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1 Introduction

Dp-branes are all related to each other in a straightforward way using T-duality which
is valid microscopically in the open string description and also is manifest in the low
energy Yang-Mills effective actions [1], although of course the quantum behaviour of these
theories drastically depends on their dimension. Mathematically this occurs because all the
maximally supersymmetric Yang-Mills theories are constructed by dimensional reduction
of ten-dimensional super-Yang-Mills.

In M-theory there are M2-branes and M5-branes. While the field theories for multiple
M2-branes are now known [2-4] (for a review see [5]) the Mb-brane remains mysterious
and believed to be non-lagrangian. Although there are various proposals for M5-brane
dynamics that use a lagrangian but which require some specific limit to be taken [6-9].
One still expects there to be some form of T-duality, inherited from string theory, that
relates M5-branes to M2-branes. Even though there is no microscopic picture of these
theories analogous to open strings one may still expect to see some universal structure in
their field theory descriptions.

One attempt to relate the M2-branes to M5-branes using T-duality was given in [10].
The simple translational orbifold approach used in [1] fails as translations are not a sym-
metry of the M2-brane Lagrangian. Nevertheless the modified approach of [10] leads from



the periodic array of M2-branes to a variation of five-dimensional Super-Yang-Mills as a
description of M5-branes.

In this paper we will generalise the six-dimensional (2,0) superalgebra construction
of [11] by including a non-dynamical abelian background three-form.! Setting this to zero
reproduces the previous results which have been proposed as a description of two M5-branes
(here we specialise to the case of a positive definite Lie-3-algebra). In particular there is a
covariantly constant vector which imposes constraints that require there to be an isometry
along one direction which leads to five-dimensional super-Yang-Mills in the spacelike
case [11], five-dimensional euclidean Super-Yang-Mills in the timelike case [9] and quantum
mechanics on instanton moduli space in the null case [13]. These have all been argued
to provide a description of the quantum (2,0) theory [6-9]. We then show that turning
on the background three-form allows some components of the vector to be dynamical but
also forces a dimensional reduction to three dimensions leading to the maximally super-
symmetric field theory of two M2-branes [2, 3]. Thus this generalized (2,0) superalgebra
provides a structure that contains aspects of both multiple M2-branes and M5-branes.

There have also been a number of papers which show that the maximally supersym-
metric M2-brane Lagrangian with a Nambu bracket for the 3-algebra leads to an abelian
Mb5-brane [14-17]. It might be possible to view the results here in a complimentary con-
text: starting from the non-abelian (2,0) superalgebra associated to multiple M5-branes
and then obtaining M2-branes.

The structure of the paper is as follows. In section 2 we review the non-abelian (2,0)
algebra of [11] and the constraints on the fields that have to be satisfied for the algebra to
close. We also briefly discuss how this algebra leads to various descriptions of M5-branes. In
section 3 we propose a generalization of the algebra through the introduction of an abelian
three-form C),,», close the algebra and derive the constraints and equations of motion
for the fields. In section 4 we find the central charges and the energy-momentum tensor
associated to the generalized (2,0) algebra. In section 5 we relate our construction to the
maximally supersymmetric model describing two M2-branes and carry out the reduction.
Section 5 has our conclusions.

2 A (2,0) algebra

In [11] a (2,0) algebra was realised on a non-abelian six dimensional tensor multiplet. In par-
ticular the supersymmetry transformations from which the algebra arises were the following

6X' = jel" v
SYH =0
) ) 1 1 - . )
S = FMFzDHXl + WHHV)\F#V)\E o 511#:[‘@] [Y#7 Xl’ XJ]E
§Hyx = 3iel |, Dy + iel'T 0, [P, X', V]

§AL() = il YV, 0, -], (2.1)

!Using such a three-form has also been considered by A. Gustavsson [12].



where TH.T? are 32 x 32 real I'-matrices with p,v,... = 0,1,2,...,5 and

1,7,...=6,7,8,9,10. The spinors also satisfy
LCot2zase =€ Toragas ¥ = -0, (2:2)
and the three-form is self-dual:
Hyun = 5 €prrpor HPT (2.3)

Note that the mass dimensions of the fields are

The fields all take values in a Lie-3-algebra, that is in a vector space endowed with a
totally anti-symmetric product [ , , | from the vector space to itself. If we expand all in
fields in terms of a basis for the 3-algebra {7}, i.e. X = X,T, then

(X,Y, Z)q = X Yo Zo [, (2.5)

where the structure constants of the 3-algebra ¢ 4 are anti-symmetric in the upper indices.
Furthermore the triple product is required to satisfy the fundamental identity which reads

[A,B,[X,Y,Z]| =[|A,B,X],Y,Z| + [ X,[A,B,Y], Z]| + [X,Y,[A, B, Z]] (2.6)
or equivalently, the structure constants need to satisfy:
flebe pdess 27

We also require the existence of a symmetric inner-product which is invariant under the
action of the 3-algebra, which allows the definition of a metric structure

he® = (T, T*) . (2.8)

Which is equivalent to the condition fl2bedl = 0, where fobed = fabe_ped
Derivatives on the fields are promoted to covariant derivatives with the introduction
of a gauge field A, = (A,)%, such that

DuXa = 8p,Xa - (Ap,)baXb = 8,u,Xa - AM(X)a ) (29)
and the field strength is defined as
F. =-[D,,D,] . (2.10)

In [11] it was shown that this algebra closes if the following set of equations of motion and
constraints for the fields are satisfied

0= ‘D2XZ - %[Yﬂ7 \P?PMF’L\I]] - [Yquj7 [Y!M XjaXZH
1 : o _
0 = DyHun + J8uapor[V7, X', DTX] 4 2epumpor [V, 0, 7Y
0=T"D,V + I""T"[Y,, X", U]
0= Fw/(') - [Y>\7H/LV)\7 : ]
0=D,YY=[Y"Y", -]=[Y"Du), ']. (2.11)



The aim of this paper is to generalise this algebra by including an abelian non-dynamical
three-form C),,» with mass dimension [C] = —3.

Before doing so let us briefly recall how this system leads to various descriptions of M5-
branes. For simplicity we consider the case of the four-dimensional 3-algebra a = 1,2, 3,4

and invariant metric h% = §%°. The vector Y* is

with structure constants fecd = %E“b“l

non-dynamical and can be fixed to the form
Vi = VHEsE (2.12)

where we have fixed a particular direction in the 3-algebra and V* is a constant vector.
Since all triple products involve Y* we see that the components of the fields along the
a = 4 direction decouple and become a free 6-dimensional abelian (2,0) multiplet which
can be viewed as describing the centre of mass.

Let us consider the interacting part consisting of fields with 3-algebra indices a = 1, 2, 3.
The remaining constraints tell us that

VED,(-)a=0, (2.13)

so the interacting components of the fields cannot depend on the coordinate parallel to V#.
Furthermore we see that

Fud® = VA Hope - (2.14)

In particular V*F,,,* = 0 and we can take V*A,,* = 0 and V*9,( - ); = 0.

To continue we must specify in what direction V# points. If it is spacelike then the
SO(1,5) Lorentz symmetry allows us to set V# = [§£ for some constant [. The resulting
equations are then simply those of maximally supersymmetric Yang-Mills with gauge group
SU(2) [11]. Alternatively if V# is timelike then the SO(1,5) Lorentz symmetry allows us
to set V# = [§f. The resulting equations are now those of maximally supersymmetric
euclidean Yang-Mills theory with gauge group SU(2) (and with an SO(5) R-symmetry) [9].
Finally if V¥ = léff_ is null then the self-duality constraint on H,,  implies that F},, is self-
dual (in the remaining four spatial directions). Assuch the ADHM construction can be used
to solve for all the fields in terms of instanton moduli space [13]. However the moduli are
allowed to depend on =~ and the resulting system can be quantized and leads to quantum
mechanics (with ™ as time) on instanton moduli space. All three of these descriptions have
been proposed as giving the dynamics of multiple M5-branes (see [7-9] and [6] respectively).

3 Closure of the algebra
We consider the following extension of the (2,0) algebra
§X' = iel"

SYH = ;ﬁ"gr Wl



. . 1 \
5\11 = FMF’LD“XZE + 2.73!H/“,)\FMV €
1 g o 3 o
= STl Y, X XJe o S Crun P TVRXT, X7, X e
SH wx = 3i€l(,, DV + iel'T n, [Y7, X7, U]
- ]
L .. . . 7Y .. . .
+ ivE(*C) I [ X, X7 W) + TGP[W\MCW/\}PZ] [X*, X7 0]
L 0 _ . .
0A, () =i, YV, 0, - ]+ ie(J’WTM,Jrl[Xl,\11, -1, (3.1)
where «, 3,7,7',0 are constants to be determined and a dot (-) denotes an arbitrary field.
There are additional terms that one could consider however the rationale behind this choice
of algebra will become clear upon showing how a natural reduction to the M2-branes arises.
In this section we will show that the superalgebra closes on shell and we will derive the
equations of motion and the constraints that the fields need to satisfy.

Before we consider the closure of the algebra we first observe that the fermion equation
of motion can be obtained by imposing self-duality of 0 H. We find that

6H,n — (x0H) x = i€l oy (F"DP\IJ +T,T Y7, X W + %FPUTCWFU (X7, X7, \If]) :
(3.2)
provided that 4" = 3+ (otherwise one does not find a single expression on the right hand
side). Thus we see that the Fermion equation of motion is

D, + T, IY?, X' ] + %rpaTcpafrif (X%, X7, 0] =0 . (3.3)

3.1 Closure on X

We now proceed to close the algebra on the scalar fields X¢. We see that the algebra closes
up to a translation and a gauge transformation, that is

[61,02) X" = vV D, X" + A(X"), (3.4)
with

vt = —21’(621““61)

A() = =2i(&T\Mep) [YA, X, -] — (&l ualFe)CHA X XF, . (3.5)

We note that a new term, proportional to Cy,,x, now contributes to the definition of gauge
transformation compared to the one defined in [11].

3.2 Closure on YH

Next we look at closing supersymmetry on Y#. The expected form of the closure is

[61,82]Y* = v/ D, YH + A(YH), (3.6)



with v* and A(-) as defined in (3.5). Explicit calculation leads to

. N | |
(61, 0] Y = —%(EQF"Q) CPAH,, + % (@ Ier) CM7 Dy X'

- % (€T xpe T 1) CH¥[Y 7, X7, X]

+ % (@P{wriﬂ'kq) CreC, X7, XTI, XF] (3.7)

We see that imposing the constraint

e}

DyY# — o C"Hyz, =0, (3.8)
turns the first term of the closure into a translation. Similarly, with the help of the
constraint

.3 .
CM°D X"+ —[YH YV, X' =0, (3.9)
@

the second term of the closure represents the first part of a gauge transformation. We see
that both these constraints are generalizations of ones found in [11], cf. (2.11).

In order for the third line to turn into the part of a gauge transformation parametrized
by C™ we need

- 6 -
CH (€T el er) Y7 = 08 o (€20 0ruer) Y . (3.10)
o

It is easily checked that if & = 184 this condition is simply reduced to
CANY =0. (3.11)

We will find that the condition o = 185 also arises for closure on the other fields.
We require the fourth term to vanish as it parametrizes neither a translation nor a
gauge transformation and hence?

C[#VTCMTP =0. (3.12)

Note that this means that the components of C),, ) can be identified with the structure
constants of a Lie-algebra. Since p,v,... = 0,1,2,...5 this leads to only two possible
choices: su(2) and so(4) = su(2) @ su(2).

3.3 Closure on A,

From closing supersymmetry on the gauge field A, we expect to find

[61,02] Ay = —v"Fpy + DA (3.13)

2One might object that only the self-dual part of the left hand side must vanish but this possibility is
eliminated by closure on H,x.



Using the relations and constraints found so far, we find after some calculations that

(€T i i /0 T,
[51752] AM:27’(62F 61)<[Y)\7HMV)\’ ’ }—i_(s(*C)MV)\[X 7D)\X7 ']+%(*C>MV)\[\I}7F)\\II’ ’ ])
+ DyA +2i (&I, M) (YY, DX, -] = (6/6)C™ [Hyry, X7, - ])
+ 21(5 + 6/6) (EQF[;wFijkel) CI/]TUJ [vi [Xla Xjan]v ’ ]
—i(&T el er) ([Y”, Yo, X" X7], -]+ %[Y”, Yo, X% X7, - ]> . (3.14)

We see that in order for the first term to represent a translation we must require the
identification

. . 20 _
F,u () = [YA’HMVA7 : ] + 5(*C)HVA[X17D)\X17 ' ] + 5(*C)HV>\[‘11,FA\I’, . }7 (3'15)

which generalizes the constraint in (2.11). By looking at the form the closure needs to
take, we require the last three terms to vanish. This imposes the correction to the known
constraint

4 5 .
Y. DX, ] = 6 CT [ Hor, X', -] =0, (3.16)

as well as the relations between the coefficients
0= —60, a=—30. (3.17)

3.4 Closure on H,,

Closing the algebra on H,, is somewhat more lengthy, and in the process we found the
Mathematica GAMMA package quite helpful [18]. Supersymmetry should close up to a
translation and a gauge transformation

[51a 52}H,uu)\ = vapH/Jl/)\ + A(H/J,l/)\) . (318)

Since the calculation is quite involved we will not provide the full details here. Rather
we note that in order to close the algebra numerous terms are required to vanish as they
parametrize neither a translation, nor a gauge transformation. This is the case if the
following relations among the coefficients hold

vY=3y, =98 5=-2v. (3.19)
Then the remaining terms, making use of the constraints found so far, take the form

[(51, (52] pr)\:UprHyy)\ — 2i(€2FUFi61)[YJ, Xi, H/ux)\]
—if} (&2l ol er) CTT9 (X7, X7, )

+ 4vp<l)[AHqu] + Zg,uu)\pm’ [Yga X, DTXZ] _’7(*0)[pu)\ [Xza X7, [Yp] , XY, X]H

i _ , -
+ gguu)\pa’r [Yav v, FT\IJ] - 27(*0)[11,”)\ [Xz7 v, ]-—‘p} Fz\l’]) ) (320)



We see that the first three terms represent a translation and a gauge transformation. The
algebra then closes on shell and we find the equation of motion for H,,

DpH,

1 . . . . . .
HVP] = _ZEMV/\PUT[Y07XZ7DTXZ] +7(*O)[MVA[XZ’XJa [YprZaX]”

1

85pu)\pofr [ng @7 PT\I]] + Ii'y(*C)[,Lw)\ [X’Lv @7 I’p]lﬂ\ll] . (321)
3.5 Closure on ¥

Closure of supersymmetry on the fermion ¥ should be obtained up to a translation and a
gauge transformation

[61,05) 0 = v" D, + A(T) . (3.22)

An explicit calculation, making use of the Gamma package [18] and the constraints found
so far, gives

[61,05]T = vP D, U + A(P) (3.23)
n Zz(gzrael)r“ (FPD,)\II TP, X W]+ %chpﬂrw X7, X7, \11]>

b
3!

We see that in order to close the algebra the terms other than the translation and the gauge

- i(@rgrﬂ'q)rarﬂ' (rﬂquf +T,DYP, X0 0]+ LT, P T [ X, X9 \I/]) .

transformation need to vanish. This is achieved upon imposing the Fermion equation of
motion, which agrees with (3.3).

3.6 Bosonic equations of motion
We can vary the Fermion equation of motion (3.3) to find the equations of motion for X*

and H,, ). We find, making use of the constraints found so far, the following variation

<D2Xi - %[Y“, U, 0,700 + [Y7, X9, [Y,, X7, X]]

+ ;—TC”TW [0, Ty D9, X9] 4 ByCo™ O [XF, X7, X, X, Xk])Fie

1 1 : , S S
+ 30 <DMH,,>\,) + Zsuy,\pgT[Y",Xﬂ D™X"] — 4(*C) [ X", X7, [V, X', XV
+ éslﬂ/)\ptﬁ' [YJ> \Ila FT\I}] - Z.PY(*C)#V)\ [XZ> \Tja FPFZ\II]> F,UVMJE =0. (324)

We see that the equation of motion for H,,, ) agrees with the one found by requiring closure
of the algebra (3.21). Moreover, we find the equation of motion for X*

DX = Ly e 0 T, - [, X, (Y, X, X)
— SO Do D90, XT) = ByC77 Cr [X7, X7, XH), X0, XH) . (3.25)

Therefore we have determined the equations of motion for all the degrees of freedom of the
(2,0) tensor multiplet.



3.7 Summary

We have shown that the (2,0) algebra (3.1) we proposed closes on shell. We found correc-
tions to the equations of motion and constraints (2.11), which we list here for convenience.
Since we are free to rescale C,,\ we can, without loss of generality, set the coefficients of
the (2,0) algebra to the specific values

a=3 B=1/3 y=1/2 6=-1 ~ =3/2, (3.26)

which respect the relations found in the closure of the algebra. The equations of motion
for the fields of the tensor multiplet are

0=D?X"— %[Y", U, T,00) + Y7, X9, [V,, X7, X1]]
; _ y . 1 o .
+ 5 O Do TV W, X7) 4 5 C7 Gl [[X, X7, XM, X7, XM

1 ) )
0= D[)\H ] =+ ZEMV)\pUT[YavXZ7DTXZ]

1 s Do
uvp (*C)[}M/)\[X 7Xj7[Yp]aX >X]]]

2

1 _ . .
+ SEuvpor [YU, \Ijv FT‘l’] (*C)[,uz/)\ {XZ, \Ij7 11p] F’L\I’]

!
8 2

0=T"D,V +T,T'Y", X' V] + Lo, CPPTTH X", X9, 0], (3.27)

2-3!

while the additional constraints for the algebra to close on shell are

. . i _
0= Fu()- [YA,HWM ks (*C)WA[XZaD/\XZ’ Sk 5(*C)W,\[\IJ,F)‘\II, -]

1
0=D,Y" =2 CH " H,z,
0=CMD,(-)+ [Y* V", -]

1

0= [YV7 DV': '/] + ? CUTW[HUTLU) '7 ! ]
0=CAY . (3.28)

Note that using the second constraint the fourth constraint can be rewritten as

1
0=[Y". Dy, ]+ 5[DY", - ], (3.29)

The equations of motion (3.27) are invariant under the (2,0) supersymmetry realised by
the variations

0X' = il Wy

SYH = %gr WLl



. . 1
oW =TT D, X e + ﬁHwAFW’\e

1 . ) . 1 . L
= D[V, X7, X e + @CM,,AFWPU’?[X", X7, X¥e
SH wx = i€l DV + iel'T p, [Y7, X7, U]

+ %E(*C)W,\F” (X7, X7, 0] + ZZEI‘[WWC’”MI‘” X7, X9,

A, () = iel [V, U, -] — %gcw’rwpri[xi,xy, . (3.30)

4 Conserved currents

In this section we construct the supercurrent S#* and energy-momentum tensor 7}, associ-
ated to the supersymmetry algebra realised in (3.1). We can then deduce the form of the
superalgebra including the central charges.

The supercurrent can be easily computed by

eSH = 2mi (5. W, THD) . (4.1)
Note the pre-factor of 27 which is needed to produce the correct energy-momentum tensor

and will be justified in due course. Explicitly we find

i
3!
Coro([XT, X9, X¥], TURDITOTRY) | (4.2)

SH = —27i(D, X TYTTPW) + — (Hyry,, DTT“THY) — mi([Y,, X¢, XI], TV TUTHT)

i
3-3!

The supercurrent is indeed found to be conserved on shell.

—+

Next we construct the energy-momentum tensor, which after some trial and error, reads

Ty = 21(D, X", D, X") — w0 (DA X", DA X + n([X%, X7, V,], [ X7, X7V, ]) (4.3)
7'[' . . . . 7'(' . —
- 577MV<[XZ’ X], Y)\]a [XzaXJ7YA]> + §<HM/\P’ HuAp> - Z7T<\I/, FMDV\I]>
— i (U, T, D, W) + i1, (U, TX DAY — 7, ([0, YA, X, D\TV0)
T o o 1
+ g (X XY, XF), (x4 X9, X)) (CWCV ™ 3!%&)
T O, (O (X, X7, XK, (X, X9, XK)) — T 0o, Ty T, X7, X7)
31 HAp v ) ) ) ) ) 3!77,u1/ s Lorw ) , .
The energy-momentum tensor is found to satisfy 0#7,, = 0 using the equations of

motion and constraints for the fields derived in the previous section.? Although we note
that the bosonic part is not symmetric for a general choice of three-form due to the
Curp(xC), term (as well as the more familiar asymmetry arising from the fermions).
The 27 pre-factor was justified in [19] to agree with charge quantization and also in [9] to
reproduce the correct energy density for M2-branes ending on M5-branes. It also leads to
the correct matching of instanton-solitons with KK tower modes [9].

®In fact conservation allows for arbitrary coefficients of the C,x,C,* and Cx,(*C), " terms that we
have fixed by considering the super-algebra below.

,10,



In order to derive the super-algebra we make use of the the chain of identities

i€”{Qa, Qp} = i{eQ, Qa} = 6.Qa = /d5£€ (059 A, (4.4)
where
Q= /d% SO (4.5)
Since by construction {Q4,@p} is symmetric in A, B, we can extract the momentum
P, = / d>z2Ty, (4.6)
and the central charges (Zf“ ZZ]'VA) following the expansion
. . 1 . i
{@1,@p} = 2010 ap Py + (IO ) 4p ) 4+ o (PATHO) 4520 (47)
In case of vanishing Fermions, we find the following central charges. For ZL we find
Zh = 47T/d5:r (Yo, X", X7], D°X7) — (Y, X', X7], D" X7) (4.8)
Zh= 1w [ e (Y0, X1 X9, D) + (%3 X1, X7, DPX)
o1 A . -
+ (Hojo, D" X') + 5 G (X7, X, XT], DY X )tk
— Copa (X7 X7, XF] [, X, XH) (4.9)

while Z,ijux reads (all the expressions should be taken to be anti-symmeterized in 4,7 and

ft, 7, A where dotted indices only run over spatial coordinates [, = 1,2,...,5.)
Z&b = 47r/d5a: 2V, XF, XM, Ve, X*, XT]) — ([Yy, XF, X1, D, X ™)k
+ %<Hopf/, Y0 X% X)) — %<H’L'“‘/p, VP, X' X7)) — 2(D, X", D, X7)
— {(CuzpD? X" + Cops Do X "), (X', X7, XH])
4 5 ((Cagl¥?, X, X7 = ol ®, X4, X)), [, X7, X)eiikim
- 2%)!GX 5 X XM, (2C005Hyy + Ciops H L7))e'M™ (4.10)
Z:VA = 47T/d5x %(HM, YO, X%, x9)) — 2<HW’ Y5, X°, X))
— ((Cyp3DoX* + 3Cos D3 X %), [X7, X7, X))
N %«CM[YO’vaX”] +3C0u [y, X, X)), [X*, X!, X7])ekim
* i«cﬂ”pHo;\p - Co)lpH;zz'/'b)v (X5, X! Xm)ekm (4.11)

— 11 —



5 From (2,0) to 2 M2’s

As recalled in section 2 previous work has examined the dynamical systems that arise from
the above system when C,,» vanishes [9, 11, 13]. To this end let us split up spacetime into
the directions «, 5 =0,1,2 and a,b = 3,4,5 and fix

C10Lbc = l3 Eabe » (51)

where [ has dimension of length. This breaks to the SO(1,5) Lorentz symmetry to
SO(1,2) x SO(3). We will see that this SO(3) enhances the SO(5) R-symmetry to SO(8).
Recall the constraints found upon closing the (2,0) algebra (3.1) on the tensor multiplet

) ) 7 _

0= Fu () = [V Hun, - ]+ GC)un [X', DX, - T S (+C)un [0, T, -]
1

0= D, Y — S C*¥Hy,

0=CMDy(-)+ [Y*, YV, -]

1
0=1[Y",D,, -]+ 30 Co™Hyry, -, -] . (5.2)
We now look at the third constraint
CMVUDG(') + [YN7 Yy, - ] =0, (53)

The simplest way to solve this constraint is to take the fields independent of the the xz“
spatial directions: J,(-) = 0. Then the constraint is solved for

Au() = grealV" Y ] (5.4)
Next we look at the last constraint
[Y¥.Dy -, o g O Hor, -, 1] =0, (5.5)
and we see that a solution is given by
Y*=0 Hype = —l[Ya, Yy, Yel, (5.6)

l6

where to obtain the last relation we used the fundamental identity. Note that the second
constraint is also solved by (5.6). Finally the first constraint is satisfied if in addition we
have

1
Haab = ﬁeabcDaYC . (57)
We note that similar expressions for H,, appeared in [15]. We also find that

1 . . 7 _
Fo5() = _ﬁgam[YmDW“, ] = Peapy[XL, DX ] - ?%m[q},rﬁn 1. (5.8)
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To summarise, we found a solution to the constraints (5.2) given by
Ou()=Y*=0

1 c
Aa(‘) = ﬁgabc[ybvy y ]

1 . . E: _
Fop(t) = _ﬁeaﬁv[YG’DVYav )= l35aﬁ’y[XZvD’yXZ7 1= 75(167[{1’1"7\1/7 -]
1
Habc — _E[Yaan,}/c]
1
Haab = ﬁsabcDaycv (59)

with the other components of H,,, fixed by self-duality. We now wish to implement the
solution to the constraints that we found into the algebra (3.30). We see that since the
fields are required to be independent of the three spatial directions, a dimensional reduction
naturally arises.

Let us now look at the supersymmetry transformations and apply the solution to the
constraints (5.9). We find, noting that the fields now depend only on 2%, for the fermions

1

‘ . , ) 1
80 =TT D, X' + ﬁrabrmrl[w, Y?, Xe — ﬁrabc[ya, Y?, Ve
1 1 . S 1 g o
+ 55T T T4 Do Y e — ST TV [V, X7, X e+ Wrmrw’f[xa X7, XFle,  (5.10)
and for the bosons
6X' = iel'w
§Y® = i3l T345 ¥
0AL () = ieD TPV, 0, - ] — ilPel Tays T X, 0, - ] . (5.11)

We can now discuss how the degrees of freedom of the two theories are related. The eight
scalars parametrizing fluctuations in the directions transverse to the M2-branes worldvol-
ume will consist of the five scalars X of the (2,0) tensor multiplet and the three remaining
scalars Y®. Therefore we can define the three-dimensional scalars:

X' =13y 32X, (5.12)

where now I, J = 3,4,5,...,10. Note that no other bosonic degrees of freedom are present
since H,, is fixed by the constraints (5.9).
Next we explain how the fermionic degrees of freedom of the two theories are related.
Let us define
1 1

Q=— 4 ——Tys5, 5.13
\/i \/é 345 ( )

then Q2 = I'sys and we see that
L0120 = Q 'To12 . (5.14)
A consequence of this is that if we define

=0 U =P, (5.15)
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then
Loipe' =€ T’ = -0’ (5.16)

and hence € can be thought of as parametrizying the supersymmetries preserved by an
M2-brane along z¢.

The supersymmetry transformations now read

1
5\:[// _ FaFIDaXIEI o gFIJK[XI,XJ,XK]G/
oXT = el

§AL() = e T DI XT 0, .. (5.17)

These are exactly the variations of the maximally supersymmetric M2-brane model [2, 3].
Moreover, we see that the constraint (5.9) for the field strength Fi,s

7 _
Fop() = —eap, (X1, DV X7, -]—igam[\p’,rw’, -1, (5.18)

is precisely the equation of motion for the field strength of the maximally supersymmet-
ric M2-brane model. Similarly, the remaining equations of motion reduce to the correct
equations of motion:

1 i
0= D2X! + S[[XT, X7, X K], X7, ] 4 S[0, 7MW, x)

1
0=T"D,V + 5r”[xIJ,XI, X7 . (5.19)

Therefore we showed that upon imposing the solution of the constraints (5.9) on the (2,0)
algebra (3.30) we obtain the maximally supersymmetric model describing two M2-branes.
Let us briefly mention what happens if we instead take

Copy = Peapy - (5.20)

This is essentially just a double Wick rotation so that the equations are obtained by a
suitable Wick rotation. Thus we arrive at a euclidean field theory in three dimensions. An
inspection of the equations shows that this has an SO(2,6) R-symmetry.* We thus obtain
a non-abelian three-dimensional euclidean theory which is suitable to describe an euclidean
M2-brane in (5 + 6)-dimensional spacetime, as appears in the work of [20].

6 Conclusions

In this paper we have generalized the (2,0) system of [11] to include a background abelian
three-form. The result is a maximally supersymmetric system of equations of motion with
constraints whose solutions correspond to descriptions of M5-branes and M2-branes. Thus
we have obtained a system of equations that furnish a representation of the six-dimensional

“One might object that the fermion ¥ is no longer real but there is no particular reason to make the
redefinition from W.
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(2,0) superalgebra that plays an analogous role for M-branes that of ten-dimensional super-
Yang-Mills does for Dp-branes.

The Lie 3-algebra here is known to have only one realisation with a positive definite
invariant inner-product [21, 22]. The corresponding M2-brane theory describes two M2-
branes in R® and R®/Zy depending on whether or not one takes the gauge group SO(4)
and Spin(4) respectively [23-26]. The corresponding Mb5-brane equations of motion are
then those associated to two Mb-branes and gauge group SU(2) along with a free centre
of mass tensor multiplet. Thus the physical applications are somewhat limited but appear
to capture all the known dynamics of two M2-branes or two Mb-branes with maximal
supersymmetry. Presumably, as with the case of M2-branes, the case of two M-branes
admits more manifest symmetries. Therefore it is hoped that there is a broader description
of M-branes that is valid for any number of branes. The extension to 12 supersymmetries
and the ABJM model is currently under investigation.

It would be interesting to understand the physical interpretation of C,, 5. It is hard not
to associate it with the bulk three-form of eleven-dimensional supergravity. For example
in [15], which had similar expression to what we derived in section 5, C),,\ was viewed
as giving rise to a non-commutativity. It would also interesting to understand the role of
T-duality here and more generally in relating M2-branes and Mb5-branes.

It would be interesting to see if the system here has a natural interpretation in terms of
higher gauge theory as in [27]. We also note that although the system here leads naturally
to M2-branes and Mb5-branes in the absence of €, one can also obtain D-branes by
considering non-positive definite 3-algebras as in [28, 29]. Therefore it would be interesting
to explore the resulting system with non-vanishing three-form and non-positive definite
3-algebras. Finally there are other choices of 3-form that might lead to interesting new
physical systems associated to M-branes.
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