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Abstract: We show that renormalization group flow can be viewed as a gradual wave

function collapse, where a quantum state associated with the action of field theory evolves

toward a final state that describes an IR fixed point. The process of collapse is described

by the radial evolution in the dual holographic theory. If the theory is in the same phase as

the assumed IR fixed point, the initial state is smoothly projected to the final state. If in

a different phase, the initial state undergoes a phase transition which in turn gives rise to

a horizon in the bulk geometry. We demonstrate the connection between critical behavior

and horizon in an example, by deriving the bulk metrics that emerge in various phases

of the U(N) vector model in the large N limit based on the holographic dual constructed

from quantum renormalization group. The gapped phase exhibits a geometry that smoothly

ends at a finite proper distance in the radial direction. The geometric distance in the radial

direction measures a complexity: the depth of renormalization group transformation that is

needed to project the generally entangled UV state to a direct product state in the IR. For

gapless states, entanglement persistently spreads out to larger length scales, and the initial

state can not be projected to the direct product state. The obstruction to smooth projection

at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The

Poincare horizon at infinity marks the critical point which exhibits a divergent length scale

in the spread of entanglement. For the gapless states with non-zero chemical potential, the

bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The

identification of horizon as critical point may provide an explanation for the universality

of horizon. We also discuss the structure of the bulk tensor network that emerges from the

quantum renormalization group.
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1 Introduction

The AdS/CFT correspondence [1–3] opened the door to address questions on gravity from

the perspectives of quantum field theory. However, it is often difficult to make concrete

progress in this direction because one usually does not have a full control on both sides

of the duality. In order to take full advantage of the duality, it is desired to have a first

principle construction of holographic duals from field theories, which may allow one to pose

certain questions on gravity in solvable field theories.

The general link between boundary field theories and bulk gravitational theories is

made through renormalization group (RG), where the bulk variables are scale dependent

couplings and the radial direction corresponds to a length scale [4–6]. However, the RG

suggested by holography is different from the Wilsonian RG in that the bulk equation of

motion for the single-trace couplings captures the flow of multi-trace operators as well [7, 8].

Furthermore, the bulk variables have intrinsic quantum fluctuations while the Wilsonian

RG is deterministic. This hints that one has to promote the Wilsonian RG to quantum

RG to make a precise connection with holography.

Quantum RG provides a prescription to construct holographic duals for general field

theories [9–11]. In quantum renormalization group, RG flow is described as a dynamical

system, where couplings of field theories are promoted to quantum operators. While only
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a subset of operators are kept, quantum fluctuations of their couplings capture other op-

erators that are not explicitly included in the RG flow. The fluctuations in RG path make

the bulk theory quantum mechanical. The bulk theory that governs the dynamical RG

flow includes gravity because the metric that sources the energy-momentum tensor is also

promoted to dynamical variable [10, 11].

The goal of this paper is to provide some insight into horizon by applying quantum

RG to a solvable field theory. We will show that horizons can be understood as critical

phenomena, where scale dependent couplings exhibit a non-analyticity as a critical RG

scale is approached. A divergent length scale associated with spread of entanglement at

the critical point gives rise to the divergent red shift at the horizon. We demonstrate this

by deriving the bulk geometry for a solvable field theory from quantum RG. For earlier

ideas on possible connections between black hole horizons and phase transitions, see [12]

and references there-in.

Here is an outline and the main results of the paper. In section 2, we explain how

quantum states can be defined from actions of field theories. This is different from the

usual connection between a D-dimensional action and a (D − 1)-dimensional quantum

state. Here, an action itself is promoted to a wave function, and a D-dimensional action

defines a D-dimensional quantum state. Then the partition function is written as an

overlap between two quantum states, called IR and UV states. If the IR state is chosen

to be a fixed point, the UV state is constructed from deformations turned on in a given

field theory. As deformations in the Wilsonian effective action are renormalized under the

conventional RG flow, the UV quantum state evolves under quantum RG flow. The full

theory with the deformations may or may not flow to the IR fixed point depending on the

kind and strength of the deformations.

In section 3, we explain that RG flow can be viewed as a wave function collapse where

the UV state is gradually projected toward the IR state. In section 4, we show that the wave

function collapse is described by the radial evolution of a holographic dual via quantum RG,

and that the quantum Hamiltonian that generates the RG flow can be faithfully represented

in basis states constructed from actions which include only single-trace operators. In

doing so, we also explain the structure of tensor network in the bulk. The tensor network

generated from quantum RG has no pre-imposed kinematic locality. Instead, the bulk

space is made of a network of multi-local tensors of all sizes. Dynamical locality in bulk is

determined by action principle which controls the strength of non-local tensors.

In section 5, we apply quantum RG to the U(N) vector model, which was previously

studied numerically [13]. In this paper, we obtain the analytic solution for the bulk equa-

tions of motion in the large N limit. The exact solution allows one to derive the bulk metric

from the first principle construction. For this, a real space coarse graining is employed.

The IR fixed point is chosen to be a direct product state in the insulating phase, and the

kinetic (hopping) terms are regarded as deformation to the fixed point. The Hamiltonian

that generates coarse graining gradually removes entanglement in the UV state. When

the theory with the deformation is still in the insulating phase, the UV state is smoothly

projected to the direct product state. In this case, the bulk geometry is capped off at a

finite proper distance in the radial direction. The proper distance in the radial direction
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measures the depth of RG transformations that is necessary to remove entanglement en-

tirely in the UV state. This confirms the conjecture [14] that relates the radial distance

in the bulk and complexity. When the deformation is large that the system is no longer

in the insulating phase, the UV state can not be smoothly projected to the direct product

state as entanglement in the UV state keeps spreading out to larger length scales under the

RG flow. The persistent entanglement gives rise to the extended geometry with an infinite

proper distance in the radial direction. The obstruction to smooth projection culminates

in a non-analyticity of the scale dependent state caused by the divergent length scale in the

spread of entanglement. This can be viewed as dynamical critical behavior [15, 16] as the

quantum RG flow for Euclidean field theories is interpreted as a Hamiltonian flow under

an imaginary time evolution. The critical point gives rise to the Poincare horizon in the

anti-de Sitter (AdS) space or the Lifshitz geometry in the bulk, depending on whether the

chemical potential is turned on or off. In sections 6 and 7, we conclude with summary and

comments on universality of horizon and possible way to extend to Lorentzian space.

Before we move on to the main body of the paper, we provide an intuitive picture of

quantum RG with emphasis on the differences from other approaches.

• Wilsonian RG and Quantum RG:

An action is specified by the sources (couplings) for operators allowed within a theory.

The conventional Wilsonian RG describes the evolution of the sources under a coarse

graining. The Wilsonian RG flow is classical because the sources at low energy scales

are determined without any uncertainty from the sources specified at high energy

scales. Beta functions, which are first order differential equations, govern the flow

of the classical sources. If the complete set of sources are kept within the flow, the

Wilsonian RG is exact. However, it is usually difficult to keep all sources, especially

for strongly coupled theories where there is no obvious way of truncating operators

without knowing the spectrum of scaling dimensions beforehand.

Quantum RG is an alternative exact scheme which keeps only a subset of operators

(single-trace operators). It is based on the observation that a theory with arbitrary

operators can be represented as a linear superposition of theories which include only

single-trace operators. In other words, one can keep the exact information about an

action with arbitrary sources in terms of a quantum wave function defined in the

space of the single-trace sources. For example, the Boltzmann weight of a theory

with operators, O, O2, O3, . . . can be represented as a linear superposition of the

theories which have only O through eJ1O+J2O2+J3O3+... =
∫

dj1 Ψ(j1)e
j1O, where the

wave function Ψ(j1) is chosen such that the original action which is non-linear in

O is reproduced upon integrating over j1. This reduces to the standard Hubbard-

Stratonovich transformation when the cubic and higher order terms are absent. Then

the exact RG flow generated from a coarse graining naturally becomes a quantum

evolution of the wave function because an action at any scale can be represented as

a wave function. The information on the infinite number of classical sources is kept

by the wave function of one source, by taking advantage of the linear superposition
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principle. In this sense, what quantum RG is to the conventional RG is what quantum

computer is to the classical computer.

The advantage of quantum RG is that one can keep only single-trace operators, which

is typically a much smaller set compared with the full set of operators. However,

quantum RG is not necessarily simpler than the conventional RG for general theories

because one has to include quantum fluctuations of the single-trace sources. The

simplification arises when quantum fluctuations in RG paths are small in the presence

of a large number of degrees of freedom. For this reason, quantum RG can be

most useful in studying strongly interacting theories with large numbers of degrees

of freedom.

• Tensor networks and Quantum RG:

In quantum RG, the partition function is expressed as a path integration of dynamical

sources defined in one higher dimensional space, where the extra dimension corre-

sponds to the RG scale. The path integral represents the sum over RG paths defined

in the space of single-trace sources. The resulting path integral can be identified as

a tensor network where the bulk action becomes the constituent tensors that need

to be contracted through path integral. There are some characteristics of the ten-

sor network generated from quantum RG, which distinguish it from other forms of

tensor networks. First, the bulk tensor network that arises in quantum RG has no

pre-imposed locality. This is due to the fact that the set of single-trace operators in

general include non-local operators. The examples include the Wilson-loop operators

in gauge theories and the bi-local operators in vector models. For this reason, the bulk

space described by quantum RG is not only quantum but also non-local in general. A

classical and local geometry emerges only in a class of systems, where quantum fluc-

tuations of the dynamical sources are small, and the sources for non-local operators

decay fast enough at the saddle point. Therefore, the degree of locality in the bulk

is a dynamical feature rather than a choice of local tensor structure put in by hand.

Second, quantum RG chooses the dynamical sources and their conjugate momenta

as internal variables that are contracted (integrated over) in the bulk. Because the

source for the energy-momentum is the metric, the quantum RG naturally gives a

bulk theory which includes dynamical gravity. Although one may define a notion of

distance for any local tensor network, it generally does not represents a dynamical

space if the connectivity of the network is rigid.

2 Wave function of paths

We consider a partition function in D-dimensional Euclidean space,

Z =

∫

Dφ e−S , (2.1)

where φ represents the fundamental field of the theory and S is the action. If the D-

dimensional partition function originates from a (D− 1)-dimensional quantum theory, the
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path integral sums over spacetime trajectories in the Euclidean time. On the other hand,

the Boltzmann weight itself can be viewed as a D-dimensional wave function. From an

action S, one can define a quantum state

∣

∣S
〉

=

∫

Dφ e−S[φ]
∣

∣φ
〉

, (2.2)

where
∣

∣φ
〉

is a complete set of basis states which form a Hilbert space with the norm,

〈

φ
′
∣

∣φ
〉

=
∏

i,a

δ(φ
′

ia − φia). (2.3)

Here i is an index for the D-dimensional space, and a represents internal flavour(s). For

concreteness, one can use a lattice regularization for the D-dimensional space. From the

point of view of the original (D − 1)-dimensional quantum theory, eq. (2.2) represents a

state of spacetime path.

Any quantity that can be defined for usual quantum states can be defined for the

states generated from actions. For example, the von Neumann entanglement entropy can

be defined for the D-dimensional states as it is defined for the (D − 1)-dimensional state

for the original quantum system. However, the physical meanings of the two objects are

somewhat different. The D-dimensional state encodes entanglement between (Euclidean)

spacetime events rather than entanglement between the bits that reside in the (D − 1)-

dimensional space.

An action can be written as

S = −
∑

i

JiOi −
∑

i,j

JijOi,j + . . . , (2.4)

where Oi1,i2,...,in ’s are operators that depends on n space coordinates, and Ji1,i2,...,in ’s are

the sources. For notational simplicity, we suppress the indices for internal flavours. One can

identify the Boltzmann weight associated with a n-point operator as a rank (n+1) tensor,

T J
φi1

,φi2
,...,φin

= eJOi1,i2,...,in . (2.5)

Here one of the indices in the tensor is the source, J , and the remaining indices are the

values of the fields at n points, φi1 , φi2 ,. . . ,φin . The indices are in general continuous. The

D-dimensional state is then written as

∣

∣S
〉

=

∫

Dφ ΨJ [φ]
∣

∣φ
〉

, (2.6)

where the wave function is given by a direct product of the multi-local tensors,

ΨJ [φ] =
∏

n

∏

i1,...,in

T
Ji1,i2,...,in
φi1

,φi2
,...,φin

. (2.7)

It is noted that ΨJ [φ] is a wave function of φ. The sources are variational parameters

in the wave function. These are illustrated in figure 1. For local actions, the sources for
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(a) (b)

(c)

Figure 1. (a) An example of tensor constructed from an operator Oij that depends on fields φi,

φj . The solid box represents a rank 3 tensor, T J
φi,φj

= eJOij , where the leg above the box is J and

the two legs below the box are φi, φj . (b) An example of tensor made of a composite operator,

T J
φi,φj ,φk

= eJOijOjk , which has support on three points in space. The four legs correspond to J ,

φi, φj and φk. (c) A quantum state associated with an action can be written as a direct product

of tensors, where the sources in the action become variational parameters of the state.

multi-local operators decay exponentially as the separation between coordinates increases.

States generated from local actions are called local states.

If there is a symmetry in the action, S[φ] is invariant under the symmetry transfor-

mations,

S[Usφ] = S[φ]. (2.8)

Here Us is a matrix that acts on φ which is viewed as a giant vector, where space points

and internal indices form the vector index. The corresponding quantum state
∣

∣S
〉

is

invariant under a unitary transformation Ûs which acts on the basis states as

Ûs

∣

∣φ
〉

=
∣

∣Usφ
〉

. (2.9)

We call states generated from symmetric actions symmetric states. The set of symmetric

states form symmetric Hilbert space.

A symmetric action can be written as a sum of singlet operators with sources,

S = −JMOM . (2.10)

Here {OM} represents a complete set of singlet operators that are invariant under the

symmetry of the theory. Here M , which is summed over, denotes not only different types

of operator, but also operators at different positions in D dimensions. In general, OM

can be multi-local operators that depend on multiple coordinates. In matrix models, for

example, a trace of matrix fields at multiple positions and product of them form singlet
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operators. JM are the sources. Now symmetric states can be labeled by the sources of the

singlet operators,

∣

∣{J }
〉

=

∫

Dφ eJ
MOM

∣

∣φ
〉

. (2.11)

However, these states form an over-complete basis of the symmetric Hilbert space. There is

a smaller set of complete basis. The minimal set of operators that span the full symmetric

Hilbert space are called single-trace operators, {On}. In large N matrix models, they

are the operators that involve one trace. But the definition of single-trace operator can

be extended to any theory. In general, {On} is defined to be the minimal set of singlet

operators of which all singlet operators can be expressed as polynomials [11],

OM =
∑

cn1,n2,...
M On1On2 . . . (2.12)

The single-trace operators span the full symmetric Hilbert space because

∣

∣S
〉

=

∫

Dφ e
∑

k J n1,n2,...,nkOn1On2 ...Onk

∣

∣φ
〉

=

∫

DjDφ e−jn(j∗n−On)+
∑

k J n1,n2,...,nk j∗n1
j∗n2

...j∗nk

∣

∣φ
〉

. (2.13)

Here Dj ≡ ∏

n dj
ndj∗n. jn, j∗n are auxiliary fields introduced for each single-trace op-

erator, where j∗n is the complex conjugate of jn. We used the identity f(O) =
1
π

∫

dj dj∗ e−j(j∗−O) f(j∗) [9]. A multiplicative constant that is independent of sources

is ignored in eq. (2.13). eq. (2.13) shows that any singlet state can be written as a linear

superposition of the states constructed from the single-trace operators as

∣

∣S
〉

=

∫

Dj ΨS(j)
∣

∣j
〉

, (2.14)

where

∣

∣j
〉

=

∫

Dφ ej
nOn

∣

∣φ
〉

(2.15)

is the complete single-trace basis and

ΨS(j) = e−j∗nj
n+

∑

k J n1,n2,...,nk j∗n1
j∗n2

...j∗nk (2.16)

is the wave function written in the space of j. Graphically, symmetric states are made of

single-trace tensors whose sources are contracted with the tensor given by ΨS(j) (figure 2).

Therefore it is natural to associate an action of a field theory with a wave function.

Instead of specifying classical sources for all singlet operators, one can specify a quantum

wave function defined in the space of the single-trace sources. The quantum RG is based

on the fact that the exact Wilsonian RG flow defined in the classical space of full singlet

operators can be faithfully represented as a quantum evolution of wave function defined in

the space of single-trace operators [11]. In the following section, we will first show that RG

flow can be viewed as a collapse of such wave function defined from an action.
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Figure 2. The state in figure 1 (c) represented in the single-trace basis. The solid boxes represent

tensors constructed from the single-trace operators. The 3D box represents the wave function

written in the basis of the single-trace tensors. The legs associated with the sources are contracted.

3 Coarse graining as wave function collapse

The goal of renormalization group is to integrate out degrees of freedom partially, and

examine how the action for the remaining degrees of freedom flow. The order in which

the degrees of freedom are integrated out is determined by a reference action S0. It is

convenient to choose S0 to be a fixed point of the theory in order to keep the reference

action invariant under the scale transformation. If S0 is chosen to be the free kinetic term

as is usually done in perturbative RG, the order of integration is organized according to

momentum. However, there is freedom to choose different reference action. Once the

choice is made for the reference action, the remaining action, S1 = S − S0 is regarded as a

deformation to the reference action.

Now we define quantum states associated with the reference action and the deformation

in a given field theory as

∣

∣S∗
0

〉

=

∫

Dφ e−S∗

0 [φ]
∣

∣φ
〉

,

∣

∣S1

〉

=

∫

Dφ e−S1[φ]
∣

∣φ
〉

. (3.1)

∣

∣S∗
0

〉

and
∣

∣S1

〉

are called IR and UV states respectively. The reason why we define the IR

state from the complex conjugate of the reference action is because the partition function

for the full action S = S0 + S1 is given by the overlap between the two states,

Z =
〈

S∗
0

∣

∣S1

〉

. (3.2)

If
∣

∣S∗
0

〉

and
∣

∣S1

〉

are written in the single-trace basis,
∣

∣S∗
0

〉

=
∫

Dj
′

Ψ0(j
′

)
∣

∣j
′
〉

,
∣

∣S1

〉

=
∫

Dj Ψ1(j)
∣

∣j
〉

, the partition function becomes

Z =

∫

Dj
′

Dj Ψ∗
0(j

′

)
〈

j
′
∣

∣j
〉

Ψ1(j). (3.3)

This is illustrated in figure 3.

A coarse graining procedure in the renormalization group transformation can be viewed

as a collapse of the UV state towards the IR state. To illustrate the idea, let us begin with

a simple example of one real scalar integration,

Z =

∫

dφ e−S0−S1 . (3.4)
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S0

Figure 3. The partition function can be viewed as the overlap between two quantum states. The

lines contracted with S0 and S1 are the sources, and the lines that are contracted between solid

boxes (single-trace tensors) are the fundamental fields of the theory.

Here S0 =
m2

2 φ2 is the quadratic reference action. All the higher order terms are included

in the deformation S1[φ]. In the presence of the Z2 symmetry, φ → −φ, only even powers

are allowed in the action. For coarse graining, one adds an auxiliary field Φ with a mass

µ. The physical field and the auxiliary field are mixed into a new basis, φ = φ
′

+ Φ
′

,

Φ = m
µ
√
2dz

(−2dzφ
′

+Φ
′

), in which the new action becomes

S =
m2e2dz

2
φ

′2 +
m2

4dz
Φ

′2 + S1[φ
′

+Φ
′

]. (3.5)

The fluctuations of φ
′

are slightly suppressed compared to the original field φ due to the

slightly increased mass. The missing fluctuations are carried by Φ
′

. Therefore, integrat-

ing out Φ
′

has the effect of partially including fluctuations of φ. It generates quantum

corrections,

δ1S1 =
dz

m2

[

∂2S1

∂φ′2
−
(

∂S1

∂φ′

)2
]

. (3.6)

Rescaling of the field, φ
′

= e−dzφ
′′

, brings S0 back to the original form, and generates an

additional correction from S1,

δ2S1 = −dzφ
′′ ∂S1

∂φ′′
. (3.7)

The relation between the original field φ and the low energy field φ
′′

is given by

φ
′′

= e−dz
(

φ− µ

m

√
2dzΦ

)

. (3.8)

Renaming φ
′′

to φ, we note that the net quantum correction to S1 is generated by a

quantum evolution,

e−(S1+δ1S1+δ2S1) =
〈

φ
∣

∣e−dzĤ
∣

∣S1

〉

, (3.9)
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where
∣

∣S1

〉

=
∫

dφ e−S1[φ]
∣

∣φ
〉

is the quantum state corresponding to the action S1, and

Ĥ =
1

m2
π̂2 + iφ̂π̂ (3.10)

is the Hamiltonian. φ̂ has eigenvalue φ for
∣

∣φ
〉

, φ̂
∣

∣φ
〉

= φ
∣

∣φ
〉

. π̂ is the conjugate momentum

that obeys the commutation relation, [φ̂, π̂] = i.

Here Ĥ is the generator of the renormalization group transformation. Although Ĥ

is not a Hermitian Hamiltonian, it is symmetric under the combined transformation of

the parity (P), φ → −φ, π → −π and the time reversal (T), φ → φ, π → −π, i → −i.

The PT-symmetry guarantees that both Ĥ and Ĥ† have real eigenvalues [17]. However,

Ĥ and Ĥ† have different eigenstates which are related to each other through a similarity

transformation. The ground state wave function of Ĥ† (Ĥ) is e−S0 (1) with the ground

state energy 0. Since Ĥ† annihilates
∣

∣S∗
0

〉

=
∣

∣S0

〉

, the IR state is invariant under the

transformation, which reflects the fact that S0 is a fixed point. Therefore, the partition

function is invariant under the insertion of e−dzĤ . On the other hand, e−dzĤ acting on
∣

∣S1

〉

generates a non-trivial evolution of the deformation,

Z =
〈

S∗
0

∣

∣S1

〉

=
〈

S∗
0

∣

∣e−dzĤ
∣

∣S1

〉

=
〈

S∗
0

∣

∣S1 + δS1

〉

. (3.11)

Now an infinite sequence of e−dzĤ is inserted to write

Z = lim
z→∞

〈

S∗
0

∣

∣e−zĤ
∣

∣S1

〉

. (3.12)

Since Ĥ has the unique ground state with a finite gap in the spectrum,
∣

∣S1

〉

is gradually

projected toward the ground state in the long time limit, where we interpret z as an

imaginary time. The process of projecting the state
∣

∣S1

〉

to the ground state is the RG

flow. In the large z limit, e−zĤ
∣

∣S1

〉

approaches the ground state of Ĥ, which has a trivial

overlap with
∣

∣S∗
0

〉

. The information on the partition function is encoded in the norm of

the projected state.

In the above example, the RG flow is smooth. Any state with a finite number of

degrees of freedom is smoothly projected to the ground state. However, this is not true in

the thermodynamic limit because the large system size limit and the large RG time limit

do not commute in general. As will be discussed in section 5,
∣

∣S1

〉

can not be smoothly

projected to the ground state in the thermodynamic limit if the deformation is large that the

system is no longer in the phase described by the assumed IR fixed point described by S0.

Here let us consider another simple example to relate RG flow with wave function

collapse. We consider a D-dimensional scalar field theory, where the reference action is

chosen to be the free kinetic term,

S0 =
1

2

∫

dDk G−1
Λ (k)φkφ−k. (3.13)

Here k is momentum, and G−1
Λ (k) is a regularized kinetic term with UV cut-off Λ, e.g.,

G−1
Λ (k) = e

k2

Λ2 k2. All the interactions are included in the deformation, S1[φ]. After lowering
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the cut-off Λ → Λe−dz followed by a rescaling of field and momentum, φk → e
D+2
2

dzφedzk,

one obtains a quantum correction δS1 [18]. The quantum correction can be generated by

e−(S1[φ]+δS1[φ]) =
〈

φ
∣

∣e−dzĤ
∣

∣S1

〉

, (3.14)

where

Ĥ =

∫

dk

[

G̃(k)

2
π̂kπ̂−k − i

(

D + 2

2
φ̂k + k∂kφ̂k

)

π̂−k

]

(3.15)

with G̃(k) = ∂GΛ(k)
∂ ln Λ . The conjugate momentum obeys the commutation relation, [φk, πk′ ] =

iδ(k + k
′

). The first term in eq. (3.15) is from lowering Λ, and the second term originates

from the rescaling of field and momentum. However, the validity of eq. (3.11) is subtle

in this case because
∣

∣S0

〉

is not exactly annihilated by Ĥ† in general. Upon applying Ĥ†

to
∣

∣S0

〉

, one is left with a total derivative term, −1
2

∫

dDk ∇k · (~kG−1φkφ−k). This is due

to the fact that the range of momentum changes as momentum is relabeled. The total

derivative term can be dropped if the range of momentum is formally taken to infinity.

However, the partition function is not finite in this case. To avoid this subtlety, we will

adopt a real space renormalization group scheme in the following. Another advantage of

using a real space RG scheme is the easiness in implementing a local RG [10, 11, 19, 20]

by choosing the speed of coarse graining differently at different points in space.

4 Quantum renormalization group

In the real space renormalization group scheme, we can choose
∣

∣S∗
0

〉

to be a direct product

state. Accordingly, the Hamiltonian of which
∣

∣S∗
0

〉

is the ground state (with zero energy)

is ultra-local,

Ĥ =
∑

i

αiĥi, (4.1)

where ĥi is the on-site term of the Hamiltonian, and αi is a local speed of coarse graining.

We note that the choice of ĥi is not unique for a given
∣

∣S0

〉

. Different Hamiltonians

project excited states in different rates, which corresponds to use different RG scheme.

Furthermore, one can choose any αi > 0 because
∣

∣S∗
0

〉

is a direct product state. Here we

will choose a gauge αi = 1 for simplicity. The partition function is given by

Z =

∫

Dj(0)
〈

S∗
0

∣

∣j(0)
〉

Ψ(j(0)), (4.2)

where Ψ(j(0)) is the wave function associated with the UV state as is illustrated in figure 4.

Since
∣

∣S∗
0

〉

is annihilated by Ĥ†, the overlap is invariant under the insertion of U =

e−dzĤ (figure 5 (a)),

Z =

∫

Dj(0)
〈

S∗
0

∣

∣e−dzĤ
∣

∣j(0)
〉

Ψ(j(0)). (4.3)
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Figure 4. The same figure as in figure 3 except that the reference state
∣

∣S∗
0

〉

is chosen to be a

direct product state in real space. Each circle represents a rank one tensor which depends on φi at

each site.

(a) (b)

Figure 5. (a) One inserts U = e−dzĤ between the overlap
〈

S∗
0

∣

∣S1

〉

, where Ĥ is chosen such that
∣

∣S∗
0

〉

is the ground state of Ĥ† with zero eigenvalue. (b) U generates a non-trivial evolution of

the UV state. U
∣

∣S1

〉

includes not only more non-local single-trace tensors (solid boxes) than what

was present in
∣

∣S1

〉

, but also multi-trace tensors (boxes with stripes). The sources for these new

tensors are determined by the original single-trace sources. For example, the striped box represents

a double-trace tensor of rank 4, T
Jijk

φi,φj ,φk
= eJijkOijOjk , and the solid dot above the striped box

represents a rank 3 tensor T̃
j
(0)
ij

,j
(0)
jk

Jijk
= δ

(

Jijk − dzCij,jk[j(0)]
)

, which relates Jijk with the sources

of the original single-trace operators, where Cij,jk[j(0)] is a function of j
(0)
ij , j

(0)
jk .

Even though
∣

∣j(0)
〉

includes only single-trace tensors, the evolution generates multi-trace

tensors,

e−dzĤ
∣

∣j(0)
〉

=

∫

Dφ ej
(0)nOn−dzCn1,n2,...[j(0)](On1On2 ...)

∣

∣φ
〉

. (4.4)

Furthermore, longer-range tensors are generated from short-range tensors. The sources for

the longer-range tensors and multi-trace tensors are functions of j(0) as is illustrated in

figure 5 (b).

Because general symmetric states can be represented as a linear combination of
∣

∣j
〉

,

the Hamiltonian should have a faithful representation in the space of j. The state with

multi-trace operators can be again written as a linear combination of the single-trace states,

e−dzĤ
∣

∣j(0)
〉

=

∫

Dj(1) e
−j

∗(1)
n (j(1)n−j(0)n)−dzCn1,n2,...[j(0)]

(

j
∗(1)
n1

j
∗(1)
n2

...
)

∣

∣j(1)
〉

.

(4.5)
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In figure 6(a), the gray box represents the tensor, e−j
∗(1)
n (j(1)n−j(0)n)−dzCn1,n2,..[j(0)](j

∗(1)
n1

j
∗(1)
n2

...),

whose external legs are j(0) and j(1). By applying this successively, the partition function

can be written as a path integration of auxiliary sources j(n) introduced at n-th step of

coarse graining. This is illustrated in figure 6 (b)–(d). In the continuum (dz → 0) limit,

one obtains

Z = lim
z→∞

〈

S∗
0

∣

∣e−zĤ
∣

∣S1

〉

,

=

∫

Dj(z)
〈

S∗
0

∣

∣j(∞)
〉

e−
∫

∞

0 dz(j∗n∂zj
n+H[j∗,j])Ψ(j(0)). (4.6)

H[j∗, j] is the coherent state representation of the quantum Hamiltonian,

Ĥ[j†, j] =
(

j†n1
j†n2

. . .
)

Cn1,n2,...[j]. (4.7)

jn, j†n are quantum operators defined in the space of single-trace operators. The space of

single-trace operators depends on the type of field theory. For gauge theories, it is the space

of loops [9]. For vector models, it is the space of bi-local coordinates [13]. The operators

satisfy the commutation relation [jn, j†m] = δnm. j†n (jn) creates (annihilates) a closed string

in gauge theories, and a bi-local object in vector models. Because the complete set of

single-trace operators include extended objects, the bulk theory is kinematically non-local.

Ĥ describes quantum evolution of those extended objects in the bulk.

The Hamiltonian gradually projects the generally entangled UV state to the direct

product state. The bulk theory can be viewed as a process of removing entanglement

present in the UV state. For other approaches of entanglement based renormalization

group, see refs. [21–24]. In the present case, the disentangler e−zĤ is a non-unitary oper-

ator. On the other hand, we can not choose any local operator to remove short-distance

entanglement. The Hamiltonian should annihilate the reference state in order to keep the

overlap invariant.

Since Ĥ is an ultra-local Hamiltonian given by sum of on-site terms, H has an impor-

tant property. If one expands Cn1,n2,...[j] in power series of j as

Cn1,n2,...[j] =
∑

m1,m2,...

fn1,n2,...
m1,m2,... j

m1jm2 . . . , (4.8)

the ultra-locality implies that fn1,n2,...
m1,m2,... is non-zero only if for every site i included in the

support of {nk} there exists some ml whose support includes i. In other words, Ĥ can

create an object n by j†n only when there are pre-existing objects whose support include

the support of n. This restriction can be understood as arising from a local symmetry that

is present in the Hamiltonian [9]. We will illustrate this point further in the next section

through a concrete example.

The path integral in eq. (4.6) is nothing but contractions of tensors that form a network

in the bulk as is illustrated in figure 6. The internal variables contracted in the bulk are the

dynamical sources. In the large N limit, quantum fluctuations are suppressed, and the con-

tractions of tensors are dominated by the saddle-point [10]. The tensor network generated

from quantum RG has some differences from other forms of tensor networks [22, 25–30],
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(a) (b)

(c) (d)

Figure 6. Bulk tensor network generated from quantum RG. (a) U
∣

∣S1

〉

in figure 5 (b) can be

written as a linear superposition of states made of single-trace tensors. Here the sources for the

single-trace tensors become dynamics. (b) U is inserted again. (c) The evolution from U generates

even more non-local single-trace tensors along with multi-trace tensors. Multi-trace tensors are

removed by promoting the sources for the single-trace tensors dynamical. (d) Repeating the steps

(b) and (c), generates a (D + 1)-dimensional network of tensors, where dynamical sources are

contracted. In the bulk, non-local single-trace tensors of all sizes are generated even if only local

tensors are present at the UV boundary.

some of which have been proposed for holography. The tensor network described in eq. (4.6)

has no pre-imposed kinematic locality in the bulk because one has to include tensors as-

sociated with multi-local single-trace operators of all sizes. This kinematic non-locality is

crucial in order to have a sense of diffeomorphism invariance in the bulk [13, 31]. In the

absence of kinematic locality in the bulk, the degree of locality in the classical geometry

that emerges in the large N limit is determined dynamically. In this sense, locality in the

bulk is a dynamical feature of the theory rather than a pre-imposed structure built in the

tensor network.
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5 Examples: vector model

As a concrete application, we consider the D-dimensional vector model,

S = m2
∑

i

(φ∗
i · φi)−

∑

ij

t
(0)
ij (φ∗

i · φj) +
λ

N

∑

i

(φ∗
i · φi)

2 . (5.1)

Here φ is complex boson field with N flavours, m is the mass of the bosons, and λ is the

quartic coupling. t(0) is the hopping parameter, which gives the kinetic term. i, j refer

to site indices in a D-dimensional lattice. They are promoted to continuous coordinates

in continuum space. For other holographic approaches to the vector models and related

conjectures see refs. [32–46].

We write the partition function as

Z =
〈

S∗
0

∣

∣t(0)
〉

, (5.2)

where

∣

∣S0

〉

=

∫

Dφ e−m2
∑

i φ
∗

i ·φi
∣

∣φ
〉

,

∣

∣t(0)
〉

=

∫

Dφ e
∑

ij t
(0)
ij φ∗

i ·φj− λ
N

∑

i(φ∗

i ·φi)
2
∣

∣φ
〉

. (5.3)

Because S0 is real,
∣

∣S∗
0

〉

=
∣

∣S0

〉

. In the vector model, the single-trace operators are the

bi-local operators, (φ∗
i · φj) [33, 34, 39]. In

∣

∣t(0)
〉

, one might try to remove the quartic

double-trace operator by introducing an auxiliary field,

∣

∣t(0)
〉

=

∫

DφDt e
∑

ij tijφ
∗

i ·φj−Nt∗ij(tij−t
(0)
ij )−Nλ

∑

i(t
∗

ii)
2∣
∣φ

〉

. (5.4)

However, this is ill-defined for finite N where tij fluctuate. Since the single-trace theory is

a quadratic theory, the integration over φ is not convergent for general fluctuating source

tij in the absence of the quartic term. This forces us to keep the quartic double-trace

operator in the basis states as a regulator. However, the states labeled by tij with a fixed

λ span the full symmetric Hilbert space.

For the generator of coarse graining transformation, we choose a Hamiltonian,

Ĥ =
∑

i

[

2

m2
π̂
†
i · π̂i + i(φ̂i · π̂i + φ̂

†
i · π̂

†
i )

]

, (5.5)

where π̂i, π̂
†
i are conjugate operators of φ̂i, φ̂

†
i with the commutation relation [φ̂ia, π̂jb] =

[φ̂†
ia, π̂

†
jb] = iδijδab with all other commutators being zero. Here a, b = 1, 2, . . . , N are flavor

indices.
∣

∣S0

〉

is the ground state of Ĥ† with energy 0. This guarantees that the partition

function is independent of z in Z =
〈

S0

∣

∣e−zĤ
∣

∣t(0)
〉

. Multi-trace operators generated in

each infinitesimal time evolution are removed such that

e−dzĤ
∣

∣t(0)
〉

=

∫

Dt(1) e−N
∑

ij t
∗(1)
ij (t

(1)
ij −t

(0)
ij )−dzNH[t∗(1),t(0)]

∣

∣t(1)
〉

. (5.6)
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Here H[t∗, t] is the coherent state representation of the quantum Hamiltonian,

Ĥ =
∑

i

[

− 2

m2
tii +

4λ
(

1 + 1
N

)

m2
t†ii − 4λ

(

t†ii

)2
− 8λ2

m2

(

t†ii

)3
]

+
∑

ij

[

2 +
4λ

m2
(t†ii + t†jj)

]

t†ij tij −
2

m2

∑

ijk

[

t†kjtkitij
]

, (5.7)

where t†ij and tij satisfy the commutation relation, [tij , t
†
kl] =

1
N δikδjl. tij (t

†
ij) is an operator

that annihilates (creates) a connection between sites i and j. tij ’s describe dynamical

geometry of the D-dimensional space as the distance between two points is determined by

the connectivity formed by the hopping fields. This will become clear through an explicit

derivation of metric from the hopping field in the following subsections. For finite N ,

the strength of the connection is quantized. Therefore, Ĥ describes the evolution of the

quantum geometry under the RG flow. The partition function is given by

Z = lim
z→∞

〈

S0

∣

∣e−zĤ
∣

∣t(0)
〉

=

∫

Dt(z)
〈

S0

∣

∣t(∞)
〉

e−N
∫

∞

0 dz(t∗ij∂ztij+H[t∗,t])
∣

∣

∣

∣

tij(0)=t
(0)
ij

, (5.8)

where
∫

Dt(z) sums over all RG paths defined in the space of the single-trace operators.

As discussed below eq. (4.8), the bulk Hamiltonian is invariant under a local transfor-

mation, tij → ei(ϕi−ϕj)tij , where ϕi is site-dependent U(1) phase. This symmetry originates

from the U(1) gauge symmetry present in eq. (5.1) once the hopping parameters are pro-

moted to dynamical fields. The symmetry is broken only by the boundary condition in

eq. (5.8) which fixes the dynamical hopping fields at z = 0. The symmetry forbids a bare

kinetic term for the dynamical hopping fields like t†ijtkl in the Hamiltonian. In other words,

the bi-local object created by t†kl can not propagate to different links by itself. This does not

mean that there is no propagating mode in the bulk. Instead, this implies that there is no

pre-determined background geometry on which the bi-local objects propagate: in order to

specify kinetic term which involves gradient of fields, one needs to specify distances between

points. In this case, the geometry is determined by the hopping fields themselves. In order

to find propagating modes in the bulk, one first has to find the saddle-point configuration

of the hopping fields. Once the saddle point configuration is determined, fluctuations of tij
around the saddle point can propagate on the geometry set by the saddle-point configura-

tion. This can be seen from the last term in eq. (5.7) which gives rise to quadratic terms

such as < tij > t†kjtki once one of the field is replaced by the saddle point value. Fluctua-

tions of the dynamical sources propagate on the ‘shoulders’ of their own condensates [9].

Equivalently, the fluctuations of the hopping field describes fluctuating background geom-

etry. This is similar to the situation in string theory, where perturbative strings propagate

in the background geometry set by condensate of strings.

In the large N limit, one can use the saddle point approximation. At the saddle point,

t∗ij is not necessarily the complex conjugate of tij . We denote the saddle point value of tij ,
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t∗ij as t̄ij , p̄ij . The equations of motion for t̄ij and p̄ij are

∂z t̄ij = −2

{

2λ δij
m2

− δij

[

4λ+
12λ2

m2
p̄ii

]

p̄ii +
2λ δij
m2

∑

k

(t̄ikp̄ik + t̄kip̄ki)

+

[

1 +
2λ

m2
(p̄ii + p̄jj)

]

t̄ij −
1

m2

∑

k

t̄ik t̄kj

}

,

∂z p̄ij = 2

{

− δij
m2

+

[

1 +
2λ

m2
(p̄ii + p̄jj)

]

p̄ij −
1

m2

∑

k

(p̄ik t̄jk + t̄kip̄kj)

}

(5.9)

with the two boundary conditions

t̄ij(0) = t
(0)
ij , (5.10)

p̄ij(∞) =
1

N

∂ ln
〈

S0

∣

∣t̄
〉

∂t̄ij

∣

∣

∣

∣

∣

z=∞
. (5.11)

In [13], the equations of motion were solved numerically for finite systems. Although

the numerical solution is reliable in the insulating states, some of the results for gapless

states are tainted with finite size effects. Here we solve the equations analytically in the

thermodynamic limit. We first note that φ at scale z+dz is related to φ at scale z through

the equation similar to eq. (3.8), φi(z + dz) = e−dz
(

φi(z)− µ
m

√
2dzΦi

)

, where Φi is an

auxiliary field with the action µ2|Φi|2. Because eq. (5.11) is satisfied at all z [13], we have

p̄ij(z + dz) = e−2dz
(

p̄ij(z) +
2dz
m2 δij

)

. This translates to the equation,

∂z p̄ij(z) = −2p̄ij(z) +
2

m2
δij . (5.12)

Now eq. (5.9) and eq. (5.12) are written in momentum space,

∂zT̄q =−2
{

2λ

m2
−
[

4λ+
12λ2

m2
p̄0

]

p̄0 +
4λ

V m2

∑

q
′

T̄q′ P̄q′ +

[

1+
4λ

m2
p̄0

]

T̄q −
1

m2
(T̄q)

2

}

, (5.13)

∂zP̄q =− 2

m2
+ 2

[

1 +
4λ

m2
p̄0

]

P̄q −
4

m2
P̄qT̄q, (5.14)

∂zP̄q =−2P̄q +
2

m2
. (5.15)

Here V is the volume of the D-dimensional space. We assume the translational in-

variance, and tij and pij depend only on i − j. p̄0 ≡ p̄ii, T̄q =
∑

r e
iqr t̄i+ri, P̄q =

∑

r e
−iqrp̄i+ri. Naively, it appears that there are more equations than unknowns. How-

ever, eqs. (5.13)–(5.15) are not over-determined because only two of them are independent.

Combining eq. (5.14) and eq. (5.15), one can solve T̄q(z), P̄q(z) in terms of P̄q(0),

T̄q(z) =
2λ

m2
+

2λ

m2
e−2z(m2p̄0(0)− 1) +m2 m2P̄q(0)− 1

m2P̄q(0) + e2z − 1
, (5.16)

P̄q(z) = e−2zP̄q(0) +
1

m2
(1− e−2z). (5.17)
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One can check that eqs. (5.16) and (5.17) automatically satisfy eq. (5.13). By applying the

UV boundary condition in eq. (5.10) to eq. (5.16), P̄q(0) is determined to be

P̄q(0) =
1

−T̄q(0) +m2 + 2λp̄0(0)
, (5.18)

where P̄q, p̄0 satisfy the self-consistent equation

p̄0(0) =
1

V

∑

q

P̄q(0). (5.19)

Eqs. (5.16)–(5.19) completely determines T̄q(z), P̄q(z) from T̄q(0).

5.1 Zero density

First, we consider the case with zero chemical potential. At the UV boundary, the form

of T̄q depends on the choice of regularization (such as lattice type). However, the locality

and discrete lattice symmetries, if there is enough of them, guarantee the universal form

at low momentum, T̄q(0) = T̄0(0) − q2 + O(q4). ( For example, the cubic symmetry is

enough to guarantee this form in three dimensions. ) Since we are mainly interested

in the universal features that are independent of microscopic details, we take T̄q(0) =

T̄0(0) − q2 to be valid at all momenta. This amounts to using the continuum model with

the two derivative kinetic term. However, all the following discussions apply to theories with

different regularizations at long distance limit as far as the leading momentum dependence

is q2. In the thermodynamic limit, eq. (5.19) can be converted to the momentum integral,

p̄0(0) =
P̄0(0)

V
+

∫

dDq

(2π)D
1

q2 + δ2
. (5.20)

Here δ2 ≡ −T̄0(0) +m2 + 2λp̄0(0) is the gap. P̄0(0)
V is the condensate at zero momentum,

which needs to be singled out in the superfluid phase. In the gapped phase, δ > 0 and
P̄0(0)
V = 0. The critical point is characterized by δ = 0 and P̄0(0)

V = 0. In the superfluid

phase, δ = 0 and P̄0(0)
V > 0. The value of p̄0(0) depends on the UV cut-off, but its specific

value is unimportant. What matters is the physical mass gap, δ. We assume that T̄0(0) is

tuned so that δ is much smaller than the UV cut-off scale. The dynamical hopping field

and its conjugate field in the bulk become

T̄q(z) =
2λ

m2
+m2 +

2λ

m2
e−2z(m2p̄0(0)− 1)−m2 δ2 + q2

(1− e−2z)(q2 + δ2) +m2e−2z
,

P̄q(z) =
e−2z

q2 + δ2
+

1− e−2z

m2
. (5.21)

Although T̄q(0) is quadratic in q, T̄q(z) with z > 0 includes terms of arbitrarily large powers

of q. In real space, this implies that the bi-local operators with arbitrarily large sizes are

generated along the RG flow as was indicated in figures 5 and 6. As will be shown in

the next subsection, the hopping field has a direct relation with entanglement contained

in quantum state e−zĤ
∣

∣t(0)
〉

. The z dependence of the long range hopping fields describe
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how entanglement spreads under the RG flow. In the presence of the bi-local fields with

all sizes, the tensor network in the bulk may or may not be local depending on δ and z.

From the saddle point solution in eq. (5.21), one can compute the metric in the bulk.

In order to extract the metric, it is useful to consider fluctuations of the hopping fields

around the saddle point,

t̃ij = tij − t̄ij , p̃ij = t∗ij − p̄ij . (5.22)

The quadratic action for the fluctuations is given by

S2 =

∫

dz

{

− 4λ
∑

i

(

1 +
6λ

m2
p̄0

)

p̃2ii

+
∑

ij

[

p̃ij

(

∂z + 2 +
8λ

m2
p̄0

)

t̃ij +
4λ

m2
(p̃ii + p̃jj)

(

p̄ij t̃ij + t̄ij p̃ij
)

]

− 2

m2

∑

ijk

(

p̄ij t̃ik t̃kj + t̄ikp̃ij t̃kj + t̄kj p̃ij t̃ik
)

}

. (5.23)

Here p̃ij is the conjugate momentum of t̃ij . The action includes terms that are quadratic

in the momentum. The last two terms in eq. (5.23) describes the kinetic term for the bi-

local field that is generated from the cubic interaction in eq. (5.7). For example, t̄ikp̃ij t̃kj
describes the process where one end of the bi-local field moves from site k to i as if a man

takes a step with one foot while the other foot pivoted on the ground. The range of step

is not pre-fixed, but is dynamically determined by how fast the saddle point configuration

t̄ik decays in |i − k|. Therefore, the locality in the bulk is a dynamical feature which is

determined by length scale in t̄ik. In the partition function, the paths of t̃ij and p̃ij in the

complex plane need to be chosen along the direction of the steepest descent.

The equations of motion for t̃ij , p̃ij are
(

∂z + 2 +
8λ

m2
p̄0(z)

)

t̃ij −
2

m2

(

t̄ik t̃kj + t̄kj t̃ik
)

+
4λ

m2
t̄ij(p̃ii + p̃jj) (5.24)

+δij

[

−8λ

(

1 +
6λ

m2
p̄0(z)

)

p̃ii +
4λ

m2

(

p̄ik(t̃ik + t̃ki) + t̄ik(p̃ik + p̃ki)
)

]

= 0,

(

−∂z + 2 +
8λ

m2
p̄0(z)

)

p̃ij +
4λ

m2
p̄ij(p̃ii + p̃jj)−

2

m2

(

p̄ik t̃jk + p̄kj t̃ki + t̄kip̃kj + t̄jkp̃ik
)

= 0.

(5.25)

Once the equation of motion for p̃ij is solved, the equations for t̃ij in general include second

order derivatives in z due to the quadratic kinetic term in eq. (5.23). However, we don’t

have to consider the full equations of motion to extract the geometry. This is because t̃ij
is a probe that propagates on the geometry set by t̄ij , and the background geometry is

independent of dynamics of the specific mode. The equation for the anti-symmetric part

of the hopping field defined by t̃Aij = t̃ij − t̃ji satisfies a simpler equation of motion,

(

∂z + 2 +
8λ

m2
p̄0(z)

)

t̃Aij −
2

m2

(

t̄ik t̃
A
kj + t̄kj t̃

A
ik

)

= 0. (5.26)
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Figure 7. Plot of T̄q(z) − T̄0(z) as a function of q for z = 1, 2, 3, 4 in the order of increasing

flatness in the gapped phase with δ = 0.2,m2 = 2, λ = 1.

The conjugate momentum decouples from the equation of t̃Aij because the saddle point

configuration is symmetric. As a result, the anti-symmetric mode propagates diffusively in

the bulk rather than ballistically. Although t̄ij = t̄ji at the saddle point without background

gauge field, tij is independent of tji as a dynamical field. This is a difference of the U(N)

model from the O(N) model. Therefore, tij includes both even and odd spin fields in the

expansion,

tij =
∞
∑

n=0

1

n!

D−1
∑

µ1,µ2,...,µn=0

(xi − xj)
µ1(xi − xj)

µ2 . . . (xi − xj)
µn tµ1,µ2,...,µn

(

xi + xj
2

)

, (5.27)

where xi is D-dimensional coordinate associated with site i. t̃Aij describes the fluctuations

in the odd spin sector. In the following, we compute the bulk metric in the gapped and

the gapless states respectively using eq. (5.21) and eq. (5.26).

5.1.1 Gapped state

In figure 7, T̄q(z) in eq. (5.21) is plotted as a function of momentum at different radial

slices in the gapped phase. T̄q(z) is peaked around q = 0, but the dispersion goes to zero

exponentially in z,

T̄q(z) = T̄0(z)−
m4

δ4
e−2zq2 + e−2zO(q4). (5.28)

T̄q(z) stays analytic in q at all z. In the large z limit, T̄q(z) becomes completely flat. In

the gapped phase, e−zĤ
∣

∣t(0)
〉

is smoothly projected to the direct product state under RG.

In real space, the non on-site hopping field becomes

t̄ij(z) ∼ e−2z 1

|i− j|D−2
for |i− j| < ξ(z),

∼ e−2ze−|i−j|/ξ(z) for |i− j| > ξ(z), (5.29)
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where the range of hopping is given by

ξ(z) = (δ2 +m2e−2z)−1/2. (5.30)

As we will see in the following, eq. (5.30) is the length scale that controls the range of

entanglement and the geometry in the bulk.

In order to read the geometry, we first rewrite eq. (5.26) in the Fourier space,
(

∂z + 2 +
8λ

m2
p̄0(z)−

2

m2

[

T̄p1 + T̄p2

]

)

T̃A
p1,p2 = 0, (5.31)

where T̃A
p1,p2 =

∑

ij e
i(p1xi−p2xj)t̃Aij , and T̄q in eq. (5.21) is written as

T̄q(z) = 2λp̄0(z)−m2e−2z +m2A(z)
1

1 +B(z) q2

m2

(5.32)

to the leading order in e−z, where A(z) = (e−zmξ(z))2, B(z) = (mξ(z))2. Here B(z)

sets the scale factor for the derivatives in the D-dimensional space to all orders, and

it becomes the metric component g00 = g11 = . . . = gD−1,D−1. It is noted that the

range of hopping in eq. (5.30) determines the unit proper distance : two points separated

by ξ(z) sites are considered to be within a unit proper distance (in a fixed scale 1/m)

because you can jump by ξ(z) sites in one hopping. On the other hand, A(z) sets the

relative scale factor between the z-derivative and the derivatives in the D-dimensional

space. As a result, A(z)−1 should be identified as the metric component in the z direction.

By multiplying m2A(z)−1 to eq. (5.31), the equation for the continuum field defined by

t̃A(x, x
′

, z) = e2z
∫

dp1dp2 e−i(p1x−p2x
′

)T̃A
p1,p2(z) can be expressed in the covariant form,



m
√
gzz∂z + 4δ2 − 2m2

1− gµν∂µ∂ν
m2

− 2m2

1− gµν∂
′

µ∂
′

ν

m2



 t̃A(x, x
′

, z) = 0, (5.33)

where gzz = m2A(z)−2, g00 = g11 = . . . = gD−1,D−1 = B(z). eq. (5.33) describes the bi-

local field that propagates diffusively with the diffusion coefficient D0 ∼ 1/m in a curved

space [47] with the metric,

ds2 =

(

1

1 +
(

δ
mez

)2

)2
dz2

m2
+

(

(

δ

m

)2

+ e−2z

)

D−1
∑

µ=0

dxµdxµ. (5.34)

For δ 6= 0, gzz decays exponentially in the large z limit. Since e−zĤ
∣

∣t(0)
〉

is already

close to the direct product state at large z, an additional application of the projection

operator e−dzĤ adds only an exponentially small proper distance in the radial direction.

This can be understood more precisely in terms of the entanglement entropy of e−zĤ
∣

∣t(0)
〉

.

In the large z limit, the von Neumann entanglement entropy between region A and its

complement is given by

SE = N

′

∑

i,j

|t̄ij(z)|2G2
0

[

1− ln(|t̄ij(z)|2G2
0)
]

+O(t̄3) (5.35)
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in the large N limit (see appendix A for the derivation). Here
∑′

i,j sums over ordered

pairs of sites which are spanned across A and Ā. G0 is the on-site propagator defined in

eq. (A.5). Because the entanglement is directly related to the hopping fields, the spread

of the entanglement is controlled by the same length scale in eq. (5.30) which determines

the metric. Equivalently, ξ(z) controls the range within (outside of) which two sites have

algebraically (exponentially) decaying mutual information. Therefore, entanglement en-

tropy of a subsystem with linear size smaller (greater) than ξ(z) exhibits an super-area

(area) behavior.

The entanglement entropy of a single lattice site with the rest of the system is given by

sE ∼ Ne−4zξ(z)4−D upto a logarithmic correction for D < 4. Here eq. (5.29) and eq. (5.30)

are used. However, sE is not a good measure of the overall entanglement because a single

site does not corresponds to the unit physical volume measured in the metric in eq. (5.34).

Therefore, we consider the entanglement entropy of a region centered at the origin with

unit proper volume in D dimensions,

s
′

E = N
∑

{|i|<ξ(z)<|j|}∪{|i|>ξ(z)>|j|}
|t̄ij(z)|2G2

0

[

1− ln(|t̄ij(z)|2G2
0)
]

∼ Ne−4zξ(z)4, (5.36)

where i, j are divided by ξ(z) because coordinate distance ξ(z) corresponds to the fixed

proper distance 1/m. s
′

E measures the entanglement of the largest possible region within

which the entanglement entropy exhibits a super-area behavior. In the gapped phase, ξ(z)

approaches 1/δ in the large z limit. As a result, s
′

E decays as e−4z in z. This explains why

the radial metric decays exponentially in z. In contrary, s
′

E does not go to zero in gapless

states as will be discussed in the next section.

The proper distance from the UV boundary (z = 0) to the IR limit (z = ∞) in the

unit of m is given by

τ = m

∫ ∞

0
dz

√
gzz =

1

2
ln

(

1 +
(m

δ

)2
)

. (5.37)

In the gapped phase, τ is finite. The bulk geometry smoothly ends at a finite depth in

the radial direction. From field theory point of view, τ measures the proper RG time that

is needed for a theory to flow to the IR fixed point. In this sense, the geometric distance

τ in the bulk provides a notion of distance in the space of field theories. Alternatively, τ

measures the complexity of the UV state: the depth of the RG transformation that is needed

to remove all entanglement present in the UV state [14]. This demonstrates the connection

between entanglement and geometry [48–52] from the first principle construction.

As the system is tuned toward the critical point, δ become smaller. In the small δ

limit, τ diverges logarithmically. This implies that the critical point can not be projected

to the insulating fixed point by RG transformations with a finite depth.

5.1.2 Gapless states

Now we turn to the critical point with δ = 0. T̄q(z) in eq. (5.21) is shown at the critical

point in figure 8. As z increases, T̄q(z) becomes flatter at nonzero q as the short distance

entanglement is removed by the projection operator. However, the peak at q = 0 never
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Figure 8. Plot of T̄q(z) − T̄0(z) at the critical point as a function of q for z = 1, 2, 3, 4 from top

to bottom with δ = 0,m2 = 2, λ = 1. With increasing z, the peak at q = 0 gets sharper.

disappears at any z unlike in the gapped phase. In the large z limit, the peak becomes

infinitely sharp, and T̄q(z) becomes non-analytic at q = 0. In other words, z → ∞ and

q → 0 limits do not commute. If one takes the small q limit first at a large but finite z,

one obtains

T̄q(z) = T̄0(z)− e2zq2 +
(e2zq2)2

m2
+ . . . (5.38)

The coefficients of the q dependent terms grow indefinitely with increasing z. This implies

that t̄ij becomes non-local in the large z limit as can be seen by setting δ = 0 in eq. (5.30).

The overall amplitude of the hopping field is exponentially small in the large z limit.

However, the height of the peak at q = 0 remains order of 1 because the range of hopping

also diverges exponentially in z.

In the gapless phase, ξ(z) diverges as ez/m in the large z limit. As a result, the

entanglement within a unit proper volume in eq. (5.36) does not vanish in the large z limit.

Although the entanglement of individual site decreases exponentially with increasing z,

the entanglement spreads out to larger region that the entanglement within unit proper

volume approaches a non-zero constant in the large z limit. The persistent entanglement

is responsible for the divergent proper distance in the radial direction. The fluctuations of

the hopping field satisfy the same equation in eq. (5.33). With δ = 0, eq. (5.34) is reduced

to the AdSD+1 metric,

ds2 =
dz2

m2
+ e−2z

D−1
∑

µ=0

dxµdxµ. (5.39)

The curvature length scale of the bulk space is 1/m. Higher derivative terms in eq. (5.33)

are suppressed in the same scale. The extended IR geometry of the anti-de Sitter space

is due to the inability of removing all entanglement in the UV state through a projection

operator with a finite depth. In this sense, the gapless state is infinitely far away from the

insulating fixed point.
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In the superfluid phase, the condensate in eq. (5.20) modifies the value of p0(0). How-

ever, T̄q(z) is still given by the same expression in eq. (5.21) with δ = 0. In [13], based on

numerical solutions in finite system sizes, it was argued that the hopping field exhibits a

divergent length scale at finite z in the superfluid phase. However, this claim is incorrect:

the apparent divergence ‘observed’ in the numerical solution is a finite size effect. The

exact expression in eq. (5.21) shows that the range of hopping diverges only in the large z

limit in the thermodynamic limit. Therefore the bulk geometry probed by the fluctuation

field is given by the same AdSD+1 space.

When the system is in the ‘wrong’ phases (critical point or superfluid) compared to

the guessed IR fixed point (insulating state), the UV state can not be smoothly projected

to the IR state. This obstruction culminates in the non-analyticity of T̄q(z) in the large

z limit. The non-analytic behavior of the hopping field in the large z limit can be viewed

as a critical behavior associated with a dynamical phase transition [15, 16]. The divergent

length scale in the spread of entanglement gives rise to the Poincare horizon at z = ∞.

We use the term ‘phase transition’ in a more general context despite the fact that we can

not reach the other side of the critical point in this particular case. In the bosonic vector

model, the critical point lies at z = ∞ because the gapless states have no scale. Even in the

superfluid phase, order of N Goldstone modes are described by the scale invariant theory.

However, a horizon can arise at finite z in gapless states which possess intrinsic scales. For

example, a dynamical phase transition can occur at finite z in metallic states in fermionic

models [53].

The geometric obstruction to smooth projection between two phases exists only in the

thermodynamic limit. For finite systems, there is always a nonzero gap due to the finite

size effect, and T̄q(z) is analytic in q at all z. In this case, any state can be smoothly

projected to the direct product state. This is in line with the fact that distinct phases are

sharply defined only in the thermodynamic limit.

5.2 Finite density

Now we consider the case with a non-zero chemical potential. In the D-dimensional Eu-

clidean lattice, we pick one of the direction to be an imaginary time. A chemical potential

enters in the hopping field as an imaginary gauge potential along the Euclidean time di-

rection. With a chemical potential µ, the hopping field is modified as

T̄q(0) = T̄0(0)− (q0 − iµ)2 − |~q|2 (5.40)

at the UV boundary, where ~q = (q1, q2, . . . , qD−1) represents the (D − 1)-dimensional

momentum. The hopping field in the bulk becomes

T̄q(z) =
2λ

m2
+m2+

2λ

m2
e−2z(m2p0(0)−1)−m2 δ2 + (q0 − iµ)2 + |~q|2

(1−e−2z) ((q0 − iµ)2 + |~q|2 + δ2) +m2e−2z
.

(5.41)

If δ > µ, the gap remains non-zero, and the system is in the insulating state. The

behaviour of t̄ij in the bulk is essentially the same as the one in the insulating state at zero
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chemical potential. The hopping field remains analytic in momentum at all z. In the large

z limit, t̄ij becomes on-site term in real space, and the bulk space smoothly ends at a finite

depth in the radial direction.

At the critical point and in the superfluid phase, we have δ = µ. The hopping field

T̄q(z) is given by

T̄q(z) =
2λ

m2
+m2 −m2

e2z

m2 (−2iµq0 + q20 + |~q|2)
1 + e2z

m2 (−2iµq0 + q20 + |~q|2)
(5.42)

in the large z limit. Similar to the charge neutral case, T̄q(z) becomes singular at q = 0 in

the large z limit. The difference is that q0-linear term is dominant at low frequencies.

To extract the metric in the bulk, we again consider fluctuations around the saddle

point, t̃ij = tij − t̄ij . With a non-zero chemical potential, t̄ij is no longer identical to

t̄ji. Since the anti-symmetric component is not decoupled from the symmetric component,

eq. (5.26) does not hold. However, eq. (5.25) is still simplified in the large |i−j| limit, where

only the first two terms are important. The continuum field defined by t̃(x, x
′

, z) = e2z t̃ij(z)

satisfies


m2∂z −
2m2

1− 1
m2

(

2µ
√

g00∂0 + gαβ∂α∂β

) − 2m2

1− 1
m2

(

2µ
√

g00∂
′

0+gαβ∂′

α∂
′

β

)



t̃(x, x
′

, z)=0

(5.43)

in the large |x − x
′ | limit, where g00 = e4z, g11 = g22 = . . . = gD−1,D−1 = e2z, and

α, β runs from 1 to D − 1. Therefore the fluctuation fields propagate in the Lifshitz

background [54–56] whose metric is given by

ds2 =
dz2

m2
+ e−4z(dx0)2 + e−2zd~x2. (5.44)

The geometry is invariant under the anisotropic scaling with the dynamical critical expo-

nent 2,

z → z + s, x0 → s2x0, ~x → s~x. (5.45)

The non-locality of the hopping amplitude in the large z limit gives rise to the horizon

at z = ∞.

6 Horizon from dynamical phase transition

The renormalization group flow in Euclidean field theory is a gradual collapse of a quantum

state associated with an action S1,

e−zĤ
∣

∣S1

〉

, (6.1)

where S1 is the deformation turned on at an IR fixed point S0, and the Hamiltonian Ĥ is

the generator of coarse graining whose ground state is given by the IR fixed point. If z is
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viewed as an imaginary time (which is different from x0 along the field theory direction),

eq. (6.1) describes a time-dependent quantum state. Under the evolution, the state is

gradually projected to the ground state of Ĥ. For systems with a finite number of degrees of

freedom, any initial state is projected to the ground state smoothly. In the thermodynamic

limit, however, a smooth projection is not always possible. Whether
∣

∣S1

〉

can be smoothly

projected to the ground state of Ĥ depends on whether the system described by the full

action S0 + S1 is in the same phase described by the assumed IR fixed point.

In the examples considered in the previous section,
∣

∣S0

〉

is chosen to be a direct product

state, which is the fixed point theory for the insulator. The Hamiltonian gradually removes

short-range entanglement to project the UV state to the direct product state. At the same

time, short-range entanglement is transferred to larger scales as long-range tensors are

generated in the tensor product representation of eq. (6.1). When small deformations (such

as hopping or chemical potential) are turned on, the system is still in the insulating phase

because small deformations are irrelevant at the insulating fixed point. In this case, the

spread of entanglement is confined within a finite length scale, which is controlled by the gap

of the system. The UV state smoothly evolves to the direct product state, and the geometry

in the bulk ends at a finite proper distance in the radial direction. The proper distance from

the UV boundary to the IR limit gives the depth of RG transformation that is required to

remove all entanglement in the UV state. The first principle derivation of the metric in

the bulk provides a physical meaning for the geometry in the bulk. The metric in the field

theory directions measures the range over which entanglement spreads in eq. (6.1), while

the metric in the radial direction is proportional to the amount of entanglement present in

the region within which the entanglement entropy exhibits a super-area behavior.

As the deformations get larger, it takes longer RG time for the state to be projected

to the direct product state. If the deformations are stronger than certain critical strength,

the system is no longer in the insulating phase. In this case, entanglement spreads to

arbitrarily large length scale under the RG flow. At the same time, the entanglement

contained within a proper volume does not decay to zero. The persistent entanglement

gives rise to an extended geometry in the IR: the anti de-Sitter space for the charge neutral

case and the Lifshitz geometry for the charged case. In the large z limit, eq. (6.1) develops

a singularity due to the divergent length scale associated with the spread of entanglement.

The Poincare horizon that emerges in the large z limit corresponds to the critical point

associated with a global spread of entanglement. The on-set of non-locality shows up as

horizon in the bulk geometry.

One possible use of viewing horizon as critical point is to explain its universality. As

critical points are characterized by a small number of universal exponents which are inde-

pendent of microscopic details, different types of horizons are characterized by macroscopic

parameters. Under the present picture, these two are the same thing. The extreme red

shift present near horizon can be viewed as the critical slow down near critical point.

In order to obtain a bulk with the Lorentzian signature, a natural way would be to

generate collapse of wave function not from e−zĤ but from e−izĤ . Although the latter

does not change the norm of states, it creates a precession that effectively projects out fast

modes to observers with finite resolution. Depending on the sign of the kinetic term in the
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bulk Hamiltonian, which originates from the beta functions of multi-trace operators, the

radial direction can be either space-like or time-like [11]. It will be of interest to see how

the Lorentzian anti-de Sitter space or the de-Sitter space can be obtained from concrete

field theories [57–59].

7 Summary

In summary, we showed that RG flow in Euclidean field theories can be understood as a

gradual wave function collapse. Once the final state is chosen to be a direct product state,

the RG transformation is generated by a quantum Hamiltonian that gradually removes

short-range entanglement in the UV state which originates from the action of field theory.

When the system is in the gapped phase described by the final state, the UV state is

smoothly projected to the direct product state. In this case, the bulk geometry smoothly

ends at a finite proper distance in the radial direction. The geometric distance in the radial

direction measures a complexity of the UV state: the depth of RG transformation needed

to remove all entanglement. On the other hand, the proper distance in the field theory

direction is determined by the spread of entanglement. Unlike gapped states, gapless states

can not be smoothly projected to the direct product state due to the spread of entanglement

to arbitrarily long distance scales under RG flow. The impossibility of projecting the UV

state to the IR state with the projector of finite depth gives rise to the extended geometry

in the bulk. In the long RG time limit, the scale dependent state develops a singularity,

exhibiting a critical behavior. The critical point gives rise to the horizon in the bulk.
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A Entanglement entropy

In this section, we compute the von Neumann entanglement entropy for the state e−zĤ
∣

∣t(0)
〉

in the large N limit to the second order in the hopping field t̄ij(z). In the large N limit,

we can ignore the fluctuations of tij(z) in the bulk. The normalized state can be written as

∣

∣Ψ(z)
〉

=
1√
Z1

∫

Dφ e
∑

ij t̄ij(z)φ
∗

i ·φj− λ
N

∑

i(φ∗

i ·φi)
2∣
∣φ

〉

, (A.1)

where Z1 is the normalization factor,

Z1 =

∫

Dφ e
∑

ij [t̄ij(z)+t̄∗ji(z)]φ
∗

i ·φj− 2λ
N

∑

i(φ∗

i ·φi)
2

. (A.2)
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Figure 9. (a) The density matrix ρA obtained after tracing out the degrees of freedom in region

B = Ā. (b) A graphical representation of Tr (ρnA).

The density matrix ρA of region A is obtained by integrating out φi in its complement

B ≡ Ā (figure 9 (a)). The von Neumann entanglement entropy is defined to be

SE = − lim
n→1

Tr (ρnA)− 1

n− 1
, (A.3)

where Tr (ρnA) is a partition function for n copies of the system with twisted boundary

conditions as is represented in figure 9 (b). To the second order in t̄ij , we obtain

Tr (ρnA) =
1 + Nn

2

∑

i 6=j(t̄ij + t̄∗ji)(t̄ji + t̄∗ij)G
2
0 +N

∑′

i,j

[

|t̄ij |2nGn
0 − n|t̄ij |2G0

]

+O(t̄3)

1 + Nn
2

∑′

i 6=j(t̄ij + t̄∗ji)(t̄ji + t̄∗ij)G
2
0 +O(t̄3)

.

(A.4)

Here all t̄ij ’s represent the saddle point values at z.
∑

i 6=j sums over ordered pairs of all

distinct sites whereas
∑′

i,j sums over ordered pairs of which one site belongs to A and the

other to B. G0 is the on-site propagator given by

G0 =
1

N

∫

dφ (φ∗ · φ) e2t̄0(z)φ∗·φ− 2λ
N

(φ∗·φ)2

∫

dφ e2t̄0(z)φ
∗·φ− 2λ

N
(φ∗·φ)2

(A.5)

with t̄0(z) =
t̄ii(z)+t̄∗ii(z)

2 . Eq. (A.3) and eq. (A.4) lead to eq. (5.35).
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