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1 Introduction

There has recently been a great revival of interest in the conformal bootstrap program [2, 3]

after ref. [4] observed that its applicability extends to Conformal Field Theories (CFTs) in

d > 2 dimensions. Since ref. [4], considerable progress has been achieved in understanding

CFTs in d ≥ 2 dimensions, both numerically and analytically. Probably the most striking

progress has been made in the numerical study of the 3D Ising model, where amazingly

precise operator dimensions and OPE coefficients have been determined [5–7].

Essentially all numerical bootstrap studies so far have used the constraints imposed

by crossing symmetry on 4-point correlators evaluated at a specific value of the conformal

cross-ratios, u = v = 1/4, or equivalently in z-coordinates at z = z̄ = 1/2 [8]. This is

the point of best convergence for the combined conformal block expansions in the s and t

channels. Taking higher and higher derivatives of the bootstrap equations evaluated at this

point has proven to be very effective and successful in obtaining increasingly better bounds.

We will denote this method in the following as the “derivative method”. A drawback of

the derivative method — both in its linear [4, 6, 9] or semi-definite [10, 11] program-

ming incarnations — is the need to include a large number of operators in the bootstrap

equations. This makes any, even limited, analytical understanding of the obtained results

quite difficult.

A possible approximation scheme is in fact available: ref. [12] has determined the rate of

convergence of the Operator Product Expansion (OPE), on which the bootstrap equations

are based. This allows us to extract the maximal error from neglecting operators with

dimensions larger than some cutoff ∆∗ in the bootstrap equations and thus to consistently

truncate them. These truncated bootstrap equations can then be evaluated at different

points in the z-plane. This method, which we denote as the “multipoint method”, has
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been previously advocated by Hogervorst and Rychkov in ref. [1] but has not yet been

numerically implemented. The aim of this note is to provide such an implementation

and study the resulting bounds. It is important to emphasize that the method of ref. [1]

combines what are in principle two independent ideas: i) multipoint bootstrap and ii)

truncation of the bootstrap equations. One could study i) without ii), or try to analyze ii)

without i). We will not consider these other possibilities here.

We begin in section 2 with a brief review of the results of refs. [1, 12, 13] on the

convergence of the OPE. We use generalized free theories as a toy laboratory to test some

of the results obtained in ref. [12]. We then generalize the results of ref. [12] for CFTs with

an O(n) global symmetry.

We write the bootstrap equations and set the stage for our numerical computations in

section 3. Our results are then presented in section 4. For concreteness, we study bounds

on operator dimensions and the central charge in 3D and 4D CFTs, with and without an

O(n) global symmetry (with no supersymmetry). For these bounds, extensive results are

already available in the literature (see e.g. refs. [5–7, 10, 14–22]). In particular, we focus our

attention on the regions where the 3D Ising and O(n) vector models have been identified.

We show how the results depend on the number N of points in the z-plane at which we

evaluate the bootstrap equations and the cut-off ∆∗ on the dimension of operators in the

bootstrap equations. Using values for the dimension of the operator φ in O(n) vector

models available in the literature and a fit extrapolation procedure, we then determine the

dimensions of the second-lowest O(n) singlet and symmetric-traceless operators S′ and T ′

for n = 2, 3, 4. To our knowledge, these have not been obtained before using bootstrap

techniques. Our results are consistent with those from analytical calculations using the ε-

expansion [23, 24] with a mild tension with the result of ref. [24] for the dimension of T ′ in

the O(2) model. We notice from our results that the “kink” in the bound on the dimension

of the lowest scalar (singlet) operator in 3D Ising and O(n) vector models is already visible

for relatively small ∆∗, while the minimum in the central-charge bound is very sensitive

to ∆∗. For our numerical implementation, we discretize the spectrum and formulate the

bootstrap equations as a linear program which we solve using the optimizer CPLEX1 by IBM.

Since we focus on the truncated bootstrap equations with relatively low cutoff ∆∗, double

precision as used by CPLEX is sufficient for our purposes. More refined implementations

with higher numerical precision, possibly adapting the method and optimizer of refs. [6, 9],

are certainly possible. More details on the numerical implementation are given in section 5.

We conclude in section 6.

2 Convergence of the OPE

We begin with a brief review of the results of refs. [12, 13] (see also ref. [1]) about the

convergence of the OPE in a euclidean, reflection positive, CFT in any number of dimen-

sions.2 For more details see the original references. Consider the 4-point function of a

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.
2Bounds on the OPE convergence are obtained in an alternative way using crossing symmetry in ref. [25].

Interestingly, ref. [25] sets bounds which are also valid for finite values of ∆∗ at z = z̄ = 1/2, though they

are relative and not absolute bounds. It would be interesting to explore the approach followed in this paper

further. We thank Slava Rychkov for having pointed out this reference to us.
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scalar primary operator φ with scaling dimension ∆φ:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

, (2.1)

where

u ≡ x2
12x

2
34

x2
13x

2
24

and v ≡ x2
14x

2
23

x2
13x

2
24

(2.2)

are the conformally-invariant cross-ratios (xij ≡ xi−xj). Applying the OPE to the operator

pairs φ(x1)φ(x2) and φ(x3)φ(x4) in the 4-point function, one can write

g(u, v) = 1 +
∑
∆,l

λ2
O g∆,l(z, z̄) , (2.3)

where u = zz̄, v = (1 − z)(1 − z̄) and the sum runs over all primary operators O that

appear in the φ × φ OPE with ∆ and l being respectively their dimension and spin. For

each primary, the sum over all its descendants is encoded in the conformal block function

g∆,l(z, z̄). In a euclidean CFT, z̄ = z∗ and the conformal blocks are regular everywhere

in the complex z-plane, with the exception of a branch-cut along the real line [1,+∞).3

Thanks to reflection positivity, the OPE coefficients λO are real and thus λ2
O > 0.

Crucial for our considerations will be a bound on the remainder∑
(∆≥∆∗),l

λ2
O g∆,l(z, z̄) (2.4)

of the sum in eq. (2.3) when it is truncated at some primary operator of dimension ∆ = ∆∗.

To determine this bound, one first uses that

|g∆,l(z, z̄)| ≤ g∆,l(|z|, |z̄|) (2.5)

as follows e.g. from a representation of the conformal blocks in terms of Gegenbauer poly-

nomials [1]. It is therefore sufficient to estimate the remainder for real z = z̄. As was found

in ref. [12], the most stringent bound is obtained by using the coordinate

ρ(z) =
z

(1 +
√

1− z)2
. (2.6)

The z-plane is mapped to the unit disk in ρ and the branch-cut is mapped to the boundary

of the disk. The conformal blocks in ρ are then defined for |ρ| < 1. In the manifestly

reflection positive configuration with ρ̄ = ρ = r, the function g(u, v) in eq. (2.3) can be

written as4

g(r) = 1 +
∑
∆,l

λ2
O

∞∑
n=0

cn(∆, l)r∆+n , (2.7)

3The branch-cut is best seen in Lorentzian signature, where z and z̄ are two independent variables. At

fixed z̄ (z), g∆,l(z, z̄) is a true analytic function in z (z̄) with a branch-cut along the line [1,+∞).
4For simplicity, we use the same symbol to denote the functions g(u, v) and g̃(r) = g(u(r), v(r)) etc.

here and below.
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where cn(∆, l) are positive coefficients whose explicit form is not important here and the

sum over n takes into account the contributions from the descendants of each primary. It

is convenient to rewrite g(r) as

g(β) =

∫ ∞
0
d∆ f(∆)e−β∆ with f(∆) =

∑
k

ρk δ(∆−∆k) . (2.8)

Here β ≡ − log r, k runs over all operators (primaries and their descendants) which are

exchanged in the OPE and f(∆) is a spectral density with positive coefficients ρk. Again,

their explicit form is not relevant for our considerations.

The behaviour of g(β) in the limit β → 0 (corresponding to the OPE limit x3 → x2,

in which case z → r → 1 and 1 − z → β2/4 → 0) is dominated by the exchange of the

identity operator and one finds:5

g(β) ∼
β→0

24∆φβ−4∆φ . (2.9)

Here a ∼ b means that a/b → 1 in the considered limit. The key observation of ref. [12]

is that since the coefficients ρk are all positive, this asymptotic behaviour determines the

leading, large-∆ behaviour of the integrated spectral density

F (∆) =

∫ ∆

0
f(∆′) d∆′ (2.10)

by means of the Hardy-Littlewood tauberian theorem (see e.g. [26]):6

F (∆) ∼
∆→∞

(2∆)4∆φ

Γ(4∆φ + 1)
. (2.11)

The remainder (2.4) can then be bounded as follows: we first note that

∑
(∆≥∆∗),l

λ2
O g∆,l(β) ≤

∫ ∞
∆∗

f(∆)e−β∆ d∆ , (2.12)

since the r.h.s. contains contributions from all operators with dimension larger than ∆∗,

whereas on the l.h.s. only primaries with dimension larger than ∆∗ and their descendents

contribute. Using eq. (2.11), the r.h.s. can in turn be bounded as∫ ∞
∆∗

f(∆)e−β∆ d∆ = β

∫ ∞
∆∗

e−β∆(F (∆)− F (∆∗)) d∆ ≤ β
∫ ∞

∆∗

e−β∆F (∆)d∆

' β
∫ ∞

∆∗

e−β∆ (2∆)4∆φ

Γ(4∆φ + 1)
d∆ =

β−4∆φ 24∆φ

Γ(4∆φ + 1)
Γ(4∆φ + 1,∆∗β), (2.13)

5This is true in general only in d > 2 dimensions. In d = 2, one has to be careful since scalar operators

can have arbitrarily small dimensions. See also the discussion after eq. (2.23).
6It is in fact sufficient that the coefficients are all positive for operators with dimension larger than some

fixed value ∆0.
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where Γ(a, b) is the incomplete Gamma function. Clearly, this bound applies for paramet-

rically large values of ∆∗, where eq. (2.11) holds. Using eq. (2.5), we finally get the bound

on the remainder∣∣∣ ∑
(∆≥∆∗),l

λ2
O g∆,l(z, z̄)

∣∣∣ ≤ (− log |ρ(z)|)−4∆φ24∆φ

Γ(4∆φ + 1)
Γ(4∆φ + 1,−∆∗ log |ρ(z)|) . (2.14)

This is valid in any number d > 2 of dimensions for 4-point functions with identical scalars.

It was pointed out in ref. [13] that the conditions for the applicability of the Hardy-

Littlewood tauberian theorem in both 3 and 4 dimensions are also fulfilled for the rescaled

conformal blocks

g̃∆,l(r) ≡ (1− r2)γg∆,l(r) (2.15)

with γ = 1. Repeating the derivation reviewed above for a remainder involving the rescaled

conformal blocks, it is straightforward to get the alternative bound∣∣∣ ∑
(∆≥∆∗),l

λ2
O g∆,l(z, z̄)

∣∣∣ ≤ R(z, z̄,∆∗,∆φ, γ) (2.16)

with

R(z, z̄,∆∗,∆φ, γ) ≡ (− log |ρ(z)|)−4∆φ+γ 24∆φ+γ

Γ(4∆φ + 1− γ)

Γ(4∆φ + 1− γ,−∆∗ log |ρ(z)|)
(1− |ρ(z)|2)γ

. (2.17)

For −∆∗ log |ρ(z)| � 1, eq. (2.17) can be approximated as

R(z, z̄,∆∗,∆φ, γ) ≈ 24∆φ+γ ∆
4∆φ−γ
∗

Γ(4∆φ + 1− γ)

|ρ(z)|∆∗
(1− |ρ(z)|2)γ

. (2.18)

We see that for |ρ(z)| not too close to 1 and ∆∗ & 8∆φ, the bound is more stringent for

γ = 1 than for γ = 0. It was furthermore shown in ref. [13] that in d = 3 dimensions,

γ = 1 is the maximal allowed value such that the Hardy-Littlewood tauberian theorem

remains applicable, whereas it was conjectured without proof that the maximal allowed

value in d = 4 dimensions is γ = 3/2. Correspondingly we use eq. (2.17) with γ = 1 for

the remainder both in 3 and 4 dimensions in our numerical implementation.7

The above derivations were based on the existence of a configuration for which the

function g(u, v) turns into a positive definite function of a single variable. The remainder

is then estimated using the Hardy-Littlewood tauberian theorem. One cannot naively

apply these arguments to arbitrary derivatives of g(u, v) w.r.t. u and v, unless the resulting

functions remain positive definite and derivatives can be brought inside the absolute value

in the l.h.s. of eq. (2.16). See the appendix of ref. [27] for a recent discussion on how to

estimate the remainder on derivatives of g(u, v). It would be interesting to verify if this

allows us to also study truncated bootstrap equations with the derivative method.

7The fact that eq. (2.16) with γ = 0 is not optimal can be traced to using the inequality (2.12) in the

derivation. In order to make the bound more stringent, one could then alternatively use the series repre-

sentation in ref. [1] which includes contributions from primary operators and their descendants separately.

Using this series truncated at contributions corresponding to dimension ∆∗ instead of the full conformal

blocks g∆,l would make the r.h.s. of the inequality (2.12) the actual remainder to be bounded. This would

thus make eq. (2.16) with γ = 0 more stringent. Here, however, we choose not to follow this approach. The

reason is that the representations for the full conformal blocks g∆,l can be considerably faster calculated

than (our implementation of) the truncated series representation of ref. [1].
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2.1 Comparison with generalized free theories and asymptotics for z → 1

The results reviewed in the previous subsection are based on eq. (2.11) which holds in the

limit ∆∗ →∞. Of course, for any practical use, we need to know the value of ∆∗ beyond

which we can trust eq. (2.11) and thus the bound eq. (2.16). It is difficult to determine this

value for a generic CFT. But we can get useful insights by considering exactly calculable

CFTs, like generalized free theories (sometimes called mean field theories) for which the

CFT data are known and the function g(u, v) in eq. (2.1) in any number of dimensions reads

g(u, v) = 1 + u∆φ +
(u
v

)∆φ

= 1 + |z|2∆φ +

(
|z|
|1− z|

)2∆φ

. (2.19)

For values of ∆∗ such that eq. (2.11) is no good approximation, the r.h.s. of eq. (2.16) can

clearly still overestimate the actual remainder, leading to no inconsistency. On the other

hand, if it underestimates the actual remainder, eq. (2.16) is simply wrong. We define

η ≡
R(z, z̄,∆∗,∆φ, γ)∣∣∣∑(∆≥∆∗),l

λ2
O g∆,l(z, z̄)

∣∣∣ (2.20)

and check if and when η is smaller than 1, in which case eq. (2.16) is violated. The

denominator in eq. (2.20) is computed as∑
(∆≥∆∗),l

λ2
O g∆,l(z, z̄) = g(u, v)− 1−

∑
(∆<∆∗),l

λ2
O g∆,l(z, z̄) . (2.21)

In figure 1, we show η as a function of ∆∗ evaluated at the symmetric point z = z̄ = 1/2.

Notice that at the point of best convergence the actual remainder is always significantly

smaller than R, and that the ratio gets bigger and bigger as ∆∗ increases for large ∆∗.

In particular, η is greater than 1 for any value of ∆∗. We have performed comparisons

with GFTs in d = 3 dimensions with γ = 0, 1 and d = 4 dimensions with γ = 0, 3/2

for different values of z and ∆φ within the unitary bounds, finding analogous qualitative

results. Somehow unexpectedly, we find that the bound (2.16) is never violated in GFTs,

for any value of ∆∗.

When z → 1, both the numerator and the denominator of η in eq. (2.20) blow up,

since the OPE is not convergent at z = z̄ = 1. Operators with high scaling dimension are

no longer suppressed and the remainder completely dominates the OPE.8 More precisely,

we have

R(z, z̄,∆∗,∆φ, γ) ∼
z,z̄→1−

24∆φ(− log |ρ(z)|)−4∆φ , (2.22)

independently of γ. Notice that this limit is universal for any CFT that includes in its

spectrum a scalar operator with dimension ∆φ, because z = z̄ → 1 selects the universal

identity contribution in the t-channel. This class of CFTs always includes a GFT for the

operator φ itself. In this case the universal nature of the limit is trivially checked using

eq. (2.19):

g(u, v) ∼
z,z̄→1−

1

|1− z|2∆φ
∼

z,z̄→1−
24∆φ(− log |ρ(z)|)−4∆φ , (2.23)

where in the last equality we have used that |1− z| → (log |ρ(z)|)2/4 in the limit.

8In this limit, the name remainder should actually be used for the finite sum of operators up to ∆∗.
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Figure 1. η defined in eq. (2.20) as a function of ∆∗ in a generalized free theory in d = 4 dimensions

evaluated at the symmetric point z = z̄ = 1/2. We have taken ∆φ = 1.5 and γ = 1.

It was found in refs. [28, 29] that the spectrum of any Lorentzian CFT resembles that

of a GFT for parametrically large spin operators. In particular, in ref. [28] this has been

established by analyzing crossing symmetry in the limit z → 0 and z̄ fixed for d > 2, where

large twist operators are suppressed. The two-dimensional case is more subtle, because

there is no longer a gap between the identity (which has the minimum twist zero) and the

other operators. Indeed, the results of refs. [28, 29] and those of ref. [12] in the euclidean

do not straightforwardly apply for d = 2.

In the euclidean, operators of any twist should be considered. However, given the

results of refs. [28, 29], it is natural to expect that the leading behaviour (2.22) is expected

to come from operators with parametrically high dimension and high spin for any CFT,

asymptotically approaching the GFT spectrum in this regime. It would be interesting to

understand within euclidean CFTs, where the twist does not play an obvious role, why

this is so.

2.2 Remainder for CFTs with O(n) symmetry

The generalization of the OPE convergence estimate to CFTs with O(n) global symmetry

is straightforward. For concreteness, let us consider scalars φi in the fundamental repre-

sentation of O(n). The only non-trivial point is to identify a proper linear combination of

4-point functions

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 (2.24)

that leads to a positive definite series expansion, otherwise the Hardy-Littlewood tauberian

theorem does not apply. A possible choice is

Aη ≡ 〈φ1φ1φ1φ1〉+ |η|2〈φ2φ2φ2φ2〉+ η〈φ1φ1φ2φ2〉+ η∗〈φ2φ2φ1φ1〉 =
aη(u, v)

x
2∆φ

12 x
2∆φ

34

, (2.25)

where for simplicity we have omitted the x-dependence of the fields. The parameter η can

in general take an arbitrary complex value, but it is enough for our purposes to consider

– 7 –
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η = ±1. For ρ̄ = ρ = r and any η, this correlator is manifestly positive definite, because it

corresponds to the norm of the state

φ1|φ1〉+ ηφ2|φ2〉 . (2.26)

The leading term in aη(u, v) for x2 → x3 is given by the exchange of the identity operator

in the first two correlators and hence is independent of η. On the other hand, expanding

in conformal blocks in the (12)-(34) channel, we have [19]

Aη =
1

x
2∆φ

12 x
2∆φ

34

(
2(1+η)

(
1+
∑
S+

λ2
S g∆,l(u, v)

)
+4

(
1−1 + η

n

)∑
T+

λ2
T g∆,l(u, v)

)
, (2.27)

where S and T denote operators in the singlet and rank-two symmetric representations of

O(n), respectively. Both sums run over even spins. We can now repeat essentially verbatim

the derivation below eq. (2.6). For η = −1, this gives rise to the bound∣∣∣ ∑
(∆≥∆∗),l

λ2
T g∆,l(z, z̄)

∣∣∣ ≤ 1

2
R(z, z̄,∆∗,∆φ, γ) , (2.28)

where R is given in eq. (2.17). The factor 1/2 with respect to the non-symmetric case arises

because the identity operator is exchanged in two correlators but a factor 4 is present in

the second term in the r.h.s. of eq. (2.27). For η = 1 we similarly get∣∣∣ ∑
(∆≥∆∗),l

(
λ2
S g∆,l(z, z̄) +

(
1− 2

n

)
λ2
T g∆,l(z, z̄)

)∣∣∣ ≤ 1

2
R(z, z̄,∆∗,∆φ, γ) . (2.29)

Another positive definite linear combination of correlators is

Bη ≡ 〈φ2φ1φ1φ2〉+ |η|2〈φ1φ2φ2φ1〉+ η〈φ2φ1φ2φ1〉+ η∗〈φ1φ2φ1φ2〉 =
bη(u, v)

x
2∆φ

12 x
2∆φ

34

, (2.30)

corresponding to the norm of the state

φ1|φ2〉+ ηφ2|φ1〉 . (2.31)

Again, we consider η = ±1. In the (12)-(34) channel the correlator Bη can be written as9

Bη =
1

x
2∆φ

12 x
2∆φ

34

(
2(1 + η)

∑
T+

λ2
T g∆,l(u, v) + 2(1− η)

∑
A−

λ2
A g∆,l(u, v)

)
, (2.32)

where A stands for operators in the rank-two antisymmetric representation of O(n). The

first sum runs over even spins, whereas for the second one they are odd. As before, the

leading term in bη(u, v) for x2 → x3 is given by the exchange of the identity operator in

the first two correlators and is independent of η. For η = 1, eq. (2.32) gives rise to the

same bound given in eq. (2.28), while for η = −1 we have∣∣∣ ∑
(∆≥∆∗),l

λ2
A g∆,l(z, z̄)

∣∣∣ ≤ 1

2
R(z, z̄,∆∗,∆φ, γ) . (2.33)

9In our normalization conventions for the conformal blocks, the squared OPE coefficients λ2
S,T,A are all

positive.

– 8 –
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It is straightforward to see that the bounds (2.28), (2.29) and (2.33) are the best that

can be obtained. Indeed, in the free-theory limit one has λ2
S = λ2/n, λ2

T = λ2
A = λ2/2 with

λ2 being the OPE coefficients for a single free field (see e.g. eq. (5.11) in ref. [20]). The

above three bounds then reduce to eq. (2.16) which is known to give the best bound on the

r.h.s. of eq. (2.12) (see however footnote 7) [12]. Any potentially better bound for O(n)

theories should in particular apply to the free theory, but would then be in contradiction

with the results of ref. [12].

The above bounds will be used in the next section to bound the remainder of the

bootstrap equations in CFTs with an O(n) global symmetry.

3 Bootstrapping with multiple points

The bootstrap equation for a 4-point function with identical scalars φ with scaling di-

mension ∆φ in any number of dimensions is given by the sum rule (see refs. [30, 31] for

pedagogical reviews)∑
∆,l

λ2
O F∆φ,∆,l(z, z̄) = u∆φ − v∆φ , F∆φ,∆,l(z, z̄) ≡ v∆φg∆,l(u, v)−u∆φg∆,l(v, u). (3.1)

Splitting the sum into two parts, for dimensions smaller and larger than a cutoff ∆∗, we

can write ∑
(∆<∆∗),l

λ2
O F∆φ,∆,l(z, z̄) = u∆φ − v∆φ + E(z, z̄,∆∗,∆φ) . (3.2)

Using eq. (2.16), the remainder E of the sum rule is bounded by

|E(z, z̄)| ≤ Emax(z, z̄) ≡ v∆φ R(z, z̄) + u∆φ R(1− z, 1− z̄) , (3.3)

where we have omitted the dependence on ∆∗, ∆φ and γ. The truncated sum rule (3.2)

still involves a generally unknown spectrum of operators up to dimension ∆∗. In order to

make it amenable to numerical analysis, we discretize the spectrum and make the ansatz10

{(
0,
d−2

2

)
,

(
0,
d−2

2
+∆step

)
, . . . , (0,∆∗) , (2, d) , (2, d+ ∆step) , (2,∆∗) , . . . , (lmax,∆∗)

}
(3.4)

for the quantum numbers (spin,dimension) of the operators that can appear in the trun-

cated sum rule. For each spin l, the dimension runs in steps of size ∆step from the unitarity

bound ∆d,l
min ≡ l+ (d− 2)/(1 + δl0) to the cutoff ∆∗ (or a value close to that, depending on

∆step). Accordingly, lmax is the largest spin for which the unitarity bound is still below the

cutoff, ∆d,lmax

min < ∆∗. In practice, we vary the step size ∆step somewhat depending on the

spin and dimension. This is discussed in more detail in section 5. We find that the bounds

converge when going to smaller ∆step, meaning that the discretization does not introduce

any artifacts into our calculation.

10Alternatively, one could adapt the approach of ref. [6] to the multipoint method.
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We similarly choose a finite number of points zi in the z-plane where the sum rule

is evaluated. The details of our choice for this distribution of points are discussed in

section 3.1. Together with the discretization of operator dimensions, this turns eq. (3.2)

into the matrix equation

M · ~ρ = ~σ + ~ε . (3.5)

The elements of the matrix M are the functions F∆φ,∆,l(z, z̄) evaluated for the different

quantum numbers in eq. (3.4) along the rows and for the different points zi along the

columns. Furthermore, the vector ~ρ consists of the squared OPE coefficients λ2
O of the

operators corresponding to the quantum numbers in eq. (3.4) and

~σ ≡

|z1|2∆φ − |1− z1|2∆φ

|z2|2∆φ − |1− z2|2∆φ

...

 and ~ε ≡

E(z1, z̄1,∆∗,∆φ)

E(z2, z̄2,∆∗,∆φ)
...

 . (3.6)

Using the bound (3.3), we then obtain the matrix inequality(
M
−M

)
~ρ ≥

(
~σ − ~εmax

−~σ − ~εmax

)
, (3.7)

where ~εmax is defined as ~ε but with E replaced by Emax. This is the starting point for

our numerical calculations. In order to determine bounds on OPE coefficients, we search

for vectors ~ρ which satisfy eq. (3.7) and extremize the entry corresponding to that OPE

coefficient. For bounds on the dimension of the lowest-lying scalar operator, on the other

hand, we make an assumption on this dimension and drop all scalar operators with smaller

dimension from our ansatz (3.4). This gap then allows for a consistent CFT only if there

exists a vector ~ρ which satisfies eq. (3.7) with the reduced ansatz. By trying different as-

sumptions, we can determine the maximal allowed gap. Both problems are linear programs

which can be solved using fast numerical routines. An advantage of solving eq. (3.7) is that

the vector ~ρ gives us the spectrum of operators and their OPE coefficients of a potential

CFT living at the boundary of the allowed region. This has been used before in ref. [6].11

We also consider CFTs with an O(n) global symmetry. For an external scalar operator

in the fundamental representation of O(n), the sum rule reads [19]

∑
S+

λ2
S

 0

F
H

+
∑
T+

λ2
T

 F
(1− 2

n)F
−(1 + 2

n)H

+
∑
A−

λ2
A

−FF
−H

 =

 0

u∆φ − v∆φ

−u∆φ − v∆φ

 , (3.8)

where H∆φ,∆,l(z, z̄) ≡ v∆φg∆,l(u, v)+u∆φg∆,l(v, u) and we have suppressed the arguments

of the functions F and H. Splitting the sums in eq. (3.8) into two parts, for dimensions

11The data of CFTs at the boundary of the allowed region can also be obtained from the ‘dual’ method

originally developed in ref. [4] by using the extremal functional method of ref. [32].
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smaller and larger than a cutoff ∆∗, we can write

∑
S+

∆<∆∗

λ2
S

 0

F
H

+
∑
T+

∆<∆∗

λ2
T

 F
(1− 2

n)F
−(1 + 2

n)H

+
∑
A−

∆<∆∗

λ2
A

−FF
−H

 =

 E1

u∆φ − v∆φ + E2

−u∆φ − v∆φ + E3

 .

(3.9)

Using eqs. (2.28), (2.29) and (2.33), we obtain the bounds on the remainders

|E1,2(z, z̄)| ≤ Emax(z, z̄) , |E3(z, z̄)| ≤ 2 Emax(z, z̄) , (3.10)

with Emax defined as in eq. (3.3). Discretizing the space of operator dimensions as in

eq. (3.4) and evaluating the sum rule at a finite set of points zi, we again obtain a matrix

inequality of the form (3.7). This is the starting point for our numerical calculations for

CFTs with O(n) global symmetry.

3.1 Choice of points

An important choice for the multipoint method is the distribution of points in the z-plane at

which the bootstrap equations are evaluated. Using the symmetries z ↔ z̄ and z ↔ (1−z),

z̄ ↔ 1− z̄ of the bootstrap equations, we can restrict these points to the region Re(z) ≥ 1/2

and Im(z) ≥ 0 of the z-plane. The remainder of the truncated sum rule is controlled by

|ρ(z)| and |ρ(1− z)| (cf. eqs. (2.18) and (3.3)). Guided by this, we introduce the measure

λ(z) ≡ |ρ(z)| + |ρ(1− z)| , (3.11)

and consider points with λ(z) ≤ λc for some constant λc. It is desirable to choose λc and

the distribution of points within that region in such a way that the obtained bounds are

as stringent as possible. We have performed extensive scans over different values for λc
and distributions with different density profiles and have found that a flat profile leads to

as good or better bounds than more complicated profiles. We therefore choose the former

and put points on a grid centered at z = 1/2. The grid spacing is chosen such that the

desired number of points is within the region λ(z) ≤ λc, Re(z) ≥ 1/2 and Im(z) ≥ 0. We

have then found that

λc = 0.6 (3.12)

gives the best bounds for all cases that we have studied.12 In figure 2, we show the

corresponding region in the z-plane and a sample distribution of 100 points.

In order to test the influence of the choice of measure on the bounds, we have performed

further scans with λ(z) ≡ max(|ρ(z)|, |ρ(1−z)|) proposed in ref. [1] and λ(z) ≡ |z−1/2| (for

the latter we have removed points at or close to the branch-cuts). We have found that, once

the optimal λc is chosen, the bounds obtained with these measures are indistinguishable

from those obtained with eq. (3.11). This indicates that the precise form of the region

within which points are sampled has only a marginal effect on the quality of the bounds.

12In more detail, we have considered bounds on the central charge and the dimension of the lowest-

dimensional scalar operator, in 3D and 4D, with O(n) and without symmetry, and with different choices

for the number of points N and the cutoff ∆∗. It is remarkable that λc = 0.6 (within ±0.02, the resolution

of our scan) comes out as the optimal choice for such a variety of cases.
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Re(z)

Im (z)

Figure 2. The region in the z-plane with λ(z) ≤ 0.6 and a sample of 100 points in a fundamental

domain of that region. The crossed lines are the two branch-cuts where the bootstrap equations do

not converge.

4 Results

We now present the results of our numerical analysis. In subsection 4.1, we study bounds

on the dimension of the lowest-dimensional scalar operator in the OPE and bounds on the

central charge in 3D CFTs, focusing in particular on the regions where the 3D Ising and

O(n) models have been identified. In subsection 4.2 we then study the same bounds for

generic 4D CFTs. We analyze in particular how our results depend on the number N of

points chosen in the z-plane, and on the cutoff ∆∗. In subsection 4.3 we give a closer look

at the spectrum of the 3D O(n) models and determine the operator dimensions of the first

two scalar operators in the singlet and rank-two symmetric representation of O(n).

Before presenting our results, it is important to emphasize an important difference

between the multipoint and the derivative bootstrap methods. As mentioned in the intro-

duction, in the latter we do not have a reliable way of truncating the OPE series defining the

bootstrap equations at some intermediate dimension ∆∗, because we do not have a reliable

estimate of the resulting error. We are therefore forced to have ∆∗ as large as possible to

minimize this error and can only check a posteriori if the chosen ∆∗ was sufficient.13 More

than ∆∗ (or its analogue), the key parameter that controls the accuracy of the method is

13We are a bit sloppy here in order to keep the discussion simple and get to the point. For instance,

in numerical methods based on semi-definite programming one is able to include all operator dimensions

continuously up to infinity. The rough analogue of our ∆∗ in that case is the maximum spin of the primary

operators entering the OPE which are taken into account for the numerical implementation.
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given by the total number of derivatives ND that are applied to the bootstrap equations.

Of course, the larger ND is, the better are the bounds. The accuracy is then limited by

the largest ND that allows the calculation to be performed within an acceptable amount

of time with the available computing resources.

In the multipoint method, on the other hand, we can reliably vary ∆∗ due to the

bound on the remainder of the truncation discussed in section 2. In addition, we can also

vary the number N of points in the z-plane which is the analogue of ND in the derivative

method. The parameter region for the multipoint method corresponding to the typical

bootstrap analysis with the derivative method is then very large ∆∗ and N as large as

possible given the available computing resources. In this paper, on the other hand, we are

mostly interested in the regime where ∆∗ is not very large, with values O(10)-O(20). We

find that for this range of ∆∗, the results converge for N ∼ O(100) and do not improve

further if N is increased. This corresponds to the fact that the rank of the matrix M in

the discretized bootstrap equation (3.5) is then O(100). Note that since CPLEX is limited

to double precision, we also cannot take ∆∗ arbitrarily large. Due to the excellent speed of

CPLEX, on the other hand, we have found that taking N large enough so that the bounds

converge is no limiting factor.

4.1 3D Ising and O(n) models

The most remarkable numerical results from the conformal bootstrap have been obtained

in 3D CFTs. One interesting bound to study is on the dimension of the lowest-dimensional

scalar operator appearing in the OPE. We denote this operator by ε and the operator that is

used to derive the bootstrap equations by σ. It was noted in ref. [5] that the 3D Ising model

sits at a special point, a kink, at the boundary of the allowed region of ∆ε as a function of

∆σ. The Ising model is similarly special with respect to the bound on the central charge

c as a function of ∆σ, sitting again at the boundary of the excluded region, at the point

where c is minimized [5, 6]. Note, however, that the theory minimizing c does not actually

correspond to the 3D Ising model, but rather to some exotic theory with ∆ε < 1. Most

likely this theory is unphysical (though we are not aware of a solid argument to dismiss

it). In practice this theory is removed by assuming a gap in the operator spectrum such

that ∆ε > 1. Independently of the nature of this theory, the condition ∆ε > 1 is satisfied

by the Ising model and can be legitimately imposed if we are interested in this particular

3D CFT.

In figure 3, we show the bound on ∆ε as a function of ∆σ for N = 100 points and

different values of ∆∗. Notice how the kink shows up already for ∆∗ = 13 and converges

quite quickly as ∆∗ increases. In figure 4, we show the bound on the central charge c

(normalized to the central charge cfree of a free scalar theory) as a function of ∆σ for

N = 100 points and different values of ∆∗. The gap ∆ε > 1.1 is assumed in the operator

spectrum. A lower bound on c is obtained even for ∆∗ = 10, but the convergence when

going to larger ∆∗ is now much slower than for the bound on ∆ε. A minimum is visible

starting from ∆∗ = 16 but even at ∆∗ = 22 it is a bit shifted to the right with respect to

its actual value. We have still not reached the asymptotic value for ∆∗. Unfortunately, we

cannot get reliable results for much higher ∆∗ because the numerical accuracy of CPLEX is
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Figure 3. Bounds on ∆ε as a function of ∆σ for N = 100 points and different values of ∆∗. The

regions above the lines are excluded. The black cross marks the precise values of ∆σ and ∆ε for

the 3D Ising model as determined in ref. [6]. The curves and the labels in the legend have the same

order from top to bottom.

0.50 0.51 0.52 0.53 0.54 0.55

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Δσ

c/cfree

22

19

16

13

10

Figure 4. Bounds on the central charge c as a function of ∆σ for N = 100 points and different

values of ∆∗. A gap ∆ε > 1.1 has been assumed. The regions below the lines are excluded. The

black cross marks the precise values of ∆σ and c for the 3D Ising model as determined in ref. [6].

The curves and the labels in the legend have the same order from top to bottom.

limited to double precision. Nevertheless, it is clear from comparing figures 3 and 4 that

the lower bound on c is more “UV sensitive” than the bound on ∆ε. In both figures, the

crosses mark the location of the 3D Ising model, as determined in ref. [6].

In order to quantify the dependence of our results on the number N of points, we show

in figures 5 and 6 the bounds on respectively ∆ε and c as a function of ∆σ for different

values of N at fixed ∆∗ = 16. We see that in both cases the convergence in N is quite fast,

with N = 40 for ∆ε and N = 60 for c being already an excellent approximation. Notice

that for increasing N , the bound on ∆ε converges faster than the bound on c, similar to the

– 14 –



J
H
E
P
0
9
(
2
0
1
6
)
0
9
7

0.50 0.51 0.52 0.53 0.54 0.55

1.1

1.2

1.3

1.4

1.5

1.6

Δσ

Δϵ
20

40

80

Figure 5. Bounds on ∆ε as a function of ∆σ for fixed ∆∗ = 16 and different values of N . The

regions above the lines are excluded. The black cross marks the precise values of ∆σ and ∆ε for

the 3D Ising model as determined in ref. [6]. The curves and the labels in the legend have the same

order from top to bottom.

0.51 0.52 0.53 0.54 0.55
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Δσ

c/cfree
80

60

40
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Figure 6. Bounds on the central charge c as a function of ∆σ for fixed ∆∗ = 16 and different

values of N . The gap ∆ε > 1.1 is assumed. The regions below the lines are excluded. The black

cross marks the precise values of ∆σ and c for the 3D Ising model as determined in ref. [6]. The

curves and the labels in the legend have the same order from top to bottom.

dependence on ∆∗. We have studied the dependence on N also for different values of ∆∗
and have found as expected that the value N∗ beyond which no significant improvement

in the bounds is observed increases with ∆∗. The dependence is however very mild for the

central charge c and barely observable for ∆ε. This is still a reflection of the different “UV

sensitivities” of the two quantities. In all cases, N∗ . O(100) up to ∆∗ = 24.

Let us now turn to 3D CFTs with O(n) global symmetry. We consider a primary

operator φ in the fundamental representation and denote the lowest-dimensional scalar

singlet operator in the φ×φ OPE by S. It was found in refs. [14, 16] that these CFTs have

kinks in the bound on ∆S as a function of ∆φ similar to that found for the Ising model.
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Figure 7. Bounds on ∆S as a function of ∆φ for 3D CFTs with different O(n) symmetries, with

φ in the fundamental representation of O(n). The regions above the lines are excluded. All the

bounds have been determined using N = 80 points and ∆∗ = 16. The curves and the labels in the

legend have the same order from top to bottom.

0.50 0.52 0.54 0.56 0.58 0.60
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Figure 8. Bounds on the central charge c as a function of ∆φ for 3D CFTs with different O(n)

symmetries, with φ in the fundamental representation of O(n). The regions below the lines are

excluded. All the bounds have been determined using N = 80 points and ∆∗ = 16 with gaps

∆S > 1 and ∆T > 1 assumed. The dashed line is the leading large-n prediction. The curves and

the labels in the legend have the same order from top to bottom.

Moreover, the kinks coincide, for all values of n that have been studied, with the values

of ∆φ and ∆S associated with the 3D O(n) models. On the other hand, a minimum in c

no longer occurs for generic O(n) models and the lower bound on c instead monotonically

decreases for n > 3 (see ref. [14] for details).

In figures 7 and 8, we show respectively the bound on ∆S and c (the latter normalized to

the central charge ncfree of n free scalars) as a function of ∆φ for different O(n) symmetries,

at fixed N = 80 and ∆∗ = 16. For the central charge, gaps ∆S > 1 and ∆T > 1 in the

spectrum of respectively singlet operators S and rank-two symmetric-traceless operators T

are assumed as in ref. [14]. This assumption is satisfied for the O(n) models and leads to
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Figure 9. Bounds on ∆S as a function of ∆φ for N = 100 points and different values of ∆∗ for

3D CFTs with O(20) symmetry, with φ in the fundamental representation of O(20). The regions

above the lines are excluded. The black cross marks the values of ∆φ and ∆S for the O(20) vector

model as given in ref. [14]. The curves and the labels in the legend have the same order from top

to bottom.
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Figure 10. Bounds on the central charge c as a function of ∆φ for N = 100 points and different

values of ∆∗ for 3D CFTs with O(2) symmetry, with φ in the fundamental representation of O(2).

Gaps ∆S > 1 and ∆T > 1 are assumed. The regions below the lines are excluded. The curves and

the labels in the legend have the same order from top to bottom.

more stringent bounds. The dashed line corresponds to the leading large-n prediction. All

the qualitative behaviours found in ref. [14] are reproduced, though with milder bounds, as

expected.14 In particular, the kinks in the (∆φ-∆S) plane are not well visible at ∆∗ = 16.

In figures 9 and 10, we show the same bounds on ∆S and c as a function of ∆φ at fixed

N and n, for different values of ∆∗. We see the same qualitative behaviours regarding

the “UV sensitivities” found for 3D CFTs with no global symmetry (the Ising model). In

14Note however that no assumption on the spectrum was made for the bounds on ∆S presented in figure 7,

in contrast to figure 2 of ref. [14] where ∆T > 1 was assumed.
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particular, in figure 9 we see how the kink in the bound becomes well visible at ∆∗ = 19

and its location is in very good agreement with that found in ref. [14]. On the other hand,

the central-charge bound in figure 10 is still monotonically decreasing for ∆∗ = 19. There

are no signs of convergence comparing the bounds at ∆∗ = 16 and 19, indicating the need

to go to larger ∆∗ to approach the optimal bound.

4.2 4D CFTs

All the above considerations can be repeated for 4D CFTs. There are no known non-super-

symmetric CFTs at benchmarks points but it is still interesting to study general bounds on

operator dimensions and OPE coefficients. See e.g. refs. [4, 10, 17–22, 33], where bounds of

this kind (and others) have been determined with the derivative method using both linear

and semi-definite programming.

In figures 11 and 12, we show bounds respectively on the dimension ∆φ2 of the lowest-

dimensional scalar operator in the φ × φ OPE and on the central charge c as a function

of ∆φ for different values of ∆∗, at fixed N . The conclusions are the same as for the 3D

CFTs: the bounds on the operator dimension converge faster than those on the central

charge. The point of convergence of the bounds in N at fixed ∆∗ is again N∗ ∼ O(100)

and thus also very similar to that in 3D CFTs.

The analysis of 4D CFTs with O(n) global symmetry also closely resembles its 3D

counterpart. We again take the external field φ to transform in the fundamental represen-

tation of O(n) and denote by S the lowest-dimensional singlet scalar operator that appears

in the φ×φ OPE. For illustration, we report in figure 13 the bound on ∆S as a function of

∆φ for CFTs with O(4) symmetry, at fixed N and for different values of ∆∗. By comparing

figures 11 and 13 we notice that the convergence in ∆∗ of the operator-dimension bound

in 4D CFTs with O(4) symmetry is slower than its analogue with no global symmetry.

4.3 A closer look at the spectrum of 3D O(n) models

In the last subsections, we have shown how previously determined bounds are reproduced

using the multipoint method. Here we present some new results for the spectrum of O(n)

models. To this end we assume, as previous analyses indicate, that the 3D O(n) models

sit precisely at the kink on the boundary of the excluded region in the (∆φ-∆S) plane

(∆S-maximization). The vector ~ρ that we obtain from solving the linear program (3.7)

then gives us the spectrum and OPE coefficients of the operators that are exchanged in

the 〈φφφφ〉 correlator of the O(n) models. Here we report the scaling dimensions of the

first two operators in respectively the singlet and rank-two representation of O(n), S, S′

and T , T ′, for n = 2, 3, 4. Scalar operators with larger scaling dimensions are physically

uninteresting, whereas S′ and T ′ are important in determining the stability of the fixed

points of the O(n) models (being marginal operators in the underlying UV 4D Landau-

Ginzburg theory) [24].15 Actually, one additional operator should be considered, denoted

as P4,4 in ref. [24], but it transforms in the rank-four representation of O(n) and hence

15See ref. [37] for a bootstrap approach to the study of the stability of fixed points in 3D O(n) × O(m)

models.
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Figure 11. Bounds on ∆φ2 as a function of ∆φ for N = 100 points and different values of ∆∗ for

4D CFTs with no global symmetry. The regions above the curves are excluded. The curves and

the labels in the legend have the same order from top to bottom.
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Figure 12. Bounds on the central charge c as a function of ∆φ for N = 100 points and different

values of ∆∗ for 4D CFTs with no global symmetry. The regions below the curves are excluded.

The curves and the labels in the legend have the same order from top to bottom.

cannot appear in the OPE of two scalar operators φ in the fundamental representation.

Its dimension might be bounded (or computed) by considering a correlator involving, e.g.,

four T ’s. As far as we know, the scaling dimensions of S′ and T ′ have not been previously

determined using the conformal bootstrap. The best determinations of these parameters

have been made using a five-loop computation in the ε-expansion in refs. [23] and [24].16

16More precisely, ∆S′ has been determined also by other means, such as fixed-dimension expansion and

Monte Carlo simulations. On the other hand, since ∆T ′ has been determined only using the ε-expansion,

we have decided to omit the other results for ∆S′ . The interested reader can find them, e.g., in table I of

ref. [24], where the coefficients y4,0 and y4,2 give ∆S′ = 3− y4,0 and ∆T ′ = 3− y4,2. For completeness, we

also report the relations defining ∆S and ∆T in the notation of ref. [24]: ∆S = 3− 1/ν, ∆T = 3− y2,2.
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Figure 13. Bounds on ∆S as a function of ∆φ for N = 100 points and different values of ∆∗ for 4D

CFTs with O(4) symmetry, with φ in the fundamental representation of O(4). The regions above

the curves are excluded. The curves and the labels in the legend have the same order from top to

bottom.

n ∆φ ∆S ∆S′ ∆T ∆T ′

2 0.51905(10) [34] 1.5118+0.0012
−0.0022 [14] 3.802(18) [23] 1.23613+0.00058

−0.00158 [14] 3.624(10) [24]

3 0.51875(25) [35] 1.5942+0.0037
−0.0047 [14] 3.794(18) [23] 1.2089+0.0013

−0.0023 [14] 3.550(14) [24]

4 0.51825(40) [36] 1.6674+0.0077
−0.0087 [14] 3.795(30) [23] 1.1864+0.0024

−0.0034 [14] 3.493(14) [24]

Table 1. Scaling dimensions of the first two scalar operators in the singlet (S, S′) and rank-two

symmetric (T , T ′) representations of O(n) for n = 2, 3, 4 determined in the literature.

In table 1, we report the values of ∆φ, ∆S , ∆S′ , ∆T , ∆T ′ determined in the literature,

for n = 2, 3, 4. They should be compared with the values in table 2 which have been deter-

mined in this paper as follows: we take the values of ∆φ for O(n) models with n = 2, 3, 4

calculated in refs. [34–36] as input and determine the scaling dimensions ∆S , ∆S′ , ∆T and

∆T ′ using ∆S-maximization. We repeat this procedure for the lower, central and upper

value of ∆φ given in these references and for different values of the cutoff ∆∗ ∈ [18, 23]

and the number of points N ∈ [60, 120].17 At fixed N and ∆∗, we then take the average

over the scaling dimensions obtained with the different input values of ∆φ. Sometimes

the same operator appears twice in the spectrum, at two different but close values of the

scaling dimension. In this case we take the average of these values, weighted by the size

of the corresponding OPE coefficient. Let us denote the resulting scaling dimensions by

∆O(N,∆∗) for O = S, S′, T, T ′. Each of these values is associated with an error, resulting

from the averaging. The stepsize ∆step of our discretization has been set to 10−4 in the

region where the operators were expected to be found (the resulting uncertainty in the

scaling dimensions is typically negligible compared to the other errors).

17Our numerical precision does not allow us to take higher values of ∆∗ and N without having issues

with numerical stability.
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n ∆φ ∆S ∆S′ ∆T ∆T ′

2 0.51905(10) [34] 1.5124(10) 3.811(10) 1.2365(16) 3.659(7)

3 0.51875(25) [35] 1.5947(35) 3.791(22) 1.2092(22) 3.571(12)

4 0.51825(40) [36] 1.668(6) 3.817(30) 1.1868(24) 3.502(16)

Table 2. Scaling dimensions of the first two scalar operators in the singlet (S, S′) and rank-two

symmetric (T , T ′) representations of O(n) for n = 2, 3, 4 determined in this paper using ∆S-

maximization, the values of ∆φ previously determined in the literature (first column) and the fit

procedure explained in the main text. The quoted error corresponds to 1σ (68% confidence level).

n ∆φ ∆S ∆S′ ∆T ∆T ′

2 0.51905(10) [34] ≤ 1.5145 ≤ 3.852 ≤ 1.2408 ≤ 3.678

3 0.51875(25) [35] ≤ 1.6004 ≤ 3.856 ≤ 1.2116 ≤ 3.588

4 0.51825(40) [36] ≤ 1.677 ≤ 3.908 ≤ 1.191 ≤ 3.528

Table 3. Upper bounds on the scaling dimensions of the first two scalar operators in the singlet (S,

S′) and rank-two symmetric (T , T ′) representations of O(n) for n = 2, 3, 4 determined in this paper

using ∆S-maximization and the values of ∆φ previously determined in the literature (first column).

At fixed N , the results for different values of ∆∗ are fitted by a function of the form

aO(N) + bO(N) exp(−cO(N)∆∗), where aO(N), bO(N) and cO(N) are the fit parameters.

Such a dependence is roughly expected given the exponential convergence of the OPE.

Somewhat surprisingly, this simplified function fits the results extremely well, see figure 14

for an example of the extrapolation fit in 1/∆∗. Using this fit, we have extrapolated the

scaling dimensions for the different operators and values of N to ∆∗ =∞. We denote the

resulting scaling dimensions as ∆O(N) ≡ ∆O(N,∞) = aO(N).

We have then extrapolated to N = ∞ using a linear fit in 1/N which seems to well

describe the behaviour of ∆O(N) as a function of 1/N . An example of this extrapolation

fit is shown in figure 15. We denote the resulting scaling dimensions as ∆O ≡ ∆O(∞).18

We do not have an analytic understanding of why the results should scale as 1/N for

parametrically large ∆∗. We simply take it as a working hypothesis. We expect that

possible deviations from the linear behaviour should be contained within the errors of our

determination (cf. figure 15). Note that having N as large as possible is clearly important

for high precision. However, at fixed ∆∗ the bounds saturate for sufficiently high N and

there is no gain in taking N larger.

We have noticed that, at least for n = 2, 3, 4, ∆O(N,∆∗) decreases as N and/or ∆∗
increase (this is obvious for S, but not for the other operators). If we assume that this

is true for any N and ∆∗, we may then set rigorous upper bounds without using any fit

extrapolation. These bounds are reported in table 3. Comparing them with the results

in table 2 gives an idea of the impact of the fit extrapolation on the final results. As can

18A similar linear dependence in 1/N has already been noticed with great accuracy in ref. [38] for the

central-charge bound in 6D N = (2, 0) SCFTs (see their figure 1).
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Figure 14. Extrapolation fit to determine the scaling dimension of the operator T ′ in the O(2)

model with N = 120 points at ∆∗ = ∞ from the results for that scaling dimension for different

values of ∆∗. The vertical error bar associated with the extrapolated point on the left corresponds

to 1σ (68% confidence level).
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Figure 15. Extrapolation fit to determine the scaling dimension of the operator S′ in the O(3)

model at N =∞ from the results for that scaling dimension for different values of 1/N . Each point

corresponds to the value of ∆S′(N) extracted from a fit in 1/∆∗. The vertical error bar associated

with each point corresponds to 1σ (68% confidence level).

be seen, all the scaling dimensions that we have determined are compatible with previous

results in the literature. The only exception is ∆T ′ for the O(2) model for which our result

has an approximate 3σ tension with that of ref. [24]. Our accuracy in the determinations of

∆S and ∆T is comparable with that achieved in ref. [14], though it should be emphasized

that the results there do not rely on extrapolations. Furthermore, our accuracy in the

determinations of ∆S′ and ∆T ′ is comparable with that achieved using the five-loop ε-

expansion. This is an indication that a slightly more refined bootstrap analysis will be able

to improve the determinations of these scaling dimensions.
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As we mentioned at the beginning of this subsection, ∆S-maximization also allows us

to determine the OPE coefficients λφφO. We have not performed a detailed analysis with fit

extrapolations as above to determine the asymptotic values of λφφO as ∆∗, N →∞. Instead

we just report λφφS as determined with the highest values ∆∗ = 22, 23 and N = 110, 120

used in this paper:

O(2) : λφφS ≈ 0.686 ,

O(3) : λφφS ≈ 0.524 , (4.1)

O(4) : λφφS ≈ 0.428 .

We have not determined the error associated with these results and have instead rounded

them to the last shown digit. The results for O(2) and O(3) are in agreement with the

recent determination in ref. [7], whereas the result for O(4) is new as far as we know.

5 Details of the implementation

For the conformal blocks in d = 4 dimensions, we use the closed-form expression from

ref. [8], normalized as in ref. [19]. For d = 3 dimensions, on the other hand, we use the

recursion relation for the conformal blocks found in ref. [14].19 To this end, we iterate the

recursion relation up to some cutoff ∆rec. We choose this cutoff large enough such that

the resulting error in the conformal blocks is smaller than the error from neglecting con-

tributions of operators with dimensions larger than the truncation cutoff ∆∗. In practice,

we find that ∆rec = ∆∗ + few is sufficient to ensure this.

For the ansatz (3.4) of discretized operator dimensions, we closely follow ref. [5]. We

generate the discrete spectra T1 to T4 (the latter only for sufficiently large ∆∗) in their

table 2, where we rescale the stepsizes δ by the factor ∆step/(2 · 10−5). We then remove

duplicates from the combined spectrum and restrict to operator dimensions less than or

equal to ∆∗. We have performed extensive scans using different stepsizes ∆step and have

found that the bounds converge for sufficiently small ∆step. This is in particular satisfied for

∆step = 2·10−3 which we choose for all the plots in this paper. For the determination of the

spectra in section 4.3 we add additional operators with stepsize ∆step = 10−4 around the

previously determined scaling dimensions for the operators S, S′, T , T ′ in the O(n) models.

Furthermore, for bounds on operator dimensions for which the plots extend to bounds

∆φ2 > 3 (the largest dimension of T1 of ref. [5]), we have included additional operators

in the scalar sector so that the smallest stepsize ∆step is used up to the largest bound on

∆φ2 shown in that plot. We have also performed scans using different parametrizations

for the ansatz (3.4) and have found that the bounds become indistinguishable from the

bounds obtained with the ansatz discussed above for sufficiently small ∆step. This gives us

confidence that the discretization does not introduce any artifacts into our calculations.

We use Mathematica to evaluate the conformal blocks for the different operators that

appear in the ansatz (3.4) and for the set of points in the z-plane. The linear progam (3.7)

19Alternatively, we can use the recursion relation also in d = 4 dimensions by setting d = 4 + ε (to avoid

double poles that appear at d = 4). However, Mathematica evaluates the closed-form expression faster than

(our implementation of) the recursion relation and we therefore choose the former.
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is then set up by a program written in Python and is subsequently solved with the optimizer

CPLEX by IBM using the primal simplex algorithm. Since this optimizer is limited to double

precision, it is important to reduce the spread in size of the numerical values in the problem.

To this end, note that we can rescale each row of the inequality (3.7) separately by a positive

number. Denoting a given row by R, we rescale its elements by

Rresc
i =

Ri√
min
i
|Ri| ·max

i
|Ri|

. (5.1)

Similarly, we can rescale each column of the matrix M separately by a positive number if

we redefine the corresponding (squared) OPE coefficient in the vector ~ρ. We again choose

Mresc
ij =

Mij√
min
i
|Mij | ·max

i
|Mij |

(5.2)

and correspondingly for ~ρ. This procedure is iterated three times in our Python code,

using precision arithmetric with 120 digits to ensure that no significant rounding errors

are introduced in the process (the conformal blocks have been calculated with the same

precision). Since we perform our own rescaling, we switch off this option in CPLEX.

We find that the above rescaling typically reduces the orders of magnitude in the ratio

between the largest and smallest numerical value in eq. (3.7) by about half. Nevertheless,

precision is a limiting factor and does not allow us to go to cutoffs ∆∗ much larger than

20. The fact that double precision is sufficent for smaller cutoffs, on the other hand, makes

our calculations (combined with the excellent speed of CPLEX) very fast.

6 Conclusions

We have implemented the method proposed in ref. [1] to numerically study the bootstrap

equations away from the symmetric point z = z̄ = 1/2. Using this method, we have quali-

tatively reproduced various results that have been determined in the bootstrap literature

using the more common method of taking derivatives at the symmetric point. The main

aim of our work was to show that bootstrapping with multipoints works and is a valid al-

ternative to the standard derivative method. In particular, it can be useful at a preliminary

stage when one wants to qualitative bound or approximately compute some quantities us-

ing the bootstrap. By choosing a sufficiently low cutoff ∆∗, one can get qualitatively good

results within seconds of CPU time with a standard laptop! Since the optimizer CPLEX

that we use is limited to double precision, we can not achieve the high precision of refined

bootstrap codes such as Juliboots [9] or SDPB [11]. Nevertheless we have shown how,

using ∆-maximization, relatively precise results can be obtained for the scaling dimensions

of operators (though we relied on an extrapolation procedure). In particular, for O(n)

models with n = 2, 3, 4 we have determined the scaling dimensions of the second-lowest-

dimensional operators S′ and T ′ in the singlet and symmetric-traceless representation,

respectively. To our knowledge, these have not been determined before using bootstrap

techniques. We believe that it should not be difficult to go to arbitrary precision and get

– 24 –



J
H
E
P
0
9
(
2
0
1
6
)
0
9
7

rid of the discretization (and the extrapolation procedure) by, for instance, adapting the

algorithm developed in refs. [6, 9] to multipoints. We do not exclude that bootstrapping

with multipoints might then turn out to be comparable to (or better than) the derivative

method for high-precision computations. From a conceptual point of view, the multipoint

method is more rigorous, since the crossing equations are not truncated but bounded by

an error.20

We have also discussed how the multipoint method is useful in understanding to which

extent a given numerical result depends sensitively on the high-dimensional operators. In

particular, we have noticed that bounds on operator dimensions are less sensitive in this

respect than bounds on the central charge.

Ideally, one might want to push the multipoint method to the extreme “IR limit”,

by choosing a cutoff ∆∗ so low that an analytic approach may become possible. This

is certainly a very interesting direction that should be explored. Among other things, it

requires to improve on the estimate of the OPE convergence given in ref. [12] that applies

in the opposite regime, for parametrically large ∆∗. Perhaps the results of ref. [25] might

be useful in this respect.21

An important line of development in the numerical bootstrap is the analysis of

mixed correlators which so far are numerically accessible only using semi-definite program-

ming [15]. It would be very interesting to implement mixed correlators in the multipoint

bootstrap, either by adapting the semi-definite programming techniques or by extending

the linear programming techniques.
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