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1 Introduction

In recent years, the study of the time-dependence of entanglement entropy has received

a considerable attention [1–10]. In the simplest scenario one studies the evolution of the

spatial entanglement entropy under the assumption that the system begins in the vacuum

state in the asymptotic past while a relevant (i.e., positive mass dimension) coupling con-

stant in the Hamiltonian is given a non-trivial time dependence which asymptotes to a

constant value in the far future.

Although the assumption that the system starts in the vacuum state might seem to

be an oversimplification, certain questions about the entanglement may still be addressed

without loss of generality. For example, in quantum field theory the entropy of a region is
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always UV divergent [11, 12], whereas the structure of these divergences is state indepen-

dent, see e.g., [13]. Hence, assuming that the system resides in the vacuum state is enough

to determine the pattern of divergences in any state. Indeed, this pattern is fixed by the

entanglement of degrees of freedom near the UV cutoff scale, δ, and therefore the charac-

teristic scale of an excited state plays no role in this regime. Furthermore, the dynamics

of the divergent part of the entanglement entropy in a time dependent setup is not trivial,

since the asymptotic vacua, in general, are not identical.

Even though the time dependence of the full entanglement entropy in a generic setup

is very complicated, we expect that evolution of the UV divergences is quasi-adiabatic,

and therefore tractable. Our expectation rests on the locality of UV divergences when

all length scales, `i, including the characteristic time scale of the change in couplings, are

much longer than the UV cut off, `i � δ, i.e., when the system is found in the physical

regime.1 In particular, the divergent part of the entropy at time t will only depend on the

instantaneous value of the coupling and its time derivatives.

There is an additional outcome that stems directly from the locality of divergences.

It is now a well-established fact that entanglement entropy is sensitive to the geometry

of the background and shape of the entangling surface [14–22]. The full answer can be

expressed as a sum of certain geometric structures with coefficients fixed by QFT data.

Not all of these structures are necessarily local, however those which are multiplied by

divergent coefficients as δ → 0 should be local.

The ubiquitous ‘area law’ [11, 12] is probably the most prominent and simple example

of a local geometric structure. In a static d-dimensional CFT it is proportional to δ2−dA
since δ in this case is the only admissible scale at hand, while entropy is dimensionless and

area of the surface, A, has length dimension d − 2. Therefore the ‘area law’ term is not

universal in a CFT — it is sensitive to the choice of regularization scheme. However, the

presence of an additional scale in a non-conformal field theory may overturn this conclusion

and result in a universal ‘area law’ of entanglement, e.g., a logarithmically divergent term

proportional to the area multiplied by an appropriate power of some built-in scale.

In this work we focus on the evolution of the ‘area law’ terms when a QFT undergoes

a quantum quench, and calculate the time-dependence of the universal coefficients in a

variety of examples. To make the field theory analysis analytically tractable, we expand

the entanglement entropy to linear order in the time dependent coupling λ(t). This is

not necessary to recover the exact pattern of the universal divergences in the holographic

approach, since it is completely fixed by the asymptotic region of the dual geometry. Even

though our focus is on the ‘area law’ only, we expect qualitatively similar behavior from

the subleading divergences as well.

If the mass dimension of λ(t) is α, then for α = (d − 2)/k we may have a universal

term proportional to λk(t)A. Similarly, if α = (d − 2 − l)/k with l being a non-negative

integer, then a term proportional to λk−m(t)∂ltλ
m(t)A with 1 ≤ m ≤ k is allowed. It may

happen that for a given α there is more than one choice of l and k, in which case there is

1In principle, one could study situations when the coupling varies over time scales of order the UV cut

off. However, the interpretation of these results might be questionable, and we leave this regime outside

the scope of the current work.
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a proliferation of possible universal structures. Generically, one would expect all allowed

terms to appear, and with independent coefficients. Note, however, that for a given α there

are only finitely many allowed terms.

In sections 2 and 3 we carry out explicit calculations for a set of special values of k and l

in holographic and free field theories. In both cases we observe the quasi-adiabatic behavior

that we had argued for. Moreover, in some cases our holographic and free field calculations

exactly match. Such an agreement between the time-dependent terms of entanglement

entropy in the weakly and strongly coupled regimes resembles similar match in the static

case [23, 24] and can be attributed to the universality of certain two- and three-point

correlation functions in a CFT. In particular, we observe explicit match when α = 1, 2 and

k = 2 in various dimensions.2 These values of α correspond to the Dirac and scalar mass

operators, respectively. Recalling now that α = (d− 2− l)/k results in the following cases

explicitly elaborated in the text:

• α = 1, d = 4, l = 0. This case corresponds to a 4D massive Dirac field. Up to a

numerical factor the universal entanglement entropy is given by ∼ λ2(t)A, where λ(t)

is the time-dependent mass of the Dirac field.

• α = 2, d = 6, l = 0. This case of a 6D massive scalar field is analogous to the previous

case, i.e., the entanglement entropy is given by ∼ λ2(t)A, except that λ(t) is mass

squared this time.

• α = 1, d = 6, l = 2. In six dimensions, there is a universal term involving two time

derivatives of the Dirac mass ∼ λ(t)λ̈(t)A. We calculate the numerical coefficient

for the first time both holographically and in the free field theory, and find exact

agreement.

• α = 2, d = 8, l = 2. The behavior of the universal term for the massive scalar field

in eight dimensions ∼ λ(t)λ̈(t)A resembles the massive Dirac field in six dimensions,

and again we calculate the precise numerical coefficient holographically and in free

field theory, finding agreement.

The remainder of this paper is organized as follows. In section 2 we build on the holo-

graphic proposal [26, 27] to compute the time-dependent universal entanglement entropy

for holographic field theories. Since we are only interested in divergent terms, the gravity

calculation is localized in the asymptotic region of the dual geometry; this feature allows us

to calculate the universal coefficients exactly even though the geometry is only determined

perturbatively. We calculate the coefficients of the terms for which agreement with the

free fields is expected, as well as for the terms where agreement is not anticipated. In the

latter case the answer on the field theory side depends on more than just the universal

correlation functions of the underlying CFT.

2In fact, there is also a trivial match when k = 1. The universal term in this case is independent of

λ0, and therefore the final answer remains intact if we set λ0 = 0. However, if the theory is conformal at

λ0 = 0 such terms must vanish independently of the values of α and l for the same reason as in the static

case [25], see section 3.
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In section 3 we derive a general expression for the time-dependent first order correction

to the ‘area law’, and show that for a generic QFT it can be expressed in terms of the

spectral function defining the two-point correlation function of the trace of the energy-

momentum tensor. We use these formulas to calculate the universal ‘area law’ for massive

free fields with time dependent masses. We end with conclusions in section 4, and a number

of appendices detailing some of the more technical aspects of the calculation.

2 Holographic calculation

2.1 Setup

We consider a CFT in d spacetime dimensions on the boundary, dual to Einstein gravity

in the d + 1-dimensional bulk. The computation of the entanglement entropy of some

boundary region, B, can be done using HRT prescription [26, 27]. The prescription tells

us to find the codimension-2 surface in the bulk with extremal area, ΣB, subject to the

condition that B and ΣB are homologous. If there are multiple extremal surfaces, we must

choose the one with the minimum area. We will call this minimal extremal surface the HRT

surface from now on. The entanglement entropy of B and the area of the HRT surface are

related by

S =
Area(ΣB)

4Gd+1
. (2.1)

Beginning with the vacuum state of the CFT, we turn on a relevant operator O of

dimension ∆ < d at t = 0 by giving it a nonzero, time-dependent, spatially homogenous

coupling λ(t). It will be useful to express our results in terms of the mass dimension of

the coupling, α ≡ d − ∆. The operator O is dual to a scalar field Φ in the bulk of mass

m2 = ∆(∆ − d) [28, 29]. A nonzero coupling λ(t) corresponds to nontrivial boundary

conditions for Φ. Through the Einstein-scalar field equations, this will change the bulk

metric and therefore affect the calculation of the HRT surface and its area.

The Einstein-scalar equations are given by the variation of the bulk action [13]

I(gλν ,Φ) =
1

16πGd+1

∫
dd+1x

√
−g

{
R− 1

2
gλν∂λΦ∂νΦ− V (Φ)

}
(2.2)

V (Φ) =− d(d− 1) +
1

2
m2Φ2 +

κ

6
Φ3 +

ω

24
Φ4 +O(Φ5) (2.3)

where we have set LAdS = 1. We have chosen to normalize the bulk scalar action so that

there is an overall factor of 1/16πGd+1 in front; this amounts to a normalization condition

on the operatorO. In particular, with this normalization, we can read off Newton’s constant

from the two-point function of O [30]:

〈O(x)O(y)〉 =
2∆− d
8πGd+1

Γ(∆)

Γ(∆− d/2)

1

πd/2|x− y|2∆
. (2.4)
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This will allow us to make contact with the free field calculations in section 3.3 The bulk

interaction parameters κ, ω, etc., are similarly determined by the three, four, and higher-

point functions of O. The most interesting terms in the entanglement entropy are the ones

which depend only on the two-point function, since these may be the same across theories

once the normalization has been fixed using (2.4). Thus we should pay special attention

below to those terms which depend only on Gd+1.

The coupled Einstein-scalar equations are

Rµν =
1

2
∂µΦ∂νΦ +

1

d− 1
gµνV (Φ) (2.5)

1√
−g

∂µ

(√
−ggµν∂νΦ

)
− δ

δφ
V (Φ) = 0 (2.6)

Following [31], we choose our bulk ‘radial’ coordinate z to be orthogonal to all of the

boundary coordinates. This corresponds to the gauge fixing

gzt = gzi = 0, (2.7)

where xi for i = 1, . . . , d − 1 are the spatial coordinates of the boundary. We also rescale

the bulk coordinate to fix gzz = 1
z2

.

Since our quench is homogenous and isotropic, the bulk geometry must be homogenous

and isotropic as well. Then we can write the bulk metric as

ds2 =
1

z2

(
dz2 − f(t, z)dt2 + h(t, z)

d−1∑
i=1

dx2
i

)
(2.8)

with the boundary conditions that f(t, z = 0) = h(t, z = 0) = 1, and f(t < 0, z) = h(t <

0, z) = 1.

With this choice of metric, (2.5) and (2.6) take the following form:4

0 =
d− 1

4

ḣ

h

h′

h
+
d− 1

4

ḣ

h

f ′

f
− d− 1

2

ḣ′

h
− 1

2
Φ̇Φ′, (2.9)

0 =
d− 1

4

( ḣ
h

)2
− d

2

f ′

z
+
d− 1

4

ḟ

f

ḣ

h
− 1

4

f ′2

f
+

d

z2
f − d− 1

2

f

z

h′

h

− d− 1

2

ḧ

h
+
d− 1

4

f ′h′

h
+

1

2
f ′′ − 1

2
Φ̇2 +

1

d− 1

f

z2
V (Φ), (2.10)

0 = z2Φ′′ − z2

f
Φ̈− (d− 1)zΦ′ +

z2

2
Φ̇
ḟ

f
+
z2

2
Φ′
f ′

f
+ (d− 1)

z2

2
Φ′
h′

h

− (d− 1)
z2

2

Φ̇

f

ḣ

h
− δ

δφ
V (Φ), (2.11)

3Alternatively, we could have left the normalization unspecified at the cost of introducing another pa-

rameter η which multiplies the bulk scalar field action. The normalization we have chosen is convenient

because it simplifies the Einstein-scalar equations of motion.
4These equations are the zt-component (2.9) and tt-component (2.10) of the Einstein equation, and the

scalar field equation of motion (2.11). We will not need the remaining equations in our analysis.
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The UV divergences in the entanglement entropy arise from the divergences of the area

functional of the HRT surface, ΣB, near the asymptotic boundary (z = 0). To compute

these divergences, we need to find the area functional, or the induced metric on ΣB, near

z = 0. In [13], the authors studied the solutions of (2.9)–(2.11) as a power series in z. They

have shown that the solutions can be written as the sum of two separate power series. One

of them is independent of the state of the boundary theory, whereas the other series solution

carries information about the state of the boundary theory. They also showed that the latter

solution does not contribute to the divergences in the entanglement entropy, which implies

that the divergences in the entanglement entropy are state-independent (as expected).

Having learned that the state-dependent power series solution does not contribute to

the divergences, we will only be writing the state-independent solution in the following

analysis.5 In [13], all the powers of z that arise in the asymptotic solution have been iden-

tified. Using their result, we make the following ansatz for the metric and the scalar field:

h(z, t) = 1 +
∑
m=2

∑
n=0

zmα+n hm,n(t) (2.12)

f(z, t) = 1 +
∑
m=2

∑
n=0

zmα+n fm,n(t) (2.13)

Φ(z, t) = zα
∑
m=0

∑
n=0

zmα+n φm,n(t) (2.14)

where φ0,0(t) is equal to the time dependent coupling, λ(t). That is,

φ0,0(t) = λ(t). (2.15)

2.2 HRT surface

In this work we will only consider terms which are independent of the curvature of the

entangling surface. Then it will be enough to consider the entanglements of a half-space

in the field theory, which means the entangling surface is a flat plane. That is, the region

B in the boundary is given by

B : x1 > 0, t = t0. (2.16)

The natural coordinates on the codimension-2 HRT surface in the bulk are {z, xi} for

i = 2, . . . , d − 1, with t and x1 left as functions determining the position of the surface

in the bulk. The HRT surface must be invariant under translation in xi direction, for

i = 2, . . . , d− 1. This means t = t(z) and x1 = x1(z) are functions of z alone. The state is

also translation-invariant in the x1 direction, and so we can fix x1(z) = 0. To summarize,

the HRT surface, ΣB, is

ΣB : x1 = x1(z) = 0, t = t(z), (2.17)

5This is not to say that the state-dependent terms are unimportant for the non-divergent parts of the

entropy or that they are actually equal to zero in the solutions we consider, but only that we do not need

to keep track of them in our analysis.
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with the boundary condition, t(z = 0) = t0, the time at which we are computing the

entropy.

The area functional of the HRT surface is given by

Area(ΣB) = 2A
∫ ∞
δ

dz
h

d−2
2 (z, t(z))

zd−1

√
1− f(z, t(z))(t′(z))2, (2.18)

where A is the area of the entangling surface in the boundary, and prime denotes the

derivative with respect to z. Also note that we have introduced a cut-off surface near the

boundary at z = δ.

Applying the variational principle to the above functional gives us an equation for t(z).

As mentioned above, we are only interested in the asymptotic behavior of the solution near

z = 0. As we will show in appendix A.1, the lowest nontrivial power of z that appears in

the solution of t(z) is z2+2α. That is, at the lowest order, the solution of the stationary

surface is

t(z) = t0 + z2+2α t2+2α + . . . , (2.19)

where t2+2α is a constant.

By expanding the integrand of (2.18) in z, we see that we can see that t2+2α in (2.19)

enters as the coefficient of z4α+3−d. This will not affect the divergent terms in the entropy

as long as

α >
d− 4

4
. (2.20)

In the following, we will perform explicit calculations for α = 1, 2 in d = 4, 5, 6, and for

α = 2 in d = 8. These values of α corresponds to the mass term of a Dirac fermion and

scalar boson, respectively. For these values of α and d, the above inequality is true. This

allows us to forget about the details of the HRT surface, and simply set t(z) = t0 in (2.18).

With this simplification, (2.18) becomes

Area(ΣB) = 2A
∫ ∞
δ

dz
h

d−2
2 (z, t0)

zd−1
. (2.21)

The entanglement entropy of the boundary region B is then given by

S(t0) =
A

2Gd+1

∫ ∞
δ

dz
h

d−2
2 (z, t0)

zd−1
, (2.22)

where we can give Gd+1 a field-theory definition by relating it to the two-point function of

the operator O as in (2.4), reproduced here:

〈O(x)O(y)〉 =
2∆− d
8πGd+1

Γ(∆)

Γ(∆− d/2)

1

πd/2|x− y|2∆
. (2.23)
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2.3 Scalar mass operator: α = 2

In this subsection, we will specialize to the case where α = 2. In the free field case, this

corresponds to a time-dependent mass:

O(x) =φ2(x) (2.24)

λ(t) =
1

2
m2(t) (2.25)

The entanglement entropy is given by (2.22). The ansatz for h(z, t0) given in (2.12)

becomes

h(z, t) = 1 + z4h2,0(t) +O(z6) (2.26)

By counting powers of z in the integral (2.22), we deduce that there is no time-dependent

universal log-divergence in the entanglement entropy for d = 4 and d = 5. This result is

consistent with the time-independent holographic calculations [13]. Now we turn to d = 6

and d = 8. To facilitate comparison to the free field case (wherever applicable), we will

use (2.4) and the result [23]

〈φ2(x)φ2(y)〉boundary =
2

(d− 2)2Ω2
d

1

|x− y|2(d−2)
(2.27)

which says that the effective value of Newton’s constant is

Gd+1 =
(d− 2)2(d− 4)2πd/2−1

16(d− 1)

Γ(d)

(Γ(d/2))3
. (2.28)

2.3.1 d = 6

Using (2.22), we get

S(t0) =
A

2G7

∫ ∞
δ

dz
h2(z, t0)

z5
(2.29)

After inserting (2.26) in the above expression, and extracting the log-divergence, we get

Slog(t0) = − A
G7

h2,0(t0) log δ (2.30)

Using (A.7), we get

h2,0(t0) = − 1

20
φ2

0,0(t0) = − 1

20
λ2(t0), (2.31)

and hence

Slog(t0) =
A

20G7
λ2(t0) log δ (2.32)

This is an example of a result which depends only on Newton’s constant and not any

of the other parameters in V (Φ). Then it depends only on the two-point function of O,

through (2.4). Using (2.28), we get G7 = 12π2. Then the holographic result, extrapolated

to the free scalar, is

Slog(t0) =
A

240π2
λ2(t0) log δ =

A
960π2

m4(t0) log δ (2.33)

If m2(t) is constant, this agrees with the well-known answer for the static case [13]. We

will see below in section 3 that we have full agreement also in the time-dependent case.
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2.3.2 d = 8

Using (2.22), we get

S(t0) =
A

2G9

∫ ∞
δ

dz
h3(z, t0)

z7
(2.34)

After inserting (2.26) in the above expression, and extracting the log-divergence, we get

Slog(t0) = − 3A
2G9

(
h2,2(t0) + h3,0(t0)

)
log δ (2.35)

Using (A.10) and using (2.15), we get

h2,2(t0) + h3,0(t0) =
κ

126
λ3(t0) +

1

168
λ̇2(t0) +

1

84
λ(t0)λ̈(t0), (2.36)

and hence

Slog(t0) = − A
2G9

(
κ

42
λ3(t0) +

1

56
λ̇2(t0) +

1

28
λ(t0)λ̈(t0)

)
log δ (2.37)

where G9 = 120π3 is given by (2.28). Note that the coefficent of the λ3(t) term is propor-

tional to κ and hence it’s not expected to be universal for all unperturbed CFTs.

2.4 Fermionic mass operator: α = 1

In this subsection, we turn to the case α = 1. This corresponds in the free field limit to a

Dirac mass for a fermion:

O(x) = ψ̄(x)ψ(x) (2.38)

λ(t) =m(t) (2.39)

The ansatz for h(z, t) given in (2.12) for α = 1 is

h(z, t) = 1 + z2h2,0(t) + z3h3,0(t) + z4
(
h2,2(t) + h4,0(t)

)
+O(z5) (2.40)

By a power counting argument, we find that there is a log divergence for all d > 3. The

absence of the log term in d = 3 is consistent with the known result [13, 25] that the change

in the entanglement entropy to first order in a perturbation away from a CFT is zero: the

coefficient of the log term, if present, would have been proportional to m.

To determine the effective value of Gd+1 using (2.4), we will use the following two

point function of Oψ(x) = ψ̄(x)ψ(x) with itself [23]:

〈Oψ(x)Oψ(0)〉 =
2bd/2c

Ω2
d

1

x2(d−1)
(2.41)

2.4.1 d = 4

The log divergence in (2.22) in d = 4 is equal to

Slog(t0) = − A
2G5

h2,0(t0) log δ (2.42)

– 9 –
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where h2,0(t0) is given in (A.12):

h2,0(t0) = − 1

12
φ2

0,0(t0) = − 1

12
λ2(t0). (2.43)

Using (2.4) and (2.41), we get G5 = π
2 . Then we have

Slog(t0) =
A

12π
λ2(t0) log δ (2.44)

2.4.2 d = 5

In this case, the log divergence in the entanglement entropy is equal to

Slog(t0) = − 3A
4G6

h3,0(t0) log δ (2.45)

We copy the result for h3,0(t0) from (A.15):

h3,0(t0) =
κ

36
φ3

0,0(t0) (2.46)

Using (2.4) and (2.41), we get G6 = 8. Therefore, the entanglement entropy becomes

Slog(t0) = − A
384

κφ3
0,0(t0) log δ = − A

384
κλ3(t0) log δ (2.47)

In this case the answer depends on the bulk interaction strength κ, and hence is not

expected to be universal across all theories.

2.4.3 d = 6

In this case, the entanglement entropy in (2.22) simplifies to

S(t0) =
A

2G7

∫ ∞
δ

dz
h2(z, t0)

z5
(2.48)

By expanding (2.40) in the above expression and extracting the log term, we get

Slog(t0) = − A
2G7

(
h2

2,0(t0) + 2h2,2(t0) + 2h4,0(t0)
)

log δ (2.49)

Using (A.19), we get

h2
2,0(t0) + 2h2,2(t0) + 2h4,0(t0) =

(117− 65κ2 + 45ω)

7200
φ4

0,0(t0) +
1

80
∂2
t

(
φ2

0,0(t0)
)

(2.50)

Using (2.4) and (2.41), we get G7 = 3
2π

2. Combining these results gives us the log term

divergence which not only depends on the instantaneous value of the coupling, but also

on the instantaneous values of its derivatives. Notice that the derivative term does not

depend on the higher-point interactions. Putting together the above results gives

S∂2,log(t0) = − A
240π2

∂2
t

(
λ2(t0)

)
log δ (2.51)
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3 Field theory calculation

In this section, we use the Hamiltonian formalism to find the time evolution of the log term

in the entanglement entropy for a general field theory to first order in perturbation theory.

We will identify the linear term in the time-dependent entropy with a certain correlation

function in the original theory. Using the free scalar field as a guiding example, we will

go on to evaluate the divergent parts of this correlation function in terms of the spectral

function c(0)(µ) of the theory, defined in terms of the two-point function of the trace of the

energy-momentum tensor [32]. Finally, we use this general prescription to calculate the

answer for a free Dirac field.

3.1 Entropy perturbation as a correlation function

The time dependent Hamiltonian of our theory is

H(t) = H0 + λ(t)O, (3.1)

where H0 is the Hamiltonian of the unperturbed theory, and λ(t ≤ 0) = 0.

We start with the system in the vacuum state, |0〉, of the unperturbed Hamiltonian.

The global state at any time t > 0 is given by the time-dependent density matrix, ρ̂(t) =

|χ(t)〉〈χ(t)|, where |χ(t)〉 solves the Schrödinger equation generated by H(t) with initial

condition |0〉. The time-dependent reduced density matrix of some spatial region B is given

by the tracing over the Hilbert space of complementary region, B̄. That is

ρ(t) = TrB̄ |χ(t)〉〈χ(t)|. (3.2)

We define the time dependent modular Hamiltonian K(t) of region B as

ρ(t) ≡ e−K(t), (3.3)

where K(t) has only support in the region B. In other words, this operator acts as the

identity operator on the Hilbert space on the region B̄.

The entanglement entropy of B can be written using the modular Hamiltonian:

S(t) = − TrB ρ(t) log ρ(t)

= TrB

(
K(t)TrB̄|χ(t)〉〈χ(t)|

)
= TrB∪B̄

(
K(t)|χ(t)〉〈χ(t)|

)
= 〈χ(t)|K(t)|χ(t)〉. (3.4)

To extract the term linear in λ(t), we define the state in the interaction picture. That is

|χ̃(t)〉 ≡ eiH0t|χ(t)〉 (3.5)

where the interaction picture state solves the equation

i∂t|χ̃(t)〉 = λ(t)Õ(t)|χ̃(t)〉, (3.6)

– 11 –
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where Õ(t) = eiH0tOe−iH0t. We can solve the above equation perturbatively

|χ̃(t)〉 = |0〉+ |χ̃(1)(t)〉+
1

2
|χ̃(2)(t)〉+ . . . (3.7)

where the first order correction is

|χ̃(1)(t)〉 = −i
∫ t

0
dt′ λ(t′)Õ(t′)|0〉. (3.8)

We expand the modular Hamiltonian in the same fashion

K(t) = K0 +K(1)(t) +
1

2
K(2)(t) + · · · , (3.9)

where K0 is the modular Hamiltonian of the vacuum state of the CFT, and hence is time

independent, and K(n) involves n powers of λ.

Combining these expansions we get the first order change in the entanglement entropy:

S(1)(t) = 〈χ̃(1)(t)|eiH0tK0|0〉+ 〈0|K0e
−iH0t|χ̃(1)(t)〉+ 〈0|K(1)(t)|0〉. (3.10)

The normalization of the reduced density matrix provides a constraint on the modular

Hamiltonian:

TrB e
−K(t) = 1. (3.11)

Expanding this constraint to leading order yields

〈0|K(1)|0〉 = 0, (3.12)

which simplifies (3.10) to

S(1)(t) = 2Re
[
〈0|K0e

−iH0t|χ̃(1)(t)〉
]

= −2

∫ 0

−t
dt′λ(t′ + t) Re

[
i〈0|K0Õ(t′)|0〉

]
. (3.13)

This is one of our main results. The content of this formula is summarized in figure 1.

The formula (3.13) is applicable for any spatial region B. However, the vacuum mod-

ular Hamiltonian K0 is not known for a general region. We will therefore again restrict

ourselves to the case where entangling surface is an infinite plane, so that the region B is a

half-space. In that case, the modular Hamiltonian of the vacuum state is well known [33–36]

K0 = 2π

∫
dx‖

∫ ∞
0

dx⊥ x⊥T00(t = 0, x⊥,x‖). (3.14)

Here we have adopted the following notation for spatial vectors, v. We write v = (v⊥,v‖),

where v⊥ is the component of v in the direction orthogonal to the entangling surface and

v‖ is the projection of v parallel to the entangling surface.

Putting this together, we see that the first-order change in the entropy is related to

the commutator of the energy density and the perturbation:

S(1)(t) = −2πi

∫ 0

−t
dt′
∫
dx‖

∫ ∞
0

dx⊥ x⊥λ(t′ + t)〈0|
[
T00(0, x⊥,x‖), Õ(t′)

]
|0〉. (3.15)

Notice that the interaction picture operator Õ(t) is identical to the Heisenberg operator

O(t) in the original λ(t) = 0 theory, i.e., when the total Hamiltonian is equal to H0. In

the following, O itself will be the integral of a local operator, so we effectively reduce

the problem to a commutator of local operators (or equivalently the imaginary part of a

two-point function) in the original theory.

– 12 –
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x⊥

t′

−t−

K0

O(t′)

∂B

Figure 1. Two dimensional cross-section of our setup illustrating equation (3.13). The entangling

surface, ∂B, is at t′ = 0 and x⊥ = 0 (marked as the black dot). The modular Hamiltonian of the

unperturbed state lives entirely in region B at t′ = 0, indicated by the red line. We first compute

the correlation function of K0 with the relevant operator, O, inserted at the blue line, and then

integrate over the shaded region. The dashed line at t′ = −δ serves as the UV cutoff.

3.2 Example: free scalar field

In the static perturbation theory the first order change in the entanglement entropy after

perturbing a CFT by a relevant operator vanishes [25]. It follows from (3.15) that similar

conclusion holds in the time dependent case. To resolve this difficulty, we will start with

the free scalar with non-zero mass, m, and then introduce a time dependent perturbation

to the mass, m2(t) = m2 + 2λ(t).6 The action of our theory is7

I[φ(t,x)] =

∫
dtdx

(
1

2
(∂φ(t,x))2 − 1

2
m2φ2(t,x)− λ(t)φ2(t,x)

)
(3.16)

where λ(t ≤ 0) = 0. The perturbing operator is O(t′) =
∫
dx′ φ2(t′,x′), where the time

dependence of these operators is governed by the free Hamiltonian with λ = 0. From (3.15)

we see that the entropy is determined by correlation functions of T00 and φ2. The energy-

momentum tensor of the free scalar field is given by

Tµν = ∂µφ∂νφ−
1

2
ηµν

(
(∂φ)2 −m2φ2

)
+ ξ
(
ηµν∂

2 − ∂µ∂ν
)
φ2 (3.17)

where the last term is a possible improvement term. The energy momentum tensor is

traceless if it is massless and ξ = ξc ≡ d−2
4(d−1) , in which case the scalar field is said to be

conformally coupled. The other noteworthy case is the minimally coupled scalar, where

ξ = 0. The required correlation functions are easily computed using Wick’s theorem:

〈0|T00(x)φ2(x′)|0〉 = (∂tG)2 + (∇G)2 +m2G2 − 2ξ∇2G2, (3.18)

where

G(x− x′) = 〈0|φ(x)φ(x′)|0〉 =

∫
dp

(2π)d−1

1

2Ep
e−ip·(x−x

′) (3.19)

6The factor of two is so our definition of λ remains consistent with the previous section.
7We use mostly minus signature.
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is the (unordered Lorentzian) two-point function of the scalar field. The expectation value

of the commutator
[
T00(x), φ(x′)2

]
is simply twice the imaginary part of the correlation

function, up to a factor of i. Before taking the imaginary part, we first perform the required

integrations, the details of which we leave to appendix B. From (B.5) we find∫ 0

−t
dt′
∫
dx′
∫
dx‖

∫ ∞
0

dx⊥ x⊥λ(t′ + t)〈0|T00(0, x⊥,x‖)φ
2(t′,x′)|0〉

= A
∫ t

0
dt′ λ(t′)

∫
dp

(2π)d−1

(
1− p2

⊥/E
2 − 4ξ

8E2

)
e2iE(t′−t). (3.20)

Using this result in (3.15) yields

S
(1)
scalar(t) =

Ωd−1

4(2π)d−2
A
∫ t

0
dt′λ(t′)

∫ ∞
0

dp

(
4(ξc − ξ)

pd−2

E2
+

m2

d−1

pd−2

E4

)
sin
(
2E(t′ − t)

)
(3.21)

where Ωd = 2πd/2

Γ(d/2) .

To isolate UV divergences in the above expression, we expand the integrand around

x ≡ E/m� 1

S
(1)
scalar(t) =

Ωd−1

4(2π)d−2(d− 1)
md−3A

∞∑
n=0

(−1)nΓ
(
d−1

2

)
Γ
(
d−1−2n

2

)
Γ(n+ 1)

∫ t

0
dt′λ(t′)

×
∫ ∞

1
dxxd−6−2n

(
4(ξc − ξ)(d− 1)x2 + 1

)
sin
(
2(t′ − t)mx

)
. (3.22)

Next we note that for any given d, the integral over x in the above expression results in a

UV-divergent S(1) if and only if d − 4 − 2n ≥ 0. There are only a finite number of such

terms, and therefore we regularize them by assuming that n is sufficiently large, carry out

the integral over x and treat the special values of n by analytic continuation.

The final result depends on the parity of d. For odd d there are no divergences, and

S(1) is finite.8 On the other hand, for even d we obtain

S
(1)
scalar(t) =

Ωd−1

4(2π)d−2(d− 1)
md−3A

∑
0≤n≤ d−4

2

(−1)
d
2 Γ
(
d−1

2

)
Γ
(
d−1−2n

2

)
Γ(n+ 1)

∫ t

0
dt′λ(t′) (3.23)

×

(
4(ξc − ξ)(d− 1)Γ(d− 2n− 3)(

2(t′ − t)m
)d−2n−3

− Γ(d− 2n− 5)(
2(t′ − t)m

)d−2n−5

)
+ finite terms .

Introducing a UV cut off surface t′ = t− δ to ensures that the integral over t′ is finite, and

expanding λ(t′) in the vicinity of the cutoff yields

S
(1)
scalar(t) =

(−1)
d
2

(16π)
d−3
2 Γ

(
d−1

2

)A
(

(ξc − ξ)λ(d−4)(t)−
∑

0≤n≤ d−6
2

(4m2)nΓ
(
d−1

2

)
Γ
(
d−1

2 − n
)

Γ(n+ 1)

×m2 λ(d−2n−6)(t)

(
2(d− 2n− 3)

n+ 1
(ξ − ξc) +

1

d− 1

))
log δ + finite terms .

(3.24)

8The non universal divergences vanish for our choice of regularization scheme.
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There are two points to make about this result: (i) It gives us the expected adiabatic

expansion of the time-dependence of the divergent terms in the entanglement entropy,

where in accord with local nature of the divergences only the instantaneous value of the

coupling and its derivatives matter. (ii) Only even numbers of derivatives appear in the

divergent terms, which is consistent with the holographic result.

As an initial check of our calculations, let us consider a static mass perturbation, i.e.

λ(t) = λ. In this case only n = (d− 6)/2 term in (3.24) survives, and we get

S
(1)
scalar = (1− 6ξ)

(−1)
d
2A

3(4π)
d−2
2 Γ

(
d−2

2

) md−4λ log δ + finite terms . (3.25)

For ξ = 0 this formula matches the well-known first-order expansion of the static re-

sult [37–39], while for ξ 6= 0 it agrees with [40–42].

For the time-dependent λ(t) in d = 4, 6, 8, the explicit form of the first order correc-

tion is

S
(1)
scalar(t)

∣∣∣
d=4

= (ξc − ξ)
A
2π

λ(t) log δ + finite terms . (3.26)

S
(1)
scalar(t)

∣∣∣
d=6

=
−A
48π2

(
(ξc − ξ)λ̈(t) +

(
6(ξc − ξ)−

1

5

)
m2λ(t)

)
log δ + finite terms .

S
(1)
scalar(t)

∣∣∣
d=8

=
A

1920π3

(
(ξc − ξ)λ(4)(t) +

(
10(ξc − ξ)−

1

7

)
m2λ̈(t)

+10

(
3(ξc − ξ)−

1

7

)
m4λ(t)

)
log δ + finite terms .

Setting ξ = ξc we find that terms proportional to m2λ and m2λ̈ in d = 6 and d = 8 respec-

tively agree with their holographic counterparts.9 Furthermore, linear terms in λ(t) and its

derivatives vanish in all dimensions which is also in full agreement with holography. Such a

match between the calculations for the free field theory and strongly coupled N = 4 SYM

might seem surprising at first sight. However, as we argue in the next section, similarly

to the time independent case [13, 43], this match can be attributed to the universality of

〈TµνO〉, 〈OO〉 and 〈TµνOO〉 in a conformal field theory [23, 24]. We note that tuning ξ to

a conformal value ξc was important to ensure tracelessness of the stress tensor in a CFT.

3.3 Spectral representation

The scalar field theory example of the previous section suggests that the time dependent

universal terms of EE can be easily identified if we rewrite (3.15) as an integral over energy

states. The main goal of this section is to perform such spectral analysis for an interacting

QFT which is driven by the action with only one operator, O(x), of scaling dimension

∆ < d. The corresponding relevant coupling will be denoted by λ. We assume that λ is

equal to some fixed value plus a time-dependent perturbation: λ(t) = λ0 + δλ(t).

9To see matching recall that m2(t) = m2 + 2λ(t).
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We start from noting that our main result (3.13) (or equivalently, (3.15) in the case of

planar entangling surface) can be written as follows

S(1)(t) = −2

∫ 0

−t
dt′λ(t′ + t) Re

[
i〈0|Kλ0O(t′)|0〉λ0

]
. (3.27)

where 〈. . .〉λ0 denotes the correlator in the unperturbed theory with coupling λ0.

Recalling now that by definition Kλ0 is sitting at the t = 0 slice, we deduce that the

above correlator can be easily obtained from its Euclidean counterpart by analytic contin-

uation. One simply evaluates the Euclidean correlator 〈Kλ0O(t′E)〉λ0 and then substitutes

Euclidean time, t′E, with i(t′ + iε).

Moreover, if we implement conformal perturbation theory and expand this correlator

around λ0 = 0, we will get [23]

〈0|Kλ0O|0〉λ0 = −λ0

(
〈K0OO〉0 − 〈OO〉0

)
+O(λ2

0) . (3.28)

where we have used the fact that the correlator 〈K0O〉0 vanishes for the CFT.10 This

observation implies that the result for S(1)(t) to linear order in λ0 will be independent of

the underlying CFT.11 This follows from the universality of conformal correlators 〈OO〉
and 〈TµνOO〉 [44, 45]. Thus we conclude that all terms of S(1)(t) which are proportional to

λ0 δλ(t) (or λ0 ∂
2
t δλ(t) and so on) are identical for any perturbed CFT. In particular, this

explains the perfect matching, mentioned in the previous section, between certain terms

in the holographic and free field theory calculations. This can be seen in the following

way: note that the terms proportional to λ0 δλ(t) in S(1)(t) complete into terms which are

quadratic in λ(t) or its derivatives in the full time dependent entropy, S(t). Recall from the

section-2 that the terms that are quadratic in λ(t) or its derivatives (eg. λ2(t) or λ(t)λ̈(t)) in

the holographic entanglement entropy only multiply the effective Newton constant, Gd+1,

whereas λ3(t) contributions also multiply κ and λ4(t) also multiply ω, where κ and ω

are coupling constants in (2.2). Since the effective Newton constant is determined by the

boundary two point function according to (2.4), the coefficients of terms quadratic in λ(t)

or its derivatives in the holographic calculation are therefore universal. See [23, 24] where

this universality was observed in a static setup.

By assumption there is only one relevant coupling, g, in the action. Hence, it can be

shown that [40, 46, 47]

〈O(t′E, x⊥,x‖)K0 〉 =
Ωd

g(d−∆+β)2d−1(d−1)(d+1)Γ(d)

∫ ∞
0
dµµ2 c(0)(µ)K0

(
µ
√
t2E + x2

⊥

)
,

(3.29)

where c(0)(µ) is the spectral function defined by the 2-point function of the energy-

momentum trace [32], K0 on the right-hand side is the modified Bessel function of the

second kind,12 β is the anomalous dimension of g and Ωd = 2πd/2/Γ(d/2).

10This just means that the first order change in the entanglement entropy after perturbing a CFT by a

relevant operator vanishes [25].
11In fact, this conclusion also holds in the presence of multiple relevant couplings in the theory.
12On the left-hand side, as in all other equations, K0 is the unperturbed modular Hamiltonian.
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Like in the free scalar case we first integrate this correlator over x‖ and x⊥,∫
dd−2x‖

∫
dx⊥〈O(x)K0 〉 =

πΩdA
g (d−∆ + β)2d−1(d−1)(d+1)Γ(d)

∫ ∞
0
dµµ c(0)(µ) e−|tE|µ .

(3.30)

Next, we analytically continue this result back to Lorentzian signature tE → i(t′ + iε),

substitute it into (3.27) and get the following spectral representation of the general for-

mula (3.15)

S(1)(t) =
2πΩdA

g (d−∆ + β)2d−1(d− 1)(d+ 1)Γ(d)

∫ ∞
0

dµ µ c(0)(µ) Λ(t, µ) . (3.31)

where we have absorbed the time dependence in the function Λ(t, µ) defined as

Λ(t, µ) =

∫ 0

−t
dt′λ(t′ + t) sin(t′µ) . (3.32)

The divergences of (3.31) depend on the µ→∞ behavior of c(0)(µ). Expanding c(0)(µ) near

µ =∞ results in a finite number of terms of the form µs for s > 0, and upon substituting

these terms into (3.31) we find integrals of the form∫ ∞
0

dµ

∫ 0

−t
dt′ µs+1λ(t′ + t) sin(t′µ). (3.33)

Note that the oscillatory nature of the integrand means that integrating over µ alone is

not enough to give a divergence: integrating over µ would only produce a factor ∝ |t′|−s−2,

but the subsequent integral over t′ could have a divergence near t′ = 0, depending on the

behavior of λ(t+ t′).

To isolate the divergent terms, we begin by integrating (3.32) by parts with respect to

t′ a total of 2N + 1 times. This results in the identity∫ 0

−t
dt′ λ(t′ + t) sin(t′µ) =− λ(t)

µ
+
λ(2)(t)

µ3
+ · · · − (−1)N

λ(2N)(t)

µ2N+1

+ sin(µt)

(
λ(1)(0)

µ2
− λ(3)(0)

µ4
+ · · · − (−1)N

λ(2N−1)(0)

µ2N

)

+ cos(µt)

(
λ(0)

µ
− λ(2)(0)

µ3
+ · · ·+ (−1)N

λ(2N)(0)

µ2N+1

)

− (−1)N
∫ 0

−t
dt′ µ−2N−1λ(2N+1)(t′ + t) sin(t′µ). (3.34)

If 2N > s + 1, then the last line produces no UV divergences upon substitution back

into (3.33). The oscillatory terms in the middle two lines likewise produce no divergences

in (3.33). All that remains is the first line. There we see clearly that a logarithmic

divergences is produced if and only if s is an odd integer, with the coefficient of the

divergence proportional to λ(s+1)(t). The non-universal coefficients can also be determined

this way.

Thus we learn that the quasi-adiabatic expansion holds for the divergences in the entan-

glement entropy in a general interacting theory to this order in perturbations, and that the

coefficients are entirely determined by the large-µ behavior of the spectral function c(0)(µ).
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3.4 Example: free Dirac field

Let us implement (3.31) in the case of free massive Dirac field with a time-dependent mass

deformation. In this case ∆ = d− 1, β = 0, and the spectral function is given by [32]

c
(0)
Dirac(µ) = 2[d/2] 2(d+ 1)(d− 1)

Ω2
d

m2 µd−5

(
1− 4m2

µ2

)(d−1)/2

Θ(µ− 2m) . (3.35)

Or equivalently,

c
(0)
Dirac(µ) = 2[d/2] 2(d+ 1)(d− 1)

Ω2
d

m2 µd−5Θ(µ− 2m)

∞∑
n=0

(−1)nΓ
(
d+1

2

)
Γ
(
d+1−2n

2

)
Γ(n+ 1)

(
2m

µ

)2n

.

(3.36)

This representation is useful for analyzing the UV divergences, which are built from the

modes satisfying µ/(2m)� 1.

Thus, for the free Dirac fermion we get

S
(1)
Dirac(t) =

2[d/2]π

ΩdΓ(d)
md−2A

∞∑
n=0

(−1)nΓ
(
d+1

2

)
Γ
(
d+1−2n

2

)
Γ(n+ 1)

∫ 0

−t
dt′λ(t′ + t)

×
∫ ∞

1
dxxd−4−2n sin

(
2mt′x

)
, (3.37)

where we introduced a dimensionless integration variable x = µ/(2m). From the above

expression, it is obvious that only terms satisfying d−4−2n ≥ 0 result in UV divergences,

whereas for d− 4− 2n < 0 integrals over t′ and x are finite.

In fact, the universal divergences can be readily isolated. We assume that n is suf-

ficiently large and carry out integral over x. Small values of n are treated by analytic

continuation. Hence,

S
(1)
Dirac(t) =

2[d/2]π

ΩdΓ(d)
md−2A

∑
0≤n≤ d−4

2

(−1)nΓ
(
d+1

2

)
Γ(d− 3− 2n) cos

(
(d− 2n)π2

)
Γ
(
d+1−2n

2

)
Γ(n+ 1)

×
∫ −δ
−t

dt′
λ(t′ + t)

(2mt′)d−2n−3
+ finite terms . (3.38)

In particular, there are no universal divergences for odd d,13 while for even d the above

formula reads

S
(1)
Dirac(t) =

2
6−d
2 π

ΩdΓ(d)
A

∑
0≤n≤ d−4

2

4n(−1)
d
2 Γ
(
d+1

2

)
m2n+1

Γ
(
d+1

2 − n
)

Γ(n+ 1)
λ(d−2n−4)(t) log δ + finite terms .

(3.39)

For a static perturbation λ(t) = λ, only n = (d− 4)/2 contributes

S
(1)
Dirac(t) =

(−1)
d
2

3(2π)
d−2
2 Γ

(
d−2

2

) md−3λA log δ + finite terms . (3.40)

13Recall that non-universal divergences vanish within our choice of regularization scheme.
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This result is in full agreement with known calculations in the literature [37–39]. For the

time-dependent case, we find

S
(1)
Dirac(t)

∣∣∣
d=4

=
Amλ(t)

6π
log δ + finite terms , (3.41)

S
(1)
Dirac(t)

∣∣∣
d=6

= − Am
120π2

(
λ̈(t) + 10m2λ(t)

)
log δ + finite terms . (3.42)

Note that if we take the holographic result in d = 4, (2.44), and set m(t) = m+λ(t), then we

find agreement with (3.41). Similarly, the double derivative term in d = 6 in (2.51) matches

with that in (3.42). The precise match between the calculations for the free field theory

and strongly coupled holographic CFT has to do with universality of certain correlators

that we discussed in the previous section, see also [23, 24].

4 Conclusions

In this work we studied the evolution of the ‘area law’ of the spatial entanglement when the

relevant coupling of the field theory undergoes a quantum quench. Our main results, (3.13)

and (3.15), for the time dependent first order correction to the area law were derived

under the assumption that the relevant coupling satisfies δλ(t)/λ0 � 1, where λ0 is the

unperturbed value and δλ(t) is a time-dependent perturbation which vanishes in the past

and asymptotes to a constant value in the future.

We argued that if λ0 is the only relevant parameter in the system, then further sim-

plification takes place and the final expression (3.31) for the time dependent correction to

the area law can be expressed in terms of the spectral function, c(0)(µ), which is defined in

terms of the two-point correlation function of the trace of the energy-momentum tensor in

the theory.

As an application of these general formulas, we scrutinized the time dependence of the

area law in a generic QFT. In particular, we illustrated that ‘area law’ divergences reveal a

quasi-adiabatic behavior, i.e., they are local and depend on the instantaneous value of the

relevant coupling and finitely many derivatives. We showed that this qualitative behavior

is in full agreement with the holographic prediction based on the HRT proposal [27].

We also carried out explicit calculations of the universal terms in the case of free fields

perturbed by a time-dependent mass, and found quantitative agreement with the HRT

predictions of the coefficient of λ2(t) in the entanglement entropy.14 From the point of view

of the holographic calculation, we observed in section-2 that the coefficients of the terms

which are quadratic in λ(t) or its derivatives ( eg. λ2(t) or λ(t)λ̈(t)) in the entanglement

entropy only multiply the effective Newton’s constant, which is fixed by the boundary

two point functions. Since CFT two point functions have a universal form, this ensures

that coefficients of these terms are independent of the exact nature of the unperturbed

CFT. From the purely field-theoretic point of view, we observed in equation (3.28) that

the coefficient of λ0 δλ(t) in S(1)(t) is fixed by the universal CFT correlation functions

〈TµνOO〉 and 〈OO〉. As the term proportional to λ0δλ(t) in S(1)(t) completes into the

14For similar match in the static case see [23, 24].
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terms quadratic in λ(t) and its derivative, this explains the matching of the coefficients of

these quadratic terms between free field theory and holographic calculations.

Up to a set of mild assumptions, the RT proposal [26] for holographic entanglement

entropy in the static case was derived in [48]; see also [49, 50]. The time-dependent case is

more complicated: we view the match between the time-dependent terms in holography and

QFT as non-trivial evidence in favor of the time-dependent HRT proposal for holographic

entanglement entropy.15

It would be interesting to extend our analysis to the next-to-leading order correction

in δλ(t)/λ0 � 1. Such an extension might shed light on the fundamentals of the linear

growth of entanglement entropy sufficiently far from the instant of quench [1–10], and

help to uncover the underlying reason for the universality of this behaviour. To make a

step in this direction, it is necessary to establish a consistent perturbative expansion for

the modular Hamiltonian. In fact, this problem is interesting by itself since it has many

valuable practical applications beyond analysis of the time-dependent program studied in

this work, and we plan to address it in the future.
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A Details of the holographic calculation

A.1 HRT surface calculation

In this appendix, we will solve for the position of the HRT surface and verify the claim

that we made in (2.19) that at the lowest order, the solution of the stationary surface is

t(z) = t0 + z2+2α t2+2α + . . . , (A.1)

As mentioned in the section 2.2, the HRT surface is given by t = t(z) and x1 = 0. The

equation of motion for t = t(z) is obtained by varying

A ∝
∫
dz
h

d−2
2 (z, t(z))

zd−1

√
1− f(z, t(z))(t′(z))2. (A.2)

We find

0 =− z
(

(d− 2)ḣ+ ht′(t′ḟ+2f ′)
)

+ fh
(

2(d−1)t′ − 2zt′′ + zt′3f ′
)

+ (d−2)zfht′(t′ḣ− h′)

+ f2t′3
(
− 2(d− 1)h+ (d− 2)zh′

)
(A.3)

15After the completion of this work, [51] appeared which presents and argument for the HRT proposal in

a similar spirit to the earlier arguments for the RT proposal.
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where dot represents derivative with respect to t and prime represents derivative with

respect to z.

The ansatz (2.12)–(2.13) for the metric functions, h(z, t) and f(z, t), at leading or-

der gives

h(z, t) = 1 + z2αh2,0(t) (A.4)

f(z, t) = 1 + z2αf2,0(t) (A.5)

Lets make the ansatz t(z) = t0 + zβtβ . The first term of the equation of motion (A.3)

is proportional to z2α+1. Out of all the other terms, the term with the smallest power of

z is proportional to zβ−1. Thus we learn β = 2 + 2α.

However, the coefficient of the zβ−1 term is equal to 2β(d − β)tβ . Therefore, the

above result is only true if d 6= β. For d = β, we would have to modify the ansatz to be

t(z) = t0 + zβ log(z)tβ . We do not consider this case in the main argument of the paper,

so it can be ignored.

A.2 Perturbative solution of Einstein-scalar equations

In this section, we will find the time-dependent coefficients hm,n(t), fm,n(t) and φm,n(t)

in terms of φ0,0(t) = λ(t) by substituting the ansatz (2.12)–(2.14) in the Einstein-scalar

equations (2.9)–(2.11). We use this result in the holographic calculation of the entanglement

entropy in sections 2.3–2.4.

• α = 2 and d = 6

This case corresponds to the holographic scalar in d = 6. From (2.30), we know

that the universal part of the time dependent entropy only depends on the coefficient

h2,0(t). This can easily be found using (2.9). Expanding this equation gives us:

0 = (10ḣ2,0 + φ0,0φ̇0,0)z3 +O(z5) (A.6)

Integrating this equation, we find

h2,0(t) = − 1

20
φ2

0,0(t). (A.7)

• α = 2 and d = 8

To find the entanglement entropy for the holographic scalar in d = 8 using (2.35),

we need to find the sum: h2,2(t) + h3,0(t). To find this, we will substitute the

ansatz (2.12)–(2.14) into (2.9) and (2.11). Expanding (2.9) gives us

0=(14ḣ2,0+φ0,0φ̇0,0)z3+
(
21(ḣ2,2+ḣ3,0)+2φ̇0,0(φ0,2+φ2,0)+φ0,0(φ̇0,2+φ̇2,0)

)
z5+O(z7),

(A.8)

and expanding (2.11) yields

0 =

(
4(φ0,2 + φ2,0) +

κ

2
φ2

0,0 + φ̈0,0

)
z4 +O(z6). (A.9)

By solving the above equations, we find

h2,2(t) + h3,0(t) =
κ

126
φ3

0,0(t) +
1

168
φ̇2

0,0(t) +
1

84
φ0,0(t)φ̈0,0(t). (A.10)
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• α = 1 and d = 4

This case corresponds to the fermionic mass operator in d = 4. The entanglement

entropy in this case is given by (2.42). To find the entropy, we need to know h2,0(t).

Expanding (2.9) yields

0 =

(
ḣ2,0 +

1

6
φ0,0φ̇0,0

)
z +O(z2). (A.11)

Integrating this equation gives

h2,0(t) = − 1

12
φ2

0,0(t). (A.12)

• α = 1 and d = 5

In this case, the entanglement entropy is given by (2.45), and the entanglement

entropy only depends on the coefficient h3,0(t). We start by expanding (2.9). This

gives us

0 = (8ḣ2,0 + φ0,0φ̇0,0)z + (12ḣ3,0 + 2φ2,0φ̇0,0 + φ0,0φ̇2,0)z2 +O(z3). (A.13)

To solve for h3,0(t), we first need to know φ2,0(t). This can be easily found by

expanding (2.11):

0 =
(
φ2,0 +

κ

4
φ2

0,0

)
z2 +O(z3) (A.14)

Solving the above two equations yields

h3,0(t0) =
κ

36
φ3

0,0(t0). (A.15)

• α = 1 and d = 6

The entanglement entropy for this case is given by (2.49). Here we need to solve for

the combination h2
2,0(t) + 2h2,2(t) + 2h4,0(t). As always, we start by expanding (2.9).

We get

0 = (10ḣ2,0 + φ0,0φ̇0,0)z + (15ḣ3,0 + 2φ2,0φ̇0,0 + φ0,0φ̇2,0)z2+
(

20(ḣ2,2 + ḣ4,0) (A.16)

− 5(f2,0+3h3,0)ḣ2,0+3φ̇0,0(φ0,2+φ3,0) + φ0,0(φ̇0,2+φ̇3,0)+2φ2,0φ̇2,0

)
z3+O(z4).

Integrating the leading order term of this equation yields h2,0(t) = − 1
20φ

2
0,0(t). Fur-

thermore, we can use the coefficient of the z3 term to solve for the sum h2,2(t)+h3,0(t).

However, this would require us to solve for f2,0, φ2,0, φ2,2 and φ3,0. All these can be

found from the expansion of (2.10) and (2.11). Expanding (2.10) yields

0 = (10f2,0 + 10h2,0 + φ2
0,0) +O(z) (A.17)

which we solve to get f2,0(t) = − 1
20φ

2
0,0(t). Similarly, expanding the equation (2.11)

yields

0 =(18φ2,0 + 3κφ2
0,0)z2 +

(
24(φ0,2 + φ3,0) + 6φ̈0,0 + φ0,0(−30h2,0 − 6f2,0

+ ωφ2
0,0 + 6κφ2,0)

)
z3 +O(z4). (A.18)
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After using this equation to solve for φ2,0 and for φ0,2+φ3,0, we can solve for h2,0+h3,0

using (A.16). Combining all the results, we get

h2
2,0(t) + 2h2,2(t) + 2h4,0(t) =

(117− 65κ2 + 45ω)

7200
φ4

0,0(t) +
1

80
∂2
t

(
φ2

0,0(t)
)
. (A.19)

B Useful integral

In this appendix we aim at simplifying the following integral

Ns(t) ≡
∫ 0

−t
dt′
∫
dx′
∫
dx‖

∫ ∞
0

dx⊥ x⊥λ(t′ + t)〈0|T00(0, x⊥,x‖)φ
2(t′,x′)|0〉. (B.1)

From (3.18) and (3.19) we have

〈0|T00(x)φ2(x′)|0〉 =

∫
dp1dp2

(2π)2d−2

−E1E2 − p1 · p2 +m2
0 + 2ξ(p1 + p2)2

4E1E2
e−i(p1+p2)·(x−x′).

(B.2)

Introducing q = p1 + p2, ∆t = t− t′, ∆x⊥ = x⊥ − x′⊥ and integrating (B.1) with respect

to x‖ and x′‖, yields

Ns(t) =A
∫ t

0
dt′
∫
dx′⊥

∫ ∞
0

dx⊥ x⊥λ(t′)

×
∫
dp1dq⊥
(2π)d

(
−1 + p2

1⊥/E
2
1 + 4ξ

8E2
1

q2
⊥ +O(q3

⊥)

)
e−i(E1+E2)∆t+iq⊥∆x⊥ . (B.3)

It is important that we perform the integrals over x⊥ and x′⊥ in the proper order so

as to avoid an ambiguous “0×∞” result. First we integrate over x⊥, using the identity16

∫ ∞
0

dx⊥ x⊥e
−iq⊥x⊥ = P.V.

−1

q2
⊥

+ iπδ′(q⊥), (B.4)

and then over x′⊥ which results in a 2πδ(q⊥). The result is

Ns(t) = A
∫ t

0
dt′λ(t′)

∫
dp

(2π)d−1

(
1− p2

⊥/E
2 − 4ξ

8E2

)
e2iE(t′−t). (B.5)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

16We ignore δ′(q⊥) in what follows, since it is multiplied by qn⊥ with n ≥ 2. If, however, one keeps these

terms, then eventually they result in the ill defined distributions of the form qnδ′(q⊥)δ(q⊥) which vanish

within, e.g., dimensional regularization.
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