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1 Introduction

Chaos is a kind of seeming random, chance or irregular motion, which appears only in the

nonlinear and non-integrable dynamical systems. The most important feature of chaos is

that it is highly sensitive to initial conditions [1–4]. The tiny errors in the chaotic motion

can grow rapidly with time so that the motion is totally changed from what it would be

in the absence of these errors, which means that it is very difficult to make a long-term

prediction for chaotic motions in general. Thus, it is expected that chaotic systems possess

many novel properties not shared by the usual dynamical systems, which triggers more

attention to focus on the study of chaotic dynamics in various physical fields.

It is well known that the geodesic motion of particle in the generic Kerr-Newman

black hole spacetime [5] is integrable and chaos does not emerge in this system. In order

to study the chaotic motions of particles in general relativity, one must resort to some

spacetimes with complicated geometries or introduce some extra interactions to ensure

that the dynamical system describing motion of particle is non-integrable. Along this

spirit, Cornish et al. [6, 7] investigated the chaotic trajectories of particle in multi-black

hole spacetimes [8, 9] where the equations of motion of particle are not variable-separable.

Moreover, the chaotic motions of particles have been studied in the perturbed Schwarzschild

spacetime [10–13], or in the spacetime of a black hole immersed in magnetic field [14], or in

the non-standard Kerr black hole spacetime described by Manko-Novikov metric [15–19].

The chaotic phenomenon was also found for the charged particles moving in a magnetic

field interacting with gravitational waves [20]. More interestingly, Frolov and Larsen [21]

showed that after introducing ring strings instead of point particles, one can find that the

ring string dynamics is chaotic even in the asymptotically flat Schwarzschild black hole

spacetime. Subsequently, the chaotic behavior of the ring string is also found in AdS-

Schwarzschild black hole [22] and AdS-Gauss-Bonnet black hole spacetimes [23].

In this paper, we will investigate the chaotic motion of particle in the accelerating and

rotating black holes spacetime [24–26], which describes two uniformly separated Kerr-type
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black holes accelerating away from each other under the action of “strings” represented by

conical singularities located along appropriate sections of the axis of symmetry. Comparing

with the usual Kerr black hole, the accelerating and rotating black holes spacetime has

different geometric structure because it possesses two rotation horizons and two acceleration

horizons. This implies that both Hawking and Unruh radiation could be present in this

background. Saifullah et al. [27, 28] studied the surface gravity, Hawking temperature

and the area laws for accelerating and rotating black holes and explored the effects of

the acceleration of black holes on the Hawking radiation of scalar particles in these black

holes spacetime. We [29] investigated the collision of two massive geodesic particles in the

accelerating and rotating black hole spacetime and probe the properties of the center-of-

mass energy and high-velocity collision belts in the near horizon collision. Moreover, with

this accelerating and rotating metric, Hawking and Ross [30] researched the possibility that

a black hole pair can be created by the breaking of a cosmic string. Since the study of

such a kind of black holes could provide physical insight into the high energy physics, the

properties of the accelerating and rotating black holes have been investigated extensively in

recent years [24–31]. The main purpose of this paper is to investigate the chaotic dynamics

in the accelerating and rotating black holes spacetime.

The paper is organized as follows. In section 2, we briefly review the accelerating and

rotating black hole spacetime and discuss the equations of geodesic motion for a timelike

particle in this background. In section 3, we investigate the chaotic phenomenon in the

accelerating and rotating black holes spacetime. We end the paper with a summary.

2 Geodesic motion of a particle in the accelerating and rotating black

hole spacetime

The accelerating and rotating black hole spacetime describes the gravitational field by a pair

of uniformly accelerating Kerr-type black holes, which is a special case of the Plebański and

Demiański metric [32] covered a large family of electro-vacuum type-D spacetimes including

both the Kerr-Newman like solutions and the C-metric. In the Boyer-Lindquist coordinates,

the metric of this accelerating and rotating black holes spacetime has a form [24–26]

ds2 = −
(

∆− a2P sin2 θ

ρ2Ω2

)
dt2 +

(
ρ2

∆Ω2

)
dr2 +

(
ρ2

PΩ2

)
dθ2

+

(
sin2 θ[P (r2 + a2)2 − a2∆ sin2 θ]

ρ2Ω2

)
dφ2

−
(

2a sin2 θ[P (r2 + a2)−∆]

ρ2Ω2

)
dtdφ , (2.1)

with

Ω = 1− αr cos θ , (2.2)

ρ2 = r2 + a2 cos2 θ , (2.3)

P = 1− 2αM cos θ + α2a2 cos2 θ , (2.4)

∆ = (r2 − 2Mr + a2)(1− α2r2) . (2.5)
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Here the parameters M , α and a denote the mass, the acceleration and the angular mo-

mentum per unit mass of the black hole, respectively. The locations of black hole horizons

are determined by equation grr = 0 [24–26], i.e.,

∆Ω2

ρ2
= 0 . (2.6)

Solving above eqaution, one can obtain

rH = M+
√
M2 − a2 , rC = M−

√
M2 − a2 , rA =

1

α
, rα =

1

α cos θ
. (2.7)

It is easy to find that the position of the event horizon r = rH and Cauchy horizon r = rC
are same to those of the Kerr black hole. However, in this case, one can find that there also

exist other two horizons at rA = 1
α and rα = 1

α cos θ , which are interpreted as the acceleration

horizons in the context of the C-metric. Obviously, the presence of acceleration changes

the geometry of spacetime. Unlike in the usual Kerr black hole spacetime, the physical

region of the black hole is located in rH < r < rA in which ∆ > 0 is satisfied.

In the curve spacetime, the Lagrangian of a timelike particle moving along the geo-

desic is

L =
1

2
gµν ẋ

µẋν , (2.8)

where the dots denote derivatives with respect to the proper time τ . For the accelerating

and rotating black hole spacetime (2.1), the Lagrangian takes the form

L =
1

2

{
−
(

∆− a2P sin2 θ

ρ2Ω2

)
ṫ2 +

ρ2ṙ2

∆Ω2
+
ρ2θ̇2

PΩ2
−
(

2a sin2 θ[P (r2 + a2)−∆]

ρ2Ω2

)
ṫϕ̇

+

(
sin2 θ[P (r2 + a2)2 − a2∆ sin2 θ]

ρ2Ω2

)
ϕ̇2

}
. (2.9)

Making use of the Euler-Lagrangian equation, we obtain the equations of motion of the

timelike particles

ṫ =
g33E + g03L

g203 − g00g33
=

Ω2

∆Pρ2
{[
P (r2 + a2)2 − a2∆ sin2 θ

]
E − a

[
P (r2 + a2)−∆

]
L
}
, (2.10)

ϕ̇ = −g03E + g00L

g203 − g00g33
=

Ω2

∆Pρ2 sin2 θ

{
a sin2 θ

[
P (r2 + a2)−∆

]
E + a

[
∆− a2P sin2 θ

]
L
}
, (2.11)

r̈ =
∆

2ρ2

{[
2(∆− a2P sin2 θ)

ρ2

(
Ω,r
Ω

+
ρ,r
ρ

)
− ∆,r − a2P,r sin2 θ

ρ2

]
ṫ2 +

ρ2

∆

[
∆,r

∆
+ 2

(
Ω,r
Ω
− ρ,r

ρ

)]
ṙ2

+
ρ2

P

[
2

(
ρ,r
ρ
− Ω,r

Ω

)
− P,r

P

]
θ̇2 +

4ρ2

∆

[
Ω,θ
Ω
− ρ,θ

ρ

]
ṙθ̇

− 2a sin2 θ[P (r2 + a2)−∆]

ρ2

[
P,r(r

2 + a2) + 2rP −∆,r

P (r2 + a2)−∆
− 2

(
Ω,r
Ω

+
ρ,r
ρ

)]
ṫϕ̇

+
sin2 θ[P (r2 + a2)2 − a2∆ sin2 θ]

ρ2

×
[
P,r(r

2 + a2)2 + 2r(r2 + a2)P − a2∆,r sin2 θ

P (r2 + a2)2 − a2∆ sin2 θ
− 2

(
Ω,r
Ω

+
ρ,r
ρ

)]
ϕ̇2

}
, (2.12)
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θ̈ =
P

2ρ2

{[
2(∆− a2P sin2 θ)

ρ2

(
Ω,θ
Ω

+
ρ,θ
ρ

)
+
a2 sin θ(P,θ sin θ + 2P cos θ)

ρ2

]
ṫ2 +

2ρ2

∆

[
Ω,θ
Ω
− ρ,θ

ρ

]
ṙ2

+
ρ2

P

[
P,θ
P
− 2

(
ρ,θ
ρ
− Ω,θ

Ω

)]
θ̇2 +

ρ2

P

[
2

(
ρ,r
ρ
− Ω,r

Ω

)
− P,r

P

]
ṙθ̇

− 2a sin2 θ[P (r2 + a2)−∆]

ρ2

[
P,θ(r

2 + a2)

P (r2 + a2)−∆
− 2

(
Ω,θ
Ω

+
ρ,θ
ρ
− cos θ

sin θ

)]
ṫϕ̇

+
sin2 θ[P (r2 + a2)2 − a2∆ sin2 θ]

ρ2

×
[
P,θ(r

2 + a2)2 − 2a2∆ sin θ cos θ

P (r2 + a2)2 − a2∆ sin2 θ
− 2

(
Ω,θ
Ω

+
ρ,θ
ρ
− cos θ

sin θ

)]
ϕ̇2

}
, (2.13)

with the constraint condition

H1 = P ṙ2 +∆θ̇2− Ω4

ρ4 sin2 θ

{
P sin2 θ

[
(r2 +a2)E−aL

]2−∆
[
a sin2 θE−L

]2}
+

∆PΩ2

ρ2
= 0 .

(2.14)

Here E and L correspond to the energy and angular momentum of the timelike particle,

respectively. It is obvious that in the case with the non-zero acceleration, i.e., α 6= 0,

the equations of motion (2.12), (2.13) and (2.14) can not be variable-separable and the

corresponding dynamical system is non-integrable because it admits only two integrals of

motion E and L, which implies that the motion of the particle could be chaotic in the

four-dimensional accelerating and rotating black hole spacetime (2.1).

3 Chaotic phenomenon in the accelerating and rotating black hole space-

time

Chaos is a class of very complex motion without accurate definition at present. Usually, it

can be understood as a kind of seeming random, chance or irregular movement appeared

in a definiteness system with nonlinear interaction and it is very sensitive to initial value.

The chaotic phenomenon in dynamical systems can be detected by many kinds of methods

including the Poincaré surfaces of section, the Lyapunov characteristic exponents, the

fast Lyapunov indicators (FLI), the power spectrum, the fractal basin boundaries, the

bifurcation diagram, and so on.

In order to investigate the dynamical properties of a chaotic system with some coupled

and complicated differential equations, we must resort to the numerical method with high

precision because the motion of a particle in chaotic region is very sensitive to initial value

and the numerical errors may produce a big difference between the numerical behavior and

the real motion of particle. Here, we adopt to the corrected fifth-order Runge-Kutta method

suggested in literatures [33–36], in which the velocities (ṙ, θ̇) are corrected in integration

and the numerical deviation is pulled back in a least-squares shortest path. As in refs. [33–

36], the energy of the dynamical system (2.13) is subjected to the constraint H1 = 0, which

means that H1 could be regarded as a conserved quantity. However, the numerical errors in

the integral calculation could yield some deviations so that the numerical solution (ṙ, θ̇, r, θ)

does not satisfy the constraint H1 = 0. In order to solve this problem, one can introduce

a dimensionless parameter ξ to make a connection between the numerical velocities (ṙ, θ̇)

– 4 –
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Figure 1. Errors of H1 with time computed by the velocity correction method (RK5+Correction)

in the accelerating and rotating black hole spacetime for different α. Here, we set the parameters

E = 0.95, L = 3M , a = 0.6, and the initial conditions {r(0) = 8; ṙ(0) = 0.1; θ(0) = π
2 }.

and the true value (ṙ∗, θ̇∗) in the form of

ṙ∗ = ξṙ , θ̇∗ = ξθ̇ . (3.1)

The scale ξ can be chosen such that the constraint (2.14) is always satisfied. Inserting

eq. (3.1) into eq. (2.14), one can find that the scale factor of velocity correction ξ in the

accelerating and rotating black hole spacetime (2.1) is

ξ =

√√√√ Ω4

ρ4 sin2 θ
{P sin2 θ[(r2 + a2)E − aL]2 −∆[a sin2 θE − L]2} − ∆PΩ2

ρ2

P ṙ2 + ∆θ̇2
. (3.2)

In this way, the precision of the conserved quantity H1 in the system of eqs. (2.10)–(2.14)

at every integration step can hold perfectly. In figure 1, we present the change of H1 with

time computed by the velocity correction method (RK5+Correction) in the accelerating

and rotating black hole spacetime for different α. Here, we set the parameters E = 0.95,

L = 3M , a = 0.6, and the initial conditions {r(0) = 8; ṙ(0) = 0.1; θ(0) = π
2 }. From

figure 1, one can find that the value of H1 is remained below 10−13 for different values

of α and then the error is controlled greatly, which displays sufficiently that this correc-

tion method is very powerful so that it can avoid the pseudo chaos caused by numerical

errors.

With help of the corrected fifth-order Runge-Kutta method, we present some solutions

for r(τ) for different values of α in figure 2, which are obtained under the rotation parameter

– 5 –
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Figure 2. The change of r(τ) with τ for different α in the accelerating and rotating black hole

spacetime with the parameters E = 0.95, L = 3M , and a = 0.6. The initial conditions are set by

{r(0) = 8; ṙ(0) = 0.1; θ(0) = π
2 }.

a = 0.6 and the set of initial conditions {r(0) = 8; ṙ(0) = 0.1; θ(0) = π
2 }. It is shown

that the solution with α = 0 presented in figure 2 is a periodic solution and is not chaotic,

which is explained by a fact that in the case α = 0 the metric (2.1) reduces to the usual

Kerr black hole spacetime in which the timelike geodesic equations are variable-separable

and the chaos does not emerge in such an integrable dynamical system. However, for the

cases with α 6= 0, we find that the amplitude and frequency components increase with

α. Especially, as α ≥ 0.001, it is difficult to describe the amplitudes and frequencies of

this oscillation with any definite pattern, which implies that the motion could be chaotic.

Thus, the presence of acceleration make the motion of particle more complicated. We also

plot the phase curve in the (r, ṙ) plane of the phase space for this trajectory in figure 3. It

is shown that the phase path in the case with α = 0 is simple and is only a closed curve,

which means that the corresponding solution is periodic and the particle moves along the

stable periodic orbit around the black hole. However, with the increase of α, the phase

path becomes more complex and the region fulled by the path is enlarged, which means

that the degree of disorder and non-integrability of the motion of particle increases with

the acceleration parameter α in a sense for the signals plotted in figure 2. For the cases

with α ≥ 0.001, one can find that the complex path fulls densely a given region in the

phase plane. It is a typical feature of chaotic behaviors in the definiteness systems and

then the chaotic motion occurs in these cases. For the case α > 0.0016, we obtain only

a kind of unstable escaped solutions for the chosen initial conditions, which describe that

– 6 –
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Figure 3. Phase curves corresponding to the solutions plotted in figure 2, projected into the (r, ṙ)

plane.

the particle falls into the acceleration horizon or the event horizon after undergoing several

chaotic oscillations around black hole. This could be explained by a fact that for the larger

α the acceleration horizon rA is closer to the event horizon rH so that the particle is out-

off-balance in the physical region around the black hole (rH < r < rA). Thus, we will focus

on the cases with 0 ≤ α < 0.0016 in this paper.

Let us now to analyze the frequency components of the signals with different values of

α plotted in figure 2. Through the fast Fourier transformation, we present the spectrogram

for the above signals in figure 4. The height of peaks are related to the amplitude of the

corresponding frequency in a Fourier decomposition [1, 2]. In figure 4, one can find that

there exists a high peak at the frequency f = 0 Hz in each panel, whose amplitude describes

the average orbital radius of the particle moving around the black hole. For the signal with

α = 0 in figure 2, we also find that the peaks appear at the points with the frequency

f = f0, 2f0, 3f0 and 4f0, respectively. Here f0 is the lowest frequency and its numerical

value is 0.004772. It is a discrete spectrum, which means that in the case α = 0 the

motion of particle is multiple-periodic motion rather than a simple single periodic motion

for chosen parameters and initial conditions. However, comparing with the amplitude of

fundamental frequency part, the amplitudes of the overtone frequency parts are very small,

which yields that the phase path looks like a close curve in the r − ṙ plane as in the case

of single periodic motion. Figure 4 tells us that with the increase of α, the frequency

components increase and spectral lines become more dense. As α = 0.001, we find that the

distinct continuous spectrum appears, which means that the motion of particle is chaotic

in this case. As α = 0.0013, the width of continuous spectrum increases and the strength

– 7 –
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Figure 4. The frequency spectrum for the signals with different α plotted in figure 2.

of chaotic motion enhances. The similar results are also obtained by analyzing the power

spectrum shown in figure 5.

The Lyapunov indicator is a kind of useful tools to identify whether the motion of

particles are chaotic or not [1, 37–39]. It is well known that the behavior of dynamical

system is chaotic if the largest Lyapunov exponent is positive and is non-chaotic if the

largest Lyapunov exponent is negative. In general, in order to obtain the Lyapunov expo-

nent, one has to spend a long computational time even for a chaotic orbit since it is an

infinite-time quantity. However, it has been shown that the relevant information on dis-

tinguishing between regular and chaotic trajectories could be obtained by integrating the

equations of motion for a short time [40]. FLI is such a kind of faster and more sensitive

indicators to reveal chaos orbits of particles. Froeschlé and Lega [41] describe the FLI as

FLI(τ) = ln |Y (τ)|, where Y (τ) is a tangential vector of the flow at time τ as the particle

moves along the trajectory. For a continuous flow along the trajectory including the pe-

riodic orbits, there exists a differential rotation which induces that the angle between the

vectors of an initial orthonormal basis decreases sharply [40–42]. Due to the conservation of

volume for the continuous flow in the phase space, the differential rotation leads to a rapid

increase of the tangential vector Y (τ) of the flow [40–42], which means that FLI blows up

for late times. The investigation [40–42] show that FLI(τ) grows with exponential rate for

chaotic motion, even for weak chaotic motion, and grows algebraically with time for the

regular resonant orbit and for the periodic one. Since the deviation vector ∆X between

two nearby trajectories can approximate well the tangent vector, FLI can also be simplified

as FLI(τ) = ln |∆X(τ)|
|∆X(0)| . This is so-called the two-particle method or two-nearby-trajectories

– 8 –
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Figure 5. The power spectrum for the signals with different α plotted in figure 2.

method [43, 44]. It is a less rigorous but still useful technique. The version of FLI with

two-nearby-trajectories in general relativity is described as [23, 45–47]

FLI(τ) = −k
[
1 + log10 d(0)

]
+ log10

∣∣∣∣d(τ)

d(0)

∣∣∣∣ , (3.3)

where d(τ) =
√
|gµν∆xµ∆xν |, ∆xµ is the deviation vector between two nearby trajectories

at proper time τ . The parameter k is the sequential number of renormalization which is

used to avoid that the two orbits expand too fast. In figure 6, we present FLI(τ) for the

signals plotted in figure 2. It is shown that with increase of time τ , FLI(τ) grows with

exponential rate for the signals with α = 0.001 and α = 0.0013, but with polynomial rate

in the cases with α < 0.001. This confirms further that in figure 2 the orbital in with

α = 0.001 and α = 0.0013 are chaotic and the orbital with α < 0.001 is ordered.

Poincaré section is another useful tool for analyzing dynamical systems. It is defined

as an intersection of trajectory of a continuous dynamical system with a given hypersurface

which is transversal to the trajectory in the phase space. In general, the solutions of the

continuous dynamical system with different initial conditions can be classified as three

kinds by the intersection points in a Poincaré section. One of them are periodic solutions,

which are corresponds to a finite number of points in the Poincaré section. The quasi-

periodic solutions correspond to a series of close curves and the chaos solutions correspond

to strange patterns of dispersed points with complex boundaries.

In figure 7, Poincaré sections with θ = π
2 on the plane (r, ṙ) for different acceleration

parameters α are plotted for the motion of a timelike particle in the accelerating and

rotating black hole spacetime with the fixed parameters a = 0.6, E = 0.95, L = 3M and

– 9 –
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Figure 6. The Fast Lyapunov indicators with two nearby trajectories for the solutions with different

α plotted in figure 2.

the initial conditions {r(0) = 8; ṙ(0) = 0.1; θ(0) = π
2 }. We find that for α ∈ [0, 0.009] the

phase path is a quasi-periodic Kolmogorov-Arnold-Moser (KAM) tori and the behavior of

this system is non-chaotic. Especially, there are more complicated KAM tori trajectories

for α ∈ [0.000182, 0.0004]. It is composed of three secondary KAM tori belonging to the

same trajectories where the successive points jump from one loop to the next. These

little loops are called a chain of islands. With the acceleration parameter α increasing,

the chain of islands are joined together and become a big KAM tori. This shows that

trajectory is regular and integrable in this case. However, when α is larger than 0.0009,

KAM tori is destroyed and the corresponding trajectory is non-integrable, which indicates

that the behavior of this system is chaotic. Especially, for α = 0.001 ∼ 0.0013, the tori

is completely destroyed and the pattern is composed of discrete points, which means that

the chaotic behavior becomes stronger with the acceleration α. From figure 7, we also note

that there exist a few discrete points in the Poincaré section in the case with α = 0.0015,

which is caused by a fact that the particle falls finally into the acceleration horizon of

the black hole after undergoing several chaotic oscillations around black hole in this case.

Thus, it is different essentially from those in the case of usual multiple-periodic motion.

It is well known that the behavior of non-linear dynamical system depends on the choice

of the initial conditions. In figure 8, we adopt another initial conditions {r(0) = 12;

ṙ(0) = 0.1; θ(0) = π
2 } and investigate the dependence of Poincaré sections (with θ = π

2 )

on the acceleration parameters α. It is shown that with the increase of value of α, KAM

tori in the phase plane is destroyed gradually to dispersed points at first, and then it

– 10 –
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Figure 7. The change of Poincaré section (θ = π
2 on the plane (r, ṙ)) with acceleration parameter

α for the motion of the timelike particle in the accelerating and rotating black hole spacetime with

the fixed parameters a = 0.6, E = 0.95, L = 3M and the initial conditions {r(0) = 8; ṙ(0) = 0.1;

θ(0) = π
2 }.

is recovered slowly to a close curve. With further increasing of α, the close KAM tori

is completely destroyed again. This means that the behavior of the system undergoes a

process from regular to chaotic then to regular, and finally to chaotic. Corresponding, the

– 11 –
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Figure 8. The change of Poincaré section (θ = π
2 on the plane (r, ṙ)) with acceleration parameter

α for the motion of the timelike particle in the accelerating and rotating black hole spacetime with

the fixed parameters a = 0.6, E = 0.95, L = 3M and the initial conditions {r(0) = 12; ṙ(0) = 0.1;

θ(0) = π
2 }.

non-integrability of the motion of particle in figure 8 first increases and then decreases,

and finally increases with α. Similarly, for the larger α, we obtain only a kind of unstable

escaped solutions for this chosen initial condition as in the previous discussion. Thus, the

dependence of the non-integrability of the motion on the acceleration parameter α depends

on the initial conditions and the parameters of system.

In figures 9 and 10, we also plot Poincaré section on the plane (r, ṙ) for the motion of

the timelike particle with different initial conditions in the background of accelerating and

rotating black hole spacetime with different parameters. According to previous discussion,

we here set the acceleration parameter in the range 0 ≤ α < 0.0016. From figure 9, we

find that for the fixed rotation parameter a = 0.6, the chaotic region first increases and

then decreases with the increase of the acceleration parameter α. Moreover, for the case
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Figure 9. The change of Poincaré section (θ = π
2 on the plane (r, ṙ)) with the acceleration

parameter α for the motion of the timelike particle in the accelerating and rotating black hole

spacetime with the fixed parameters a = 0.6, E = 0.95 and L = 3M .

α = 0, we find that there are a series of close curves in the Poincaré section, which means

that there do not exist chaotic orbits in the Kerr black hole spacetime, which is consistent

with the previous discussion. Figure 10 tells us that for the fixed acceleration parameter

α = 0.001, the chaotic region first increases and then decreases with the increase of the

rotation parameter a. It is shown clearly in the Poincaré section that the numbers and

positions of fixed points of the system change with the rotation parameter a.

The dependence of dynamical behaviors of system on the black hole parameters can

also be visualised in the form of a bifurcation diagram. In figures 11 and 12, we plot the

bifurcation diagram of the radial coordinate r with the acceleration parameter α and the

rotation parameter a for the particle motion in the accelerating and rotating black hole

spacetime with fixed E = 0.95 and L = 3M . Here we chose the set of initial conditions

– 13 –
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Figure 10. The change of Poincaré section (θ = π
2 on the plane (r, ṙ)) with the rotation parameter

a for the motion of the timelike particle in the accelerating and rotating black hole spacetime with

the fixed parameters α = 0.001, E = 0.95 and L = 3M .

are {r(0) = 8; ṙ(0) = 0; θ(0) = π
2 }. We find that for the case α = 0 there is only

a periodic solution and no bifurcation for the dynamical system (2.13), which confirms

again that the motions of particles are not chaotic in the rotation black hole spacetime
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Figure 11. The bifurcation with the rotation parameter a for the motion of the timelike particle

with the parameters E = 0.95 and L = 3M in the accelerating and rotating black hole spacetime.

The set of initial conditions are {r(0) = 8; ṙ(0) = 0; θ(0) = π
2 }.

without acceleration. For the case with non-zero acceleration, it is obvious that there exist

periodic, chaotic and escaped solutions which depend on the acceleration parameter α and

the rotation parameter a. For the chaotic solution, one can find the range of r in the

bifurcation diagram increases almost with the acceleration parameter α, which means that

α enhances the strength of chaotic motion. With increase of the rotation parameter a,

the range of r in the chaos solution first decreases and then increases for the smaller α,

but it decreases for the larger α. Moreover, we find that the range of a in which there

exists escaped solution increases with α. This could be explained by a fact that for the

larger α the acceleration horizon rA is closer to the event horizon rH so that the particle is

out-off-balance which yields that the particle falls either into the event horizon or into the

acceleration horizon of the black hole in this case. These results show that the acceleration

brings richer properties for the geodesic motion of particles in the accelerating and rotating

black hole spacetime.

4 Summary

In summary, we have studied the motion of timelike particles along geodesic in the back-

ground of accelerating and rotating black hole spacetime by Poincaré sections, the frequency

spectrum and the power spectrum, the fast Lyapunov exponent indicator, and the bifur-

cation diagram. Our results confirm that the chaos exists in the geodesic motion of the
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Figure 12. The bifurcation with the acceleration parameter α for the motion of the timelike

particle with the parameters E = 0.95 and L = 3M in the accelerating and rotating black hole

spacetime. The set of initial conditions are {r(0) = 8; ṙ(0) = 0; θ(0) = π
2 }.

particles. It is mainly because the presence of the acceleration parameter α yields that the

equations of motion are not be variable-separable and the corresponding dynamical system

is non-integrable. Moreover, we probe the effects of the acceleration and rotation parame-

ters of black hole on the chaotic behavior of a timelike geodesic particle. Our results show

that the dependence of the non-integrability and the chaotic motion on the acceleration

parameter α depends on the initial conditions and the parameters of system. For the fixed

acceleration parameter α = 0.001, we find that the chaotic region in Poincaré sections first

increases and then decreases with the increase of the rotation parameter a. For the fixed

rotation parameter a = 0.6, the chaotic region first increases and then decreases with α.

For the particle with chaotic motion, we find the range of r in the bifurcation diagram

increases almost with the acceleration parameter α, which means that α enhances the

strength of chaotic motion. With increase of the rotation parameter a, the range of r in

the chaos solution first decreases and then increases for the smaller α, but it decreases for

the larger α. When α = 0, we find that it can be reduced to the case of Kerr black hole

spacetime in which there does not exists chaotic motion of particle. Our results show that

the acceleration yields richer effects on the geodesic motion of particles in the accelerating

and rotating black hole spacetime.
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