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1 Introduction

The Drell-Yan production of Z and W bosons [1] is one of the standard candles for physical

studies at the LHC. Due to the big cross section and clean experimental signature, Drell-

Yan processes can be measured with small experimental uncertainty and, therefore, allow

for very precise tests of the Standard Model of fundamental interactions (SM). They give

access to the determination of important parameters of the weak sector, as for instance

the sine of the weak mixing angle and the W boson mass, that together with the top and

the Higgs masses provides stringent constraints on the validity of the SM. Furthermore,
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Drell-Yan processes constitute the SM background in searches of New Physics, involving

for instance new vector boson resonances, Z ′ and W ′, originating from GUT extensions

of the SM. Finally, the Drell-Yan mechanism is used for constraining parton distribution

functions, for the detector calibration, and for the determination of the collider luminosity.

For all these reasons, an accurate and reliable experimental and theoretical control on Drell-

Yan processes would be of the maximum importance for future physics studies at colliders.

The theoretical description of Drell-Yan processes currently includes NNLO QCD and

NLO EW radiative corrections, implemented in flexible tools able to provide predictions for

inclusive observables as well as kinematic distributions [2]. Current theoretical predictions

are in good agreement with the experimental measurements. However, higher theoretical

accuracy is needed in order to match the future experimental requirements, in particular

in view of the run II of the LHC. A consistent part of the effort needed to increase the

theoretical accuracy regards higher-order perturbative corrections.

Very recently, NNNLO QCD corrections were calculated for the Higgs total production

cross section in gluon-gluon fusion [3, 4]. The residual factorization/renormalization scales

variation moved from about 10-15% of the NNLO calculation (supplemented by NNLL

resummation) to about 5% of the current result. These results will be applied to Drell-Yan

as well, since they involve the evaluation of the same topologies for the calculation of the

corresponding Feynman diagrams [5–10].

At the same order of accuracy (one can roughly thing to exchange two powers of αS
with one power of α), the mixed EW-QCD corrections have to be taken into account. As

in the case of QCD NNLO with EW NLO perturbative corrections, the mixed EW-QCD

corrections are expected to become of similar size with respect to QCD NNNLO at high

leptonic invariant mass [11].

At LO, the partonic process in the SM is mediated by the exchange of a photon or a

Z/W vector boson, in the s annihilation channel: qq̄ → γ, Z → l−l+ and qq̄′ →W → lν.

At higher orders in the coupling constants, we can distinguish between QCD and

electroweak (EW) or mixed (EW-QCD) corrections to the LO process. In the first case,

only the initial state receives quantum corrections, since the leptonic final state does not

couple to gluons.

The NLO QCD corrections to the total cross section were calculated in [12, 13] and

revealed a sizable increase of the cross section with respect to the LO result. The NNLO

QCD corrections [14, 15] stabilized, then, the convergence of the perturbative series.

QCD fixed-order corrections to the total production cross section are supplemented by

the resummation of soft-gluon logarithmically enhanced terms, up to NNNLL approxima-

tion [16–19].

EW quantum corrections allow exchanges of quanta between initial and final states.

Therefore, already at the NLO, massive four-point functions have to be evaluated. Since the

bulk of the corrections for inclusive observables comes from the resonant region, in which

the exchanged vector boson is nearly on-shell, electroweak NLO corrections to the total

cross section were calculated for the W [20] and Z [21] in narrow-width approximation.

More exclusive observables are known in the literature. The Z and W production at

non-zero transverse momentum pT is known at the NLO in QCD [22–27] and in the full
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SM [28]. NLO corrections to the production of a vector boson with a jet were considered

in [29–32]. The two-loop QCD helicity amplitudes for the production of a Z or a W with

a photon have also been calculated [33]. For small pT (pT � mW ,mZ) the convergence of

the fixed-order calculation is spoiled by the large logarithmic terms αnS logm (m2
W /p

2
T ) that

have to be resummed [34–44]. Finally, the rapidity distribution of a vector boson is known

at the NNLO in QCD [45].

The NLO corrections are available in a fully differential description. They are im-

plemented in flexible NLO Monte Carlo programs [46–52], and merged with QCD parton

shower [53–56] in the MC@NLO [57] and POWHEG [58] frameworks.

Pure QED generators are also available [59–69]. Although these implementations pro-

vide an accurate description of the process and allow for realistic phenomenological studies

at the hadronic level, they are not accurate enough for the performances of the run II

at the LHC. The NNLO results mentioned above, however, are widely inclusive and they

cannot provide realistic descriptions, that necessarily have to include experimental cuts.

Therefore, a fully differential description of the Drell-Yan process at the NNLO is needed.

With this respect, the state of the art is represented by the two MC programs FEWZ [70,

71], that includes also EW NLO corrections [72], and DYNNLO [73, 74]. In these two pro-

grams, the decay products of the vector boson, the spin correlations and the finite-width

effects are also taken into account.

Very recently, the merging of NNLO corrections with QCD parton shower was also

considered [75–77].

A sizable impact on the pp(p̄) → W → lν distributions, and therefore on the deter-

mination of the W mass, comes from the QCD initial state radiation (ISR) with QED

final state radiation (FSR) or from the real-virtual (factorizable) corrections. However, at

the level of precision required (∆mW ∼ 10 MeV), the complete set of mixed EW-QCD

corrections may be important and has to be considered.

The NNLO mixed EW-QCD corrections to the production of a leptonic pair, i.e. order

ααS corrections to the LO partonic amplitude, consist of two-loop 2 → 2 processes, in

which the quark-antiquark initial state goes in the final leptonic pair (l+l− or lν), one-loop

2 → 3 processes, in which the final leptonic pair is produced together with an unresolved

photon or gluon, and tree-level 2 → 4 processes in which the leptonic pair is produced

together with an unresolved photon and an unresolved gluon.

The QCD×QED perturbative corrections were considered in [78]. In [79], the mixed

two-loop corrections to the form factors for the production of a Z boson were calculated

analytically, expressing the result in terms of harmonic polylogarithms and related gener-

alizations. In [80], the authors calculated the mixed corrections in the pole approximation

near the resonance region. In particular, they worked out in this region three different

contributions. The first are the ones coming from the QCD corrections to the production

process, which turned out to be suppressed below the percent level. Then, there is the pho-

tonic final state radiation, which is the dominant contribution. Finally, they considered the

non-factorizable contributions, due to soft-photon exchange between the production and

the decay processes. These last contributions are suppressed way below the percent level

and they are negligible for the curent phenomenological purposes. In [81], the mixed ααS
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contributions in the resonant region coming from factorizable initial-final corrections were

fully exploited. These contributions represent the bulk of the corrections near resonance.

The mixed ααS corrections worked out in the pole approximation are phenomenologically

sufficient for a detailed description of the Drell-Yan processes near the resonance. However,

in order both to further check this statement and to be able to treat the process also in

physical regions different from the resonance, a complete diagrammatic calculation would

be desirable.

In this article, we present the calculation of the master integrals (MIs) needed for the

virtual corrections to the two-loop 2→ 2 processes:

q + q̄ → l− + l+ , and q + q̄′ → l− + ν ,

for massless external particles.

The Feynman diagrams contributing to the process q + q̄ → l− + l+ can involve the

exchange of up to two virtual massive vector bosons. However, they never contain W and

Z propagators at the same time. As a consequence of that, the master integrals involved in

the calculation contain at most two equal internal masses and therefore they depend three

scales.

The situation is different for the diagrams contributing to the process q+ q̄′ → l−+ ν.

In this case, double massive exchanges can occur with the two different bosons in the same

Feynman diagram, and therefore one should evaluate master integrals depending on four

different scales. However, the masses of the W and Z bosons are numerically close to each

other; in fact ∆m2 ≡ m2
Z −m2

W � m2
Z . Therefore, in the diagrams containing both Z and

W propagators at the same time, one can perform a series expansion in ξ ≡ ∆m2/m2
Z ∼

0.25 reducing effectively the number of scales on which the corresponding masters depend

to three. Within this approximation, all topologies appearing in the two-loop QCD×EW

virtual corrections to Drell-Yan scattering shall contain either no internal massive line, or

one massive propagator, or two massive propagators with the same mass [82]. Should they

be needed for achieving higher accuracy within the virtual amplitudes, the coefficients of

the series in ξ correspond to scalar integrals with higher powers of the denominators.

Using the code Reduze 2 [83, 84], the dimensionally regulated integrals involved in

the calculation are reduced to a set of 49 MIs, which are later determined by means of the

differential equations method [85–87], reviewed in [88, 89]. Of those 49 MIs, 8 contain only

massless internal lines, 24 involve one massive line and 17 involve two massive lines. The

system of differential equations obeyed by the MIs is cast in a canonical form [90], following

the algorithm based on the use of the Magnus exponential, introduced in [91, 92].1 Bound-

ary conditions are retrieved either from the knowledge of simpler integrals emerging in

specific kinematic limits, or by requiring the regularity of the solution at pseudothresholds.

Finally, the canonical MIs are given as Taylor series in ε (= (4− d)/2), up to order ε4,

d being the dimensional regularization parameter. The coefficients of the series are pure

functions, represented as iterated integrals with rational and irrational kernels, up to weight

four. The solution could in general be expressed in terms of Chen’s iterated integrals. We

1Other related studies can be found in [93–95].
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actually adopt a mixed representation, where, when possible, we make explicit the presence

of Goncharov polylogarithms (GPLs) [96, 97], also within the nested integration structure.

This representation is suitable for the numerical evaluation of our solution.

While the two-loop four-point integrals with massless internal lines are well known in

the literature [87, 98–100], the four point integrals with one and two massive internal lines

considered here are new and represent the main result of this communication.

All the master integrals with the exception of 5 of them were cast in closed analytic form

in terms of GPLs. Because of the presence of irreducible irrational weight functions, it has

been necessary to cast 5 of the 17 MIs with two massive internal lines as one-dimensional

integral formulas [101], involving GPLs in the integrands. The numerical evaluation of

our solutions can, therefore, be performed with the help of the GiNaC library [102] for the

evaluation of GPLs.

The article is structured as follows. Section 2 contains our notation and conventions.

In section 3, we discuss the solution of canonical differential equations in terms of Chen’s

iterated integrals. In section 4, we explicitly present the system of differential equations

and the solutions for the one- and two-loop MIs that contain one massive propagator. In

section 5, we give the system of differential equations for the one- and two-loop MIs contain-

ing two massive propagators, and we present the corresponding solutions. Conclusions are

given in section 6. In appendix A, we discuss the kinematic domain of our analytic results.

In appendix B, we give the coefficient matrices of the systems of differential equations in

canonical form.

Our results are collected in ancillary files, available in the arXiv submission.

2 Notation and conventions

In this paper we study the two-loop corrections to the following partonic scattering pro-

cesses:

q(p1) + q̄(p2) → l−(p3) + l+(p4) , (2.1)

q(p1) + q̄′(p2) → l−(p3) + ν(p4) . (2.2)

The external particles are considered massless and on their mass-shell, p2
1 = p2

2 = p2
3 =

p2
4 = 0. The scattering can be described in terms of the Mandelstam variables

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (2.3)

in such a way that, due to momentum conservation, we have s + t + u = 0. The physical

region is defined by

s > 0 , t = −s
2

(1− cos θ) , (2.4)

where θ is the scattering angle in the partonic center of mass frame, lying in the range

0 < θ < π. Therefore, while s > 0, t is always negative and −s < t < 0.

We calculate the quantum corrections to the processes in eqs. (2.1) and (2.2) using

a Feynman-diagrammatic approach. After considering the interference with the leading

order, and summing over the spins and colors, we express the squared absolute value of
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(a) (b) (c)

Figure 1. One-loop topologies. Thin lines represent massless external particles and propagators,

while thick lines represent massive propagators.

the amplitude in terms of dimensionally regularized scalar integrals. These integrals are

reduced to a set of MIs by means of integration-by-parts identities [103, 104] and Lorentz-

invariance identities [87], implemented in the computer program2 Reduze 2 [83, 84].

The quantum corrections to the processes (2.1) and (2.2) can be expanded in power

series of the coupling constants. At one loop, the QCD corrections consist of the exchange

of a virtual gluon between the initial-state quarks. The final state is not affected, and at

most massless three-point functions have to be evaluated. The EW corrections, instead,

consist of the exchange of a photon, a Z boson or a W boson. Moreover, these quanta

can be exchanged between the quarks in the initial state as well as between the leptons in

the final state, but they can also be exchanged between a quark in the initial state and a

lepton in the final state. Consequently, in the calculation of the one-loop corrections one

has to evaluate massive box and vertex diagrams. In the process of qq̄ → lν one has to

evaluate diagrams in which a Z and a W bosons are exchanged simultaneously. In order

to reduce the number of scales present in the calculation, we perform a series expansion

in the difference of the two squared masses. Expanding for instance the Z propagators

around mW , we find:

1

p2 −m2
Z

=
1

p2 −m2
W −∆m2

≈ 1

p2 −m2
W

+
m2
Z

(p2 −m2
W )2

ξ + . . . (2.5)

where

ξ =
∆m2

m2
Z

=
m2
Z −m2

W

m2
Z

∼ 1

4
(2.6)

is the effective parameter of the expansion. The coefficients of the series in ξ are Feynman

diagrams with equal masses, that therefore depend only on s, t, and the W mass, mW . The

expanded denominator will eventually appear with a power α > 1. However, this does not

cause any problem in the calculation, since diagrams with higher powers of the propagators

are in any case reduced to the same set of MIs. For phenomenological purposes the first

order in ξ might be sufficient, but in principle any order in ξ can be calculated without

effort, just relying on the reduction procedure. We apply the same approximation to the

two-loop diagrams as well.

At the one-loop level, the topologies involved in the QCD and EW corrections are

shown in figure 1, where we distinguish: a) the massless case; b) the exchange of one

massive particle; and c) the exchange of two massive particles.

2Other public programs are available for the reduction to the MIs [105–110].
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(a1) (a2)

(b1) (b2) (b3)

(c1) (c2)

Figure 2. Two-loop topologies. Thin lines represent massless external particles and propagators,

while thick lines represent massive propagators.

At the two-loop level, the topologies required by the O(ααS) corrections are only

planar. They are shown in figure 2. As for the one-loop case, we consider three classes of

diagrams, according to the presence of massive particles. Topologies a1) and a2) belong

to the same 9-denominators massless topology. They reduce to 8 MIs, that were already

known in the literature [87, 98–100]. Topologies b1)–b3) have one massive propagator.

They reduce to 31 MIs, out of which 24 contain one massive propagator and 7 are part

of the MIs for topologies a1) and a2). The three-point functions were already known in

the literature [111–113]. The four-point functions are calculated and presented here for

the first time. Topologies c1) and c2) have two massive propagators and they reduce to 36

MIs, out of which 17 contain two massive propagators, 15 contain one massive propagator

(and they are included in the set of MIs for topologies b1)–b3)) and 4 contain only massless

propagators. The three-point functions were known in the literature [114, 115] and the

four-point functions are presented here for the first time.

The routings for one- and two-mass topologies, at the one- and two-loop level, can be

defined in terms of the following sets of denominators Dn, where ki (i = 1, 2) are the loop

momenta, and pi (i = 1, . . . , 4) are the external momenta:

• One-mass topologies. For the one-loop one-mass integrals (figure 1 b), we have:

D1 = k2
1, D2 = (k1 − p1)2, D3 = (k1 + p2)2 −m2, D4 = (k1 − p1 + p3)2.

– 7 –
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At two loops (figure 2 b1–b3), instead, we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 + k2)2, D4 = (k1 − p1)2,

D5 = (k1 + p2)2, D6 = (k1 + k2 − p1)2 −m2, D7 = (k1 + k2 + p2)2,

D8 = (k1 + k2 − p1 + p3)2, D9 = (k1 − p1 + p3)2. (2.7)

• Two-mass topologies. For the one-loop two-mass integrals (figure 1 c), we have:

D1 = k2
1, D2 = (k1 − p1)2 −m2, D3 = (k1 + p2)2 −m2, D4 = (k1 − p1 + p3)2.

At two loops (figure 2 c1 and c2), instead, we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 + k2)2, D4 = (k1 − p1)2,

D5 = (k1 + p2)2, D6 = (k1+k2−p1)2−m2, D7 = (k1 + k2 + p2)2 −m2,

D8 = (k1+k2−p1+p3)2, D9 = (k1 − p1 + p3)2. (2.8)

In the following we consider `-loop Feynman integrals in d dimensions, built out of p of the

above denominators, each raised to some integer power, of the form∫
d̃dk1 . . . d̃dk`

1

Dn1
a1 . . . D

np
ap

, (2.9)

where the integration measure is defined as

d̃dki ≡
ddki
(2π)d

(
i Sε

16π2

)−1(m2

µ2

)ε
, (2.10)

with µ the ’t Hooft scale of dimensional regularization, and

Sε ≡ (4π)ε
Γ(1 + ε) Γ2(1− ε)

Γ(1− 2ε)
. (2.11)

In eqs. (2.10) and (2.11) we used ε = (4− d)/2.

3 Systems of differential equations for master integrals

In this section, we describe the general structure of the systems of differential equations

obeyed by the MIs, and the corresponding solutions. Sections dedicated to the one-mass

and two-mass MIs will follow, where the details of their complete determination will be

provided.

The b- and c-type MIs are functions of the Mandelstam invariants defined in eq. (2.3)

and of the mass m. For their evaluation it is convenient to define the dimensionless ratios

x ≡ − s

m2
, y ≡ − t

m2
, z ≡ − u

m2
, with x+ y + z = 0. (3.1)

The b-type and c-type MIs obey systems of partial differential equations in x and y, which

can be combined into matrix equations for their total differentials. In general, the vector

of MIs F is solution of the following differential equation,

dF = KF , (3.2)

– 8 –
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where the matrix K depends both on the kinematic variables and on the spacetime dimen-

sion.

By means of a suitable basis transformation, built with the help of the Magnus expo-

nential [91, 116] following the procedure outlined in section 2 of [92], we obtain a canonical

set of MIs [90]. Such a basis obeys a system of differential equation where the dependence

on ε is factorized from the kinematics. Moreover, the coefficient matrices can be assem-

bled in a (logarithmic) differential form, referred to as canonical d log-form. Hence, the

canonical basis I obeys the following system of equations,

dI = ε dA I , (3.3)

with

dA =
n∑
i=1

Mi d log ηi . (3.4)

In eq. (3.4), dA is the d log matrix written in terms of differentials d log ηi, where ηi =

ηi(x, y) are functions of the kinematic variables, and coefficient matrices Mi (with rational-

number entries). The integrability conditions for eq. (3.3) read [90]

∂a∂bA− ∂b∂aA = 0 , [∂aA, ∂bA] = 0 , (3.5)

where ∂a ≡ ∂/∂a and a and b are such that a, b = x, y (i.e. ∂a is the derivative with respect

to one of the kinematic variables).

3.1 General solution

The general solution of the canonical system of differential equations (3.3) can be compactly

written at a point ~x = (x1, x2) = (x, y) as

I(ε, ~x) = P exp

{
ε

∫
γ
dA
}

I(ε, ~x0) , (3.6)

where I(ε, ~x0) is a vector of arbitrary constants, depending on ε, while dA depends only on

the kinematic variables. In the above expression, the path-ordered exponential is a short

notation for the series

P exp

{
ε

∫
γ
dA
}

= 1 + ε

∫
γ
dA + ε2

∫
γ
dA dA + ε3

∫
γ
dA dA dA + . . . , (3.7)

in which the line integral of the product of k matrix-valued 1-forms dA is understood in the

sense of Chen’s iterated integrals [117] (see also [118] and the pedagogical lectures [119])

and γ is a piecewise-smooth path

γ : [0, 1] 3 t 7→ γ(t) = (γ1(t), γ2(t)) , (3.8)

such that γ(0) = ~x0 and γ(1) = ~x. It follows from Chen’s theorem that the iterated

integrals in eq. (3.7) do not depend on the actual choice of the path, provided the curve

does not contain any singularity of dA and it does not cross any of its branch cuts, but

– 9 –
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only on the endpoints. In this sense, if one fixes ~x0 and lets ~x vary, eq. (3.6) can be thought

of as a function of ~x. In the limit ~x → ~x0, the line shrinks to a point and all the path

integrals in eq. (3.7) vanish, so that I(ε, ~x) → I(ε, ~x0), i.e. the integration constants have

a natural interpretation as initial values, and the path-ordered exponential as evolution

operator. We assume that the vector of MIs at any point I(~x) is normalized in such a way

that it admits a Taylor series in ε:

I(ε, ~x) = I(0)(~x) + ε I(1)(~x) + ε2I(2)(~x) + . . . . (3.9)

The solution I(ε, ~x) is then in principle determined through (3.6) at any order of the ε-

expansion, and reads (up to the coefficient of ε4)

I(0)(~x) = I(0)(~x0) , (3.10)

I(1)(~x) = I(1)(~x0) +

∫
γ
dA I(0)(~x0) , (3.11)

I(2)(~x) = I(2)(~x0) +

∫
γ
dA I(1)(~x0) +

∫
γ
dA dA I(0)(~x0) , (3.12)

I(3)(~x) = I(3)(~x0) +

∫
γ
dA I(2)(~x0) ,+

∫
γ
dA dA I(1)(~x0)

+

∫
γ
dA dA dA I(0)(~x0) , (3.13)

I(4)(~x) = I(4)(~x0) +

∫
γ
dA I(3)(~x0) +

∫
γ
dA dA I(2)(~x0)

+

∫
γ
dA dA dA I(1)(~x0) +

∫
γ
dA dA dA dA I(0)(~x0) . (3.14)

The problem of solving (3.3), given a set of initial conditions I(ε, ~x0), reduces therefore to

the evaluation of matrices of the type ∫
γ
dA . . . dA︸ ︷︷ ︸

k times

, (3.15)

whose entries, due to (3.4), are linear combinations of Chen’s iterated integrals of the form∫
γ

d log ηik . . . d log ηi1 ≡
∫

0≤t1≤...≤tk≤1
gγik(tk) . . . g

γ
i1

(t1) dt1 . . . dtk , (3.16)

with

gγi (t) =
d

dt
log ηi(γ(t)) . (3.17)

We refer to the number of iterated integrations k as the weight of the path-integral. The

empty integral (eq. (3.16) for k = 0) is defined to be equal to 1. We stress that only the

matrices (3.15) do not depend on the explicit choice of the path. The individual summands

of the form in eq. (3.16), which contribute to their entries, in general depend on such a

choice. To keep the notation compact, we define

C [γ]
ik,...,i1

≡
∫
γ

d log ηik . . . d log ηi1 , (3.18)

which also emphasizes that the iterated integrals in (3.16) are in general functionals of the

path γ.
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3.2 Properties of Chen’s iterated integrals

The general theory of iterated path integrals was developed by Chen [117]. Chen’s iterated

integrals satisfy a number of properties that we summarize for completeness:

• Invariance under path reparametrization. The integral C [γ]
ik,...,i1

does not depend on

how one chooses to parametrize the path γ.

• Reverse path formula. If the path γ−1 is the path γ traversed in the opposite direction,

then

C [γ−1]
ik,...,i1

= (−1)kC [γ]
ik,...,i1

. (3.19)

• Recursive structure. From (3.16) and (3.17) it follows that the line integral of one

d log is defined as usual ∫
γ

d log η ≡
∫

0≤t≤1

d log η(γ(t))

dt
dt , (3.20)

and only depends on the endpoints ~x0, ~x∫
γ

d log η = log η(~x)− log η(~x0) . (3.21)

It is convenient to introduce the path integral “up to some point along γ”: given a

path γ and a parameter s ∈ [0, 1], one can define the 1-parameter family of paths

γs : [0, 1] 3 t 7→ γs(t) = (γ1(s t), γ2(s t)) . (3.22)

If s = 1, then trivially γs = γ. If s = 0 the image of the interval [0, 1] is just {~x0}.
If s ∈ (0, 1), then the curve γs([0, 1]) starts at γ(0) = ~x0 and overlaps with the curve

γ([0, 1]) up to the point γ(s), where it ends. It is then easy to see that the path

integral along γs can be written as

C [γs]
ik,...,i1

=

∫
0≤t1≤...≤tk≤s

gγik(tk) . . . g
γ
i1

(t1) dt1 . . . dtk , (3.23)

which differs from eq. (3.16) by the fact that the outer integration (i.e. the one in dtk)

is performed over [0, s] instead of [0, 1]. Having introduced γs, we can rewrite (3.16)

in a recursive manner:

C [γ]
ik,...,i1

=

∫ 1

0
gγik(s) C [γs]

ik−1,...,i1
ds . (3.24)

From eq. (3.23) we can also immediately derive the following identity:

d

ds
C [γs]
ik,...,i1

= gγik(s) C [γs]
ik−1,...,i1

. (3.25)

• Shuffle algebra. Chen’s iterated integrals fulfill shuffle algebra relations: if ~m =

mM , . . . ,m1 and ~n = nN , . . . , n1 (with M and N natural numbers)

C [γ]
~m C

[γ]
~n =

∑
shuffles σ

C [γ]
σ(mM ),...,σ(m1),σ(nN ),...,σ(n1) , (3.26)

where the sum runs over all the permutations σ that preserve the relative order of ~m

and ~n.
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• Path composition formula. If α, β : [0, 1]→M are such that α(0) = ~x0, α(1) = β(0),

and β(1) = ~x, then the composed path γ ≡ αβ is obtained by first traversing α and

then β. One can prove that the integral over such a composed path satisfies

C [αβ]
ik,...,i1

=

k∑
p=0

C [β]
ik,...,ip+1

C [α]
ip,...,i1

. (3.27)

• Integration-by-parts formula. In order to compute the path ordered integral of k d log

forms using the definition, eq. (3.16) (or, equivalently, eq. (3.24)), in principle one

would have to perform k nested integrations. When a fully analytic solution cannot

be achieved, numerical integration can as well be employed. Therefore one can use an

alternative form of the Chen iterated integral suitable for the combined use of analytic

and numerical integrations. In fact, we observe that the innermost integration can

always be performed analytically using (3.20), so that only k−1 integrations are left.

For instance, in the case k = 2,

C [γ]
b,a =

∫ 1

0
gb(t) C [γt]

a dt

=

∫ 1

0
gb(t)(log ηa(~x(t))− log ηa(~x0)) dt . (3.28)

For k ≥ 3, one can proceed recursively using eq. (3.24), assuming that the numerical

evaluation up to the first k − 1 iterations is a solved problem. Using integration by

parts, one can show that the numerical integration over the outermost weight gk can

actually be avoided, leaving only k − 2 integrations to be performed

C [γ]
ik,...,i1

= log ηik(~x) C [γ]
ik−1,...,i1

−
∫ 1

0
log ηik(~x(t)) gik−1

(t) C [γt]
ik−2,...,i1

dt . (3.29)

3.3 Mixed Chen-Goncharov representation

In principle eq. (3.6) completely determines the solution, which can be written in terms

of Chen’s iterated integrals along an arbitrary piecewise-smooth path (see the discussion

below eq. (3.6)). The initial conditions I(~x0) can be computed analytically, if possible,

or by means of numerical methods. The number of iterated integrals that have to be

evaluated numerically can be minimized by the use the of algebraic identities relating

them. According to the discussion in section 3.2, the evaluation of the solution up to

weight 4 requires in general 2 nested numerical integrations.

In order to obtain results that allow for an efficient numerical evaluation, we have

chosen to give the solution in a mixed representation that involves GPLs and general

Chen’s iterated integrals. The representation in terms of GPLs is particularly convenient

because public packages exist, like GiNaC, that implement their numerical evaluation in a

fast and accurate way. Whenever the alphabet is rational in the kinematic variables xi,

one can always choose a path that allows to express the Chen iterated integrals in terms

of GPLs, namely the broken line such that, in each segment, only one of the xi is allowed
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to vary. Along each segment, by means of factorization over the complex numbers, one

can obtain a linear alphabet and, therefore, the GPLs representation. This approach is

equivalent to integrating the differential equations for x and y separately. By integrating,

say, the equation in x one obtains the solution in terms of GPLs of argument x up to

an unknown function H(y). By taking the derivative with respect to y and matching to

the equation in y, one obtains a differential equation for H(y). The latter can be again

integrated in terms of GPLs of argument y, up to a constant.

As we will discuss in section 5, the alphabet for our differential equations is not always

rational in the kinematic variables we use and, in that case, a representation in terms of

GPLs cannot be given for the complete solution. To reach the mixed representation, we

have exploited the property of path-independence of the coefficients of the ε-expansion of

the solution eq. (3.6). In particular, eqs. (3.11)–(3.14) can be written in an equivalent

alternative form using eq. (3.24):

I(k)(~x) = I(k)(~x0) +

∫ 1

0

[
dA(t)

dt
I(k−1)(~xt)

]
dt , (3.30)

where ~xt is the point (x(t), y(t)) along the curve identified by γ. We see that, in order

to build the weight-k coefficient, one must perform a path integration over the weight-

(k − 1) coefficient. The choice of such path is independent of the path used to compute

the former because, as we have already discussed, each coefficient is a function of the sole

endpoints. In other words, as far as the weight-k coefficient of the solution is concerned,

we are free to choose the integration path independently for each of the k integrations (for

each component of I(~x)).

To see how this can be useful in our computation, we note that the letters ηi (in suitable

variables, say ~x) can be grouped in two classes. The first contains the letters that are

rational in the components of ~x and happens to represent the alphabet for most of the MIs

we need to compute. The second is the class of letters that are non-rational functions of the

variables. The two classes together constitute the alphabet for the 5 most complicated MIs.

Starting from the weight-1 coefficient of the solution, we proceed as follows. As far as

the involved ηi’s belong to the first class of letters, we can express the solution in terms of

GPLs. We keep integrating in this manner until, at some weight k, the solution begins to

involve non-rational ηi’s. At this point we proceed with the path integration as in (3.30).

Within this approach, the weight k−1 solution is not expressed in terms of Chen’s iterated

integrals over an arbitrary path, but in terms of GPLs. We introduce the following notation

to keep our results compact:

C [γ]
a|~m|~n ≡

∫ 1

0
gγa(t)Gγ~m(x)Gγ~n(y) dt , (3.31)

C [γ]
a|~m|∅ ≡

∫ 1

0
gγa(t)Gγ~m(x) dt , (3.32)

C [γ]
a|∅|~n ≡

∫ 1

0
gγa(t)Gγ~n(y) dt , (3.33)

C [γ]

a,~b|~m|~n
≡
∫ 1

0
gγa(t) C [γt]

~b|~m|~n
dt , (3.34)
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where Gγ~m(x) and Gγ~n(y) stand for the GPLs G~m(x) and G~n(y) evaluated at (x, y) =

(γ1(t), γ2(t)).

3.4 Constant Goncharov polylogarithms

In the determination of the boundary values of the MIs we encountered constant GPLs of

argument 1 with weights drawn from three sets. For the one-mass MIs there is only one

relevant set, with four weights,

• {−1, 0, 1
2 , 1} .

For the two-mass MIs we encountered the following two sets, with seven weights each

• {−1, 0,−i, i, 1, (−1)
1
3 ,−(−1)

2
3 },

• {−1, 0,−i, i, 1,−(−1)
1
6 ,−(−1)

5
6 },

where the former includes the third roots of −1 and the latter involves a subset of the sixth

roots of −1. With the help of GiNaC, we verified that, at order εk, the Taylor coefficient of

each MI I
(k)
i contains a combination of constant GPLs that turns out to be proportional

to ζk, namely amounting to qi,k ζk, with qi,k ∈ Q. The resulting identities were verified at

high numerical accuracy. As examples, we show,

0 = Gr +G−r2 , (3.35)

ζ2 = 3G0,−r2 + 4Gr,−r2 + 4G−r2,0 − 2G−r2,1 + 4G−r2,r

+ 4G−r2,−r2 + 3G0,r + 4Gr,0 − 2Gr,1 + 4Gr,r , (3.36)

−77

8
ζ3 = G−1,−1, 1

2
+G−1, 1

2
,−1 +G−1, 1

2
,1 + 3G0,0, 1

2
+ 3G0, 1

2
,1 +G 1

2
,−1,−1

+G 1
2
,−1,1 −G 1

2
,0, 1

2
+ 4G 1

2
,0,1 +G 1

2
,1,−1 +

3

2
ζ2G 1

2
, (3.37)

where for simplicity we omitted the argument (x = 1) of the GPLs and we defined the

weight r ≡ (−1)1/3. For related studies see also [120–123].

4 One-mass master integrals

In this section we describe the computation of the MIs with one internal massive line,

namely topology (b) of figure 1 and topologies (b1)-(b3) of figure 2.

4.1 One-loop

The following set of MIs for the one-loop one-mass box obeys a differential equation in x

and y, defined in eq. (3.1), which is linear in ε:

F1 = ε T1 , F2 = ε T2 , F3 = ε T3 ,

F4 = ε2 T4 , F5 = ε2 T5 . (4.1)
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(T1) (T2) (T3) (T4) (T5)

Figure 3. One-loop one-mass MIs T1,...,5. Thin lines represent massless external particles and

propagators; thick lines stand for massive propagators; an horizontal (vertical) dashed external line

represents an off-shell leg with squared momentum equal to s (t); dots indicate squared propagators.

where the Ti are depicted in figure 3. By means of the Magnus exponential [91, 116],

according to the procedure outlined in section 2 of [92], we obtain the canonical MIs

I1 = F1 , I2 = −sF2 , I3 = −tF3 ,

I4 = −tF4 , I5 = (s−m2) tF5 . (4.2)

The alphabet of the corresponding d log-form, eq (3.4), is

η1 = x , η2 = 1 + x , η3 = y ,

η4 = 1− y , η5 = x+ y , (4.3)

and the coefficient matrices read

M1 =



0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 2 −1 −1 1


, M2 =



0 0 0 0 0

−1 −2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −2


, M3 =



0 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 −1


,

M4 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 0 1 −1 0

−1 0 1 −1 0


, M5 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −2 −1 1 1


. (4.4)

If x > 0 and 0 < y < 1 all the letters ηi are positive. Since the alphabet is linear in x and

y, according to the discussion in section 3.3, the solution can be conveniently cast in terms

of GPLs. As a consequence, the analytic continuation to arbitrary complex values of x and

y is straightforward, allowing the solution to be evaluated for any real and complex values

of s, t, and m2. See appendix A for further details.

Instead of choosing a particular basepoint ~x0, the integration constants of I2...5 can

be easily fixed by demanding regularity at the pseudothresholds t → −m2, u → 0, s → 0

and their reality in the euclidean region. On the other hand, I1 is a constant and must be

determined by direct integration:

I1 =
Γ(1− 2ε)

Γ(1− ε)2
. (4.5)
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4.2 Two-loop

At the two-loop order, the following set of MIs admits ε-linear differential equations in x

and y (defined in eq. (3.1)):

F1 = (1− ε)ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,

F7 = ε3 T7 , F8 = ε3 T8 , F9 = ε3 T9 ,

F10 = ε2 T10 , F11 = ε2 T11 , F12 = ε3 T12 ,

F13 = ε4 T13 , F14 = ε3 T14 , F15 = ε4 T15 ,

F16 = ε3 T16 , F17 = ε3 T17 , F18 = ε4 T18 ,

F19 = ε3 T19 , F20 = ε4 T20 , F21 = ε3 T21 ,

F22 = ε4 T22 , F23 = ε3 T23 , F24 = (1− 2ε)ε3 T24 ,

F25 = ε3 T25 , F26 = ε3 T26 , F27 = ε4 T27 ,

F28 = ε3 T28 , F29 = ε4 T29 , F30 = ε4 T30 ,

F31 = ε4 T31 , (4.6)

where the Ti are depicted in figure 4. Once again, by means of Magnus exponentials, we

are able to obtain a canonical basis:

I1 = F1 , I2 = −sF2 , I3 = 2m2 F2+λ− F3 ,

I4 = −sF4 , I5 = −sF5 , I6 = −tF6 ,

I7 = −sF7 , I8 = −tF8 , I9 = −sF9 ,

I10 =
m2

2λ+
(2sλ− F10−2 F1−3sF5) , I11 = s2 F11 , I12 = −tF12 ,

I13 = −sF13 , I14 = s2 F14 , I15 = −sF15 ,

I16 = s tF16 , I17 = s tF17 , I18 = −tF18 ,

I19 = −m2 tF19 , I20 = uF20 , I21 = −t λ− F21 ,

I22 = uF22 , I23 = −t λ− F23 , I24 = −tF24 ,

I25 = −t λ− F25 , I26 = −tm2 (F17+λ− F26) , I27 = s tF27 ,

I28 = m2 s
(
(m2 + t) F28 − 2 F27

)
, I29 = (s t+m2 u) F29 , I30 = s t λ−F30 ,

I31 = m2 sF29 − s λ− F31 , (4.7)

where λ± =
(
m2 ± s

)
. After combining the two differential equations into one total differ-

ential, we find a d log-form (3.4) with the alphabet

η1 = x , η2 = 1 + x , η3 = y ,

η4 = 1− y , η5 = x+ y , η6 = x+ y + xy , (4.8)

which includes the additional letter η6 as compared to one-loop (4.3). If x > 0 and 0 < y < 1

all the letters ηi are positive. The coefficient matrices are given in the appendix (B.1). Since
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(T1) (T2) (T3) (T4) (T5) (T6)

(T7) (T8) (T9) (T10) (T11) (T12)

(T13) (T14) (T15) (T16) (T17) (T18)

(T19) (T20) (T21) (T22) (T23) (T24)

(T25) (T26) (T27) (T28) (T29)

(T30) (T31)

(k1 − p1 + p3)
2

Figure 4. Two-loop one-mass MIs T1,...,31. The conventions are as in figure 3.

the additional letter is multilinear in x and y, also at the two-loop order we are able to

obtain the solution in terms of GPLs (see the discussion in section 3.3).

We list the conditions imposed to the MIs for the determination of their boundary

constants:

• regularity at t → −m2 and u → 0 and imposing reality on the resulting boundary

constants: I2,...,5,7,...,10,12,14,...,17,19,...,31 ,

• limit s→ 0: I11,13 ,

• limit t→ 0: I18 .
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(T1) (T2) (T3) (T4) (T5) (T6)

Figure 5. One-loop two-mass MIs T1,...,6. The conventions are as in figure 3.

This leaves us with I1,6, to be determined by direct integration:

I1 = − 1

2

Γ(1− 2ε)2Γ(1 + 2ε)

Γ(1− ε)3Γ(1 + ε)
, (4.9)

I6 = − y−2ε

π

Γ
(

1
2 − ε

)
Γ
(

1
2 + ε

)
Γ(1− 2ε)

Γ(1− 3ε)Γ(1 + ε)
. (4.10)

As in the one-loop case, owing to the explicit representation in terms of GPLs, the

analytic continuation to arbitrary x and y is straightforward, so that all the one-mass MIs

can be computed for any real and complex values of s, t, and m2 (see appendix A). Our

results have been successfully checked against SecDec, both in the Euclidean and in the

physical regions.

The analytic expressions of all the MIs are explicitly given in electronic form in ancillary

files that can be obtained from the arXiv version of this paper.

5 Two-mass master integrals

In this section we describe the computation of the MIs with two internal massive lines,

namely topology (c) of figure 1 and topologies (c1)-(c2) of figure 2.

5.1 One-loop

We choose the following set of MIs, admitting a differential equation linear in ε

F1 = ε T1 , F2 = ε T2 , F3 = ε T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 , (5.1)

where the Ti are shown in figure 5. After applying the Magnus transformation we obtain

the following canonical basis

I1 = F1 , I2 = −s
√

1− 4m2

s
F2 , I3 = −tF3 ,

I4 = −sF4 , I5 = −tF5 , I6 = s t

√
1− 4

m2

s

(
1 +

m2

t

)
F6 , (5.2)

The alphabet of the corresponding canonical d log-form, (3.4), is non-rational in s, t and

m. In particular four square roots appear

√
−s,

√
4m2 − s,

√
−t, and

√
1− 4m2

s

(
1 +

m2

t

)
. (5.3)
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The alphabet can be rationalized through the change of variables

− s

m2
=

(1− w)2

w
, − t

m2
=
w

z

(1 + z)2

(1 + w)2
. (5.4)

We note that the above mapping is not invertible at s = 4m2. In terms of w and z, the

alphabet reads

η1 = z , η2 = 1 + z , η3 = 1− z ,
η4 = w , η5 = 1 + w , η6 = 1− w ,
η7 = z − w , η8 = z + w2 , η9 = 1− w z ,
η10 = 1 + w2 z , (5.5)

and the coefficient matrices are

M1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

1 0 −1 0 0 0

0 2 0 0 0 0


, M4 =



0 0 0 0 0 0

1 1 0 0 0 0

0 0 −1 0 0 0

0 −2 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


, M5 =



0 0 0 0 0 0

0 −2 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

2 0 −2 0 0 0

0 0 0 0 0 −2


, M7 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 1 0 −1 0

−2 0 2 0 −2 0


,

M8 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 2 1


, M9 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−1 0 1 0 −1 0

2 0 −2 0 2 0


, M10 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −2 −2 1


, (5.6)

and (M2)3,3 = −2 and (M2)5,5 = 2 are the only non-vanishing entries in M2, (M3)6,6 = −2 is

the only non-vanishing entry in M3, and (M6)4,4 = 2 is the only non-vanishing entry in M6.

In the region 0 < w < z < 1 all the letters ηi are positive. The alphabet in (5.5) is linear

in z but contains letters quadratic in w. As the latter can be linearized by factorization

over the complex numbers, we are once again able to express the solution in terms of GPLs

(see the discussion in section 3.3). As already discussed in section 5 for the one-mass case,

owing to the explicit representation in terms of GPLs, the analytic continuation to any

w and z is straightforward, so that all the one-loop two-mass MIs can be computed for

arbitrary real and complex values of s, t, and m2 (except for s = 4m2). For a detailed

discussion of how the regions in the real s, t plane are mapped to the C × C space of the

w, z variables, see appendix A.

The integration constants of I4,5,6 can be fixed by requiring their regularity at the

pseudothresholds s → 0, t → −m2 and u → 0. The boundary constant of I2 can be fixed

by taking the s → 0 limit. This leaves us with two integrals, I1,3, to be determined by

direct integration:

I1 =
Γ(1− 2ε)

Γ(1− ε)2
, (5.7)

I3 =

[
z

w

(1 + w)2

(1 + z)2

]ε
. (5.8)
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(T1) (T2) (T3) (T4) (T5) (T6)

(T7) (T8) (T9) (T10) (T11) (T12)

(T13) (T14) (T15) (T16) (T17) (T18)

(T19) (T20) (T21) (T22) (T23) (T24)

(T25) (T26) (T27) (T28) (T29) (T30)

(T31) (T32) (T33) (T34)

(k1 + k2)
2

(T35)

(k1 − p1 + p3)
2

(T36)

(k1 + k2)
2(k1 − p1 + p3)

2

Figure 6. Two-loop two-mass MIs T1,...,36. The conventions are as in figure 3.
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5.2 Two-loop

At the two-loop order we start with the set of MIs

F1 = (1− ε) ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε3 T6 ,

F7 = ε3 T7 , F8 = ε3 T8 , F9 = ε2 T9 ,

F10 = (1− 2ε) ε2 T10 , F11 = ε2 T11 , F12 = ε3 T12 ,

F13 = ε4 T13 , F14 = ε3 T14 , F15 = ε4 T15 ,

F16 = ε3 T16 , F17 = (1− 2ε) ε3 T17 , F18 = ε3 T18 ,

F19 = ε3 T19 , F20 = ε4 T20 , F21 = ε3 T21 ,

F22 = ε4 T22 , F23 = ε3 T23 , F24 = (1− 2ε)ε3 T24 ,

F25 = ε3 T25 , F26 = (1− 2ε) ε3 T26 , F27 = ε3 T27 ,

F28 = ε3 T28 , F29 = ε4 T29 , F30 = ε4 T30 ,

F31 = ε3 T31 , F32 = ε4 T32 , F33 = ε4 T33 ,

F34 = ε4 T34 , F35 = ε4 T35 , F36 = ε4 T36 , (5.9)

where the Ti are shown in figure 6. The MIs F admit ε-linear differential equations, except

for one of them. We have indeed

dF = KF, K = K0 + εK1 +
1

1− 2ε
K2 , (5.10)

where K0,K1 and K2 do not depend on ε, and K2 is non-vanishing only in the inhomo-

geneous part of the differential equation for F36. In a first step we apply the Magnus

algorithm on K0 + εK1 in order to remove K0, and in a second step we apply an ad-hoc

transformation in order to remove the remaining non-linear piece.

The corresponding canonical basis reads

I1 = F1 , I2 = −sF2 , I3 = m2 (2 F2 + F3)− sF3 , I4 = −sF4 ,

I5 = −tF5 , I6 = −sF6 , I7 = −tF7 , I8 = −sF8 ,

I9 = −
√

1− 4m2

s

(
3

2
F8 +m2 F9

)
− 3

2
sF8 ,

I10 =
1

4

(
1 +

√
−s

4m2 − s

)(
−2F1 + (m2 − s) (F2 + F3) +m2 F2

+sF10 − s
√

1− 4m2

s
(F2 + F10)

)
,

I11 = s2

√
1− 4m2

s
F11 , I12 = −tF12 , I13 = −sF13 ,

I14 = s2 F14 , I15 = −sF15 , I16 = −m2 sF16 ,

I17 = −sF17 , I18 = s2 F18 , I19 = s tF19 ,

I20 = −tF20 , I21 = −m2 tF21 , I22 = uF22 ,

I23 = (s−m2) tF23 , I24 = −tF24 , I25 = (s−m2) tF25 ,
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I26 = −sF26 , I27 = s t

√
1− 4m2

s

(
1 +

m2

t

)
F27 ,

I28 = s t

√
1− 4m2

s

(
1 +

m2

t

)
(F25 +m2F28) + t (m2 − s) F25 ,

I29 = s2

√
1− 4m2

s
F29 , I30 = s tF30 ,

I31 = −m2 s (2F30 + (m2 + t) F31) , I32 = s t

√
1 +

m4

t2
− 2m2

s

(
1− u

t

)
F32 ,

I33 = −s2 t

√
1− 4m2

s

(
1 +

m2

t

)
F33 , I34 = s2 F34 ,

I35 = s

√
1− 4m2

s
(2 tF32 − s tF33 + sF35)− s2 t

√
1 +

4m2

s

(
1 +

m2

t

)
F33 ,

I36 =
s

2(1− 2ε)
F17 − s t

(
1−

√
1− 4m2

s

)
F32 − s tF18 − 2 tF22

− 2m2 s

2− s
m2 (1−

√
1− 4m2

s )
(F29 + tF33 − F35)− sF36 .

(5.11)

As compared to the one-loop case (5.3) we encounter one additional square root in the

canonical d log-form √
1 +

m4

t2
− 2m2

s

(
1− u

t

)
, (5.12)

which prevents the alphabet from being rationalized by the change of variables in eq. (5.4).

In terms of w and z, the alphabet reads

η1 = z, η2 = 1 + z, η3 = 1− z,
η4 = w, η5 = 1 + w, η6 = 1− w,
η7 = 1− w + w2, η8 = 1− w z, η9 = z − w,

η10 = 1 + w2 z, η11 = z + w2,

η12 = 4(1 + z)4w3 + (1− w)2 κ2
+(w, z) , η13 = (1 + w)

√
ρ+ (1− w)κ−(w, z) ,

η14 = (1 + w)
√
ρ− (1− w)κ−(w, z) , η15 = (1 + w)

√
ρ+ (1− w)κ+(w, z) ,

η16 =
c1 + c2

√
ρ

c3 + c4
√
ρ
,

η17 = 2(1− w)2wz2 + κ2
−(−w, z) + (z + w) (1 + wz)

√
ρ , (5.13)

where

κ±(a, b) ≡ a (1 + b)2 ± b (1 + a)2 , (5.14)

the argument of the square root entering η13,...,17 is

ρ = 4wz2(1 + w)2 − κ+(w, z)κ+(−w,−z) , (5.15)
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and the four coefficients in η16 are given by

c1 = (1 + w)2
(
1− 4w + w2

)
z2(1 + z)2

+ w2(1 + z)6 + 2w
(
1− w + w2

)
z(1 + z)4 − 2(1 + w)4z3 , (5.16)

c2 =
(
1− z2

)
κ+(w, z) , (5.17)

c3 = 2w8z4 + 2w7z3
(
z2 + 6z + 1

)
− w6(z − 1)2z2

(
z2 + 4z + 1

)
− 2w5z

(
z6 − z5 − 8z4 − 8z3 − 8z2 − z + 1

)
+ w4

(
z8 − 2z7 − 2z6 + 6z5 − 10z4 + 6z3 − 2z2 − 2z + 1

)
− 2w3z

(
z6 − z5 − 8z4 − 8z3 − 8z2 − z + 1

)
− w2(z − 1)2z2

(
z2 + 4z + 1

)
+ 2wz3

(
z2 + 6z + 1

)
+ 2z4 , (5.18)

c4 = − w(1− z2)(z − w)(1− wz)
(
κ−(−w,−z) + (1 + w)2 z

)
. (5.19)

In the region 0 < w < z < 1 all the letters ηi are positive.

As already stressed, the alphabet is not rational in w and z. This prevents us from

expressing the complete solution in terms of GPLs. In particular, the structure of the coef-

ficient matrices Mi is such that the solution for I
(3)
32 and for I

(4)
32,...,36, see eqs. (3.13), (3.14),

involves path integration over d log’s with non rational arguments. Nevertheless, the MIs

I1,...,31 admit a representation in terms of GPLs which is convenient for their numerical

evaluation. As for the remaining MIs, we followed the procedure outlined in section 3.3:

we express the solution up to weight 2 for I32 and up to weight 3 for I33,...,36 in terms of

GPLs and then obtain an 1-fold integral representation for the higher weights (for I
(4)
32,...,36

we use eq. (3.29)).

We list the conditions imposed to integrals I1,...,31 for the determination of their bound-

ary constants:

• independent input: I1,4,...,7,13,14,20,25 ,

• regularity at s→ 0: I24 ,

• regularity at t→ −m2: I12,21 ,

• regularity at u→ 0: I19,30,31 ,

• limit s→ 0: I2,3,6,...,10,15,...,18,29 ,

• limit t→ −m2 and s→ 0: I28 ,

• regularity at s→ 0 and matching to independent input: I22,23 .

For the MIs I32,...,36 we observe that regularity at u = s = t = 0, corresponding to ~x0 =

(w0, z0) = (1,−1), implies

I32,...,36(ε, ~x0) = 0 , (5.20)

that we choose as initial condition of our solution in terms of iterated integrals.

The MIs I1,...,31 are represented in terms of GPLs. As already discussed for the one-

loop case, for such MIs the analytic continuation to arbitrary w and z is straightforward.
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Therefore the MIs I1,...,31 can be computed for any real and complex values of s, t, and m2

(except for s = 4m2, see appendix A for further comments). We checked our results in the

Euclidean and physical regions against SecDec finding complete agreement.

The explicit evaluation of I32,...,36 requires a careful choice of the integration path, in

such a way that no branch cuts are crossed. We successfully checked our results in the Eu-

clidean region s < 0 (see appendix A) against the numerical values obtained with SecDec.

The evaluation of our analytic result relies on the use of GiNaC for the computation of

the GPLs and on a one-dimensional integration for the cases where non-rational weights

appear in the most external iteration, according to the eq. (3.29). As for the latter, we

exploited the propriety of path-independence to choose simple paths (that avoid the sin-

gularities on the way from the basepoint to the chosen endpoints). Let us remark that in

this work we did not focus on the the efficiency of the numerical evaluation of the mixed

Chen-Goncharov iterated integrals appearing in our analytic expression. This aspect, to-

gether with a study of the analytic properties of our solutions in the whole phase-space,

requires a dedicated future investigation.

The analytic expressions of all the MIs are explicitly given in electronic form in ancillary

files that can be obtained from the arXiv version of this paper.

6 Conclusions

In this article, we presented the calculation of the master integrals (MIs) needed for the

virtual QCD×EW two-loop corrections to the Drell-Yan scattering processes,

q + q̄ → l− + l+ , q + q̄′ → l− + ν ,

for massless external particles. Besides the exchange of massless gauge bosons, such as

gluons and photons, the relevant Feynman diagrams involve also the presence of W and Z

propagators. Given the small difference between the masses of the W and Z bosons, in the

diagrams containing both virtual particles at the same time, we performed a series expan-

sion in the difference of the squared masses. Owing to this approximation, we distinguished

three types of diagrams, according to the presence of massive internal lines: the no-mass

type, the one-mass type, and the two-mass type, where all massive propagators, when oc-

curring, contain the same mass value. The evaluations of the four point functions with one

and two internal massive propagators are the main novel results of this communication.

To achieve it, we identified a basis of 49 MIs and evaluated them with the method of

the differential equations. With the help of the Magnus exponential, the MIs were found to

obey canonical systems of differential equations. Boundary conditions were imposed either

by matching the solutions onto simpler integrals in special kinematic configurations, or by

requiring the regularity of the solution at pseudothresholds. The canonical MIs were given

as Taylor series around d = 4 space-time dimensions, up to order four, whose coefficients

were given in terms of iterated integrals up to weight four. While the solution could be

expressed, in full generality, in terms of Chen’s iterated integrals, we adopted a mixed

representation in terms of Chen-Goncharov iterated integrals, suitable for their numerical

evaluation. Further studies concerning the analytic properties of the presented MIs in the
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whole phase-space, and the optimization of their numerical evaluation will be the subject

of a forthcoming publication.
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A Variables for the one-mass and two-mass integrals

In this section we discuss the domain of the variables employed in the analytic expressions

of the MIs for the Drell-Yan process, both in the case with one massive propagator and in

the case with two massive propagators.

A.1 One-mass type

For the evaluation of the one-mass MIs we simply rescale by the squared mass the Mandel-

stam invariants. All the analytic results are given in terms of two-dimensional generalized

polylogarithms, functions of the variables

x = − s

m2
, y = − t

m2
. (A.1)

In the Euclidean region s, t < 0. Therefore, if m2 > 0, both x and y are real and positive.

The analytic continuation to the other values of s and t, with m2 > 0, requires the Feynman

prescription on the invariants. In particular, in the physical region s becomes positive, with

a positive vanishing imaginary part, s + i0+. Accordingly, x is negative, with a negative

vanishing imaginary part:

x→ −x′ − i0+ , (A.2)

with

x′ =
s

m2
> 0 . (A.3)

On the other hand, t is negative and ranges between −s and 0, so that 0 < y < x′. The

extension to the case of complex mass, m2 → m2 − imΓ, is straightforward.

The numeric evaluation of the MIs expressed in terms of GPLs of the variables x and

y can be done in the whole (s, t,m2) domain using the routines in [102] expressing our

analytic formulas in terms of GPLs evaluated in 1 and giving the explicit imaginary part

to the Mandelstam variables (see for instance [128]).
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A.2 Two-mass type

For the evaluation of the two-mass MIs, see section 5, we find it convenient to introduce

the reduced variables w and z defined by

− s

m2
=

(1− w)2

w
, − t

m2
=
w

z

(1 + z)2

(1 + w)2
. (A.4)

We note that the above mapping allows the evaluation of our results everywhere in

the (s, t) plane, with the exception of the value w = −1 (corresponding to s = 4m2).

For that specific value of w, the t dependence in z gets lost by construction, and z = −1

independently of t. The evaluation of the solution at s = 4m2 requires further investigations

and it will be addressed in a forthcoming publication.

The arguments in the following sections rely on the assumption that m2 > 0. Nev-

ertheless, the whole discussion can be straightforwardly extended to the case of complex

mass, m2 → m2 − imΓ. For instance, it is easy to see that in the physical region, defined

by s > 0 and −s < t < 0 (see section 2), the real and imaginary parts of (w, z) would differ

from those in the zero-width case. Nevertheless, the sign of the imaginary parts will be

preserved. Therefore the zero-width case would simply arise as a limit. Furthermore, in

the presence of a non-zero width, the change of variables (A.4) is always well defined for

any real s, thus circumventing the difficulty mentioned above.

A.2.1 Range of values for w

For w, defined by the first of eqs. (A.4), we choose the following root:

w =

√
4m2 − s− i0+ −

√
−s− i0+

√
4m2 − s− i0+ +

√
−s− i0+

, (A.5)

where we explicitly used the Feynman prescription s+ i0+.

1. If s < 0, we have positive w and 0 < w < 1. In particular, when s → −∞, w → 0,

while for s→ 0, w → 1.

2. If 0 < s < 4m2, w becomes a phase. In fact

w =

√
4m2 − s+ i

√
s√

4m2 − s− i√s
= eiφ , (A.6)

where

φ = 2 arctan

√
s

4m2 − s (A.7)

and 0 < φ < π.

3. If s > 4m2, w becomes negative (with a positive vanishing imaginary part)

w = −
√
s−
√
s− 4m2

√
s+
√
s− 4m2

= −w′ + i0+ , (A.8)

and 1 > w′ > 0 when 4m2 < s < +∞.
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A.2.2 Range of values for z

The variable z depends both on s and t. In order to study the different regimes, we define

the following function of s

t∗ ≡ −m2 w

(1 + w)2

= − m4

4m2 − s . (A.9)

where the second equality follows from eq. (A.5). We also define the ratio

K ≡ t

t∗
, (A.10)

so that the second of eqs. (A.4) reads

K =
(1 + z)2

z
. (A.11)

We choose the following root of the above equation

z =

√
K −

√
K − 4√

K +
√
K − 4

. (A.12)

Note that eq. (A.12) contains square-roots of K and K−4. Therefore, in order to compute

z when K < 4, we have to keep track of the vanishing imaginary parts of the quantities

entering eq. (A.10). Region by region in the (s, t) plane, the correct sign of the vanishing

imaginary part (if present) is determined by the Feynman prescription on s, t, u, i.e. s+i0+

when s > 0, and likewise for t and u.

Depending on the value of K, we distinguish three cases (here we keep the prescription

for the vanishing imaginary part of K arbitrary):

1. K > 4

All the square roots in eq. (A.12) are real, so z is real with 0 < z < 1.

2. 0 < K < 4

For a given prescription K ± i0+, one obtains from eq. (A.12)

z =

√
K ∓ i

√
4−K√

K ± i
√

4−K
, (A.13)

which is solved by

z = e∓iψ , ψ = 2 arctan

√
4−K
K

, 0 < ψ < π . (A.14)

3. K < 0
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t < −4|t∗| −4|t∗| < t < 0 0 < t < |t∗| |t∗| < t < 4|t∗| t > |4t∗|
s < 0 z e−iψ −z′ + i0+ −z′ + i0+ −z′ + i0+

0 < s < 4m2 z eiψ −z′ + i0+ −z′ − i0+ −z′ − i0+

s > 4m2 −z′ + i0+ −z′ + i0+ e−iψ e−iψ z

Table 1. We show the solution for z in each region of the (s, t) plane, as in eqs. (A.12), (A.14),

and (A.15). The boldface entries are the solutions in the regions that contain a part of the physical

s-channel scattering region, s > 0 with −s < t < 0.

For a given prescription K ± i0+, one obtains from eq. (A.12)

z =

√
−|K| ± i0+ −

√
−|K| − 4± i0+√

−|K| ± i0+ +
√
−|K| − 4± i0+

=

√
|K| −

√
|K|+ 4√

|K|+
√
|K|+ 4

∓ i0+

≡ − z′ ∓ i0+ , (A.15)

with 0 < z′ < 1.

Note that, since K is a function of s and t, each case can arise from multiple regions in

the (s, t) plane. In table 1 we summarize the solution for z in the different regions of the

(s, t) plane, by displaying also the appropriate sign for the i0+ prescription (if a vanishing

imaginary part is present).

B Two-loop d log-forms

In this appendix we give explicitly the coefficient matrices of the d log-forms, eq. (3.4), for

the one-mass and the two-mass two-loop MIs, discussed respectively in sections 4 and 5.

B.1 One-mass

For the one-mass case at the two-loop order, the d log-form is

dA = M1 d log(1 + x) + M2 d log(x) + M3 d log(y)

+ M4 d log(1− y) + M5 d log(x+ y) + M6 d log(x+ y + xy) (B.1)
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with

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
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B.2 Two-mass

For the two-mass case, at the two-loop order, the d log-form is

dA = M1 d log(z) + M2 d log(1 + z) + M3 d log(1− z) + M4 d log(w)

+ M5 d log(1 + w) + M6 d log(1− w) + M7 d log(1− w + w2)

+ M8 d log(1− w z) + M9 d log(z − w) + M10 d log(1 + w2 z)

+ M11 d log(w2 + z) + M12 d log((1 + z)4w3 + (1− w)2 κ2
+(w, z))

+ M13 d log((1 + w)
√
ρ+ (1− w)κ−(w, z))

+ M14 d log((1 + w)
√
ρ− (1− w)κ−(w, z))

+ M15 d log((1 + w)
√
ρ+ (1− w)κ+(w, z))

+ M16 d log

(
c1 + c2

√
ρ

c3 + c4
√
ρ

)
+ M17 d log(2(1− w)2wz2 + κ2

−(−w, z) + (z + w) (1 + wz)
√
ρ) (B.8)

where we used the abbreviations introduced below eq. (5.13). The coefficient matrices are

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −1
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 1
2 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3
4 −3

4
3
8 0 1

8 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 −1 0 3

2 −1
4 0 0 0 0 0 0 1 −1 0 0 0 0 0

−7
4 −11

4
7
8 2 1

8 −3 0 0 0 0 0 1
2 0 1 0 0 0 0 1 −1 0 3

2 −1
4 0 0 0 0 0 0 1 −1 0 0 0 0 0

1 −1 −1
2 0 0 0 0 −3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

−2 2 1 0 0 0 0 6 −4 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 −2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 2 1 0 0 0 0 6 −4 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 8 8 0 −4 0

−7
4 −7

4
7
8 1 1

8 −1 0 0 0 0 0 −3
2 0 1 0 0 −1 −1 1

3 −1 0 3
2 −1

4 0 0 1 1 0 0 1 −1 −2 −2 0 1 0



, (B.9)

– 32 –



J
H
E
P
0
9
(
2
0
1
6
)
0
9
1

M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 −1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5
2

5
2 −5

4 −2 1
4 2 0 0 0 0 0 1 −4 −2 0 0 0 0 −2 −2 0 3 3

2 0 0 0 0 0 0 −6 2 0 0 0 0 0

−1 −5 1
2 0 −1

2 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0 6 1 0 0 6 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

−7
2 −3

2
7
4 2 1

4 −2 0 2 0 0 0 1 4 2 0 −4 0 0 2
3 −2 0 −5 −1

2 0 0 −4 0 0 −2 2 −2 −8 −2 −2 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 −4 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 2
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M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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M4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1
2

1
2

1
4 0 0 0 0 3

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0



, (B.24)

and (M12)32,32 = −1 is the only non vanishing entry in M12.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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