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1 Introduction

Dp-branes are all related to each other in a straightforward way using T-duality which

is valid microscopically in the open string description and also is manifest in the low

energy Yang-Mills effective actions [1], although of course the quantum behaviour of these

theories drastically depends on their dimension. Mathematically this occurs because all the

maximally supersymmetric Yang-Mills theories are constructed by dimensional reduction

of ten-dimensional super-Yang-Mills.

In M-theory there are M2-branes and M5-branes. While the field theories for multiple

M2-branes are now known [2–4] (for a review see [5]) the M5-brane remains mysterious

and believed to be non-lagrangian. Although there are various proposals for M5-brane

dynamics that use a lagrangian but which require some specific limit to be taken [6–9].

One still expects there to be some form of T-duality, inherited from string theory, that

relates M5-branes to M2-branes. Even though there is no microscopic picture of these

theories analogous to open strings one may still expect to see some universal structure in

their field theory descriptions.

One attempt to relate the M2-branes to M5-branes using T-duality was given in [10].

The simple translational orbifold approach used in [1] fails as translations are not a sym-

metry of the M2-brane Lagrangian. Nevertheless the modified approach of [10] leads from
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the periodic array of M2-branes to a variation of five-dimensional Super-Yang-Mills as a

description of M5-branes.

In this paper we will generalise the six-dimensional (2,0) superalgebra construction

of [11] by including a non-dynamical abelian background three-form.1 Setting this to zero

reproduces the previous results which have been proposed as a description of two M5-branes

(here we specialise to the case of a positive definite Lie-3-algebra). In particular there is a

covariantly constant vector which imposes constraints that require there to be an isometry

along one direction which leads to five-dimensional super-Yang-Mills in the spacelike

case [11], five-dimensional euclidean Super-Yang-Mills in the timelike case [9] and quantum

mechanics on instanton moduli space in the null case [13]. These have all been argued

to provide a description of the quantum (2, 0) theory [6–9]. We then show that turning

on the background three-form allows some components of the vector to be dynamical but

also forces a dimensional reduction to three dimensions leading to the maximally super-

symmetric field theory of two M2-branes [2, 3]. Thus this generalized (2, 0) superalgebra

provides a structure that contains aspects of both multiple M2-branes and M5-branes.

There have also been a number of papers which show that the maximally supersym-

metric M2-brane Lagrangian with a Nambu bracket for the 3-algebra leads to an abelian

M5-brane [14–17]. It might be possible to view the results here in a complimentary con-

text: starting from the non-abelian (2, 0) superalgebra associated to multiple M5-branes

and then obtaining M2-branes.

The structure of the paper is as follows. In section 2 we review the non-abelian (2,0)

algebra of [11] and the constraints on the fields that have to be satisfied for the algebra to

close. We also briefly discuss how this algebra leads to various descriptions of M5-branes. In

section 3 we propose a generalization of the algebra through the introduction of an abelian

three-form Cµνλ, close the algebra and derive the constraints and equations of motion

for the fields. In section 4 we find the central charges and the energy-momentum tensor

associated to the generalized (2,0) algebra. In section 5 we relate our construction to the

maximally supersymmetric model describing two M2-branes and carry out the reduction.

Section 5 has our conclusions.

2 A (2,0) algebra

In [11] a (2,0) algebra was realised on a non-abelian six dimensional tensor multiplet. In par-

ticular the supersymmetry transformations from which the algebra arises were the following

δXi = iǭΓiΨ

δY µ = 0

δΨ = ΓµΓiDµX
i +

1

2 · 3!HµνλΓ
µνλǫ− 1

2
ΓµΓ

ij [Y µ, Xi, Xj ]ǫ

δHµνλ = 3iǭΓ[µνDλ]Ψ+ iǭΓiΓµνλρ[Y
ρ, Xi,Ψ]

δAµ(·) = iǭΓµν [Y
ν ,Ψ, · ] , (2.1)

1Using such a three-form has also been considered by A. Gustavsson [12].
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where Γµ,Γi are 32 × 32 real Γ-matrices with µ, ν, . . . = 0, 1, 2, . . . , 5 and

i, j, . . . = 6, 7, 8, 9, 10. The spinors also satisfy

Γ012345ǫ = ǫ Γ012345Ψ = −Ψ , (2.2)

and the three-form is self-dual:

Hµνλ =
1

3!
εµνλρστH

ρστ . (2.3)

Note that the mass dimensions of the fields are

[X] = 2 , [Ψ] = 5/2 , [H] = 3 , [A] = 1 , [Y ] = −1 . (2.4)

The fields all take values in a Lie-3-algebra, that is in a vector space endowed with a

totally anti-symmetric product [ , , ] from the vector space to itself. If we expand all in

fields in terms of a basis for the 3-algebra {T a}, i.e. X = XaT
a, then

[X,Y, Z]d = XaYbZcf
abc

d , (2.5)

where the structure constants of the 3-algebra fabc
d are anti-symmetric in the upper indices.

Furthermore the triple product is required to satisfy the fundamental identity which reads

[A,B, [X,Y, Z]] = [[A,B,X], Y, Z] + [X, [A,B, Y ], Z] + [X,Y, [A,B,Z]] , (2.6)

or equivalently, the structure constants need to satisfy:

f [abc
ef

d]efg = 0 . (2.7)

We also require the existence of a symmetric inner-product which is invariant under the

action of the 3-algebra, which allows the definition of a metric structure

hab = 〈T a, T b〉 . (2.8)

Which is equivalent to the condition f [abcd] = 0, where fabcd = fabc
eh

ed.

Derivatives on the fields are promoted to covariant derivatives with the introduction

of a gauge field Aµ = (Aµ)
b
a such that

DµXa = ∂µXa − (Aµ)
b
aXb = ∂µXa −Aµ(X)a , (2.9)

and the field strength is defined as

Fµν ≡ −[Dµ, Dν ] . (2.10)

In [11] it was shown that this algebra closes if the following set of equations of motion and

constraints for the fields are satisfied

0 = D2Xi − i

2
[Y µ, Ψ̄,ΓµΓ

iΨ]− [Y µ, Xj , [Yµ, X
j , Xi]]

0 = D[µHνλρ +
1

4
εµνλρστ [Y

σ, Xi, DτXi] +
i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ]

0 = ΓµDµΨ+ ΓµΓi[Yµ, X
i,Ψ]

0 = Fµν(·)− [Y λ, Hµνλ, · ]
0 = DµY

ν = [Y µ, Y ν , · ] = [Y µ, Dµ(·), ·′ ] . (2.11)
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The aim of this paper is to generalise this algebra by including an abelian non-dynamical

three-form Cµνλ with mass dimension [C] = −3.

Before doing so let us briefly recall how this system leads to various descriptions of M5-

branes. For simplicity we consider the case of the four-dimensional 3-algebra a = 1, 2, 3, 4

with structure constants fabcd = 2π
k εabcd and invariant metric hab = δab. The vector Y µ is

non-dynamical and can be fixed to the form

Y µ
a = V µδ4a , (2.12)

where we have fixed a particular direction in the 3-algebra and V µ is a constant vector.

Since all triple products involve Y µ we see that the components of the fields along the

a = 4 direction decouple and become a free 6-dimensional abelian (2,0) multiplet which

can be viewed as describing the centre of mass.

Let us consider the interacting part consisting of fields with 3-algebra indices ȧ = 1, 2, 3.

The remaining constraints tell us that

V µDµ( · )ȧ = 0 , (2.13)

so the interacting components of the fields cannot depend on the coordinate parallel to V µ.

Furthermore we see that

Fµνa
b = V λf c4b

aHµνλc . (2.14)

In particular V νFµνa
b = 0 and we can take V µAµa

b = 0 and V µ∂µ( · )ȧ = 0.

To continue we must specify in what direction V µ points. If it is spacelike then the

SO(1, 5) Lorentz symmetry allows us to set V µ = lδµ5 for some constant l. The resulting

equations are then simply those of maximally supersymmetric Yang-Mills with gauge group

SU(2) [11]. Alternatively if V µ is timelike then the SO(1, 5) Lorentz symmetry allows us

to set V µ = lδµ0 . The resulting equations are now those of maximally supersymmetric

euclidean Yang-Mills theory with gauge group SU(2) (and with an SO(5) R-symmetry) [9].

Finally if V µ = lδµ+ is null then the self-duality constraint on Hµνλ implies that Fµν is self-

dual (in the remaining four spatial directions). As such the ADHM construction can be used

to solve for all the fields in terms of instanton moduli space [13]. However the moduli are

allowed to depend on x− and the resulting system can be quantized and leads to quantum

mechanics (with x− as time) on instanton moduli space. All three of these descriptions have

been proposed as giving the dynamics of multiple M5-branes (see [7–9] and [6] respectively).

3 Closure of the algebra

We consider the following extension of the (2,0) algebra

δXi = iǭΓiΨ

δY µ =
iα

3!
ǭΓλρC

µλρΨ

– 4 –
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δΨ = ΓµΓiDµX
iǫ+

1

2 · 3!HµνλΓ
µνλǫ

− 1

2
ΓµΓ

ij [Y µ, Xi, Xj ]ǫ+
β

3!
CµνλΓ

µνλΓijk[Xi, Xj , Xk]ǫ

δHµνλ = 3iǭΓ[µνDλ]Ψ+ iǭΓiΓµνλρ[Y
ρ, Xi,Ψ]

+ iγǭ(⋆C)µνλΓ
ij [Xi, Xj ,Ψ] +

iγ′

2
ǭΓ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) = iǭΓµν [Y
ν ,Ψ, · ] + iδ

3!
ǭCνλρΓµνλρΓ

i[Xi,Ψ, · ] , (3.1)

where α, β, γ, γ′, δ are constants to be determined and a dot (·) denotes an arbitrary field.

There are additional terms that one could consider however the rationale behind this choice

of algebra will become clear upon showing how a natural reduction to the M2-branes arises.

In this section we will show that the superalgebra closes on shell and we will derive the

equations of motion and the constraints that the fields need to satisfy.

Before we consider the closure of the algebra we first observe that the fermion equation

of motion can be obtained by imposing self-duality of δH. We find that

δHµνλ − (⋆δH)µνλ = iǭΓµνλ

(

ΓρDρΨ+ ΓρΓ
i[Y ρ, Xi,Ψ] +

γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ]
)

,

(3.2)

provided that γ′ = 3γ (otherwise one does not find a single expression on the right hand

side). Thus we see that the Fermion equation of motion is

ΓρDρΨ+ ΓρΓ
i[Y ρ, Xi,Ψ] +

γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ] = 0 . (3.3)

3.1 Closure on X
i

We now proceed to close the algebra on the scalar fields Xi. We see that the algebra closes

up to a translation and a gauge transformation, that is

[δ1, δ2]X
i = vνDνX

i + Λ(Xi) , (3.4)

with

vµ = −2i(ǭ2Γ
µǫ1)

Λ(·) = −2i(ǭ2ΓλΓ
iǫ1)[Y

λ, Xi, · ]− iβ(ǭ2ΓµνλΓ
jkǫ1)C

µνλ[Xj , Xk, · ] . (3.5)

We note that a new term, proportional to Cµνλ, now contributes to the definition of gauge

transformation compared to the one defined in [11].

3.2 Closure on Y
µ

Next we look at closing supersymmetry on Y µ. The expected form of the closure is

[δ1, δ2]Y
µ = vνDνY

µ + Λ(Y µ) , (3.6)
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with vµ and Λ(·) as defined in (3.5). Explicit calculation leads to

[δ1, δ2]Y
µ = − iα

3
(ǭ2Γ

νǫ1) C
µλρHνλρ +

2iα

3

(

ǭ2ΓνΓ
iǫ1

)

CµνσDσX
i

− iα

6

(

ǭ2ΓλρσΓ
ijǫ1

)

Cµλρ[Y σ, Xi, Xj ]

+
iαβ

3

(

ǭ2Γ
τω

λ Γijkǫ1

)

CµλρCρτω[X
i, Xj , Xk] . (3.7)

We see that imposing the constraint

DνY
µ − α

6
CµλρHνλρ = 0 , (3.8)

turns the first term of the closure into a translation. Similarly, with the help of the

constraint

CµνσDσX
i +

3

α
[Y µ, Y ν , Xi] = 0 , (3.9)

the second term of the closure represents the first part of a gauge transformation. We see

that both these constraints are generalizations of ones found in [11], cf. (2.11).

In order for the third line to turn into the part of a gauge transformation parametrized

by Cστω we need

Cµλρ
(

ǭ2ΓλρσΓ
ijǫ1

)

Y σ =
6β

α
Cστω

(

ǭ2ΓστωΓ
ijǫ1

)

Y µ . (3.10)

It is easily checked that if α = 18β this condition is simply reduced to

C ∧ Y = 0 . (3.11)

We will find that the condition α = 18β also arises for closure on the other fields.

We require the fourth term to vanish as it parametrizes neither a translation nor a

gauge transformation and hence2

C[µν
τCλ]τ

ρ = 0 . (3.12)

Note that this means that the components of Cµνλ can be identified with the structure

constants of a Lie-algebra. Since µ, ν, . . . = 0, 1, 2, . . . 5 this leads to only two possible

choices: su(2) and so(4) = su(2)⊕ su(2).

3.3 Closure on Aµ

From closing supersymmetry on the gauge field Aµ we expect to find

[δ1, δ2]Aµ = −vνFµν +DµΛ , (3.13)

2One might object that only the self-dual part of the left hand side must vanish but this possibility is

eliminated by closure on Hµνλ.

– 6 –
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Using the relations and constraints found so far, we find after some calculations that

[δ1, δ2]Aµ=2i(ǭ2Γ
νǫ1)

(

[Y λ, Hµνλ, · ]+δ(⋆C)µνλ[X
i, DλXi, · ]+ iδ

2
(⋆C)µνλ[Ψ̄,ΓλΨ, · ]

)

+DµΛ + 2i
(

ǭ2ΓµΓ
iǫ1

) (

[Y ν , DνX
i, · ]− (δ/6)Cστω[Hστω, X

i, · ]
)

+ 2i(β + δ/6)
(

ǭ2Γ
τω
[µ Γijkǫ1

)

Cν]τω[Y
ν , [Xi, Xj , Xk], · ]

− i(ǭ2ΓµνσΓ
ijǫ1)

(

[Y ν , [Y σ, Xi, Xj ], · ] + 3δ

α
[Y ν , [Y σ, Xi, Xj ], · ]

)

. (3.14)

We see that in order for the first term to represent a translation we must require the

identification

Fµν(·) = [Y λ, Hµνλ, · ] + δ(⋆C)µνλ[X
i, DλXi, · ] + iδ

2
(⋆C)µνλ[Ψ̄,ΓλΨ, · ] , (3.15)

which generalizes the constraint in (2.11). By looking at the form the closure needs to

take, we require the last three terms to vanish. This imposes the correction to the known

constraint

[Y ν , DνX
i, · ]− δ

6
Cστω[Hστω, X

i, · ] = 0 , (3.16)

as well as the relations between the coefficients

δ = −6β, α = −3δ . (3.17)

3.4 Closure on Hµνλ

Closing the algebra on Hµνλ is somewhat more lengthy, and in the process we found the

Mathematica GAMMA package quite helpful [18]. Supersymmetry should close up to a

translation and a gauge transformation

[δ1, δ2]Hµνλ = vρDρHµνλ + Λ(Hµνλ) . (3.18)

Since the calculation is quite involved we will not provide the full details here. Rather

we note that in order to close the algebra numerous terms are required to vanish as they

parametrize neither a translation, nor a gauge transformation. This is the case if the

following relations among the coefficients hold

γ′ = 3γ, γ′ = 9β, δ = −2γ . (3.19)

Then the remaining terms, making use of the constraints found so far, take the form

[δ1, δ2]Hµνλ=v
ρDρHµνλ − 2i(ǭ2ΓσΓ

iǫ1)[Y
σ, Xi, Hµνλ]

− iβ
(

ǭ2ΓστωΓ
ijǫ1

)

Cστω[Xi, Xj , Hµνλ]

+ 4vρ
(

D[λHµνρ]+
1

4
εµνλρστ [Y

σ, Xi, DτXi]−γ(⋆C)[µνλ[X
i, Xj , [Yρ], X

i, Xj ]]

+
i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ]− iγ(⋆C)[µνλ[X
i, Ψ̄,Γρ]Γ

iΨ]

)

, (3.20)

– 7 –
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We see that the first three terms represent a translation and a gauge transformation. The

algebra then closes on shell and we find the equation of motion for Hµνλ

D[λHµνρ] = −1

4
εµνλρστ [Y

σ, Xi, DτXi] + γ(⋆C)[µνλ[X
i, Xj , [Yρ], X

i, Xj ]]

− i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ] + iγ(⋆C)[µνλ[X
i, Ψ̄,Γρ]Γ

iΨ] . (3.21)

3.5 Closure on Ψ

Closure of supersymmetry on the fermion Ψ should be obtained up to a translation and a

gauge transformation

[δ1, δ2]Ψ = vρDρΨ+ Λ(Ψ) . (3.22)

An explicit calculation, making use of the Gamma package [18] and the constraints found

so far, gives

[δ1, δ2]Ψ = vρDρΨ+ Λ(Ψ) (3.23)

+
3i

4
(ǭ2Γσǫ1)Γ

σ
(

ΓρDρΨ+ ΓρΓ
i[Y ρ, Xi,Ψ] +

γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ]
)

− i

4
(ǭ2ΓσΓ

jǫ1)Γ
σΓj

(

ΓρDρΨ+ ΓρΓ
i[Y ρ, Xi,Ψ] +

γ

3!
ΓρστC

ρστΓij [Xi, Xj ,Ψ]
)

.

We see that in order to close the algebra the terms other than the translation and the gauge

transformation need to vanish. This is achieved upon imposing the Fermion equation of

motion, which agrees with (3.3).

3.6 Bosonic equations of motion

We can vary the Fermion equation of motion (3.3) to find the equations of motion for Xi

and Hµνλ. We find, making use of the constraints found so far, the following variation

(

D2Xi − i

2
[Y σ, Ψ̄,ΓσΓ

iΨ] + [Y σ, Xj , [Yσ, X
j , Xi]]

+
iγ

3!
Cστω[Ψ̄,ΓστωΓ

ijΨ, Xj ] + βγCστωCστω[[X
i, Xj , Xk], Xj , Xk]

)

Γiǫ

+
1

3!

(

DµHνλρ +
1

4
εµνλρστ [Y

σ, Xi, DτXi]− γ(⋆C)µνλ[X
i, Xj , [Yρ, X

i, Xj ]]

+
i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ]− iγ(⋆C)µνλ[X
i, Ψ̄,ΓρΓ

iΨ]

)

Γµνλρǫ = 0 . (3.24)

We see that the equation of motion for Hµνλ agrees with the one found by requiring closure

of the algebra (3.21). Moreover, we find the equation of motion for Xi

D2Xi =
i

2
[Y σ, Ψ̄,ΓσΓ

iΨ]− [Y σ, Xj , [Yσ, X
j , Xi]]

− iγ

3!
Cστω[Ψ̄,ΓστωΓ

ijΨ, Xj ]− βγCστωCστω[[X
i, Xj , Xk], Xj , Xk] . (3.25)

Therefore we have determined the equations of motion for all the degrees of freedom of the

(2,0) tensor multiplet.

– 8 –
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3.7 Summary

We have shown that the (2,0) algebra (3.1) we proposed closes on shell. We found correc-

tions to the equations of motion and constraints (2.11), which we list here for convenience.

Since we are free to rescale Cµνλ we can, without loss of generality, set the coefficients of

the (2,0) algebra to the specific values

α = 3 β = 1/3! γ = 1/2 δ = −1 γ′ = 3/2 , (3.26)

which respect the relations found in the closure of the algebra. The equations of motion

for the fields of the tensor multiplet are

0 = D2Xi − i

2
[Y σ, Ψ̄,ΓσΓ

iΨ] + [Y σ, Xj , [Yσ, X
j , Xi]]

+
i

2 · 3!C
στω[Ψ̄,ΓστωΓ

ijΨ, Xj ] +
1

2 · 3!C
στωCστω[[X

i, Xj , Xk], Xj , Xk]

0 = D[λHµνρ] +
1

4
εµνλρστ [Y

σ, Xi, DτXi]− 1

2
(⋆C)[µνλ[X

i, Xj , [Yρ], X
i, Xj ]]

+
i

8
εµνλρστ [Y

σ, Ψ̄,ΓτΨ]− i

2
(⋆C)[µνλ[X

i, Ψ̄,Γρ]Γ
iΨ]

0 = ΓρDρΨ+ ΓρΓ
i[Y ρ, Xi,Ψ] +

1

2 · 3!ΓρστC
ρστΓij [Xi, Xj ,Ψ] , (3.27)

while the additional constraints for the algebra to close on shell are

0 = Fµν(·)− [Y λ, Hµνλ, · ] + (⋆C)µνλ[X
i, DλXi, · ] + i

2
(⋆C)µνλ[Ψ̄,ΓλΨ, · ]

0 = DνY
µ − 1

2
CµλρHνλρ

0 = CµνσDσ(·) + [Y µ, Y ν , · ]

0 = [Y ν , Dν ·, ·′] +
1

3!
Cστω[Hστω, · , ·′ ]

0 = C ∧ Y . (3.28)

Note that using the second constraint the fourth constraint can be rewritten as

0 = [Y ν , Dν · , ·′] + 1

3
[DνY

ν , · , ·′ ] . (3.29)

The equations of motion (3.27) are invariant under the (2,0) supersymmetry realised by

the variations

δXi = iǭΓiΨ

δY µ =
i

2
ǭΓλρC

µλρΨ

– 9 –
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δΨ = ΓµΓiDµX
iǫ+

1

2 · 3!HµνλΓ
µνλǫ

− 1

2
ΓµΓ

ij [Y µ, Xi, Xj ]ǫ+
1

3!2
CµνλΓ

µνλΓijk[Xi, Xj , Xk]ǫ

δHµνλ = 3iǭΓ[µνDλ]Ψ+ iǭΓiΓµνλρ[Y
ρ, Xi,Ψ]

+
i

2
ǭ(⋆C)µνλΓ

ij [Xi, Xj ,Ψ] +
3i

4
ǭΓ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) = iǭΓµν [Y
ν ,Ψ, · ]− i

3!
ǭCνλρΓµνλρΓ

i[Xi,Ψ, · ] . (3.30)

4 Conserved currents

In this section we construct the supercurrent Sµ and energy-momentum tensor Tµν associ-

ated to the supersymmetry algebra realised in (3.1). We can then deduce the form of the

superalgebra including the central charges.

The supercurrent can be easily computed by

ǭSµ = 2πi〈δǫΨ,ΓµΨ〉 . (4.1)

Note the pre-factor of 2π which is needed to produce the correct energy-momentum tensor

and will be justified in due course. Explicitly we find

Sµ = −2πi〈DνX
i,ΓνΓiΓµΨ〉+ πi

3!
〈Hστω,Γ

στωΓµΨ〉 − πi〈[Yν , Xi, Xj ],ΓνΓijΓµΨ〉

+
πi

3 · 3!Cστω〈[Xi, Xj , Xk],ΓijkΓστωΓµΨ〉 . (4.2)

The supercurrent is indeed found to be conserved on shell.

Next we construct the energy-momentum tensor, which after some trial and error, reads

Tµν = 2π〈DµX
i, DνX

i〉 − πηµν〈DλX
i, DλXi〉+ π〈[Xi, Xj , Yµ], [X

i, Xj , Yν ]〉 (4.3)

− π

2
ηµν〈[Xi, Xj , Yλ], [X

i, Xj , Y λ]〉+ π

2
〈Hµλρ, H

λρ
ν 〉 − iπ〈Ψ̄,ΓµDνΨ〉

− iπ〈Ψ̄,ΓνDµΨ〉+ iπηµν〈Ψ̄,ΓλDλΨ〉 − iπηµν〈[Ψ̄, Y λ, Xi],ΓλΓ
iΨ〉

+
π

3!
〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉

(

CµτωC
τω

ν − 1

3!
ηµνC

2

)

+
π

3!
Cµλρ(⋆C)ν

λρ〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉 − iπ

3!
ηµνC

στω〈[Ψ̄,ΓστωΓ
ijψ,Xi], Xj〉.

The energy-momentum tensor is found to satisfy ∂µTµν = 0 using the equations of

motion and constraints for the fields derived in the previous section.3 Although we note

that the bosonic part is not symmetric for a general choice of three-form due to the

Cµλρ(⋆C)ν
λρ term (as well as the more familiar asymmetry arising from the fermions).

The 2π pre-factor was justified in [19] to agree with charge quantization and also in [9] to

reproduce the correct energy density for M2-branes ending on M5-branes. It also leads to

the correct matching of instanton-solitons with KK tower modes [9].

3In fact conservation allows for arbitrary coefficients of the CµλρCν
λρ and Cµλρ(⋆C)ν

λρ terms that we

have fixed by considering the super-algebra below.
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In order to derive the super-algebra we make use of the the chain of identities

iǭB{QA, QB} = i{ǭQ,QA} = δǫQA =

∫

d5x (δǫS
0)A , (4.4)

where

Q =

∫

d5x S0 . (4.5)

Since by construction {QA, QB} is symmetric in A,B, we can extract the momentum

Pν =

∫

d5xT0ν , (4.6)

and the central charges (Zi
µ, Z

ij
µνλ) following the expansion

{QA, QB} = 2(ΓµC−1)ABPµ + (ΓµΓiC−1)ABZ
i
µ +

1

2! · 3!(Γ
µνλΓijC−1)ABZ

ij
µνλ . (4.7)

In case of vanishing Fermions, we find the following central charges. For Zi
µ we find

Zi
0 = 4π

∫

d5x 〈[Y0, Xi, Xj ], D0Xj〉 − 〈[Yµ̇, Xi, Xj ], Dµ̇Xj〉 (4.8)

Zi
µ̇ = 4π

∫

d5x 〈[Y 0, Xi, Xj ], Dµ̇X
j〉+ 〈[Yµ̇, Xi, Xj ], D0Xj〉

+ 〈H0µ̇ν̇ , D
ν̇Xi〉+ 1

3
C+
0µ̇ν̇〈[Xj , Xk, X l], Dν̇Xm〉εijklm

− C+
0µ̇ν̇〈[Xi, Xj , Xk], [Y ν̇ , Xj , Xk]〉 , (4.9)

while Zij
µνλ reads (all the expressions should be taken to be anti-symmeterized in i, j and

µ̇, ν̇, λ̇ where dotted indices only run over spatial coordinates µ̇, ν̇ = 1, 2, . . . , 5.)

Zij
0µ̇ν̇ = 4π

∫

d5x 2〈[Yµ̇, Xi, Xk], [Yν̇ , X
k, Xj ]〉 − 〈[Yν̇ , Xk, X l], Dµ̇X

m〉εijklm

+
1

2
〈H0µ̇ν̇ , [Y

0, Xi, Xj ]〉 − 1

2
〈Hµ̇ν̇ρ̇, [Y

ρ̇, Xi, Xj ]〉 − 2〈Dµ̇X
i, Dν̇X

j〉

− 〈(Cµ̇ν̇ρ̇D
ρ̇Xk + C0µ̇ν̇D0X

k), [Xi, Xj , Xk]〉

+
1

2
〈(Cµ̇ν̇ρ̇[Y

ρ̇, Xk, Xn]− C0µ̇ν̇ [Y
0, Xk, Xn]), [X l, Xm, Xn]〉εijklm

− 1

2 · 3!〈[X
k, X l, Xm], (2C0ν̇ρ̇H

ρ̇
0µ̇ + Cν̇ρ̇σ̇H

ρ̇σ̇
µ̇ )〉εijklm (4.10)

Zij

µ̇ν̇λ̇
= 4π

∫

d5x
1

2
〈Hµ̇ν̇λ̇, [Y

0, Xi, Xj ]〉 − 3

2
〈H0µ̇ν̇ , [Yλ̇, X

i, Xj ]〉

− 〈(Cµ̇ν̇λ̇D0X
k + 3C0µ̇ν̇Dλ̇X

k), [Xi, Xj , Xk]〉

− 1

2
〈(Cµ̇ν̇λ̇[Y0, X

m, Xn] + 3C0µ̇ν̇ [Yλ̇, X
m, Xn]), [Xk, X l, Xn]〉εijklm

+
1

4
〈(Cµ̇ν̇ρ̇H

ρ̇

0λ̇
− C0λ̇ρ̇H

ρ̇
µ̇ν̇ ), [X

k, X l, Xm]〉εijklm . (4.11)
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5 From (2,0) to 2 M2’s

As recalled in section 2 previous work has examined the dynamical systems that arise from

the above system when Cµνλ vanishes [9, 11, 13]. To this end let us split up spacetime into

the directions α, β = 0, 1, 2 and a, b = 3, 4, 5 and fix

Cabc = l3 εabc , (5.1)

where l has dimension of length. This breaks to the SO(1, 5) Lorentz symmetry to

SO(1, 2)× SO(3). We will see that this SO(3) enhances the SO(5) R-symmetry to SO(8).

Recall the constraints found upon closing the (2,0) algebra (3.1) on the tensor multiplet

0 = Fµν(·)− [Y λ, Hµνλ, · ] + (⋆C)µνλ[X
i, DλXi, · ] + i

2
(⋆C)µνλ[Ψ̄,ΓλΨ, · ]

0 = DνY
µ − 1

2
CµλρHνλρ

0 = CµνσDσ(·) + [Y µ, Y ν , · ]

0 = [Y ν , Dν ·, ·′] +
1

3!
Cστω[Hστω, · , ·′ ] . (5.2)

We now look at the third constraint

CµνσDσ(·) + [Y µ, Y ν , · ] = 0 , (5.3)

The simplest way to solve this constraint is to take the fields independent of the the xa

spatial directions: ∂a(·) = 0. Then the constraint is solved for

Aa(·) =
1

2l3
εabc[Y

b, Y c, · ] . (5.4)

Next we look at the last constraint

[Y ν , Dν · , ·′ ] + 1

6
Cστω[Hστω, · , ·′ ] = 0 , (5.5)

and we see that a solution is given by

Y α = 0 Habc = − 1

l6
[Ya, Yb, Yc] , (5.6)

where to obtain the last relation we used the fundamental identity. Note that the second

constraint is also solved by (5.6). Finally the first constraint is satisfied if in addition we

have

Hαab =
1

l3
εabcDαY

c . (5.7)

We note that similar expressions for Hµνλ appeared in [15]. We also find that

Fαβ(·) = − 1

l3
εαβγ [Ya, D

γY a, · ]− l3εαβγ [X
i, DγXi, · ]− il3

2
εαβγ [Ψ̄,ΓγΨ, · ] . (5.8)
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To summarise, we found a solution to the constraints (5.2) given by

∂a(·) = Y α = 0

Aa(·) =
1

2l3
εabc[Y

b, Y c, · ]

Fαβ(·) = − 1

l3
εαβγ [Ya, D

γY a, · ]− l3εαβγ [X
i, DγXi, · ]− il3

2
εαβγ [Ψ̄,ΓγΨ, · ]

Habc = − 1

l6
[Ya, Yb, Yc]

Hαab =
1

l3
εabcDαY

c , (5.9)

with the other components of Hµνλ fixed by self-duality. We now wish to implement the

solution to the constraints that we found into the algebra (3.30). We see that since the

fields are required to be independent of the three spatial directions, a dimensional reduction

naturally arises.

Let us now look at the supersymmetry transformations and apply the solution to the

constraints (5.9). We find, noting that the fields now depend only on xα, for the fermions

δΨ = ΓαΓiDαX
iǫ+

1

2l3
ΓabΓ345Γ

i[Y a, Y b, Xi]ǫ− 1

3!l6
Γabc[Y

a, Y b, Y c]ǫ

+
1

l3
ΓαΓcΓ345DαY

cǫ− 1

2
ΓaΓij [Y a, Xi, Xj ]ǫ+

1

3!l3
Γ345Γ

ijk[Xi, Xj , Xk]ǫ , (5.10)

and for the bosons

δXi = iǭΓiΨ

δY a = il3ǭΓaΓ345Ψ

δAα(·) = iǭΓαΓ
b[Y b,Ψ, · ]− il3ǭΓαΓ345Γ

i[Xi,Ψ, · ] . (5.11)

We can now discuss how the degrees of freedom of the two theories are related. The eight

scalars parametrizing fluctuations in the directions transverse to the M2-branes worldvol-

ume will consist of the five scalars Xi of the (2,0) tensor multiplet and the three remaining

scalars Y α. Therefore we can define the three-dimensional scalars:

XI ≡ (l−3/2Y a, l3/2Xi) , (5.12)

where now I, J = 3, 4, 5, . . . , 10. Note that no other bosonic degrees of freedom are present

since Hµνλ is fixed by the constraints (5.9).

Next we explain how the fermionic degrees of freedom of the two theories are related.

Let us define

Ω =
1√
2
+

1√
2
Γ345 , (5.13)

then Ω2 = Γ345 and we see that

Γ012Ω = Ω−1Γ012 . (5.14)

A consequence of this is that if we define

ǫ′ = Ωǫ Ψ′ = l3/2ΩΨ , (5.15)

– 13 –
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then

Γ012ǫ
′ = ǫ′ Γ012Ψ

′ = −Ψ′ , (5.16)

and hence ǫ′ can be thought of as parametrizying the supersymmetries preserved by an

M2-brane along xα.

The supersymmetry transformations now read

δΨ′ = ΓαΓIDαX
Iǫ′ − 1

3!
ΓIJK [XI , XJ , XK ]ǫ′

δXI = iǭ ′ΓIΨ′

δAα(·) = iǭ ′ΓαΓ
I [XI ,Ψ′, · ] . (5.17)

These are exactly the variations of the maximally supersymmetric M2-brane model [2, 3].

Moreover, we see that the constraint (5.9) for the field strength Fαβ

Fαβ(·) = −εαβγ [X
I , DγXI , · ]− i

2
εαβγ [Ψ̄

′,ΓγΨ′, · ] , (5.18)

is precisely the equation of motion for the field strength of the maximally supersymmet-

ric M2-brane model. Similarly, the remaining equations of motion reduce to the correct

equations of motion:

0 = D2XI +
1

2
[[XI , XJ , XK ], XJ , XK ] +

i

2
[Ψ̄′,ΓIJΨ′, XJ ]

0 = ΓαDαΨ
′ +

1

2
ΓIJ [Ψ, XI , XJ ] . (5.19)

Therefore we showed that upon imposing the solution of the constraints (5.9) on the (2,0)

algebra (3.30) we obtain the maximally supersymmetric model describing two M2-branes.

Let us briefly mention what happens if we instead take

Cαβγ = l3εαβγ . (5.20)

This is essentially just a double Wick rotation so that the equations are obtained by a

suitable Wick rotation. Thus we arrive at a euclidean field theory in three dimensions. An

inspection of the equations shows that this has an SO(2, 6) R-symmetry.4 We thus obtain

a non-abelian three-dimensional euclidean theory which is suitable to describe an euclidean

M2-brane in (5 + 6)-dimensional spacetime, as appears in the work of [20].

6 Conclusions

In this paper we have generalized the (2, 0) system of [11] to include a background abelian

three-form. The result is a maximally supersymmetric system of equations of motion with

constraints whose solutions correspond to descriptions of M5-branes and M2-branes. Thus

we have obtained a system of equations that furnish a representation of the six-dimensional

4One might object that the fermion Ψ′ is no longer real but there is no particular reason to make the

redefinition from Ψ.
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(2, 0) superalgebra that plays an analogous role for M-branes that of ten-dimensional super-

Yang-Mills does for Dp-branes.

The Lie 3-algebra here is known to have only one realisation with a positive definite

invariant inner-product [21, 22]. The corresponding M2-brane theory describes two M2-

branes in R
8 and R

8/Z2 depending on whether or not one takes the gauge group SO(4)

and Spin(4) respectively [23–26]. The corresponding M5-brane equations of motion are

then those associated to two M5-branes and gauge group SU(2) along with a free centre

of mass tensor multiplet. Thus the physical applications are somewhat limited but appear

to capture all the known dynamics of two M2-branes or two M5-branes with maximal

supersymmetry. Presumably, as with the case of M2-branes, the case of two M-branes

admits more manifest symmetries. Therefore it is hoped that there is a broader description

of M-branes that is valid for any number of branes. The extension to 12 supersymmetries

and the ABJM model is currently under investigation.

It would be interesting to understand the physical interpretation of Cµνλ. It is hard not

to associate it with the bulk three-form of eleven-dimensional supergravity. For example

in [15], which had similar expression to what we derived in section 5, Cµνλ was viewed

as giving rise to a non-commutativity. It would also interesting to understand the role of

T-duality here and more generally in relating M2-branes and M5-branes.

It would be interesting to see if the system here has a natural interpretation in terms of

higher gauge theory as in [27]. We also note that although the system here leads naturally

to M2-branes and M5-branes in the absence of Cµνλ one can also obtain D-branes by

considering non-positive definite 3-algebras as in [28, 29]. Therefore it would be interesting

to explore the resulting system with non-vanishing three-form and non-positive definite

3-algebras. Finally there are other choices of 3-form that might lead to interesting new

physical systems associated to M-branes.
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