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1 Introduction

The measured Higgs mass lies close to the critical value above which the Standard Model

(SM) Higgs potential is unstable at large field values. In order to determine if the SM pre-

dicts that our universe is stable or unstable, several precision calculations were performed

recently [1–3], along with studies of gravitational corrections to vacuum decay [4–11] and

of cosmological implications [12–23]. Also, the vacuum-decay formalism has been scruti-

nized [24], and better measurements of the top mass (the most unknown relevant parame-

ter) are being planned, from electroweak data, flavour data, LHC data, and possibly new

colliders [25]. We contribute to this effort by addressing two concrete issues.

Concerning the vacuum decay rate, we show in section 2 that analytical techniques for

including gravitational corrections at leading order in the inverse Planck mass [4] provide

correct results, contrary to the criticism of two recent papers [7, 10]. We extend and

simplify the results of [4].

Concerning the thermal tunnelling rate in the early universe, in section 3 we extend

previous calculations that included the one-loop thermal potential [26–29], by adding one-

loop thermal kinetic terms (section 3.2), two-loop thermal masses (section 3.1) and allowing

for time-dependent bounces (section 3.3).

In section 4 we present our conclusions.

2 Gravitational corrections to SM vacuum decay

Coleman and De Luccia developed a formalism for studying vacuum decay taking gravity

into account [30]. However, the full theory of quantum gravity is unknown: gravity is only
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known at the leading order in a low-energy expansion in inverse powers of MPl. Thereby,

the authors of [4] proposed a simple semi-analytic approximation that captures the leading

gravitational correction to vacuum decay. The authors of [7, 10] performed brute-force

numerical computations of gravitational corrections in Einstein gravity, and claim that the

result of [4] is not valid. We show that the original result in [4] is correct by providing

further details on how it is obtained; we simplify the analytic expressions of [4] and validate

them through correct numerical computations. We also generalize [4] to the case of a non-

minimal coupling between the Higgs and gravity.

2.1 The low-energy approximation

We consider the Euclidean Einstein-Hilbert-Higgs action

S =

∫
d4x
√
g

[
(∂µh)(∂µh)

2
+ V (h)− R

2κ
− R

2
f(h)

]
, (2.1)

where R is the Ricci scalar, κ = 1/M̄2
Pl = 8πG with M̄Pl = MPl/

√
8π, MPl ≈ 1.22 ×

1019 GeV. For the moment we assume that the potential V (h) and f(h) are generic func-

tions of the scalar field h(x). We allow for a generic non-minimal coupling to gravity f(h),

extending the formalism of [4, 30]. We introduce an O(4)-symmetric Euclidean ansatz for

the bounce h(r) and for its geometry

ds2 = dr2 + ρ(r)2dΩ2, (2.2)

where dΩ is the volume element of the unit 3-sphere. On this background S becomes

S = 2π2

∫
drρ3

[(
h′2

2
+ V

)
− R

2κ
− R

2
f(h)

]
, (2.3)

where now R = −6(ρ2ρ′′ + ρρ′2 − ρ)/ρ3 and a prime denotes d/dr. The equations of

motion are

h′′ + 3
ρ′

ρ
h′ =

dV

dh
− 1

2

df

dh
R, ρ′2 = 1 +

κρ2

3(1 + κf(h))

(
h′2

2
− V − 3

ρ′

ρ

df

dh
h′
)
, (2.4)

where the latter equation can be obtained from the rr component of the Einstein equations.

The bounce action in eq. (2.3) can be simplified using a scaling argument analogous to

that of [31]: the bounce action is stationary under the rescaling gµν → s2gµν . When

this rescaling is implemented in eq. (2.1), evaluated for the solution of the equations of

motion, the action should have an extremum at s = 1. This observation relates the

different contributions to the total integral that get multiplied by different powers of s. In

particular, it implies that the bounce action can be simplified to

S = −2π2

∫
drρ3 V, (2.5)

evaluated on the solution of eq.s (2.4) with the boundary conditions appropriate for a

bounce. This can only be solved numerically.

– 2 –
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Following [4] we include analytically the effect of gravity, assuming RMPl � 1, where

R is the size of the bounce, by performing a leading order expansion in the gravitational

coupling κ:

h(r) = h0(r) + κh1(r) +O(κ2), ρ(r) = r + κρ1(r) +O(κ2). (2.6)

The action S0 at the 0th order in κ is simply the scalar action in the absence of gravity

computed for h = h0.1 The action expanded at leading order in κ is

S = S0 + ∆Sgravity, (2.7)

with

∆Sgravity =
6π2

M̄2
Pl

∫
dr

[
r2ρ1

(
h′20
2

+ V (h0)

)
+(rρ′21 + 2ρ1ρ

′
1 + 2ρ1rρ

′′
1) + rf(h0)(rρ′′1 + 2ρ′1)

]
. (2.8)

Notice that h1 does not appear in eq. (2.8). The general reason behind this is that the

Higgs field sources gravity, but gravity does not source the Higgs. A simplification of the

above expression is possible through arguments similar to the one that led to eq. (2.5). The

total action can be viewed as a functional of ρ(r) and h(r), minimized for the solution of

eq.s (2.4). Rescaling ρ1(r) → sρ1(r) corresponds to shifting the solution of the equations

of motion by (s − 1)ρ1(r) (notice that this variation vanishes at the endpoints). The

action must have an extremum at s = 1. Applying this argument to (2.8), by rescaling

ρ1(r) → sρ1(r) and requiring that the s-derivative of the resulting expression vanishes at

s = 1, relates the integrals of terms linear and quadratic in ρ1. It leads to

∆Sgravity = − 6π2

M̄2
Pl

∫
dr
(
rρ′21 + 2ρ1ρ

′
1 + 2ρ1rρ

′′
1

)
=

6π2

M̄2
Pl

∫
dr rρ′21 ≥ 0, (2.9)

where the last equation is obtained trough an integration by parts and is manifestly positive.

Once h0 is known, ρ′1 is given by eq. (2.4) expanded at leading order in κ:

ρ′1 =
r2

6

[
h′20
2
− V (h0)− 3

r
f ′(h0)h′0

]
, (2.10)

where f ′(h0) is the derivative of f with respect to h evaluated at h = h0. Inserting this

expression in eq. (2.9) gives the leading order gravitational correction to the action. Only

an integration is needed.

2.2 Gravitational corrections in a toy model

Branchina et al. [7] performed a numerical analysis of vacuum decay that resulted in the

claim: “the output of [4] cannot be trusted and a fortiori cannot be used for comparison”.

1The action contains the curvature term enhanced by negative powers of the Planck mass. Its expansion

−√gR/(2κ) = 3(r2ρ′1)′+O(κ) apparently produces an extra 0th-order term. However, this total-derivative

term gives no contribution to S0 for a ρ′1 that is regular in r = 0 and falls off sufficiently fast as r →∞.
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Figure 1. Left: the potential (2.11) for g = 3, b = 1/3 and a = 0.05 M̄Pl. Right: the corresponding

bounce action as a function of the non-minimal coupling ξ, comparing the full numerical result with

the approximation at leading order in 1/MPl.

We perform the comparison between numerical results and the semi-analytical approxima-

tion of [4] for gravitational corrections to vacuum decay, and find perfect agreement. We

consider the same quartic scalar potential studied in [7]2

V (h) =
g2

4

{[
(h− a)2 − a2

]2
+

4b

3

[
a (h− a)3 − 3a3 (h− a)− 2a4

]}
− V0. (2.11)

The left panel of figure 1 shows the potential for a sub-Planckian choice of its parameters g,

a and b, and f(h) = ξh2. In the right panel we show the bounce action as a function of ξ in

three cases: i) ignoring gravity; ii) including gravity, with the perturbative approximation

of eq. (2.9); iii) including gravity, performing a full numerical computation of eq. (2.5).

We see that the perturbative approximation reproduces the full numerical result. For

ξ = 0 (the value considered in [7]) and the input values considered in figure 1, we find

S0 ≈ 120.3 and S ≈ 120.9, which agrees with the perturbative approximation at the per-

mille level. For larger values of ξ gravity becomes stronger, and the perturbative expansion

starts to break down, as expected. We emphasize that a full numerical computation does

not lead in an increase in precision, because the semi-classical approximation too breaks

down when gravity becomes strong unknown quantum-gravity effects generically become

relevant, as discussed in section 2.4.

2.3 Gravitational corrections to Higgs vacuum decay

Rajantie and Stopyra [10] reconsidered the gravitational corrections to the vacuum decay

rate in the Standard Model, concluding that: “our numerical results are in conflict with [4]”.

We perform one more numerical computation, finding agreement with the analytic results

of [4] and clarifying the issues that led to the misunderstanding in [10].

2With respect to the conventions of [7], we have shifted the field so that the local minimum is located

at h = 0, and added a constant V0 to the potential so that VB(0) = 0 at the false vacuum.
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SM with Mh = 114 GeV, Mt = 173.34 GeV, α3(MZ) = 0.1184
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Figure 2. SM bounce solutions for different values of ξ (left panel), and their action (right panel).

We consider Mh = 114 GeV, which is the value that saturates the meta-stability bound for the

central value of the top mass. The bounce is sub-Planckian, so that gravitational corrections can

be computed perturbatively.

For the following we concentrate on a non-minimal coupling of the form f(h) = ξh2.

For a scale-invariant potential V (h) = λh4/4 with λ < 0, and neglecting gravity, the bounce

h0(r) can be computed analytically. It depends on an arbitrary scale R:

h0(r) =

√
2

|λ|
2R

r2 +R2
. (2.12)

Quantum and gravitational corrections can be computed perturbatively by expanding

around the solution of eq. (2.12). Eq. (2.10) becomes

ρ′1 =
8r2R2

3|λ|(r2 +R2)3
(1 + 6ξ). (2.13)

Making use of eq. (2.9) we obtain the final result:

S = min
R

(
8π2

3|λ(µ̄)|
+ ∆Squantum + ∆Sgravity

)
, ∆Sgravity =

32π2(1 + 6ξ)2

45(RM̄Plλ)2
. (2.14)

The gauge-invariant quantum correction ∆Squantum has been computed in [32] at one loop

in the MS scheme. It compensates for the RGE-scale dependence of λ, such that one can

conveniently choose the RGE scale µ̄ = 1/R.3 The gravitational correction at leading

3The one-loop calculation of the decay rate basically amounts to substituting the tree-level action with

the one-loop action. The path-integral over all fluctuations has been computed in [32] up to the last∫
d lnRe−S(R) integral over dilatations, which is a higher-order effect because the SM tree-level action is

scale-invariant. The SM running of λ fixes the intermediate value of R that dominates the integral. We

here adopt the simple Gaussian approximation such that
∫
d lnR e−S(R) becomes minR e

−S(R), namely the

least action principle.
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SM with Mh = 125.09 GeV, Mt = 173.34 GeV, α3(MZ) = 0.1184
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Figure 3. SM bounce solutions for different values of ξ (left panel), and their action (right panel).

We consider here the best fit Higgs mass Mh = 125.09 GeV, for which the vacuum decay rate is

negligibly small. For ease of visualisation we do not consider uncertainties due to higher order

corrections.

order in 1/MPl, ∆Sgravity, agrees with [4]. We included here the full quadratic dependence

of ∆Sgravity on ξ, going beyond the linear order in ξ computed in [4]. Furthermore, S

indirectly acquires a different dependence on ξ in view of the minimisation over R dictated

by eq. (2.14).

Figure 2 demonstrates that the full numerical result agrees with the approximate ex-

pression. We considered Mh = 114 GeV, which is the value that saturates the meta-stability

bound for the central value of the top quark mass. The bounce is sub-Planckian, such that

gravitational corrections are small and can be reliably computed.4 Keeping instead Mh

at its experimental value and raising Mt up to its meta-stability boundary Mt<∼ 178 GeV

again leads to a sub-Planckian bounce, with h(0) ∼ 0.1M̄Pl.

4The authors of [10] justify their criticism by claiming that no first-order correction h1(r) to the bounce

with the correct boundary conditions h′1(0) = 0 and h1(∞) = 0 exists. While their calculation is technically

correct, they miss the crucial physical point. Indeed, they expand around the solution h0(r) of eq. (2.12),

which corresponds to the tree-level SM action that is scale-invariant and thereby does not determine the

scale R of the bounce. Adding only the effect of either gravity (operators with negative mass dimension)

or a Higgs mass term (operators with positive mass dimension) results in either R→∞ or R→ 0: namely

the bounce no longer exists. The problematic h1 is another manifestation of this issue. In the real physical

problem the bounce exists because quantum corrections break scale invariance selecting an intermediate

finite value for the bounce scale R, roughly given by the inverse scale that minimizes the running λ.

Therefore, the correct physical procedure is the one followed in [4], and summarised here in eq. (2.14):

compute the quantum corrections to the action as a function of R, and use them to determine R. The

gravitational corrections can then be computed perturbatively. The solution for h1(r) is not needed in this

calculation, but can be computed from the quantum-corrected potential — or any potential that fixes a

scale for h0(r). The equation for h1(r) then has a solution that satisfies the correct boundary conditions,

thus resolving the issue raised in [10].
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Figure 4. Left: bounce action as function of R for Mh = 125.09 GeV. Right: SM phase diagram

for α3(MZ) = 0.1184. The continuous red line is obtained ignoring gravitational corrections or

including them assuming the conformal value ξ = −1/6 of the Higgs coupling to gravity; the almost

coincident dot-dashed line assumes ξ = 0; the dashed line assumes |ξ| ∼ 10. The ellipses show the

measured values of the Higgs and top mass at 1, 2, 3σ. The middle blue lines are the bound from

thermal tunneling, assuming a reheating temperature of 1016 GeV.

In figure 3 we consider the central value Mh ≈ 125.09 GeV, which leads to a negligibly

small vacuum decay rate dominated by a bounce with Planck-scale size, h(0) ∼ MPl.
5

Naively, this is beyond the applicability domain of the low-energy expansion of [4]. Nev-

ertheless, the analytic approximation agrees well with the full numerical result because

approximated scale invariance combined with the positivity of ∆Sgravity implies that vac-

uum decay is dominated by bounces with h(0) ∼ 1/R small enough not to be suppressed

by gravity, as illustrated in the left panel of figure 4.

The right panel of figure 4 shows the SM phase diagram in the (Mh,Mt) plane for

α3(MZ) = 0.118. We used our numerical code; the difference with respect to the analogous

plot obtained from the analytic expression is as small as unknown quantum-gravity effects.

We see that gravitational corrections have a minor effect: the upper dashed line is obtained

for |ξ| = 10, and it differs by ≈ 0.5 GeV in Mt from the dot-dashed line, obtained for ξ = 0.

In turn, it is almost coincident with the continuous line, obtained either setting ξ = −1/6

or ignoring gravity.

This last feature is understood noticing that ∆Sgravity vanishes for the conformal value

ξ = −1/6. This equality is not limited to the leading order in 1/MPl: the Fubini bounce

of eq. (2.12), together with the flat metric ρ(r) = r, is an exact bounce solution of the

full gravitational problem for ξ = −1/6 and constant negative λ, such that the bounce

action is the same as in the non-gravitational case. In particular, the last term in eq. (2.4)

identically vanishes. Indeed, for ξ = −1/6, the Ricci scalar reduces to the simple form

5For the sake of comparison, we explain the discrepancy between our figure 3 and the analogue plot

in [10]: they use the tree-level quartic potential 1
4
λh4, while we use the 2-loop SM effective potential [2].

Both computations use 3-loop RGE running in the SM.
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R = κ[4V − h dV/dh], which vanishes for a scale-invariant potential V = λh4/4. These

properties can be also derived without any explicit computation from symmetry arguments:

for ξ = −1/6 the Higgs Lagrangian is conformally invariant; one can rescale the metric so

that any conformally flat metric, such as the one we consider in eq. (2.2), is equivalent to

the flat metric. Thus, any solution of the λh4-theory on flat space-time is also a solution

when gravitational effects are included.6

2.4 Effects of new Planckian physics

Even if h0(0)�MPl, Planck suppressed operators such as |H|6/M2
Pl and |H|2|DµH|2/M2

Pl

give extra corrections to the bounce action of the same order as gravitational corrections:

at leading order in 1/MPl they can be incorporated in ξ through field redefinitions of the

Higgs and of the graviton [4]. Both ξ, as well as such effective operators, are unavoidably

generated when quantum corrections are added to the Einstein-Hilbert-Higgs action. How-

ever, at higher orders an increasingly larger number of effective operators enters the game,

and the effective-theory expansion breaks down.

In order to compute if gravity suppresses or enhances vacuum decay, one needs the

theory of gravity, which is unknown. Assuming relativistic invariance, general arguments

tell that such unknown theory must either contain an infinite number of positive-norm

fields (possibly resulting from some string theory) or a four-derivative graviton which in-

cludes one negative norm component (see [33–35] for attempts to find a sensible quantum

interpretation).

The string solution suggests a complicated unknown landscape of extra negative-energy

AdS minima, and thereby new contributions to vacuum decay. As far as vacuum decay

is concerned, the main implication of such landscape are captured by adding one new

scalar s, possibly with Planckian mass and decoupled from the Higgs. Tunnelling along

the s direction opens a new channel for vacuum decay. Its rate can be arbitrarily fast,

independently of the mass of s. This issue is orthogonal to SM vacuum decay: Planck-

scale physics cannot suppress sub-Planckian contributions to SM vacuum decay, which can

only be affected by new physics at lower energies. In summary, calculations of the SM

vacuum decay rate hold up to the caveat ‘unless extra Planck-scale vacuum decay destroys

the universe earlier’, analogously to how computations of the life-time of SM particles hold

up to the same obvious caveat, which is conveniently left implicit.7

The second solution, which we refer to as “agravity”, gives more precise conclusions.

The Euclidean Einstein-Hilbert-Higgs action is replaced by

S =

∫
d4x
√
g

[
(∂µh)(∂µh)

2
+ V (h)− R

2κ
− R

2
ξh2 − R

2

6f2
0

+
R2
µν −R2/3

f2
2

]
, (2.15)

6The fact that the Einstein-Hilbert term breaks conformal invariance does not invalidate this conclusion.

To show this consider conformal gravity (i.e. replace the Einstein-Hilbert term by the square of the Weyl

tensor). The full theory is now conformally invariant. Any solution of the λh4-theory on flat space-time is

also a solution when gravitational effects are included. This implies in particular that the energy momentum

tensor is zero for such a solution (recall that the Weyl tensor vanishes on flat space-time) and ξ = −1/6.

So this configuration is also a solution of the Einstein-Hilbert-Higgs field equations.
7The authors of [36] emphasize that Planck-scale physics can give extra contributions to vacuum decay,

but proposing a specific example which relies on an uncontrolled expansion in 1/MPl: an extra Planck-scale

minimum in the Higgs potential obtained by adding terms −h6/M2
Pl and +h8/M4

Pl.

– 8 –
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where f0, f2, ξ are dimensionless gravitational couplings, such that theory is renormalizable.

The term suppressed by f2 gives rise to a ghost state which might admit a sensible physical

interpretation [33–35, 37]. In any case, this term does not contribute to the bounce action,

because it is the square of the conformally-invariant Weyl tensor, up to total derivatives,

and our background is conformally flat. The equation of motion for h and the expression

for R = −6(ρ2ρ′′ + ρρ′2 − ρ)/ρ3 remain unchanged while the equation for ρ(r) becomes

ρ′2 = 1 +
κρ2

3[1 + κ(ξh2 + 2R/3f2
0 )]

[
h′2

2
− V − R

2

6f2
0

− 3
ρ′

ρ

(
2ξhh′ +

2R′

3f2
0

)]
. (2.16)

This equation can be obtained from the rr component of the Einstein equations. For our

present purposes, it is convenient to ignore it, and rather close the system by adding the

trace of the Einstein equations:(
M̄2

Pl + ξh2

2
− �

f2
0

)
R =

h′2

2
+ 2V +

3ξ

2
�h2, (2.17)

where � is the covariant d’Alambertian. This allows to read the main qualitative difference

between agravity and Einstein gravity. At energies much smaller than f0M̄Pl the new �
term is irrelevant and one recovers the Einstein limit. At larger energies, the � term

suppresses R with respect to the Einstein limit, so that the gravitational correction to the

bounce action saturates at |∆Sgravity|<∼π2f2
0 /λ

2. This means that gravitational corrections

to SM vacuum decay can be ignored if f0 is numerically small as in [34]. A negative value of

ξ (such that the Einstein term vanishes for h = M̄Pl/
√
−ξ) opens a new vacuum instability.

The only solid conclusion that one can draw from the above considerations is that

new Planck-scale physics cannot cure the SM Higgs vacuum instability, if such instability

appears much below M̄Pl.

3 SM vacuum decay at finite temperature

The instability of the SM potential can also give rise to thermal tunneling in the early

universe, if it went through a hot enough phase (cosmological data only imply that the

universe has been hotter than a few MeV). The space-time probability density of thermal

tunneling at temperature T is given by

γ =
d℘

d4x
≈ T 4

(
S

2π

)3/2

e−S (3.1)

where S(T ) =
∫ 1/T

0 dtE
∫
d3xL is the action of the thermal bounce at temperature T ,

which is a solution to the classical equations of motion with periodicity 1/T in Euclidean

time tE . The total cosmological probability of thermal tunneling up to today is obtained

by integrating over the past light-cone

℘ =

∫
dt dV γ = V0

∫
dt a3 γ (3.2)

where V0 = 4π(3.4/H0)3/3 is the volume within the present horizon and a is the Universe

scale factor, equal to one today at t = t0. Using conservation of entropy to relate a to T

– 9 –
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Figure 5. We consider the SM for Mh = 125.09 GeV, Mt = 173.34 GeV, α3(MZ) = 0.1184. Left:

Higgs thermal mass mT /T as function of the temperature, as precisely defined in eq. (3.5), computed

adding higher order corrections in the thermal loops. Right: action of the thermal bounce S(T )

computed with the usual large-temperature approximation (solid curve), adding 2-loop thermal

masses (dotted), 1-loop kinetic corrections (dot-dashed). We also show the boundary between

stability and meta-stability.

we get

℘ ≈
√

2V0√
ΩγH0

g∗S0

g
3/2
∗

∫
dT

T

(
T0

T

)5

γ ≈ 117

∫
dT

T

(
T0

T

)5 γ

H4
0

(3.3)

where T0 = 2.7 K is the present temperature, H0 ≈ 67.4 km/sec Mpc is the present Hubble

rate, g∗S0 = 3.94 the total number of effective degrees of freedom contributing to the

entropy after e+e− annihilation, and g∗ = 106.75 the number of SM degrees of freedom

at T much larger than the electro-weak scale, when the thermal probability receives the

dominant contribution. A small probability of thermal tunnelling ℘� 1 is roughly obtained

if S(T )>∼ 206 + ln(MPl/T ) at any T below the reheating temperature.

In the following we revisit computations of the thermal tunnelling rate adding three

new effects to previous computations. In section 3.1 we include two-loop corrections to the

thermal Higgs potential. In section 3.2 we include one-loop derivative corrections to the

thermal Higgs action. In section 3.3 we explore time-dependent bounces.

3.1 Two-loop Higgs thermal mass

The temperature-dependent effective potential can be expanded as

Veff(h, T ) = V0(h) + V1−loop(h) + V2−loop(h)

+V1−loop(h, T ) + Vring(h, T ) + V2−loop(h, T ) · · · , (3.4)

where the first three terms refer to T = 0. To make the structure of the effective potential

more transparent, a reasonable approximation is

Veff(h, T ) ≈ m2
T (h)

h2

2
+
λeff(h)

4
h4. (3.5)
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The effective quartic coupling λeff is extracted from the RG-improved effective potential at

two-loop order and zero temperature. The two-derivative Higgs kinetic term is canonically

normalized, up to corrections not enhanced by large logarithms. We write the Higgs thermal

mass as m2
T ≡ κ2T 2 with κ2 = κ2

1−loop + κ2
ring + κ2

2−loop and

κ2
1−loop =

1

16
g′2 +

3

16
g2 +

1

4
y2
t +

1

2
λ , (3.6a)

κ2
ring = − 1

16π

√
11

6

(
g′3 + 3g3

)
− 3λ

8π

(
g′2 + 3g2 + 8λ+ 4y2

t

)1/2
. (3.6b)

Higher-order corrections to κ are given in [38, 39], and contain logarithmic factors that

cancel the dependence on the RG-scale µ̄ of the lower-order terms, roughly dictating that

the running couplings in eq. (3.6) are renormalised at µ̄ ∼ T . We fix the residual RG-scale

dependence setting µ̄ = T ; m2
T acquires a logarithmic dependence on h, and in the left

panel of figure 5 we plot its value at the relevant scale h = T . We see that the 2-loop

contribution is small.

In the right panel of figure 5 we show that including the 2-loop thermal mass gives a

small correction to the bounce action, at the few % level. This is consistent with the fact

that the 2-loop correction to κ is small and that the bounce action is roughly proportional

to κ (if the full thermal potential is approximated as a constant mT and a constant λeff

the bounce action is S ≈ 6.015πκ/λeff [27]).

3.2 One-loop thermal correction to the Higgs kinetic energy

Various authors computed the one-loop thermal potential. However, the bounce action

receives comparable contributions from the kinetic part of the Lagrangian. The compu-

tation of vacuum decay at T = 0 has been performed including the full one-loop effective

action [32], which includes an infinite number of derivatives. Performing similar computa-

tions at finite T is more difficult: we study here the impact of thermal corrections to the

two-derivative Higgs kinetic term.

One-loop thermal corrections to derivative terms in the effective action at finite tem-

perature were presented in [40, 41] and are of relative order g2/4π. We can focus on spatial

derivatives, because they receive the main correction in the large T limit and because the

thermal bounce is time-independent (see section 3.3). Such corrections can be written as

∆S =
1

2

∫ 1/T

0
dtE

∫
d3xZ2(h, T ) (∂ih)2 (3.7)

where i runs over spatial coordinates. In the SM at large temperature Z2 is given by

Z2(h, T ) ≈ T

4π

{
λ2h2

4

[
3

m3
h(T )

+
1

m3
χ(T )

]
− 4g2

3

[
1

mχ(T ) +mW

]
− 2g2

3c2
W

[
1

mχ(T ) +mZ

]
+
g2m2

W

12

[
1

2m3
WL

(T )
+

5

m3
W

]
(3.8)

+
g2m2

Z

24

[
c2
θ

2m3
ZL

(T )
+

5

m3
Z

]
+
g2m2

Z

24

[
s2
θ

2m3
γL

(T )
+

8sθcθ
(mZL

(T ) +mγL(T ))3

]}
.
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Thermal masses m2
i (T ) = m2

i + κ2
iT

2 for i = h, χ,WL,WT , ZT , γT can be computed in

terms of the usual field-dependent zero-temperature mass mi, and of [42]

κh = κχ =
3g2 + g′2

16
+
λ

2
+
y2
t

4
, κWL

=
11

6
g2, κWT

= κZT
= κγT = 0. (3.9)

The masses mZL
and mγL are the eigenvalues of the thermal mass matrix [42](

m2
ZL

(T ) 0

0 m2
γL

(T )

)
= R

(
m2
Z + ΠZLZL

(T ) ΠZγL(T )

ΠZγL(T ) ΠγLγL(T )

)
RT , R =

(
cθ −sθ
sθ cθ

)
, (3.10)

where R is the matrix that rotates the mass eigenstates at T = 0 into those at T 6= 0,

which is defined in terms of a mixing angle θ (cθ ≡ cos θ, sθ ≡ sin θ), and

ΠZLZL
(T ) =

[
2

3
g2c2

W +
g2

6c2
W

(1− 2s2
Wc

2
W) +

g2

c2
W

(
1− 2s2

W +
8

3
s4

W

)]
T 2, (3.11)

ΠγLγL(T ) =
11

3
e2T 2, (3.12)

ΠZγL(T ) =
11

6
eg
c2

W − s2
W

cW
T 2 (3.13)

where cW ≡ cos θW and sW ≡ sin θW . Z2(h, T ) was presented previously in the gY = 0

limit in [41]. Here we also included the effect of gY . In this formula we only included the

dominant contribution of the zero Matsubara modes of bosons: in this approximation there

are no corrections induced by the top-quark Yukawa coupling.

Up to higher orders term, the correction to the bounce action is given by the new

term, eq. (3.8), evaluated along the bounce computed ignoring it. We find that the bounce

action changes at the few % level, see figure 5.

We do not compute the effect of terms with more than 2 derivatives, but we estimate

that they can give effects comparable to the effect of corrections to the 2 derivative term.

Indeed, loop corrections give higher-order Higgs derivative terms, which can be large when

the Higgs has a sizeable coupling to some other particle not much heavier than the Higgs

itself. At zero temperature, all masses come from the Higgs vev: in the limit of a large

vev the Higgs is relatively lighter than t,W,Z, because its mass is controlled by the Higgs

self-coupling λ, which runs to relatively small values at large energy. As a consequence,

at T = 0 and large vev one has mh � mt,W,Z , so that higher-order derivative terms

are suppressed. At finite temperature the Higgs receives an extra thermal mass given by

the larger yt, g1, g2 couplings: as a consequence all thermal masses are comparable, and

higher-order derivative terms could be significant.

3.3 Is the thermal bounce time-independent?

The thermal tunneling rate at temperature T is computed from the action

S = 4π

∫ β

0
dtE

∫ ∞
0

dr r2

[
1

2

(
∂h

∂tE

)2

+
1

2

(
∂h

∂r

)2

+ Veff(h)

]
(3.14)
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Figure 6. Bounces at different temperatures. The vertical axis represents the Euclidean time

direction, and the horizonal axis represents the spatial radius. At T = 0 (left-most panel) the

bounce solution enjoys an O(4) symmetry. At finite temperature, the bounce solution becomes a

series of bubbles placed at distance 1/T in the time direction. At large temperature (right-most

panel) the bounce no longer depends in time.

of a bounce h(r, tE) where r ≡
√
|~x|2 is the spatial radius and tE = −it is Euclidean time.

The bounce solves the classical equation

∂2h

∂t2E
+
∂2h

∂r2
+

2

r

∂h

∂r
=
dVeff

dh
(3.15)

with modified boundary conditions

∂h

∂tE

∣∣∣∣
tE=0,±1/2T

= 0,
∂h

∂r

∣∣∣∣
r=0

= 0 , lim
r→∞

h(r, tE) = 0 (3.16)

that impose periodicity in Euclidean time, h(r, tE + β) = h(r, tE).

One trivial solution is a bounce constant in time, and normally this is the lowest-

action solution at large enough temperature as illustrated in the right panel of figure 6 (see

also [43–45]). Indeed, when a theory has a characteristic energy scale m, it sets the scale

of the O(4)-symmetric bounce valid at T = 0. At low T periodicity is irrelevant, because

the time period is much slower than the scale of the T = 0 bounce, as illustrated in the left

panel of figure 6. For T much larger than the scale of the T = 0 bounce, the short time

periodicity implies that (if the vacuum instability still exits) the bounce becomes constant

in time. Thereby the action of the time-independent bounce scales as S ∝ 1/T and is given

by S ∼ m/T such that it dominates tunnelling above some critical temperature of order m.

Previous computations of thermal decay in the SM at T � Mh assumed a time-

independent thermal bounce. However, the physical Higgs mass Mh is not the relevant

energy scale for the instability of the SM Higgs potential. Rather, Mh can be neglected,

obtaining a quasi-scale invariant action for the Higgs. The assumption that T is much

larger than the energy scale of the problem must be reconsidered, in view of the fact that

the problem does not have a characteristic energy scale.

In the thermal bath, h acquires a thermal mass mT = κT . Therefore, the large

temperature limit T � mT would correspond to κ � 1 and would give a constant S ∼

– 13 –
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Figure 7. Rescaled thermal bounce action λS as a function of the Higgs thermal mass κ = mT /T .

The solid (dashed) line corresponds to the time-independent (time-dependent) bounce.

mT /T = κ. The SM predicts κ ∼ g ∼ 0.4, see eq. (3.6) and figure 5: it is not much

smaller than unity, potentially threatening the validity of usual computations that assume

a time-independent thermal bounce. In order to settle the issue, we investigate whether

time-dependent bounces have lower action.

To start we consider a simplified SM-like potential Veff(h) = 1
2κ

2T 2h2− 1
4λh

4 with con-

stant κ and λ. By rescaling h(x) to a dimensionless η(ξ) defined by h(x) = η(ξ)κT/
√
λ and

xµ = ξµ/κT (we denote as τ and ρ the dimensionless time and radius) the action becomes

S =
4π

λ

∫ κ

0
dτ

∫ ∞
0

dρ ρ2

[
1

2

(
∂η

∂τ

)2

+
1

2

(
∂η

∂ρ

)2

+
1

2
η2 − 1

4
η4

]
. (3.17)

This shows that λS does not depend on λ and that for the time-independent bounce, λS

is proportional to κ. The precise result is λS = 6.015πκ [27]. The rescaled action λS of a

time-dependent bounce can be a more generic function of κ. Figure 7 shows our numerical

result for λS, finding that the time-dependent bounce always has a higher action and is

thereby subdominant.8

We next consider the full SM thermal potential: the bounce action can significantly

deviate from the above approximation, but again the time-independent bounce dominates.

8Solving numerically the differential equation eq. (3.15) is not an easy task, since it is a non-linear

equation with non-trivial boundary conditions in space and time. We discretise it on a space-time lattice,

obtaining an ordinary non-linear equation Ei = 0 at each point i. Next, we numerically minimise
∑
E2

i

applying the usual Newton-like methods. These need a starting ansatz, and convergence is obtained provided

that the starting point is good enough. Appropriate choices are the O(4)-symmetric bounce, or even the

T = 0 bounce of eq. (2.12), provided that h(0, 0) is left as a free parameter. Linear equations, such as

boundary conditions, can be first imposed exactly, improving the procedure.
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4 Conclusions

We reconsidered quantum and thermal vacuum decay in the SM.

Concerning vacuum decay, we validated the semi-analytic low-energy approximation

for gravitational corrections at leading-order in 1/MPl proposed in [4] (and wrongly criti-

cized in [7, 10]) through numerical computations in a toy model (section 2.2) and in the

SM (section 2.3). We generalised [4] allowing for a non-minimal scalar coupling −1
2f(h)R

to the curvature R and found a simplified expression for the leading-order gravitational

correction to the bounce action

∆Sgravity '
π2

6M̄2
Pl

∫
dr r5

[
h′20
2
− V (h0)− 3

r
f ′(h0)h′0

]2

≥ 0 (4.1)

which makes clear that gravity suppresses Minkowski vacuum decay. Going beyond this

leading-order approximation we discussed how theories of quantum gravity can affect the

result: string models can give a landscape of new vacua, agravity reduces the gravitational

correction.

The expansion parameter of thermal corrections is g/π ∼ 10−1 (larger than the expan-

sion parameter g2/(4π)2 ∼ 10−3 of quantum corrections at T = 0). We found that 2-loop

corrections to the thermal potential and one-loop thermal corrections to the Higgs kinetic

term change the bounce action by a small amount, at the few % level, as illustrated in fig-

ure 5. The SM meta-stability boundary in the (Mt,Mh) plane gets shifted by +0.1 GeV in

Mt by a 3% increase in the thermal bounce action S. Taking into account that the two new

effects that we added have opposite sign, figure 4 shows the minor shift in the boundary

computed assuming a reheating temperature of 1016 GeV. Furthermore, we verified that

the usual time-independent thermal bounce dominates over time-dependent bounces: this

generically happens at large temperatures but was not guaranteed within the SM, given

that it is quasi-scale-invariant.

In conclusion, the residual theoretical uncertainty on SM meta-stability bounds is safely

smaller than the experimental uncertainty, dominated by the uncertainty on the top mass.
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