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1 Invitation

In four space-time dimensions the following algebraic accident occurs: the Lorentz group
O(3, 1) is locally isomorphic to SL(2,C). The core of the helicity-spinor formalism resides
in this simple observation, which allows to translate four-vectors into two-spinors, Lorentz
indices into spinorial ones, and generically to recast O(3, 1) invariance as SL(2,C) invari-
ance. Since the representation theory of the Lorentz group is typically constructed from
the SL(2,C) one, then the spinorial language may sound like a good option for the study
of the S-matrix, where representation theory plays a basal role.

Indeed, the adoption of the helicity-spinor formalism in part of the community of
scattering amplitudes in the 80’s led to more compact formulas, and to insights on a
certain intrinsic simplicity of scattering amplitudes, commonly exemplified by the Parke-
Taylor formula [1]. By the end of the 90’s this formalism established itself as the most
convenient one for some practical purposes as the computation of QCD amplitudes (a
good indicator may be the review [2]), and has also revealed extremely powerful for more
theoretical purposes (many of them drawing inspiration from [3]). Nowadays it permeates
much of the work involving scattering amplitudes of four-dimensional QFTs, as can be
grasped by looking at recent reviews, for instance [4, 5], or modern textbooks like [6, 7].

Here we want to emphasize another virtue of the helicity-spinor formalism, maybe
not brought to light so often, which is that of simplifying the scattering-amplitude Ward
identities associated to Lorentz symmetry. The latter follow from the transformation law
of asymptotic one-particle states, which in turn is determined by the properties of infinite-
dimensional representations of the Poincaré group. We define the basis of one-particle
states through

P̂µ|k ; a〉 = kµ|k ; a〉 , (1.1)

where P̂µ is the generator of translations and k a four-momentum. The label a stands for a
collection of quantum numbers (for our purposes, mainly spin or helicity). Under a proper
orthochronous Lorentz transformation Λ ∈ SO+(3, 1), these states generically transform as

U(Λ)|k ; a〉 =
∑
a′

D(Λ, k)aa′ |k′; a′〉 , k′ = Λk , (1.2)

where the D(Λ, k)aa′ furnish a representation of the Lorentz group. This transformation
law induces a transformation law in the amplitude for the scattering of n particles:

Mn =

 n∏
i=1

∑
a′i

D(Λ, ki)aia′i

M ′n . (1.3)

In general the amplitude is not Lorentz invariant, it rather transforms covariantly. The
form of the coefficients D(Λ, k)aa depends heavily on the character of k, i.e. whether it is
light-like or time-like (we will not consider the space-like case here). Because of that, we
will use the following lower-case/upper-case notation throughout the paper:

k = p if k2 = 0 , k = P if k2 < 0 . (1.4)
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In the case of massless particles, the associated representation theory is quite simple. Bar-
ring internal quantum numbers, such as flavor, color, etc, the label a = h is just an integer
or half-integer called helicity. Moreover the coefficients D(Λ, p)aa′ become diagonal, mean-
ing that helicity is a Lorentz invariant. More precisely, D(Λ, p)aa′ = eihθ(Λ,p) δaa′ , where
θ(Λ, p) is the Little Group (LG) rotation angle induced by the Lorentz transformation Λ.
Thus, equation (1.3) recasts as

Mn = eih1θ1(Λ,p1) · · · eihnθn(Λ,pn)M ′n . (1.5)

The dependence of the θi(Λ, pi) on Λ and the external momenta is not particularly simple
(for the explicit expression, see for instance [8], or [9] in a nice more modern setup). So
although this transformation law is quite compact, at first sight it is not evident at all
what is the insight that we gain on the covariance properties of the amplitude. Or in other
words, how much the transformation (1.5) constrains the functional form of Mn.

One possible way to make its meaning more transparent is to switch from LG indices
(the helicities) to Lorentz ones. This is the approach Weinberg adopted in one of his
celebrated works [10]. Such a switch can be done via polarization tensors, which precisely
carry out the task of transforming a LG index into a Lorentz one. The amplitude then
becomes a Lorentz tensor, a “tensor amplitude”, and it will transform as such. But there
is a price to pay, which is gauge redundancy. The polarization tensors are not defined
univocally, they do not transform covariantly, and extra requirements have to be imposed on
the tensor amplitude (the so-called gauge Ward identities) so that equation (1.5) is verified.

However, if we decide to use the helicity-spinor formalism, equation (1.5) becomes
more profitable, keeping LG indices instead of Lorentz ones. Using a pair of spinors to
represent massless momenta as pi=λiλ̃i, the amplitude becomes simply a scalar function
of these spinors Mn =Mn(λi, λ̃i), in the sense that all spinor indices must be contracted.
The amplitude satisfies the additional constraints(

λi
∂

∂λi
− λ̃i

∂

∂λ̃i

)
Mn = −2hiMn , i = 1, . . . , n . (1.6)

These equations just guarantee that the amplitude carries the appropriate individual LG
representations. In other words, individual copies of the Poincaré group act on the S-matrix
as they act on one-particle states. Then the constraints above are just a consequence of
the infinitesimal version of equation (1.2).

The meaning of equations (1.6) is very simple: the amplitude scales homogeneously
with the spinors,

Mn

(
tiλi, t

−1
i λ̃i

)
=

n∏
i=1

t−2hi
i Mn

(
λi, λ̃i

)
. (1.7)

This condition surprisingly turns out to be so constraining that, for massless particles and
n= 3, it fixes all the functional dependence of the amplitude!1 [11] The aim of this paper

1Recall that scattering of three massless particles with real momenta is kinematically prohibited. How-
ever such an amplitude can be non-zero if we allow the momenta to be complex. Analyticity of the amplitude
is assumed, and the analytic extension is done using equations (1.6).
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is to explore the effectiveness of analogous constraints on amplitudes involving massive
particles as well. In other words, we want to see if Lorentz symmetry is powerful enough to
fully determine the functional form of three-points amplitudes, independently of the details
of the specific QFTs they come from. Such a question has been certainly considered in the
past (see e.g. [12], where this question was partially studied in an old-fashioned language),
but, as far as we know,2 not in full generality with the helicity-spinor language, which in
our opinion greatly simplifies the analysis.

Although exploring some of the consequences of Poincaré symmetry for scattering
amplitudes is interesting enough, one of our main motivations for this work comes from the
success of the on-shell methods for massless particles based on recursion relations, like the
BCFW recursion relations [15], where the three-point amplitude typically plays the role of
seed. For instance, very powerful on-shell techniques, like the Grassmannian formulation
of N = 4 SYM [16], contain as a small (but fundamental) ingredient the fact that the
three-point massless amplitude is fully fixed by the symmetry of the theory. The recursion
relations also work in the presence of massive particles [17] (see [18–21] for further references
on massive BCFW recursion relations). So if this seed can be determined from non-
perturbative symmetry arguments, that can set up the stage for more profound discussions,
noticeably in a scenario where several potential Infra-Red singularities are absent.

Actually, from related recent developments comes another of our motivations. When
the Grassmannian techniques are employed for more realistic, less supersymmetric, the-
ories, massive particles can pop up in the discussion, as a means to regulate forward
limits [22]. They appear as well in the scattering equations approach [23], where it has
been recently conjectured that the key to extend the formalism to loop level lies in forward
limits of scattering amplitudes involving massive particles [24, 25].

Let us now briefly sneak peek into the contents of this paper. We start in section 2 by
setting up the notation that will be used in the rest of the paper. We review the basics of
the helicity-spinor formalism, and we apply it to massive particles by using the fact that a
time-like momentum can always be decomposed into two light-like one.

In section 3 we revisit the proof by Benincasa and Cachazo [11] of the “uniqueness” of
the massless three-point amplitudes, emphasizing certain particular aspects in preparation
for the generalization to the massive case. Then in section 4 we identify the appropriate
spinor representations of the massive LG generators, drawing inspiration from [26], which
allow to write and study the analogue of (1.6) for massive particles.

In section 5 we show how to solve the equations for three-particle scattering amplitudes
derived in section 4, focusing on the massive external states in their lowest spin projection.
The solution does not come unique out of the box, but rather some undetermined functions
remain. In section 6, using some physical conditions, we show how these functions are
actually just constants. We also study how massive amplitudes reduce to massless ones in
the Ultra-Violet (UV) regime, which prompts us to analyze the reference frame where all

2More recently, several interesting works [13, 14] have also considered the question of Lorentz constraints
on massive three-point amplitudes using the helicity-spinor formalism and extra ingredients, like supersym-
metry or string theory. Our analysis does not require any of these ingredients and is therefore more general,
although some of the amplitudes that we later discuss can be already found in those works.
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the massive momenta are decomposed along the same null reference direction. In such a
frame, the amplitude takes a fully fixed and universal form.

Before concluding with a summary and some remarks, we show in section 7 how our
results can be matched with amplitudes computed via standard Lagrangian methods, for
some emblematic processes involving massive particles.

The reader who is interested in reproducing the computations will find in appendix A
some details concerning a technical study of the LG in the helicity-spinor formalism, and
in appendix B some formal derivations which underlie the results of section 5.

2 Setting up the notation: the helicity-spinor formalism

Unfortunately helicity-spinor practitioners have not agreed on a single set of conventions.
So in this section we are obliged to review well-known material just to make clear our
notation, to be heavily used in the rest of the manuscript. Let us start by making precise the
connection between the proper orthochronous Lorentz group in four dimensions, SO+(3, 1),
and SL(2,C).

Using the Pauli matrices plus the identity, σµ =
(
1, σ1, σ2, σ3), we can associate a

complex two-by-two matrix to any four-vector:

R4 −→ M2(C)

kµ = (k0, k1, k2, k3) 7−→ σµaȧkµ =
(
k0 + k3 k1 − ik2
k1 + ik2 k0 − k3

)
= kaȧ .

(2.1)

This definition induces a map between SO+(3, 1), which acts on R4 as k 7→ Λk, and
SL(2,C), which acts on M2(C) as k 7→ ζ k ζ†. The map ζ(Λ) is given by:

SO+(3, 1) −→ SL(2,C)
Λ : kµ 7→ Λνµkν 7−→ ζ(Λ) : kaȧ 7→ ζba kbḃ ζ

†ḃ
ȧ

,

ζ(Λ)bakbḃζ†(Λ)ḃȧ = σµaȧΛνµkν
m

ζ(Λ)baσ
µ

bḃ
ζ†(Λ)ḃȧ = σνaȧΛµν

. (2.2)

In order to have the Minkowski norm preserved, one should impose k2 = (Λk)2, obtaining
| det(ζ)| = 1. Given the way in which ζ acts, its phase has no physical relevance, so we
are allowed to set det(ζ) = 1. This is a left-over freedom, and any other choice would
be equivalent. Note that, as Lie groups, the dimension of SL(2,C) is six, the same as
SO+(3, 1), so the extra phase does not correspond to any physical transformation. The
two groups are still not isomorphic though, as −ζ represents the same Lorentz rotation as ζ.
Quotienting by this transformation we do obtain an isomorphism: SO+(3, 1)=SL(2,C)/Z2.
Indeed SL(2,C) is the universal cover of the Lorentz group.

Moreover we underline that the action of SL(2,C) on four-momenta, i.e. k 7→ ζkζ†,
is crucial in order to map real momenta, i.e. (kaȧ)† = kaȧ, into real momenta. In the
following, as it is usual and useful practice in the S-matrix program and recursion relations
literature, we will deal with complex momenta. The complexified Lorentz group O(3, 1)C
is locally isomorphic to SL(2,C) × SL(2,C), which acts on momenta as k 7→ ζ k ζ̃†. Thus
going to real momenta implies taking the diagonal in SL(2,C)× SL(2,C), that is: ζ̃≡ζ.

– 5 –
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The definition (2.1) determines how Lorentz contractions look like with spinorial indices

k · l = 1
2 ε

baεȧḃ kaȧlbḃ . (2.3)

Naturally Lorentz invariants become SL(2,C)× SL(2,C) invariants now. It is then conve-
nient to define two SL(2,C)-invariant inner product for spinors, one for each representation
of SL(2,C) under which they can transform:

〈κ, λ〉 ≡ εbaκaλb , [κ̃, λ̃] ≡ εȧḃκ̃ȧλ̃ḃ , (2.4)

with ε12 = 1 = ε1̇2̇, ε12 = −1 = ε1̇2̇, and εacεcb = δab. These inner products are obviously
anti-symmetric and, in particular, their vanishing implies that the spinors are proportional.

Another consequence of (2.1) is that k2 = − det(kaȧ). For a null momentum, k = p,
the zero-determinant condition can be solved automatically by choosing

paȧ = λaλ̃ȧ . (2.5)

Instead, enforcing det(kaȧ) = m2 for a massive momentum, k = P , cannot be done so
cleanly. There are two standard ways of doing it, as discussed by Dittmaier in [27]. We
choose the strategy of representing P as the sum of two null momenta (see [13, 14, 21, 28, 29]
for other interesting applications of this formalism):

Paȧ = λaλ̃ȧ + µaµ̃ȧ , 〈λ, µ〉[λ̃, µ̃] = −m2 . (2.6)

Notice that the choices of spinors in (2.5) and (2.6) are not unique. This non-uniqueness will
be fundamental in the following sections, as the different choices can actually be connected
via LG rotations, under which the amplitude has known transformation properties. Before
closing this section, we specify two familiar shorthand notations that will be often used in
the remainder of the paper. The first one is for the product of a pair of light-like momenta
pi=λiλ̃i and pj =λj λ̃j . In order to avoid writing λ’s all the time, we denote

2 pi · pj = 〈λi, λj〉[λ̃i, λ̃j ] ≡ 〈i, j〉 [i, j] . (2.7)

The second shorthand notation is for the product of a light-like vector p = λλ̃ with a
generic four-momentum k:

2p · k = εbaεȧḃ λaλ̃ȧkbḃ ≡ −〈λ |k | λ̃] . (2.8)

The minus sign on the last line has been introduced to make intuitive the reduction of
equation (2.8) to (2.7) in the particular case where k=κκ̃ is light-like:

− 〈λ |κκ̃ | λ̃] = −〈λ, κ〉[κ̃, λ̃] = 〈λ, κ〉[λ̃, κ̃] . (2.9)

3 Revisiting the massless three-point amplitude

In a very nice piece of work [11], among many other things Benincasa and Cachazo realized
that, with some physical requirements, equation (1.6) fixes the three-point amplitude up

– 6 –
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to a coupling constant. In this section, we revisit both the passage from (1.6) to (1.3) and
the solution of the former equation, in such a way that the transition from massless to
massive particles later on be as smooth as possible.

In order to specify the form and transformation properties of one-particle states as
in (1.2), one has to find the infinite-dimensional unitary irreducible representations (irreps)
of the Poincaré group acting on the Hilbert space of physical states. As Wigner showed long
time ago, it is sufficient to study the representation theory of the subgroup that leaves the
momentum of the particle invariant. This subgroup is called the Little Group, and depends
on the Lorentz character of the momentum. Its irreps induce irreps of the Poincaré group.

For a massless particle with momentum p, the LG is ISO(2), the isometry group of R2.
If we leave out of the discussion the so-called continuous-spin particles,3 we can consider
that the LG is just U(1). This group is Abelian, and its irreps are very simple: they are
characterized by an integer or half-integer number h, the helicity. Their defining property is

J |p, h〉 = h |p, h〉 , (3.1)

where J is the infinitesimal generator of the LG. Of course J is nothing but the generator
of spatial rotations around the direction of movement of the particle, which indeed leaves
p invariant. In terms of the generators of spatial rotations, it can be written as J = ~p· ~J

|~p| .
Although J has a trivial effect on p= λλ̃, it acts non-trivially on the spinors. A Lorentz
rotation R = eiθ J rotates the spinors as

λ→ e−iθ/2λ , λ̃→ eiθ/2λ̃ . (3.2)

We gathered in the appendix A.1 some details to gain physical intuition on this well-known
formula. Here we just notice that indeed this transformation leaves p=λλ̃ invariant, and
that it preserves the reality of p, when λ̃ = sign(p0)λ†. Actually, when we allow the
momentum to be complex, the LG transformation is enlarged to λ → t λ, λ̃ → t−1λ̃, for
generic t ∈ C \{0}. It is now straightforward to write the generator J in terms of spinor
differentials:

J = −1
2

(
λa

∂

∂λa
− λ̃ȧ

∂

∂λ̃ȧ

)
≡ −1

2

(
λ
∂

∂λ
− λ̃ ∂

∂λ̃

)
. (3.3)

Plugging this expression in (3.1) we get(
λ
∂

∂λ
− λ̃ ∂

∂λ̃

)
|p;h〉 = −2h |p;h〉 . (3.4)

Tensoring this expression with the vacuum and other n− 1 one-particle states, we ob-
tain (1.6). Leaving a more detailed justification for section 4.1, it is interesting to point
out here that equation (3.4) holds if we substitute |p, h〉 by the polarization tensor of the
state. Concrete realizations of the polarization tensors for a massless spin-s particle can
be found in [11] for any value of s. They can be built out of tensoring appropriately those

3Although they are interesting in their own right. See [9, 30–32] for a recent reconsideration.
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for spin-1
2 and spin-1 particles, which read

εa(p;−
1
2) = λa ,

εȧ(p; +1
2) = λ̃ȧ ,

εaȧ(p;−1) = λaµ̃ȧ√
2[λ̃, µ̃]

,

εaȧ(p; +1) = µaλ̃ȧ√
2〈µ, λ〉

.

(3.5)

The reference spinors µ and µ̃ are completely arbitrary, and reflect the fact that polarization
tensors are not univocally defined.

Let us now move to the solution of the equations (1.6) for the massless three-particle
amplitude. Denoting

J¯
i = −1

2

(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
(with no sum on i), (3.6)

the three equations can be written as

J¯
iM{hj}

(
λj , λ̃j

)
= hiM

{hj}
(
λj , λ̃j

)
, i = 1, 2, 3 . (3.7)

Notice that the amplitude depends not just on the momenta of the participating particles,
but also on their states, i.e. their helicities. We show it explicitly via a superindex, M{hj}=
Mh1,h2,h3 , as it will be convenient for transitioning to the massive case. Because of Lorentz
covariance, the three-point amplitude must be a function of the spinor products:

x1 = 〈2, 3〉 , x2 = 〈3, 1〉 , x3 = 〈1, 2〉
y1 = [2, 3] , y2 = [3, 1] , y3 = [1, 2]

}
⇒ M{hj}

(
λj , λ̃j

)
= M{hj}(xj , yj) . (3.8)

Using the chain rule, the operators (3.6) are easily translated into

J¯
i = −1

2
∑
j 6=i

(
xj

∂

∂xj
− yj

∂

∂yj

)
≡ −1

2
∑
j 6=i

(
xj∂j − yj ∂̃j

)
. (3.9)

The three equations (3.7) can be then recombined into(
x1∂1 − y1∂̃1

)
M{hj} = (h1 − h2 − h3)M{hj} ,(

x2∂2 − y2∂̃2
)
M{hj} = (h2 − h3 − h1)M{hj} ,(

x3∂3 − y3∂̃3
)
M{hj} = (h3 − h1 − h2)M{hj} .

(3.10)

Barring delta functions,4 the most general solution to these three equations is:

M{hj} = xh1−h2−h3
1 xh2−h3−h1

2 xh3−h1−h2
3 f (x1y1, x2y2, x3y3) . (3.11)

It would have been completely equivalent to choose a pre-factor made of powers of the
yi. Our reason to display this formula somewhat asymmetrically will become apparent in
section 5.

4One can argue that the cluster decomposition principle rules them out.
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Arriving here, we have assumed that all xi, yi were independent. But this is not the
case, because momentum conservation implies relations among them. We will discuss these
relations in a general fashion in section 5.1. In the scenario with three massless particles
they are quite simple: they impose that either xi = 0, or yi = 0. Clearly all the products
xiyi=0, so there are only two classes of functions that yield a physically sensible amplitude,
neither singular nor trivial:

f = gH , and f = gA (x1y1)h2+h3−h1 (x2y2)h3+h1−h2 (x3y3)h1+h2−h3 , (3.12)

giving the following two possible three-point amplitudes5

M{hj} = gH x
h1−h2−h3
1 xh2−h3−h1

2 xh3−h1−h2
3 , (3.13)

M{hj} = gA y
h2+h3−h1
1 yh3+h1−h2

2 yh1+h2−h3
3 . (3.14)

To answer whether one is valid rather than the other, we resort to another physical condi-
tion. The three-particle amplitude must vanish for real kinematics, since a three-massless-
particle scattering is kinematically prohibited. Since real kinematics implies yi =−x∗i , it
must be that all xi, yi = 0. Imposing M{hj}(0, . . . , 0) = 0 forces us to choose (3.13) for
h1+h2+h3 < 0 and (3.14) for h1+h2+h3 > 0. For the case h1+h2+h3 = 0, the choice is
ambiguous and actually the amplitude does not need to vanish, as (only) for this helicity
configuration it is consistent to have the three real momenta aligned up along the same
null direction [33]. We are however not aware of any physical interaction that produces a
three-particle process with h1 +h2 +h3 = 0 (except of course for the trivial case of three
scalars, where the amplitude is just a constant), so one may speculate that this case is
somehow sick [34, 35].

With this line of reasoning we have just reproduced the conclusions of [11], essentially
that the three-particle amplitude is fixed up to a coupling constant. This conclusion is
reached using no more than Poincaré symmetry plus sensible physical requirements, there-
fore it is a non-perturbative statement.

Nonetheless let us comment on one of the conditions we used, which was that of requir-
ing the three-particle amplitude to be non-singular. That seems like a sensible requirement
if we are talking about the full non-perturbative amplitude. However, at loop order in a
perturbative expansion, singularities can show up. For instance taking a collinear limit in
the P(12) = p1+p2 channel of the one-loop three-vertex of YM with three negative-helicity
gluons one gets the singular [36]

M−1,−1,−1
1-loop ∝ 〈2, 3〉〈3, 1〉[1, 2] = 〈1, 2〉〈2, 3〉〈3, 1〉

〈1, 2〉[1, 2] . (3.15)

Of course a singular object is not observable, and can only be handled with an appropriate
regularization scheme. In a certain context6 it can make sense to call this object an “am-
plitude”, but our point here is just to remark that it must obey the Lorentz transformation

5In a parity-invariant theory the two amplitudes are related by conjugation, so that gH and gA are not
independent.

6Namely the equation (3.15) was needed in [37] as a seed amplitude in a one-loop BCFW recursion
relation for computing rational pieces of YM amplitudes.
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properties of an amplitude (3.10). Therefore the expression (3.15) must anyway satisfy the
general form (3.11). And indeed it does, if we choose f=(x3y3)−1. What we want to illus-
trate with this example is that if we drop the requirement of finiteness of the amplitude,
allowing it to be singular, then the function f in (3.11) is not fixed a priori anymore, and
needs not correspond to any of the two options in (3.12).

We should conclude that in general (3.11) is a mathematically sound result. The
further physical requirement that the amplitude be non-singular, as it should be at the
non-perturbative level, or for a tree-level contribution, fixes the form of the otherwise
arbitrary function f to one of the two choices in (3.12).

4 Little Group action on the massive three-point amplitude

In this section we will mimic the logic that we used in the previous section, in order to
study in spinorial form the analogue of equation (1.6) for three-point amplitudes contain-
ing massive particles. That is, first we identify the LG of a massive particle. Then we
find the defining property of its irreps in terms of the action of the LG generators, i.e.
the counterpart of (3.1). Finally, after expressing these generators in spinorial form, the
homologue of equation (1.6) will follow. The procedure is obviously valid for a generic
n-point amplitude. We specify to n = 3, which is the most easily constrained case.

Of course the LG of a massive particle with momentum

P = λλ̃+ µµ̃ , 〈λ, µ〉[λ̃, µ̃] = −m2 , (4.1)

is SO(3). If we go to the rest frame of the particle, this group is just made of all the
spatial rotations, which have no effect on ~P = 0. As SO(3) = SU(2)/Z2, and it is more
common to talk about SU(2) representations, we commit a small abuse of language, and
hereinafter we will talk about an SU(2) LG. The Z2 identification should be kept in mind,
but it will not be very relevant for what follows. The three standard generators of SU(2)
can be conveniently repacked as J+, J0, J−, satisfying the algebra[

J+, J−
]

= 2J0 ,
[
J0, J±

]
= ±J± . (4.2)

In the rest frame, they can be expressed in terms of the Lorentz generators as usual:
J+ = Ĵ23 +iĴ31, J0 = Ĵ12, J− = Ĵ23−iĴ31. The irreps are characterized by a momentum
and (this time) two integers or half-integers, s and σ, with σ ∈ {−s,−s + 1, ..., s}. The
generators act in the following way:

J0|P ; s, σ〉 = σ|P ; s, σ〉 ,

J+|P ; s, σ〉 =
√

(s− σ)(s+ σ + 1)|P ; s, σ + 1〉 ,

J−|P ; s, σ〉 =
√

(s+ σ)(s− σ + 1)|P ; s, σ − 1〉 .

(4.3)

The number s is the spin of the particle, and σ is the projection of the spin on the x3

direction. Only the former is Lorentz-invariant. The latter depends on the choice of
Lorentz frame.
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We find an unpleasant surprise when expressing the operators above in terms of spinor
differentials (see appendix A.2 for details). These generators correspond to the SU(2)
acting as in (A.13), which does not translate nicely in terms of spinor differentials. In
order to escape this drawback, we will use a different, “more covariant”, representation of
the massive LG, which we will denote by S̃U(2) in order to emphasize the distinction.

Consider the transformation(
λ

µ

)
→ U

(
λ

µ

)
,

(
λ̃ µ̃

)
→
(
λ̃ µ̃

)
U † , (4.4)

with U ∈ Ũ(2). This transformation leaves P invariant

λλ̃+ µµ̃ =
(
λ µ

)(λ̃
µ̃

)
=
(
λ µ

)
UᵀUᵀ†

(
λ̃

µ̃

)
, (4.5)

so the S̃U(2) ⊂ Ũ(2) is the perfect candidate to be identified with the LG. Indeed, let us
denote the generators of this S̃U(2) with a tilde as well: J̃+, J̃0, J̃− (they can be respectively
identified with the Pauli matrices combinations σ1+i σ2

2 , σ3

2 , σ1−i σ2

2 ). We show in the
appendix A.2 how they are related to those of (4.2) simply via a momentum-dependent
Lorentz rotation. From (4.4) we can read their differential form, already written in [26].

J̃+ = −µ ∂

∂λ
+ λ̃

∂

∂µ̃
,

J̃0 = −1
2

(
λ
∂

∂λ
− λ̃ ∂

∂λ̃
− µ ∂

∂µ
+ µ̃

∂

∂µ̃

)
,

J̃− = −λ ∂

∂µ
+ µ̃

∂

∂λ̃
.

(4.6)

This simple action on the spinors is what we meant above by a more covariant repre-
sentation of the LG. The S̃U(2) irreps are as in (4.3), just putting tildes everywhere. In
section 6 we will come back to the meaning of the Ũ(1) ⊂ Ũ(2) that has been left out of
this discussion.

A natural question raises, about how |P ; s, σ̃〉 and |P ; s, σ〉 are related. Let us reason
in the rest frame of the particle. Here J0 = Ĵ12 and σ is just the projection of the spin on
the x3 direction. From the appendix A.2, we can see that if we choose λλ̃ along the x3

direction (and µµ̃ spatially opposite to it), then7 J̃0 = J0, meaning that with this choice
we can identify σ̃≡σ and therefore the states |P ; s, σ̃〉≡ |P ; s, σ〉. In general J̃0 measures
the spin projection along the spatial direction of λλ̃− µµ̃, and we will refer to σ̃ simply as
spin projection.

We are now ready to write an analogue of equation (3.7), when massive particles are
involved in a three-particle process. If particle i is massless, with momentum pi = λiλ̃i, we
can write for it

J¯
i |pi;hi〉 = hi |pi;hi〉 , (4.7)

7More precisely, with such a choice we see that α = a and β = b in equation (A.20) when R = eiθJ0 , so
that U = eiJ̃0 = R
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with J¯
i defined in (3.6). In the case particle i is massive, Pi = λiλ̃i +µiµ̃i, we have instead

the relations
J̃¯
i
a |Pi; si, σ̃i〉 = ia(si, σ̃i) |Pi; si, σ̃i + a〉 , a = −1, 0, 1 , (4.8)

where the J̃a are obtained dressing (4.6) with the particle index i, and

i0(si, σ̃i) = σ̃i , i±(si, σ̃i) =
√

(si ∓ σ̃i) (si ± σ̃i + 1) . (4.9)

The three-point amplitude will depend on all the labels characterizing the states, there-
fore on the spinors making up the momenta together with the helicity/spin labels. For
compactness, let us omit the dependence on the former and display the dependence on the
latter in the form of a superindex: M{ηj} = Mη1,η2,η3 , where ηj≡hj in the case particle j
is massless, and ηj≡ σ̃j in the case it is massive. With this notation, the equations for the
amplitude look like J¯

iM{ηj} = hiM
{ηj} if k2

i = 0

J̃¯
i
aM{ηj} = iaM

{ηj+δija} if k2
i < 0

i = 1, 2, 3 . (4.10)

Opposite to what happened in the massless case (3.7), these are not equations for a single
function. Unless all massive particles are scalars, the equations rather mix amplitudes of
different spin projection, i.e. amplitudes M{ηj} with different values for ηi= σ̃i, if the i-th
particle is massive. Thus, a good strategy to study the system of equations (4.10) is to
focus on the amplitude with ηi =−si, that we will call, with a slight abuse of language,
the “lowest-spin” amplitude. The generator J̃¯

i
− kills this amplitude, and applying J̃¯

i
+ to

it 2si times we should reach the “highest-spin” amplitude, which should be killed by J̃¯
i
+.

Therefore we can consider the simplified set of equations

J¯
iM

{hj}
ls = hiM

{hj}
ls if k2

i = 0

J̃¯
i
0M

{hj}
ls = −siM

{hj}
ls

J̃¯
i
−M

{hj}
ls = 0(

J̃¯
i
+

)2si+1
M
{hj}
ls = 0

if k2
i < 0

i = 1, 2, 3 . (4.11)

This differential system involves a single function, the lowest-spin three-point amplitude,
that we denote as Mls

{hj} (notice that the lowest-spin condition only applies to the labels
of the massive particles; the helicities hj of the massless particles, if any, are free). We
will solve for this amplitude in section 5. The “higher-spin” amplitudes, where η̃i >−si,
can be obtained by simply applying J̃¯

i
+ to Mls

{hj}, following the second equation in (4.10),
with a≡+1 .

As a side comment we remark here that if one is looking for a Lorentz-invariant “am-
plitude”, the quantity that one should consider is the squared amplitude, averaged over
spin components of the massive particles:

∑
σi |M

{ηj}|2. It is only needed to sum over the
spin projections of the massive particles involved. Using the fact that

(
J̃a
)∗

= −J̃−a for
the operators in (4.6), it is easy to prove that they all annihilate the averaged squared
amplitude and thus this quantity is Lorentz invariant.
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4.1 Massive polarization tensors

Before moving to the solution of the differential equations, let us make some remarks about
polarization tensors, and in particular discuss how they look like for massive particles in
spinor formalism.

The Poincaré group is made out of translations and Lorentz rotations. Although the
combination of the two is not a direct product, when building Poincaré representations (1.1)
their roles are somewhat separated. The momentum label k comes from the translations,
while the internal labels a come from the Lorentz rotations. Secretly, this separation is the
same as the one we use when looking for free-particle solutions of a given wave equation.8

Generically such wave-functions look like

ψ(k, a)[x] = ε(k ; a) e−ik·x . (4.12)

The information about the properties of the wave-function regarding translations are en-
coded in the exponential factor. Instead, the Lorentz properties are carried by ε(k; a), for
which we have conspicuously used a notation that makes it look like a polarization tensor.
In the case of a spin-1 particle, this notation becomes the standard one. In the case of
the spin-1

2 electron of QED, the usual notation is ε(k ;±1) = u±(k), v±(k). One could
reasonably call u and v polarization spinors.

The point that we want to make here is that there is an obvious identification

〈x|k ; a〉 ≡ ψ(k ; a)[x] . (4.13)

In particular, the polarization tensors ε(k ; a) should satisfy equation (4.7) if k is null
or (4.8) if k is massive. For the next sections, it will be useful to have explicit expressions
for polarization tensors of a massive particle with momentum (4.1) and spin s = 0, 1

2 , ... in
terms of the spinors λ, λ̃, µ, µ̃.

For a scalar particle, evidently the polarization tensor is trivial. The first non-trivial
case is spin 1

2 . The only linear solutions to the equations (4.8) are

ε

(
P ;−1

2

)
= λ

ε

(
P ; +1

2

)
= −µ

or
ε

(
P ;−1

2

)
= µ̃

ε

(
P ; +1

2

)
= λ̃

, (4.14)

and which one to choose depends on the SL(2,C) representation we want the spinor to
transform under. For a massive Dirac fermion, we have to combine the two representations:

ε

(
P ;−1

2

)
=
(
µ̃

±λ

)
, ε

(
P ; +1

2

)
=
(

λ̃

∓µ

)
. (4.15)

8Indeed one can build wave equations directly from the representation theory of the Poincaré group.
Such a process is not unique though (neither are Lagrangians!), and such a road has not been much followed
in modern times.
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By choosing the sign appropriately9 we obtain the usual spinors u and v, which solve the
Dirac equation:

(γµPµ −m) v±(P ) = 0 , (γµPµ +m)u±(P ) = 0 . (4.16)

We can move now to the massive spin-1 particle, and follow the same steps. Asking for
bilinear solutions of (4.8), up to numerical factors there is only one answer:

ε(P ;−1) = λ µ̃ , ε(P ; 0) = λλ̃− µµ̃√
2

, ε(P ; +1) = −µ λ̃ . (4.17)

If we do not require bilinear solutions, we have the freedom of incorporating arbitrary
functions of 〈λ, µ〉 and [λ̃, µ̃] into the mix. We will do so in order to meet the requirement
that the polarization vectors become those of (3.5) in the massless limit that we will discuss
later in section 6.1. For the moment, we just take this limit as indicated in equation (6.3),
and in order to recover the massless polarization vectors (3.5) we have to modify the
expressions (4.17) in the following way:

ε(P ;−1) = λ µ̃√
2[λ̃, µ̃]

, ε(P ; 0) = λλ̃− µµ̃
2m , ε(P ; +1) = − µ λ̃√

2〈λ, µ〉
. (4.18)

These are the familiar10 polarization vectors of a massive spin-1 particle. But if we want
them to verify equations (4.8), we have to remember to consequently dress the J̃± with the
factors

J̃+ →

√
− [λ̃, µ̃]
〈λ, µ〉

J̃+ , J̃− →
√
−〈λ, µ〉

[λ̃, µ̃]
J̃− . (4.19)

This rescaling leaves the algebra (4.2) unchanged, and makes the J̃± “µ-helicity” blind, a
fact that we will take advantage of later on. Since for real momentum it is always possible
to fix the factor inside the square root to 1, a natural way to think about formula (4.19) is
as a physically sensible analytic continuation of J̃± to complex momenta.

As in the massless case, polarization tensors for spins s > 1 can be constructed by

tensoring the ones for s= 1
2 and s= 1. Notice that simple factors of

(
− [λ̃,µ̃]
〈λ,µ〉

)± 1
2 must be

included in the polarization spinors (4.14) to make the equations (4.8) compatible with the
rescaling (4.19). For instance, for the Dirac fermion the polarization tensors that we will
use later on are

ε

(
P ;−1

2

)
=


√
− 〈λ,µ〉[λ̃,µ̃] µ̃

±λ

 , ε

(
P ; +1

2

)
=

 λ̃

∓
√
− [λ̃,µ̃]
〈λ,µ〉 µ

 . (4.20)

9The choice depends on conventions. One possibility, readily written with the massive helicity-spinor
formalism we are adopting, can be found for example in appendix B of [29].

10It is immediate to check that, for real P , they verify the usual properties like ε(P ;±1)∗ ·ε(P ;±1) = 1,
ε(P ;±1)·ε(P ;±1)=0, and ε(P ;±1)∗=ε(P ;∓1).
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5 Solving for the massive three-point amplitude

We now have almost all the tools to study the solutions of the differential equations (4.11).
The only missing ingredient is the realization that, because of momentum conservation and
on-shell conditions, the spinors that parametrize the momenta are not independent. Since
the differential operators in (4.11) commute with these constraints, we can take them into
account before or after solving. In section 3 we did it after, but due to the rapid growth
in the number of variables as we include massive particles, now it will be more convenient
for us to take these kinematic constraints into account from the outset. Therefore we start
this section by first deriving the relations among the kinematic variables which the solution
can depend on.

5.1 Kinematic constraints

Since we decompose time-like momenta into two light-like ones, momentum conservation
for the massive three-particle process looks like momentum conservation for a massless
n-particle process, where n will exceed 3 by the number of involved massive particles. For
convenience, for massive momenta Pi = λiλ̃i+µiµ̃i, we relabel {µi, µ̃i} → {λj , λ̃j} with
appropriate j > 3 (we will specify the values of j for each case in the subsections below).
In this way, momentum conservation reads as:

n∑
i=1

λiλ̃i = 0 . (5.1)

Out of the 2n spinors we can make n(n − 1) (angle and square) products. We choose to
keep most of the angle products as independent variables and to maximally reduce the
number of independent square products. This simple systematic way to reduce the number
of variables is motivated by our focus on the lowest-spin amplitude, but any other choice
would be equivalent.

We first note that our spinors live in a 2-dimensional complex vector space, and so
projecting onto two directions is enough to span the entire space:

〈j, k〉λi + 〈k, i〉λj + 〈i, j〉λk = 0 . (5.2)

This fact goes under the name of Schouten identities. We can then choose for instance λ1
and λ2 as projecting directions, and express any of the angle products not involving neither
λ1 nor λ2 in terms of

〈1, 2〉 , 〈1, i〉 , 〈2, i〉 , with i = 3, . . . , n , (5.3)

which are 2 (n−2) + 1 = 2n−3 independent variables. It is not possible to reduce the
number of independent angle products using further Schouten identities: any Schouten
involving 〈1, 2〉, 〈1, i〉, 〈2, j〉 must also involve 〈i, j〉.

So far we have only used constraints from linear algebra, and no momentum conser-
vation. We will use the latter to reduce the number of square products. Contracting (5.1)
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with λ1 and λ2 respectively, we obtain

λ̃1 = −
n∑
i=3

〈i, 2〉
〈1, 2〉 λ̃i , λ̃2 = −

n∑
i=3

〈1, i〉
〈1, 2〉 λ̃i . (5.4)

We have contracted with λ1 and λ2 to be consistent with the choice of (5.3), and indeed we
can see that only the angle products that we have chosen as independent variables in (5.3)
appear in (5.4). In addition, the Schouten identities among the angle products ensure that
conditions (5.4) are sufficient to guarantee that momentum conservation be satisfied.

Thus we can derive in this way all the square products involving λ̃1 or λ̃2 in terms of

[i, j] with i, j 6= 1, 2 , (5.5)

which are 1
2(n − 2)(n − 3) variables. This number of variables can be further reduced to

2(n−4) +1 = 2n−7 only if n> 5, as we can still apply Schouten identities involving the
left-over variables (5.5). Schouten identities involving λ̃1 or λ̃2 follow straightforwardly
from (5.4), so they cannot contribute to further reduction of the number of independent
square products.

So, according to our exploitation of momentum conservation and Schouten identities,
we see that, out of the initial n (n− 1) spinor products, the number of independent ones
is reduced to  2n− 3 + 1

2(n− 2)(n− 3) = 1
2n (n− 1) if n ≤ 5

2n− 3 + 2n− 7 = 2 (2n− 5) if n > 5
. (5.6)

This conclusion is generic, and holds for any kinematic process with n conserved mass-
less momenta. In our setups, we have additional on-shell conditions, one per each massive
particle. Applying these mass conditions we are able to finally reduce the counting to
6− 1 = 5 variables for one massive particle, 10− 2 = 8 variables for two massive particles,
and 14 − 3 = 11 variables for three massive particles. In the following we treat and solve
separately these three cases.

5.2 One massive leg

Let us consider the three-point amplitude involving one massive particle and two massless
ones. The respective momenta will be p1, p2, and P

¯
3, where we underline the index of the

massive particle to avoid the mixing-up with the index of the spinors in the decomposition.
Thus, in the spinor language we have

p1 = λ1λ̃1 , p2 = λ2λ̃2 , P
¯
3 = λ3λ̃3 + λ4λ̃4 , (5.7)

with the mass condition reading

〈3, 4〉[4, 3] = m3
2 . (5.8)

The system (4.11) applied to the present case contains five equations. Let us start by
solving the first four. Denoting the lowest-spin three-point amplitude as M = Mh1,h2,−s3 ,
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they cast as (
λ1

∂

∂λ1
− λ̃1

∂

∂λ̃1

)
M = −2h1M ,

(
λ2

∂

∂λ2
− λ̃2

∂

∂λ̃2

)
M = −2h2M ,(

λ3
∂

∂λ3
− λ̃3

∂

∂λ̃3
− λ4

∂

∂λ4
+ λ̃4

∂

∂λ̃4

)
M = +2s3M ,

(
λ3

∂

∂λ4
− λ̃4

∂

∂λ̃3

)
M = 0 .

(5.9)
These equations can be easily translated into the language of spinor products, which we
name for compactness as follows:

x1 = 〈2, 3〉, x2 = 〈3, 1〉, x3 = 〈1, 2〉, x4 = 〈3, 4〉, x5 = 〈2, 4〉, x6 = 〈1, 4〉,
y1 = [2, 3], y2 = [3, 1], y3 = [1, 2], y4 = [3, 4], y5 = [2, 4], y6 = [1, 4].

(5.10)

We just need to use the chain rule to rewrite equations (5.9) in terms of these new variables
(using the shorthand notation ∂yj ≡ ∂̃j) as(

x2∂2 + x3∂3 + x6∂6 − y2∂̃2 − y3∂̃3 − y6∂̃6
)
M = −2h1M ,(

x1∂1 + x3∂3 + x5∂5 − y1∂̃1 − y3∂̃3 − y5∂̃5
)
M = −2h2M ,(

x1∂1 + x2∂2 − x5∂5 − x6∂6 − y1∂̃1 − y2∂̃2 + y5∂̃5 + y6∂̃6
)
M = 2s3M ,(

x2∂6 − x1∂5 + y5∂̃1 − y6∂̃2
)
M = 0 .

(5.11)

Now, we know that the variables (5.10) are not all independent; so we apply the constraints
as explained in the previous section, selecting as independent variables x1, x2, x3, x4, x5.
Given that the relations among variables are easy in this case, we display them explicitly
for completeness:

y3 = −m
2

x3
, y4 = −m

2

x4
, y1 = −m

2x6
x3x4

,

y5 = −m
2x2

x3x4
, y2 = −m

2x5
x3x4

, y6 = −m
2x1

x3x4
,

x6 = −x3x4 + x2x5
x1

. (5.12)

Using these constraints the system can be consistently11 simplified to

(x2∂2 + x3∂3 + x5∂5)M = −2h1M ,

(x1∂1 + x3∂3)M = −2h2M ,

(x1∂1 + x2∂2 − x5∂5)M = +2s3M ,

∂5M = 0 .

(5.13)

The very last equation tells us that the amplitude does not depend on x5, so that the other
three equations yield exactly the same system as in the massless case (with h3 replaced

11The derivatives appearing in (5.13) should be understood as total derivatives, and the fact that the
operators in (5.11) can be expressed in terms of total derivatives follows from the commutation of the
differential operators and our constraints. For example, the problem of solving (x∂x + y∂y)f = 3f subject
to the constraint y = x2 is ill-defined because the operator (x∂x + y∂y) cannot be written in terms of
Dx = ∂x + 2x∂y.
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by −s3)! Moreover, we note that x4 is not appearing in the equations, so that there is
no constraint at all on the dependence of the amplitude on that variable. Thus, the most
general solution for the one-massive-leg lowest-spin three-point amplitude is

Mh1, h2,−s3 = xh1−h2+s3
1 xh2−h1+s3

2 x−s3−h1−h2
3 f1(x4)

= 〈1, 2〉−s3−h1−h2 〈2, 3〉h1−h2+s3 〈3, 1〉h2−h1+s3 f1
(
〈3, 4〉

)
,

(5.14)

where f1 is an arbitrary function, which depends on 〈3, 4〉 and on other parameters of
the interaction like the mass m3, the coupling constant, etc. We can notice that the mass
dimension of f1 is fixed since the three-particle amplitude must have mass dimension equal
to 1. Since 〈3, 4〉 is dimensionful, it is convenient to write f1 as

f1(〈3, 4〉) = gm
1+h1+h2−s3−[g]
3 f̃1

(〈3, 4〉
m3

)
, (5.15)

where g is the coupling constant controlling the interaction and [g] is its mass dimension.
Now the mass dimensions are provided by the m3-dependent pre-factor, and the function
f̃1 is dimensionless, depending only on a dimensionless argument. In section 6 we will argue
that the function f̃1 should be constant.

We have not yet used the last equation in the system (4.11). The action of the raising
operator J̃¯

3
+ on the amplitude (5.14) is spelled out in the appendix B. Concretely, from

equation (B.8) we see that

(
J̃¯

3
+

)2s3+1
Mh1, h2,−s3 = 0 =⇒ (h1 − h2 − s3)(2s3+1) = 0 , (5.16)

where we are using the Pochhammer symbol

(a)(n) = a(a+ 1) · · · (a+ n− 1) . (5.17)

Condition (5.16) means that the difference of the helicities can only take certain values,
namely

h1 − h2 = −s3,−s3 + 1, . . . , s3 =⇒ |h1 − h2| ≤ s3 . (5.18)

This is a strong constraint on the possible interactions with one massive particle, and it has
a clear physical meaning: it comes out of the conservation of angular momentum. Since this
process is allowed for real kinematics, we can place ourselves in a frame where the spatial
momenta of the three particles are aligned. Imposing the conservation of momentum and
angular momentum in this frame where the projections of the spin are maximized,12 we
see that the inequality (5.18) is saturated. It is quite amusing to see how this physical
condition comes out of the equations we wrote in (4.11).

12In such a frame we can write
~P
¯
3

|~P
¯
3|

= ± ~p1
|~p1|

= ∓ ~p2
|~p2|

. We then have to multiply the first equality by
~J1 = ~J

¯
3 − ~J2, and use the second equality, to have the job done.
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5.3 Two massive legs

We now repeat the procedure to find the solution for the three-point amplitude involving
two massive particles and one massless one. We take particles 1 and 2 to be massive. The
involved momenta will be P

¯
1, P

¯
2, and p3, with

P
¯
1 = λ1λ̃1 + λ5λ̃5 , P

¯
2 = λ2λ̃2 + λ4λ̃4 , p3 = λ3λ̃3 . (5.19)

Evidently, we have two on-shell mass conditions now:

〈1, 5〉[5, 1] = m1
2 , 〈2, 4〉[4, 2] = m2

2 . (5.20)

The system of LG differential equations for the lowest-spin amplitude M−s1,−s2,h3 ≡M ,
derived from (4.11), now contains seven equations. Five of them do not involve the raising
operators, and are the following ones:(

λ1
∂

∂λ1
− λ̃1

∂

∂λ̃1
− λ5

∂

∂λ5
+ λ̃5

∂

∂λ̃5

)
M = +2s1M ,

(
λ1

∂

∂λ5
− λ̃5

∂

∂λ̃1

)
M = 0 ,(

λ2
∂

∂λ2
− λ̃2

∂

∂λ̃2
− λ4

∂

∂λ4
+ λ̃4

∂

∂λ̃4

)
M = +2s2M ,

(
λ2

∂

∂λ4
− λ̃4

∂

∂λ̃2

)
M = 0 ,(

λ3
∂

∂λ3
− λ̃3

∂

∂λ̃3

)
M = −2h3M .

(5.21)
We want again to translate the variables from spinor to spinor products, of which we have
now ten angle and ten square ones. Let us sketch how we derive the relations among
them. Within the angle products, we choose as independent ones those containing 1 or
2. The remaining ones, 〈3, 4〉, 〈3, 5〉 and 〈4, 5〉, follow from Schouten. Within the square
products, using

λ̃1 = 〈2, 3〉
〈1, 2〉 λ̃3 + 〈2, 4〉

〈1, 2〉 λ̃4 + 〈2, 5〉
〈1, 2〉 λ̃5 , λ̃2 = −〈1, 3〉

〈1, 2〉 λ̃3 −
〈1, 4〉
〈1, 2〉 λ̃4 −

〈1, 5〉
〈1, 2〉 λ̃5 , (5.22)

we can express everything in terms of [3, 5], [4, 3] and [4, 5]. Using the mass conditions (5.20)
the following two further relations can be found

m1
2 = −〈1, 5〉〈2, 3〉

〈1, 2〉 [3, 5]− 〈1, 5〉〈2, 4〉
〈1, 2〉 [4, 5] , m2

2 = −〈3, 1〉〈2, 4〉
〈1, 2〉 [3, 4]− 〈1, 5〉〈2, 4〉

〈1, 2〉 [4, 5] .

(5.23)
The independent variables we are left with are then seven angle products and one square
one, that we name as

x1 = 〈2, 3〉 , x2 = 〈3, 1〉 , x3 = 〈1, 2〉 , x4 = 〈1, 5〉 ,
x5 = 〈2, 4〉 , x6 = 〈2, 5〉 , x7 = 〈1, 4〉 , y8 = [4, 5] .

(5.24)

Playing around a bit, the system (5.21) can be simplified to

x1∂1M = (s2 − s1 − h3)M , ∂6M = 0 ,

x2∂2M = (s1 − s2 − h3)M , ∂7M = 0 ,(
x3∂3 + y8∂̃8

)
M = (s1 + s2 + h3)M .

(5.25)
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Discarding delta-functions, the most general solution of this system is

M−s1,−s2, h3 = xs2−s1−h3
1 xs1−s2−h3

2 xs1+s2+h3
3 f2

(
x4, x5,

y8
x3

)
=

= 〈1, 2〉s1+s2+h3 〈3, 1〉s1−s2−h3 〈2, 3〉s2−s1−h3 f2

(
〈1, 5〉, 〈2, 4〉, [4, 5]

〈1, 2〉

)
,

(5.26)

where f2 is again an undetermined, arbitrary function of its arguments. Again we notice
that the first two arguments are dimensionful, so we conveniently rewrite f2 as

f2

(
〈1, 5〉, 〈2, 4〉, [4, 5]

〈1, 2〉

)
= gm

1−s1−s2+h3−[g]
1 f̃2

(〈1, 5〉
m1

,
〈2, 4〉
m2

,
[4, 5]
〈1, 2〉 ; m2

m1

)
. (5.27)

We still have to apply to (5.26) the two remaining LG differential conditions:(
J̃¯

1
+

)2s1+1
M−s1,−s2, h3 = 0 ,

(
J̃¯

2
+

)2s1+1
M−s1,−s2, h3 = 0 . (5.28)

As detailed in the appendix B, the respective solutions are quite simple:

f̃2 =
2s1∑
k=0

ak

(〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m2
m1

+ 〈1, 5〉
m1

〈2, 4〉
m2

[4, 5]
〈1, 2〉

)s1+s2+h3−k
, (5.29)

f̃2 =
2s2∑
k=0

bk

(〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m1
m2

+ 〈1, 5〉
m1

〈2, 4〉
m2

[4, 5]
〈1, 2〉

)s1+s2+h3−k
, (5.30)

where the ak, bk are unknown functions, which we cannot further determine at the moment.
We will show how to constrain them later in section 6. We have two expressions for f̃2
which must be obviously compatible. To analyze this compatibility, we treat separately
the cases where the two masses are equal or different. It will be convenient to assume that
s1 ≤ s2 for the discussion below.

Different masses. Comparing the two expressions (5.29)–(5.30) as power series in the
variable [4, 5] we can easily see that, as it was occurring in (5.18), there is a restriction on
the helicities and spins of the participating particles:

h3 = −s1 − s2,−s1 − s2 + 1, . . . , s1 + s2 =⇒ |h3| ≤ s1 + s2 . (5.31)

Again, the fact that this process can happen for real kinematics (decay of the more massive
particle) allows us to do the same reasoning as for the decay of one massive particle (see
below equation (5.18)), and derive the condition above from a simple physical condition. It
is a non-trivial check of our formalism that these conditions come out automatically from
the equations!

The explicit form of the f̃2 compatible with (5.29)–(5.30) is easy to obtain, but depends
on the exact helicities and spins involved. Here we just note the number of free functions
of 〈1, 5〉 and 〈2, 4〉 which the solution depends on:

#
(number of free

constants
)

=


s1 + s2 − h3 + 1 if s2 − s1 ≤ h3 ≤ s1 + s2
2s1 + 1 if s1 − s2 ≤ h3 ≤ s2 − s1
s1 + s2 + h3 + 1 if −s1 − s2 ≤ h3 ≤ s1 − s2

. (5.32)
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Equal masses. In this case it is straightforward to analyze the compatibility condition
between (5.29) and (5.30). Recalling that we assumed s1 ≤ s2, and denoting the common
mass by m = m1 = m2, we simply get the following functional form for f̃2:

f̃2 =
2s1∑
k=0

ak

(〈1, 5〉
m

,
〈2, 4〉
m

)(
1 + 〈1, 5〉〈2, 4〉

m2
[4, 5]
〈1, 2〉

)s1+s2+h3−k
, (5.33)

with the ak unknown functions. Recall that this process cannot happen for real kinematics.
Accordingly we do not get constraints on the values of s1, s2 and h3. We notice that this is
the same situation as in the massless case, where there was no restriction on the helicities
involved in the three-point interaction.

5.4 Three massive legs

For the three-point amplitude involving three massive particles we need six light-like
momenta:

P
¯
1 = λ1λ̃1 + λ4λ̃4 , P

¯
2 = λ2λ̃2 + λ5λ̃5 , P

¯
3 = λ3λ̃3 + λ6λ̃6 . (5.34)

The on-shell mass conditions in spinor formalism are

〈1, 4〉[4, 1] = m1
2 , 〈2, 5〉[5, 2] = m2

2 , 〈3, 6〉[6, 3] = m3
2 . (5.35)

The system of LG differential equations for the lowest-spin amplitude M−s1,−s2,−s3 ≡M ,
without involving the raising operators, is the following:(

λ1
∂

∂λ1
− λ̃1

∂

∂λ̃1
− λ4

∂

∂λ4
+ λ̃4

∂

∂λ̃4

)
M = 2s1M ,

(
λ1

∂

∂λ4
− λ̃4

∂

∂λ̃1

)
M = 0 ,(

λ2
∂

∂λ2
− λ̃2

∂

∂λ̃2
− λ5

∂

∂λ5
+ λ̃5

∂

∂λ̃5

)
M = 2s2M ,

(
λ2

∂

∂λ5
− λ̃5

∂

∂λ̃2

)
M = 0 ,(

λ3
∂

∂λ3
− λ̃3

∂

∂λ̃3
− λ6

∂

∂λ6
+ λ̃6

∂

∂λ̃6

)
M = 2s3M ,

(
λ3

∂

∂λ6
− λ̃6

∂

∂λ̃3

)
M = 0 .

(5.36)
Now we can build thirty spinor products. That is actually a lot, but the procedure described
in section 5.1 ensures that we will be able to reduce them to eleven independent ones,
using algebraic and kinematic constraints and the mass conditions (5.35). We choose as
independent variables the following ones:

x1 = 〈2, 3〉 , x2 = 〈3, 1〉 , x3 = 〈1, 2〉 ,
x4 = 〈1, 4〉 , x5 = 〈2, 5〉 , x6 = 〈3, 6〉 ,
x7 = 〈1, 5〉 , x8 = 〈2, 4〉 , x9 = 〈2, 6〉 ,

y10 = [4, 5] ,
y11 = [4, 6] .

(5.37)

The system of LG equations (5.36), after all substitutions and some simplifications, is
equivalent to

x1∂1M = (s2 + s3 − s1)M , ∂7M = 0 ,(
x2∂2 + y11∂̃11

)
M = (s3 + s1 − s2)M , ∂8M = 0 ,(

x3∂3 + y10∂̃10
)
M = (s1 + s2 − s3)M , ∂9M = 0 ,

(5.38)
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whose most general solution is

M−s1,−s2,−s3 = xs2+s3−s1
1 xs3+s1−s2

2 xs1+s2−s3
3 f3

(
x4, x5, x6,

y10
x3
,
y11
x2

)
= 〈1, 2〉s1+s2−s3 〈3, 1〉s3+s1−s2 〈2, 3〉s2+s3−s1 f3

(
〈1, 4〉, 〈2, 5〉, 〈3, 6〉, [4, 5]

〈1, 2〉 ,
[6, 4]
〈3, 1〉

)
,

(5.39)

where again f3 is another undetermined function of its arguments. We encounter the same
feature of dimensionful arguments as in the two previous cases, so once again we rewrite:

f3 = gm
1−s1−s2−s3−[g]
1 f̃3

(〈1, 4〉
m1

,
〈2, 5〉
m2

,
〈3, 6〉
m3

,
[4, 5]
〈1, 2〉 ,

[6, 4]
〈3, 1〉 ; m2

m1
,
m3
m1

)
. (5.40)

This arbitrary function f3 must be still constrained by the three conditions (one per par-
ticle) on the last line of (4.11). Similarly to the previous subsections, one finds that the
solution to the conditions corresponding to particles 2 and 3 is

f̃3 =
(

1− m2
m1

〈1, 4〉
m1

〈2, 5〉
m2

[4, 5]
〈1, 2〉 + m3

m1

〈1, 4〉
m1

〈3, 6〉
m3

[6, 4]
〈3, 1〉

)s1−s2−s3
×

2s2∑
n=0

2s3∑
m=0

an,m

(〈1, 4〉
m1

〈2, 5〉
m2

[4, 5]
〈1, 2〉

)n (〈1, 4〉
m1

〈3, 6〉
m3

[6, 4]
〈3, 1〉

)m
,

(5.41)

with an,m = an,m
(
〈1,4〉
m1

, 〈2,5〉m2
, 〈3,6〉m3

)
. This expression can be constrained further with the

third requirement: (
J̃¯

1
+

)2s1+1
M−s1,−s2,−s3 = 0 . (5.42)

Unfortunately the most general solution of this equation is not so simple, depending on
the relations that can arise among the three spins and masses. Given the plethora of such
cases, and the lesser phenomenological relevance of this type of scattering, we leave a general
discussion for future work. Of course any given case can be analyzed with the techniques
presented here. For the theoretical purposes that we have in this paper, equation (5.41)
will be enough, as we show in what follows.

6 Meeting some physical requirements

In the previous section we answered the mathematical question of which are the solutions of
the system of equations (4.11). The resulting three-point amplitudes involve the functions
(f̃1, f̃2, f̃3), depending on certain combinations of the kinematic variables and which are
not fully determined by the equations, similarly to what happened in the massless case (cf.
equation (3.11)). In that case, imposing some sensible extra physical requirements allowed
for a complete specification of the arbitrary function, up to a coupling constant. Let us
discuss now similar physical conditions that we can impose on the amplitude for massive
scattering, that will allow to strongly constrain f̃1, f̃2, and f̃3.

The first thing that comes to mind is to restrict to real kinematics, yi = −xi∗, as it
was done in the massless case. Contrary to that case, this will not get us the job done
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here, although for certain mass combinations we do obtain some constraints that the arbi-
trary functions should satisfy. Namely when the three-particle scattering is kinematically
prohibited on the real sheet, the amplitude should vanish when xi, yi = 0. This is the case
for instance for the scattering of two massive particles of the same mass. This loosely con-
strains f2. Similar conditions can be derived for f3 when the heaviest mass is smaller than
the mass of the other two. However in the cases where the real three-particle scattering is
not kinematically prohibited,13 no condition is imposed at all.

A more fruitful condition comes from the following observation. For massive kinemat-
ics, we can perform the following transformation:

µ→ t µ , µ̃→ t−1µ̃ , when P = λλ̃+ µµ̃ .
(
t = eiα if P ∈ R4

)
(6.1)

This transformation changes the kets (bras) involving µ (µ̃), but leaves P invariant. Yet it
is not a LG transformation (no S̃U(2) element can generate it via (4.6)). It belongs instead
to the Ũ(1) ⊂ Ũ(2) that we mentioned below (4.4). Since this transformation cannot be
associated to a LG transformation, it is not physical and one is free to impose whatever
transformation property on the amplitude under it (see [38] for a more formal justification).
In particular, we will require that the amplitude be invariant under (6.1). This choice is
natural for the massless limit that we discuss in the next subsection.14

We can immediately see that invariance of the amplitude under (6.1) imposes strong
constraints on how the functions f̃1, f̃2, f̃3 can depend on the “mass kets”. Actually, from
equations (5.15), (5.29), (5.30), (5.33) and (5.41), we observe that this invariance requires
the arbitrary functions appearing in those equations, depending only on mass kets, to be
constant. This fixes completely the functional dependence of f̃1, f̃2, f̃3 up to just some
constants!

Interestingly, this is essentially the same result that we had for massless particles.
But with one important difference: in the massless case there were only two functional
structures (cf. equations (3.13) and (3.14)), accompanied by two constants, which can be
directly identified with the three-particle coupling constants.15 In the current massive case,
the number of functional structures is one in the case of one massive leg, but generically
grows with the spin of the massive particles involved if there are more than one of them.
The constants accompanying these functional structures will be related to the coupling
constants of the theory, but in a theory-dependent way.

6.1 The massless UV limit

There is one further physical requirement from which we have not profited so far. Gener-
ically a massive scattering must look like a massless one in the UV regime.16 There is a

13These can be interpreted as one massive particle decaying into: two massless particles, a less massive par-
ticle plus a massless one, or two less massive particles (their masses summing less than the decaying mass).

14In the case we have a Lagrangian, it is also easy to understand this condition. It just follows from
the fact that the only dependence that the amplitude can have under (6.1) appears through polarization
tensors. If these are invariant, as it is our case (see section 4.1), the amplitude must be invariant as well.

15Each of these coupling constants corresponds, up to linear combinations, to a parity-even or parity-odd
interacion.

16This does not mean that one can always extract massless interactions from massive ones, as this limit
might be singular, as it happens for instance for string theory.
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direct way of implementing this condition in our formalism. Let us rewrite (4.1) as

P = p⊥ − m2

2P · q q = λλ̃+ m2

〈µ |P | µ̃] µµ̃ , (6.2)

where we have to require that the four-vector q = µµ̃ has a non-vanishing product with P .
What this choice does is to project massive vectors along a given reference null vector q.
The massless limit can now be taken simply as m→ 0:

P = λλ̃+ m2

〈µ |P | µ̃] µµ̃
massless−−−−−→
UV limit

λλ̃ . (6.3)

After this limit, the massive amplitude should become the massless one. To make this
statement concrete, we should identify the map between a massive state |λλ̃ + µµ̃ ; s, σ̃〉
and a massless one |λλ̃ ; h〉. This is quite simple if we remember the comments we made
below equation (4.6), as then it is clear that

|λλ̃+ µµ̃ ; s,−s〉 massless−−−−−→
UV limit

|λλ̃ ; −s〉 , |λλ̃+ µµ̃ ; s, s〉 massless−−−−−→
UV limit

|λλ̃ ; s〉 ,
(6.4)

and the other intermediate spin states decouple. Remembering the identification (4.13),
we can see this reduction explicitly at the level of polarization tensors. For spin 1

2 , the
left-hand side of equation (4.14) trivially reduces to the left-hand side of (3.5). For spin
1, we see from equation (4.18) that the neutral polarization vector explodes, and the ±
polarization vectors become the massless ones (3.5). Interestingly, the reference vector used
for projecting the massive momentum becomes the arbitrary vector that appears in (3.5).

Therefore, if we take the limit (6.3) in our expressions for the massive lowest-spin
amplitudes (5.14), (5.26) and (5.39), the limiting expression should coincide with (3.13)
or (3.14). Let us analyze the case in which we have to compare with (3.13).17

We write the UV limit condition explicitly for the case of two massive particles, using
the expression (5.27), which is valid for both the equal- and different-mass cases. With the
identification h1 = −s1, h2 = −s2, the powers involving the angle products match and we
are left with

gH = gm1
1+h1+h2+h3−[g]f̃2

 〈λ1, µ1〉√
〈µ1 |P

¯
1 | µ̃1]

,
〈λ2, µ2〉√
〈µ2 |P

¯
2 | µ̃2]

, 0 ; m2
m1

 . (6.5)

We are now free to perform the transformation (6.1) in the equation above. The equality
can only hold if f̃2, when the third argument is put to zero, is a constant! Notice that, in
particular, this implies that the amplitude must be invariant under (6.1), as we assumed
in the previous subsection. Moreover, counting mass dimensions in (6.5), we see that
[g] = 1+h1 +h2 +h3 = [gH]. The coupling appearing in the lowest-spin massive amplitude,
g must be therefore equal to the (holomorphic) coupling of the limiting UV massless, gH,
scattering times a dimensionless function of the masses.

17The other case, where the massless amplitude to be matched is (3.14), can be analyzed similarly, only
that it is then more convenient to work with with the highest-spin amplitude, which follows from the
lowest-spin one just flipping the signs of the spins and interchanging kets by bras.
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Let us further remark that the massless UV limit sets automatically [4, 5] = 0. Nev-
ertheless, we can think of imposing this condition in general, outside this limit, and for
any process with more than one massive particle. Such a condition has a very natural
interpretation: it just means that in the decomposition (6.2) we are choosing the same null
reference vector, q = µqµ̃q, for all the massive momenta involved in the scattering process:

P
¯
i = λiλ̃i + mi

2

〈µq |P
¯
i | µ̃q]

µqµ̃q . (6.6)

This way of decomposing massive momenta using a reference vector is actually a very com-
mon one [13, 14, 28, 29, 39]. If we choose this decomposition, which can be thought simply
as a particular frame of our more general construction, the resulting massive amplitudes
are quite simple. The line of reasoning leading to (6.5) can be extended straightforwardly
to the two other massive cases, leading to the same conclusion: the arbitrary function ap-
pearing in (5.14) is constant (in the kinematic variables, it can depend on the masses), the
same as the arbitrary functions appearing in equations (5.26) and (5.39) when we go to the
frame (6.6). So, in this frame, the lowest-spin massive amplitude takes the universal form

Mη1,η2,η3
ls = 〈2, 3〉η1−η2−η3 〈3, 1〉η2−η3−η1 〈1, 2〉η3−η1−η2 g̃

(
{mi}

)
. (6.7)

Although we derived this expression from the massless UV limit, it is immediate that
using the frame (6.6) in the amplitudes derived in section 5, together with the invariance
under (6.1), yields the same result. We stress that, if our physical assumptions hold, this
result is non-perturbative, the same as for the massless case (3.13)–(3.14).

Before moving on to some examples, let us make some remarks here. Notice that in
the case we are not in the frame (6.6), while f̃1 is always a constant (that can be deter-
mined from the massless limit), f̃2 and f̃3 remain determined only up to some constants.
The number of undetermined constants depends on the case under consideration. From
imposing the massless limit for both helicities, we can obtain a priori 2n linear constraints
on these constants, if n is the number of massive legs. In certain cases, when the number
of free constants is less than 2n, this might lead to a full determination of the amplitude.

7 Practical applications

In the previous sections we have derived the general form that all three-point scattering am-
plitudes of any Lorentz-invariant QFT involving massive particles should satisfy. It involves
several constants, although under certain circumstances, we can reduce them to a single
constant. It is time to test our theoretical predictions, coming from the S-matrix analysis
of Lorentz symmetry, with concrete tree-level amplitudes computed from the Lagrangian
formulation of given QFTs.

Of course we cannot survey all possible QFTs involving massive particles. We will
show the match of our formulas with some examples that we consider representatives. As
we did in section 5, we treat the cases with one, two and tree massive particles separately.
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7.1 One massive leg

This case has been discussed in section 5.2, and we refer to the notation there. In particular,
our conclusion was that the lowest-spin three-point amplitude should look as (5.14), with
the function f1 equal to constant. At tree level, the value of this constant can be determined
simply from dimensional analysis:

f1 =


g if h1 + h2 − s3 < 0 ,
g m

1+h1+h2−s3−[g]
3 if h1 + h2 − s3 > 0 ,

0 if h1 + h2 − s3 = 0 .

(7.1)

In the first line, g is the coupling appearing in the UV-limiting massless amplitude. We
have assumed parity invariance in writing g again in the second line. The zero in the
third line is due to the non-existence of the massless process with h1 + h2 − s3 = 0. In the
following we show the match with two common processes of LHC physics, plus we comment
on how the Landau-Yang theorem follows from our result.

7.1.1 One massive scalar and two massless vectors

A prototype of this process is Higgs production via gluon fusion, with a vertex involving
two massless gluons; or the decay of a Higgs particle into two photons. Both processes are
generated at one loop in the Standard Model, integrating out massive quarks (and also
massive vector bosons) for the first (second). For concreteness, let us refer to the first one.
Here we consider an effective tree-level vertex. The interaction term in the Standard Model
Lagrangian looks like LHgg ∼ H trGµνGµν , with coupling constant with mass dimension
equal to −1.

As a function of the helicity of the gluons, we can in principle consider three config-
urations. All of them are lowest-spin amplitudes since the Higgs is a scalar. We neglect
color labels as they are not relevant for this discussion. The amplitudes can be found for
example in [40]:

M−1,−1,0 = g 〈1, 2〉2 , M−1,+1,0 = 0 , M+1,+1,0 = g [1, 2]2 = gm4
H

1
〈1, 2〉2 . (7.2)

The three amplitudes perfectly match our predictions (5.14), taking (7.1) into account.
Before moving on to another type of process, we mention that the decay of Higgs to
fermion/anti-fermion can be analyzed in a very similar fashion.

7.1.2 One massive vector and two massless spin- 1
2 fermions

This is a more interesting case than the previous one, given that the massive particle now
has spin, so the different possible polarization states come into play. In principle many
processes fall into this category, like for example the decays W+ → u+ d̄, Z0 → q + q̄, or
W− → e− + ν̄e at energies where electron and anti-neutrino can be considered massless.
Although the Lagrangian vertices for these processes are different, at the level of the three-
point amplitude, all those differences just go into the coupling constant (which can carry
certain quantum numbers). The kinematic part of the amplitude is the same.
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Let us then pick for example the Z0 → f + f̄ process, where f is some generic right-
handed Weyl fermion. The Lagrangian vertex reads as LZff̄ ∼ f̄σµZµf , governed by a
dimensionless coupling constant. It gives rise to the following three-point amplitudes:

M−
1
2 ,+

1
2 ,σ̃3 = g 〈1 |σµ |2]εµ(P

¯
3; σ̃3) , M+ 1

2 ,−
1
2 ,σ̃3 = g 〈2 |σµ |1]εµ(P

¯
3; σ̃3) , (7.3)

and zero in the configuration where fermion and anti-fermion have the same helicity. In
particular, let us focus on the lowest-spin amplitudes. Taking the polarization tensors
written in (4.17), and redefining the coupling constant absorbing some numerical factors,
we obtain a result that perfectly matches our expectations:

M−
1
2 ,+

1
2 ,−1 = g

〈3, 1〉2

〈1, 2〉 , M±
1
2 ,±

1
2 ,−1 = 0 , M+ 1

2 ,−
1
2 ,−1 = g

〈2, 3〉2

〈3, 1〉 . (7.4)

For completeness, we display the amplitudes involving the other possible polarization states
of the Z0. They can be obtained either directly plugging (4.18) in (7.3), or by acting with18

J̃¯
3
+ =

√
− [3,4]
〈3,4〉

(
−λ(4) ∂

∂λ(3) + λ̃(3) ∂
∂λ̃(4)

)
on (7.4) as instructed by equation (4.10). We just

display one helicity configuration (swap 1
 2 for the other):

M−
1
2 ,+

1
2 ,0 = 1√

2
J̃¯

3
+M

− 1
2 ,+

1
2 ,−1 = g

√
2m 〈3, 1〉〈1, 4〉
〈1, 2〉〈3, 4〉 , (7.5)

M−
1
2 ,+

1
2 ,+1 = 1√

2
J̃¯

3
+M

− 1
2 ,+

1
2 ,0 = gm2 〈1, 4〉2

〈1, 2〉〈3, 4〉2 . (7.6)

Opposite to the lowest-spin amplitude, these “higher-spin” amplitudes can — and do —
depend on 〈1, 4〉. Notice that the dependence is such that invariance under transforma-
tion (6.1) is attained.

7.1.3 Landau-Yang theorem

The Landau-Yang theorem [41, 42] is an old result about the impossibility of a spin-
1 particle to decay into photons. Its phenomenological relevance has been brought up
recently by the diphoton events observed at CERN. From our expression for the amplitude
with one massive particle (5.14) (with f1 being constant), it is easy to see why such a
decay process is prohibited. Putting |h1| = |h2| = s3 = 1, we see that on the one hand,
interchanging particles 1 and 2 flips the sign of the amplitude. On the other hand, since
the photons are bosons, the amplitude should not be affected by this interchange. The only
possible conclusion is that the amplitude be zero. This is just the same reasoning one can
use in the massless case to rule out self-interaction among photons (one needs to promote
photons to gluons including color labels).

7.2 Two massive legs

In this category we find well-known processes like the QED vertex. The notation has been
laid out in section 5.3, and here we will match (5.33) as we will only treat cases with

18One should treat with care the existence of the constraints (5.12). One can see that J¯
3
+ =

−m
x4

(
x3x4+x2x5

x1
∂2 − x5∂1

)
.
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two equal-mass particles, m1 = m2 = m. Moreover we will check that the three-point
amplitude becomes of the form (6.7) when [4, 5] = 0, with the function g̃ in (6.7) fixed, by
dimensional analysis at tree level, to

g̃(m) =


g if s1 + s2 − h3 > 0 ,
g m1−s1−s2+h3−[g] if s1 + s2 − h3 < 0 ,
0 if s1 + s2 − h3 = 0 .

(7.7)

Let us illustrate our predictions with three examples.

7.2.1 Two massive scalars and a massless vector

Such an amplitude occurs naturally for example when computing rational pieces of one-
loop YM amplitudes. If one uses supersymmetry as a technical trick, then a scalar loop
must be evaluated in 4 + 2ε dimensions, so that effectively one can think of computing a
four-dimensional amplitude where the scalars are massive.

The amplitudes with two massive scalars plus a massless gluon can be readily found in
helicity-spinor form in [17]. Using the kinematic constraints to express the amplitudes in
terms of the spinor variables that we have considered independent, we can write them as

M0,0,− = g
〈2, 3〉〈3, 1〉
〈1, 2〉

(
1 + 〈1, 5〉〈2, 4〉

m2
[4, 5]
〈1, 2〉

)−1
,

M0,0,+ = gm2 〈1, 2〉
〈2, 3〉〈3, 1〉

(
1 + 〈1, 5〉〈2, 4〉

m2
[4, 5]
〈1, 2〉

)
.

(7.8)

They match perfectly the expectation (5.33), where a single constant enters in the ampli-
tude, which must therefore coincide with the coupling constant up to powers of the masses.
These powers are as in (7.7), and by putting [4, 5] = 0 we see that we recover (6.7), as we
predicted.

7.2.2 Two massive and one massless vectors

In the Coulomb branch of N = 4 Super Yang-Mills we can find a coupling between a gluon
and two vector bosons. Such type of interactions have been cunningly studied by Craig
et al. in [39] (see also [43]), where they found that the lowest-spin three-point amplitude
involving a positive-helicity gluon looks like:

M−1,−1,+1 = g
〈1, 2〉3

〈2, 3〉〈3, 1〉

(
1 + 〈1, 5〉〈2, 4〉

m2
[4, 5]
〈1, 2〉

)
. (7.9)

This certainly matches (5.33) with a0 = 0 = a1, and a2 = 1. Moreover, in the [4, 5] = 0
frame (6.7) is recovered with the function g̃ given by (7.7). A further check of our results
that we can do is to confront the “higher-spin” amplitudes, M0,−1,+1 and M+1,−1,+1 that
we can obtain by acting with J¯

1
+ on (7.9), with the ones written in [39], computed with

different methods. We obtain a perfect match. Here we are more interested in pointing
out a curious case, that of the all-minus amplitude M−1,−1,−1.
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Our expectation is that M−1,−1,−1 = 0 in the [4, 5] = 0 frame. Should this imply
that it be zero in a different Lorentz frame? The answer is no! This amplitude has been
computed in [39], and it casts as

M−1,−1,−1 = g

m2 〈1, 2〉〈2, 3〉〈3, 1〉

(
〈1,5〉
m

)2 ( 〈2,4〉
m

)2 ( [4,5]
〈1,2〉

)2

1 + 〈1,5〉
m
〈2,4〉
m

[4,5]
〈1,2〉

. (7.10)

Interestingly, this functional form can be seen to come from (5.33) by appropriately tuning
the three constants that appear in this case, namely a0 = 1 = a2, a1 = −2. Of course, the
combination is such that it collapses to zero when [4, 5] = 0.

7.2.3 Two massive fermions and one massless vector. QED

In the QED that we know and love we can find two different vertices coupling a photon
with an electron/positron pair. One is the electric coupling and the other the magnetic
dipole coupling, Le−e+γ = ψ̄

(
e γµAµ + g

2 γ
µνFµν

)
ψ. With this parametrization, e is a

dimensionless coupling constant while g has negative mass dimension, [g] = −1. We can
immediately compute the three-point lowest-spin amplitude as

M−
1
2 ,−

1
2 ,−1 = v̄−(P

¯
1)
(
e γµ + g

2 γ
µνp3

ν

)
εµ(p3;−1)u−(P

¯
2)

= 〈2, 3〉〈3, 1〉

 e

m

〈1,5〉〈2,4〉
m2

[4,5]
〈1,2〉

1 + 〈1,5〉〈2,4〉
m2

[4,5]
〈1,2〉

+ g

 (7.11)

where we have used the polarization vector from (3.5), and the Dirac spinors

v̄−(P
¯
1) =

(√
〈1, 5〉
[5, 1] λ̃5 λ1

)
, u−(P

¯
2) =

−
√
〈2,4〉
[4,2] λ̃4

λ2

 . (7.12)

Looking at equation (7.11), we get again a match with our predictions. For the electric
coupling, we have to choose a0 = 1 = −a1 in (5.33), while for the magnetic coupling we
should put a0 = 1, a1 = 0. So in this case, we see that the two functional structures
appearing in the three-point amplitude are possible.

We can also check the predictions in the frame [4, 5] = 0 frame. Given that the for the
electric coupling the helicity configuration (−1

2 ,−
1
2 ,−1) is not allowed in the massless UV

limit, we expect a null scattering amplitude in the special frame; and this is indeed the
case. Instead for the magnetic coupling we can reach such a configuration. Therefore we
expect the functional form (6.7), with the function g̃ equal to the coupling constant; and
this is precisely what happens in (7.11).

7.3 Three massive legs

This case was analyzed in section 5.4, where we arrived at the solution (5.39), with the
function f̃3 given by (5.41). This solution can be constrained further with condition (5.42),
whose consequences we chose not to work out in general. We will show how that can be
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done with one particular example, where two masses are the same: the electroweak decay of
a Z-boson: Z0 → b+ b̄. Other processes with the same spin structure as this one would be
QED with a Proca Lagrangian, or another electroweak decay: W− → e− + ν̄e. The latter
would in principle involve three different masses, but since neutrino masses are subtle, we
prefer to discuss the Z-boson decay.

Let us first compute the three-point amplitude of the process with the well-known
methods. The Lagrangian three-point vertex for the electroweak decay of the Z0 looks like
LZbb̄ ∼ Zµ b̄

(
gV γ

µ + gAγ
µγ5) b, with [gV ] = [gA] = 0. Identifying the Z-boson, b̄ antiquark

and b quark as particles 1, 2, 3 respectively, we can use the following polarization tensors
for the lowest-spin states:

ε−(P
¯
1) = λ1λ̃4

[1, 4] , v̄−(P
¯
2) =

(√
〈2, 5〉
[5, 2] λ̃5 λ2

)
, u−(P

¯
3) =

−
√
〈3,6〉
[6,2] λ̃6

λ3

 . (7.13)

Neglecting parity violation, i.e. setting gA = −gV = gW /2, the computation of the three-
point amplitude easily yields

M−1,− 1
2 ,−

1
2 = gW

2 v̄−(P
¯
2)γµ (1− γ5) εµ(P

¯
1;−1)u+(P

¯
3)

= gW
m2
〈1, 2〉〈3, 1〉 [4, 5]

〈1, 2〉
〈1, 4〉
m1

〈2, 5〉
m2

.
(7.14)

We now want see if this expression matches the one we can derive with our methods. For
this particular configuration,19 it turns out that (5.42) is automatically satisfied by the
function (5.41) put in (5.39). So, the generic form of the three-point amplitude that we
can derive is

M
−1,− 1

2 ,−
1
2

3 = gm1
−1−[g]〈1, 2〉〈3, 1〉

(
a0,0 + a1,0

〈1, 4〉
m1

〈2, 5〉
m2

[4, 5]
〈1, 2〉

+ a0,1
〈1, 4〉
m1

〈3, 6〉
m3

[6, 4]
〈3, 1〉 + a1,1

〈1, 4〉2

m2
1

〈2, 5〉
m2

〈3, 6〉
m3

[4, 5]
〈1, 2〉

[6, 4]
〈3, 1〉

)
. (7.15)

In order to match (7.14), we see that it is enough to choose as the only non-zero coefficient
a1,0 = m1

m2
. Finally let us notice that in the special frame [4, 5] = 0 = [6, 4] the amplitude

vanishes, as we could have predicted because otherwise it should be equal to gW, which
does not have the proper dimensions.

8 Looking backward, and forward

Let us start our conclusions by summarizing the results of this text. In any QFT con-
taining only massless particles and enjoying Poincaré symmetry, the three-point scattering
amplitude can be determined from very general assumptions, namely Poincaré symmetry

19Had we labeled the vector boson as particle 3 and the two quarks as particles 1 and 2, condition (5.42)
would no longer be trivial, and it would eliminate two of the six constants appearing in (5.41). Of course
the final result for the lowest-spin three-point amplitude does not depend on how we label the particles.
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itself and a few sensible physical requirements. Motivated by this fact, we have investigated
whether this property holds in the case where some of the particles are massive.

The helicity-spinor formalism is a convenient (not essential) tool for analyzing the LG
scaling equations associated to Lorentz symmetry. That was already well established in
the massless case, but it turns out to be true also when massive momenta are involved. We
implemented the formalism representing a massive momentum in terms of two massless ones
as in equation (4.1). Then we were able to derive the system of differential equations (4.10)
that the massive amplitude should satisfy. These equations are slightly more involved than
their massless counterparts, but they can still be solved, determining part of the functional
form of the massive three-point amplitude, but leaving certain arbitrariness.

By imposing some physical requirements on the amplitude, we were able to reduce
the arbitrary functions just to constants, exactly as it happens for the massless three-
point amplitude. Namely, one of the conditions is the invariance of the amplitude under
the transformation (6.1), that we can think as complementary to the LG equations. The
freedom to impose this condition essentially corresponds to a choice of polarization tensors,
and in section 6.1 we showed that such a choice is the natural one from the perspective
of the massless limit (for large momenta, the amplitude involving massive particles should
reduce to the massless one). Contrary to the massless case, the constants that appear in
the massive three-point amplitude cannot always be fixed beforehand from the coupling
constants of the three-particle interaction, only in some low-spin cases.

In practice, one typically chooses a common reference vector to define asymptotic
massive states, i.e. fixing µµ̃ in equation (6.6). The massive three-point amplitudes simplify
further when this choice is made. In particular, the lowest-spin amplitude turns out to be
pretty similar to the massless one, and can be fixed up to a coupling constant. We finally
contrasted in section 7 our results with some amplitudes that can be found in the literature,
computed with usual Lagrangian methods.

We believe that the current results could serve as a starting point for several ideas
that come to mind. First it seems worth to investigate further the connection explored in
section 6.1, where we observed the following phenomenon occurring when taking the mass-
less UV limit: the spinors making up the reference null vector for a massive momentum, as
in (6.6), become the arbitrary spinors that appear in the polarization vector of the limiting
massless spin-1 particle. One may then foresee the intriguing possibility of accommodating
the Higgs mechanism within this formalism, generalising the ideas in [39, 43].

Another straightforward direction is to use the massive three-point amplitude as a
building block for constructing higher-point amplitudes, for instance by means of the
BCFW recursion relations. A promising avenue is that of the four-particle test [11, 44]
(see also [35]), which consists in constructing four-particle amplitudes out of three-particle
ones, using different BCFW shifts and requiring independence of the used shift. This im-
poses strong constraints on the possible interactions already for massless particles, and it
would be interesting to see if the addition of mass brings something new to the table. It
seems reasonable to believe that the four-particle test could help in determining the free
constants that appear in the massive amplitudes. It would be nice to see that interactions
among massive high-spin particles are much less constrained than their massless counter-
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parts. A particularly fascinating case of study would be that of gravitons plus massive
higher-spin states.

Finally, it could also be interesting to understand if our results can have a higher-di-
mensional origin. Via Kaluza-Klein reduction of some higher-dimensional theory containing
only massless particles, it is possible to generate interactions among massless and massive
particles in four dimensions (see [39, 45–47] for some concrete examples). This would lead
us to investigate the uniqueness of three-point massless interactions in higher-dimensional
theories (in six dimensions some partial results have been already obtained in [48, 49]).
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A Details on the action of the Little Group

This appendix is devoted to an explicit study of the action of the Lorentz group in spinor
language. It contains no new results; its purpose is to re-derive known formulas in our
notation for the convenience of some readers.

For starters, we work out the exact form of ζ(Λ) in (2.2) when Λ is a spatial rotation
around one of the coordinate axis. Let us for example consider a rotation of angle θ around
x3. The generator of this transformation on four-vectors is Ĵ12:

R3(θ) = eiθĴ
12 =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 . (A.1)

On the matrix kaȧ the action will be:(
k0 + k3 k1 − ik2
k1 + ik2 k0 − k3

)
7→
(

k0 + k3 e−iθ(k1 − ik2)
eiθ(k1 + ik2) k0 − k3

)
, (A.2)

and the SL(2,C) elements which implement this transformation are:

ζ
(
eiθĴ

12) = ±
(
e−iθ/2 0

0 eiθ/2

)
= ±e−i

θ
2σ

3
. (A.3)
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The rotations around the other two axis are as one could have expected: ζ
(
eiθĴ

23
)

=

±e−i
θ
2σ

1 , ζ
(
eiθĴ

31
)

= ±e−i
θ
2σ

2 . A rotation R in a generic direction can be obtained in
several ways,20 and the result is always an SU(2) matrix

ζ(R) = ±
(

a b

−b∗ a∗

)
, |a|2 + |b|2 = 1 . (A.4)

In the following let us just keep one element in the equivalence class SU(2)/Z2, and sup-
press the ± signs. The eigenvectors of the matrix give the direction of rotation, and
the eigenvalues e±iθ/2 the angle of rotation θ. One can check this fact with an explicit
parametrization of R.

If spatial rotations build up an SU(2) subgroup inside SL(2,C), boosts must be in
equivalence with the quotient SL(2,C)/ SU(2). One can work out the spinor form of a
boost exactly as done for the rotation. Take for instance a boost along the x3 direction,
which has the following four-vector form:

B3(β) = eiβĴ
03 =


cosh(β) 0 0 − sinh(β)

0 0 0 0
0 0 0 0

− sinh(β) 0 0 cosh(β)

 . (A.5)

The only components changing are p0 + p3 → e−β(p0 + p3), p0 − p3 → eβ(p0 − p3), so the
associated two-by-two matrix is

ζ(eiβĴ03) =
(
e−β/2 0

0 eβ/2

)
= e−

β
2 σ

3
. (A.6)

This is a suggestive form, and one can check that for a boost of rapidity β along the xi

direction, the associated matrix turns out to be ζ(eiβĴ0i) = e−
β
2 σ

i . However, given that
we know how a generic rotation looks like, the form of (A.6) is enough to write down a
generic boost. It suffices to use the matrix R that takes the x3 direction into the direction
of interest, then the boost of rapidity β along this direction is just obtained as

B(β) = RB3(β)R−1 =⇒ ζ(B(β)) = ζ(R)ζ(B3(β))ζ
(
R−1

)
. (A.7)

A.1 Massless Little Group

Let us take a null momentum p = λλ̃. The group of Lorentz rotations that leave it invariant
is isomorphic to ISO(2). If we do not want to involve boosts, this group is reduced to U(1).
This restriction is the one we adopted in section 3. The U(1) LG is clearly made of the
rotations around the spatial direction ~p. Let us find out how it acts on the spinors λ, λ̃.

It is enough to remember the comments below (A.4). For a rotation R of angle θ

around the ~p direction, the corresponding matrix acting on the spinors is ζ(R). Since λ

20Like for instance via Euler angles: R(φ, θ, ψ) = R3(ψ)R1(θ)R3(φ) =⇒ ζ(R) = e−i
ψ
2 σ

3
e−i

θ
2σ

1
e−i

φ
2 σ

3
.
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is precisely an eigenvector of ζ(R) with eigenvalue θ/2, the action of the rotation on the
spinors is straightforward.

ζ(R)λ = e−iθ/2 λ , λ̃ ζ(R)† = eiθ/2λ̃ , (A.8)

where we are assuming that p is real, λ̃ = sign(p0)λ†. For the complex case the LG would
be C, with the transformation λ → tλ, λ̃ → t−1λ̃ with t ∈ C, which obviously reduces
to (A.8) applying the real condition.

For the sake of concreteness, let us illustrate equation (A.8) with one particular exam-
ple. First let us write explicitly

λ =
(
λ1
λ2

)
, λ̃ =

(
λ̃1̇ λ̃2̇

)
, λλ̃ =

(
λ1λ̃1̇ λ1λ̃2̇
λ2λ̃1̇ λ2λ̃2̇

)
=
(
p0 + p3 p1 − ip2
p1 − ip2 p0 − p3

)
.

(A.9)
Take a massless particle moving along the x3 direction, with momentum pµ = (1

2 , 0, 0,
1
2)

in some units. We can choose the following spinorial representation of such a momentum

λ =
(

1
0

)
, λ̃ =

(
1 0

)
, λλ̃ =

(
1 0
0 0

)
. (A.10)

The generator of the U(1) LG must be identified with R = eiθĴ
12 . From equation (A.3),

we know that the corresponding matrix acting on the spinors is e−i
θ
2σ

3 . Although such a
matrix will not act diagonally on a generic spinor, its action on these particular λ, λ̃ is
indeed diagonal:

e−i
θ
2σ

3
λ = e−iθ/2λ , λ†ei

θ
2σ

3 = eiθ/2λ̃ , (A.11)

as we wanted to see.

A.2 Massive Little Group

Let us now consider a massive momentum, that we write as P = λλ̃+µµ̃. In the rest frame,
where Pµ = (m, 0, 0, 0), things are particularly simple, because the LG is directly identified
with the SO(3) of spatial rotations, and we learnt already how these act on spinors. In a
generic frame we just need to conjugate with the boost that takes us to the rest frame.
That is, if a given frame is a boosted version of the rest frame via a boost B, the LG
elements in such a frame will be simply

BRB−1 , (A.12)

with R a spatial rotation. The action of this LG element on the spinors that make up P

is as follows:

λ→ ζ(B)ζ(R)ζ
(
B−1

)
λ , λ̃→ λ̃ ζ†

(
B−1

)
ζ†(R)ζ†(B) ,

µ→ ζ(B)ζ(R)ζ
(
B−1

)
µ , µ̃→ µ̃ ζ†

(
B−1

)
ζ†(R)ζ†(B) .

(A.13)

Although it is perfectly fine, this is not a very beautiful action. The main inconvenience
for us is that the spinors do not scale homogeneously as in the massless case (A.8), but
instead their two components scale independently.
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To illustrate this point more clearly, let us work out a particular example. The incon-
venience happens already in the case where we are in the rest frame, B = 1. If we take
a rotation around the x3 axis, generated by J0 = Ĵ12, the matrix to be used in (A.13)
has been already written in (A.3). Looking at the infinitesimal version of (A.13) for this
rotation, we can immediately write the expression of J0 in terms of spinor differentials as

J0 = −1
2

(
λ1

∂

∂λ1
− λ2

∂

∂λ2
− λ̃1

∂

∂λ̃1
+ λ̃2

∂

∂λ̃2
+ µ1

∂

∂µ1
− µ2

∂

∂µ2
− µ̃1

∂

∂µ̃1
+ µ̃2

∂

∂µ̃2

)
.

(A.14)
Clearly such an operator would not act nicely on the spinor products like 〈λ, κ〉, [µ̃, κ̃], etc.

The inconvenience can be resolved if we recast transformation (A.13) as (4.4), that we
rewrite here. (

λ

µ

)
→ U

(
λ

µ

)
,

(
λ̃ µ̃

)
→
(
λ̃ µ̃

)
U † , (A.15)

Clearly, after quotienting by Z2, the degrees of freedom in this transformation are the
same as those of the SO(3) rotations. But, is it possible to find a map between (A.13)
and (A.15)? The answer is yes.

To simplify the upcoming expressions, we omit the ζ(·) notation of (A.13), and assume
that R and B stand already for the two-by-two matrices acting on the spinors. The first
step to find the map is to show that, for real momenta, the equation(

BRB−1 λ

BRB−1 µ

)
= U

(
λ

µ

)
(A.16)

implies the “conjugate”(
λ̃
(
BRB−1

)†
µ̃
(
BRB−1

)† )
=
(
λ̃ µ̃

)
U † . (A.17)

To do that, we need the conditions that follow from expanding in components(
λλ̃+ µµ̃

)
= B

(
m 0
0 m

)
B† , (A.18)

with the specific form of the boost B. Complex-conjugating the component equations
of (A.16), and using (A.18) plus the reality conditions λ̃ = ±λ† and µ̃ = ±µ†, we directly
get the component equations of (A.17). Then we arrive to the conclusion that it is enough
to solve (A.16). If we parametrize the matrices R and U as

R =
(

a b

−b∗ a∗

)
, |a|2 + |b|2 = 1 ; U =

(
α β

−β∗ α∗

)
, |α|2 + |β|2 = 1 , (A.19)

what we want is a map (a, b) 7→ (α, β). Such a map is easily found to be

α = 〈BRB
−1λ, µ〉

〈λ, µ〉
, β = 〈λ,BRB

−1λ〉
〈λ, µ〉

,

α∗ = 〈λ,BRB
−1µ〉

〈λ, µ〉
, β∗ = 〈µ,BRB

−1µ〉
〈λ, µ〉

.

(A.20)

Notice that the condition |α|2+|β|2 =1 will be preserved in virtue of | det(R)|=1. This is
the map that translates an SU(2) transformation into an S̃U(2) one.
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B Details on the action of raising operators

In section 5 we have worked out how to solve the system of LG differential equations in
order to get the generic form of a three-point amplitude under the assumption of Poincaré
invariance. We have then applied an additional constraint, coming from the action of the
spin-raising operator, namely the last equation of the system (4.11). However, for the
sake of readability, we have skipped there the details of such action, which we report in
this appendix. We follow the division of the three cases exactly as in section 5. Several
of the algebraic manipulations performed in this appendix assume implicitly momentum
conservation and Schouten identities.

B.1 One-massive amplitude

We first rewrite the expression (5.14) in the following way:

Mh1, h2,−s3 =
( 〈2, 3〉
〈3, 1〉〈1, 2〉

)h1 ( 〈3, 1〉
〈1, 2〉〈2, 3〉

)h2 (〈1, 2〉〈3, 4〉
〈2, 3〉〈3, 1〉

)−s3
〈3, 4〉s3 f1

(
〈3, 4〉

)
= A1

h1 A2
h2 A3

−s3 F1(µ3) , (B.1)

defining

A1 = 〈2, 3〉
〈3, 1〉〈1, 2〉 , A2 = 〈3, 1〉

〈1, 2〉〈2, 3〉 , A3 = 〈1, 2〉〈3, 4〉
〈2, 3〉〈3, 1〉 ; (B.2)

F1(µ3) ≡ µ3
s3 f1(µ3) , with µ3 ≡ 〈3, 4〉 . (B.3)

The operator that raises the spin component of the massive particle is defined in the first
line of equation (4.6), and in the current case it reads21

J¯
3
+ = −λ4∂3 + λ̃3∂̃4 . (B.4)

It acts only on the Ai, as follows:

J¯
3
+A1 = +A1A3 , J¯

3
+A2 = −A2A3 , J¯

3
+A3 = A3 (A3 + 2b) ; (B.5)

with
b = 〈2, 4〉
〈2, 3〉 , J¯

3
+b = b2 . (B.6)

Then the action of J¯
3
+ on the amplitude M = Mh1, h2,−s3 yields

J¯
3
+M = M (∆A3 − 2s3b) , with ∆ = h1 − h2 − s3 , (B.7)

and acting repeatedly we obtain

(J¯
3
+)nM = M

n∑
k=0

(
n

k

)
(∆)(k)(−2s3 + k)(n−k) A3

k bn−k , (B.8)

21We have decided to omit the scaling factors of (4.19) in this appendix as the resulting expressions are
simpler in this way. Since these factors are completely transparent to the action of the raising operators, it
is trivial to reinstate them back.
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where
(n
k

)
are the usual binomial coefficients, and (a)(n) is the raising Pochhammer sym-

bol (5.17). The formula (B.8) can be proved by induction. Then it is easy to extract from
the form the formula (B.8) the desired constraint on the helicities. Indeed, when n= 2s3+1
(i.e. when J¯

3
+ annihilates the amplitude), since (−a)(a+1) =0 except for a+1=0, only the

term for k=n survives, yielding the condition

(∆)(2s3+1) = 0 , (B.9)

which is eventually the condition (5.16).

B.2 Two-massive amplitude

We analogously rewrite the expression (5.26) as:

M−s1,−s2, h3 =
( 〈2, 3〉
〈3, 1〉〈1, 2〉

)−s1 ( 〈3, 1〉
〈1, 2〉〈2, 3〉

)−s2 ( 〈1, 2〉
〈2, 3〉〈3, 1〉

)h3

f2

(
〈1, 4〉, 〈2, 5〉; [5, 4]

〈1, 2〉

)
= A1

−s1 A2
−s2 A3

h3 F2 (µ1, µ2; ξ) , (B.10)

defining

A1 = 〈2, 3〉〈1, 5〉
〈3, 1〉〈1, 2〉 , A2 = 〈3, 1〉〈2, 4〉

〈1, 2〉〈2, 3〉 , A3 = 〈1, 2〉
〈2, 3〉〈3, 1〉 ; (B.11)

F2(µ1, µ2; ξ) ≡ µ1
s1µ2

s2f2(µ1, µ2; ξ) , with µ1 ≡ 〈1, 5〉 , µ2 ≡ 〈2, 4〉 , ξ = [5, 4]
〈1, 2〉 .

(B.12)

In this case we shall consider the action of the spin-raising operator for both massive
particles, i= 1, 2, which reads as:

J¯
i
+Ai =

(
εiAi + 2bi

)
Ai ,

J¯
i
+A/i = +εiAiA/i ,

J¯
i
+A1 = −εiAiA3 ,

(B.13)

where εi≡ /i−i is just a sign. In addition, we have now the dependence of the function F2
on the variable ξ, which is not invariant under the action of the spin-raising operators:

J¯
i
+ξ = εiAi xi , with xi = ξ −

m/i
2

µ1µ2
.

Despite of that, the algebraic structure is very similar to the one-massive case, and the
final expression can again be proved by induction, even if now it involves derivatives of the
function F2. It reads

A1
s1A2

s2A3
−h3

(
J¯
i
+

)n
M−s1,−s2, h3 =

=
n∑
k=0

(
n

k

)
xki F

(k)
2

n∑
j=k

(
n−k
j−k

)
(∆+k)(j−k)(−2si+j)(n−j) (εiAi)j bn−ji , (B.14)

where F (k)
2 ≡ (∂ξ)kF2(ξ), and ∆ = −s1 − s2 − h3 .
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We notice that also in this case, when we take n = 2si + 1 the only term that survives
in the second sum is the one for j = n, yielding a differential equation of the 2si + 1-th
order for F2:(

J¯
i
+

)2si+1
M−s1,−s2, h3 = 0 ⇔

n∑
k=0

(
n

k

)
(∆ + k)(n−k) x

k
i F

(k)
2 = 0 . (B.15)

The most general solution of such equation is

F2
(
〈1, 5〉, 〈2, 4〉; ξ

)
= xs1+s2+h3

i

2si∑
k=0

c
(i)
k (〈1, 5〉, 〈2, 4〉) x−ki , (B.16)

which, up to redefinition of the coefficients in the sum, gives the expressions (5.29) and (5.30).

B.3 Three-massive amplitude

The expression (5.39) for the amplitude involving three massive particles can be recast as
well in this useful way:

M−s1,−s2,−s3 = A1
−s1A2

−s2A3
−s3 F3

(
µ1, µ2, µ3; ξ2, ξ3

)
, (B.17)

through the redefinitions

A1 = 〈2, 3〉〈1, 4〉
〈3, 1〉〈1, 2〉 , A2 = 〈3, 1〉〈2, 5〉

〈1, 2〉〈2, 3〉 , A3 = 〈1, 2〉〈3, 6〉
〈2, 3〉〈3, 1〉 ;

(B.18)

ξ2 = [4, 5]
〈1, 2〉 , ξ3 = [6, 4]

〈3, 1〉 ; (B.19)

F3(· · · ; ξ2, ξ3) = µs11 µ
s2
2 µ

s3
3 f3(· · · ; ξ2, ξ3) , µi ≡ 〈i, i+3〉 . (B.20)

We notice that in this case, with the choice of independent variables we have made to
derive the expression (5.39), we have that J¯

2
+ and J¯

3
+ act only on the respective ξi, whereas

J¯
1
+ acts on both of them. So it is easier to consider first the action of J¯

2
+ and J¯

3
+, which is

completely analogous to the one of the previous section, and it yields, for i = 2, 3,

J¯
i
+ξi = −εiAi xi , with xi ≡

x

µi
, x = µ2ξ2 + µ3ξ3 −

m1
2

µ1
, (B.21)

and εi= /i−i just a sign. From this we can derive, again by induction,

A1
s1A2

s2A3
s3 (J¯

i
+)nM−s1,−s2,−s3 =

=
n∑
k=0

(
n

k

)
(−xi)kF (i,k)

3

n∑
j=k

(
n− k
j − k

)
(∆ + k)(j−k)(−2si + j)(n−j) (εiAi)j bn−ji ,

(B.22)

where we have denoted by F (i,k)
3 the k-th derivative of F3 with respect to ξi, and

∆ = s1 − s2 − s3 ; b2 = 〈1, 5〉
〈1, 2〉 , b3 = 〈6, 1〉

〈3, 1〉 .
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For n = 2si+1, only the term for j = n survives in the second sum, and this yields basically
the same equation as (B.15) for F3, whose most general solution is

F3
(
µ1, µ2, µ3; ξ2, ξ3

)
= x∆

2si∑
k=0

c
(i)
k

(
µ1, µ2, µ3; ξ/i

)
xk , (B.23)

where we have absorbed the factors µ2, µ3 into the coefficients c(i)
k , in order to express the

result in the unique variable x.
The action of J¯

1
+ is quite involved, since it acts on both variables ξ2 and ξ3, and

so in particular also on the coefficients c(i)
k (ξ/i). But working out some simple cases it

seems quite likely that this third condition, i.e. (J¯
1
+)2s1+1M−s1,−s2,−s3 = 0, would yield a

condition on the spins similar to those in (5.18) or (5.31), following from conservation of
angular momentum.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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[34] L.-A. Douxchamps, Récursion bcfw et amplitudes de diffusion, MSc Thesis, Université Libre
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