

Guided by the previous studies of the su(1, 1|2)-case [1, 4, 6], let us introduce two

prepotentials V (x1, . . . , xn), F (x1, . . . , xn) and consider the following functions:

H =
1

2

(

pipi + ∂iV ∂iV
)

+ ∂i∂jV (ψ̄iψj) +
1

2
∂i∂j∂k∂lF (ψ̄iψj)(ψ̄kψl), D = tH −

1

2
xipi,

K = t2H − txipi +
1

2
xixi, Ja =

1

2
(ψ̄iλaψ

i),
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Qα = (pi + i∂iV )ψi
α + i∂i∂j∂kFψi

α(ψ̄
jψk), Sα = xiψi

α − tQα,

Q̄α = (pi − i∂iV )ψ̄iα − i∂i∂j∂kFψ̄iα(ψ̄jψk), S̄α = xiψ̄iα − tQ̄α,

L = ψ̄iψi, (3.2)

where ψ̄iψj = ψ̄iαψ
j
α, ψ̄iλaψ

i = ψ̄iα(λa)α
β
ψi
β . It is straightforward to verify that these

functions do obey the structure relations (2.2) under the Poisson bracket (3.1) provided

the restrictions on the prepotentials

(∂i∂j∂kF )(∂k∂l∂mF ) = (∂m∂j∂kF )(∂k∂l∂iF ), xi(∂i∂j∂kF ) = −δjk, (3.3)

xi∂iV = C, ∂i∂jV = (∂i∂j∂kF )∂kV, ∂i∂j∂k∂lF = (∂i∂j∂pF )(∂p∂k∂lF )

hold, with C being an arbitrary constant.

Note that all the constraints in (3.3) coincide with those characterizing the su(1, 1|2)

case, but for the rightmost equation entering the second line which is new. It arises when

computing the bracket {Qα, Q̄
β} which explicitly involves the term

(

∂i∂j∂k∂lF − (∂i∂j∂pF )(∂p∂k∂lF )
)

ψi
αψ̄

jβ(ψ̄kψl). (3.4)

For n = 2 the spinor index α takes only two values, and the spinors in the previous formula

can be reordered so as to yield the piece proportional to (ψ̄iψj)(ψ̄kψl)δα
β , thus providing

a contribution to the Hamiltonian which is quartic in fermions. For n > 2 such reordering

is no longer possible, and one has to impose the extra condition

∂i∂j∂k∂lF = (∂i∂j∂pF )(∂p∂k∂lF ), (3.5)

which yields the main difference from the su(1, 1|2) case. Note that, by antisymmetrization

of the indices i and l, (3.5) actually implies the WDVV equation visible in the first line

in (3.3). Hence, the additional requirement as compared to the n = 2 case is the totally

symmetric projection of (3.5),

∂i∂j∂k∂lF = (∂(i∂j∂pF )(∂p∂k∂l)F ), (3.6)

where the symmetrisation (with weight 1
4!) excludes the summation index p. Further

differentiation of this relation, together with the WDVV equation, yields a hierarchy of

equations,

∂i1∂i2 · · · ∂ir+3F = r!(∂i1∂i2∂k1F )(∂k1∂i3∂k2F )(∂k2∂i4∂k3F ) · · · (∂kr∂ir+2∂ir+3F ) (3.7)

together with xi(∂i∂i2 · · · ∂ir+3F ) = −r ∂i2 · · · ∂ir+3F , for r = 1, 2, . . . .

When computing the brackets {Qα, S̄
β} and {Q̄α, Sβ}, one has to use the Fierz iden-

tity (2.4). In particular, the constant C, which enters the homogeneity condition xi∂iV =

C, appears in the algebra as the central charge,

{Qα, S̄
β} = 2(λa)α

βJa +

(

2iD −
n−2

n
L+ C

)

δα
β ,

{Q̄α, Sβ} = −2(λa)β
αJa +

(

2iD +
n−2

n
L− C

)

δβ
α. (3.8)

If desirable, C can be removed by redefining L. In the latter case the bosonic limit of L

yields a constant rather than zero.
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4 Prepotentials F related to root systems

The leftmost equation in the first line in (3.3) is a variant of the WDVV equation. With

regard to the SU(1, 1|2) mechanics it has been extensively studied in [4, 6, 7, 27, 28]. In

particular, each solution of the WDVV equation satisfying (3.6) will qualify to describe

some SU(1, 1|n) superconformal mechanics. The known WDVV solutions are based on so-

called ∨-systems [29], which are certain deformations of Coxeter root systems. For these,

the prepotential F takes the form

F = −
1

4

∑

α

hα (α · x)2 ln(α · x)2, (4.1)

where {α} is a set of positive m-dimensional root vectors, subject to the usual constraints

for reflection groups or their ∨-system deformations, and hα are real weights to be deter-

mined. Inserting (4.1) into (3.5), we obtain the condition

∑

α

hα
αi αj αk αl

(α · x)2
+

∑

α,β

hαhβ
αi αj (α · β)βk βl

(α · x)(β · x)
= 0. (4.2)

The diagonal terms in this double sum fix the weights,

(α · α)hα = 1. (4.3)

The projection antisymmetric in i and l ensures the WDVV equation; it is assumed to be

fulfilled for our root systems. The symmetric projection gives further algebraic conditions:

the vanishing of the double residues of the poles (α ·x)−1(β ·x)−1 for any pair (α, β) yields

(α · β) (αiαjβkβl + βiβjαkαl) = 0. (4.4)

Contracting this with αiβjαkβl produces

(α · α)(β · β)(α · β)2 = 0 =⇒ α · β = 0 (4.5)

for any pair of distinct roots (α, β). This admits only the direct sum of mutually orthogonal

one-dimensional (i.e. rank-one) systems. By a rigid rotation of coordinates xi, one can

always bring it into the form

{α} = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)}. (4.6)

So we have arrived at a no-go theorem for interacting SU(1, 1|n) mechanics based on the

on-shell supermultiplet of type (1, 2n, 2n−1).

5 Angular variables

For SU(1, 1|2) mechanics one can extend the dynamical content of the simplest (1, 4, 3)

supermultiplet by introducing angular variables providing some realization of su(2) in a

– 5 –
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purely group-theoretic way [9, 14]. It suffices to consider a phase space parametrized by

the canonical pairs (θA, pθA), A = 1, . . . , n, which obey the conventional Poisson brackets

{θA, pθB} = δAB (5.1)

and realize on such a phase space the functions Ja = Ja(θ, pθ), a = 1, 2, 3, which obey the

structure relations of the su(2) R-symmetry subalgebra

{Ja, Jb} = ǫabcJc. (5.2)

Then, the supersymmetry charges involve the angular variables only via the currents Ja,

Qα = pψα +
2i

x
(σaψ)αJa −

i

x
ψα(ψ̄ψ), (5.3)

where (σa)α
β are the Pauli matrices [14].

Let us try to generalize this construction to the case of the superconformal algebra

su(1, 1|n). Introducing functions Ja of the angular variables subject to the su(n) structure

relations {Ja, Jb} = fabcJc, and employing the matrices (λa)α
β from (2.3), it is straightfor-

ward to verify that the obvious candidate supersymmetry charge,

Qα = pψα +
2i

x
(λaψ)αJa −

i

x
ψα(ψ̄ψ), (5.4)

is indeed nilpotent, i.e.

{Qα, Qβ} = 0. (5.5)

However, in view of the properties of the λ-matrices in (2.3), the bracket of Qα with Q̄β

yields not just the Hamiltonian:

{Qα, Q̄
β} = −2iHδα

β −
4i

x2
(λa)α

β
dabcJbJc, (5.6)

where dabc are the symmetric structure coefficients appearing in (2.3). This means that

the algebra does not close. One might try to modify the troublesome second term in Qα.

However, such a term seems indispensable for providing the structure relations (3.8).

We thus conclude that an extension of the (1, 2n, 2n−1) supermultiplet by angular

variables in a way similar to the su(1, 1|2) case is problematic. Perhaps a more sophisticated

construction involving extra auxiliary variables will help to circumvent the problem.

6 Discussion

To summarize, in this work we made the first step towards a systematic description of

SU(1, 1|n) multi-particle superconformal mechanics. Our consideration was primarily fo-

cused on the possibilities offered by the Hamiltonian formalism. The structure relations

of the superconformal algebra su(1, 1|n) were established in a form analogous to the pre-

viously studied su(1, 1|2) case. A representation of su(1, 1|n) on the phase space spanned

by m copies of the (1, 2n, 2n−1) supermultiplet was constructed. It was shown that the

dynamics is governed by two prepotentials V and F , and that the WDVV equation for F

– 6 –
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arises as a consequence of a more restrictive fourth-order equation. Solutions to the latter

in terms of root systems allow decoupled models only. An attempt to extend the dynamical

content of the (1, 2n, 2n−1) supermultiplet by adding angular variables in a way similar

to the su(1, 1|2) case compromised the closure of the su(1, 1|n) superconformal algebra.

Hence, our results indicate that the construction of interacting SU(1, 1|n) models with

n > 2 appears to be a more difficult task than in the SU(1, 1|2) case.

The Hamiltonian formulation adopted in this work automatically yields on-shell mod-

els. It is tempting to investigate SU(1, 1|n) mechanics off-shell within the superfield ap-

proach combined with the method of nonlinear realizations, along the lines proposed in [32].

The key problem within the superfield method will be to guess the superfield constraints

which will result in interacting dynamics. A possible link of SU(1, 1|n) mechanics to the

near-horizon Myers-Perry black hole with equal rotation parameters is worth studying as

well. Finally, it might be rewarding to investigate the integrability of (3.5) on its own,

which is more special than the WDVV equation.
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