
J
H
E
P
0
9
(
2
0
1
6
)
0
0
9

Published for SISSA by Springer

Received: July 22, 2016

Accepted: August 26, 2016

Published: September 1, 2016

The quantum 1/2 BPS Wilson loop in N = 4

Chern-Simons-matter theories

Marco S. Bianchi,a Luca Griguolo,b Matias Leoni,c Andrea Mauri,d Silvia Penatid,e

and Domenico Seminaraf

aCenter for Research in String Theory,

School of Physics and Astronomy Queen Mary University of London,

Mile End Road, London E1 4NS, U.K.
bDipartimento di Fisica e Scienze della Terra, Università di Parma and
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1 Introduction

In this paper we continue the study of 1/4 and 1/2 BPS Wilson loops in N = 4 Chern-

Simons (CS) theories with matter, initiated in [1]. These operators were defined in [2–6]

and we review their construction in section 2 along with a quick glimpse at the structure

of the N = 4 CS models [7, 8].

The interest in supersymmetric Wilson operators arises since they are amenable of an

exact computation via localization, then providing observables interpolating from weak to

strong coupling [9]. Their determination is usually highly constrained by supersymmetry
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invariance. For the class of theories under investigation, though, a classical analysis allows

to define two seemingly independent 1/2 BPS circular loops, and any arbitrary combination

thereof naively provides a supersymmetric observable [3]. Such operators possess a coupling

to fermions, encapsulated in a supermatrix structure, and are cohomologically equivalent

to a combination of bosonic 1/4 BPS Wilson loops, in a fashion similar to the one that

links 1/2 and 1/6 BPS operators [10] in the ABJ(M) models [11, 12]. The expectation

value of 1/4 BPS operators can be computed via a matrix model average, which in turn

allows for the exact computation of the 1/2 BPS circular Wilson loops if the aforementioned

cohomological relation survives at quantum level.

At strong coupling the dual string theory description differs from the weak regime

picture outlined above. In particular, the brane configuration corresponding to the 1/2

BPS operator is expected to be unique, in contrast with the existence of a whole family of

observables predicted by field theoretical analysis.

In [3] a solution to this tension was proposed by suggesting that only one combination

of operators should be exactly 1/2 BPS at quantum level, that is the classical degeneracy of

Wilson loops should be uplifted by quantum corrections. If this is the case, the localization

prediction turns out to be relevant only for such an exactly BPS operator. However, since

it is based on the cohomological relations derived at classical level, it does not shed any

light on which the correct BPS combination should be.

The question of Wilson loops degeneracy and the determination of the quantum 1/2

BPS operator can instead be answered through a perturbative evaluation of the expectation

values of these operators. Such a study was initiated in [1], where a full-blown two-loop

computation was performed, which did not find any uplift of the degeneracy, thus leaving

the question open. Providing a definite answer to this problem is the main purpose of

this paper.

Focusing on necklace quiver N = 4 CS-matter theories with gauge group U(N0) ×
U(N1)× · · ·U(N2r−1) we carry out this program as follows.

• In section 3, using Feynman rules and power counting arguments together with the

definition of the two seemingly independent 1/2 BPS operators, we first prove that as

a consequence of the contour planarity their perturbative expectation values coincide

at any even loop order, while they are opposite at odd loops. As a consequence, a

quantum uplift of the operators, if any, has to appear at odd orders. This explains

why no degeneracy has been found so far: the operators are vanishing at one loop,

therefore not allowing for any uplift, while their expectation values coincide at two

loops, on general grounds.

• We are then forced to perform a calculation at three loops, being it the first possible

order where a non-vanishing and opposite contribution to the two operators may

occur. A complete three-loop computation is of course daunting, but since we are

just looking for a smoking gun of the quantum uplift of degeneracy, it is sufficient to

focus on a particular color sector where a limited number of non-vanishing diagrams

appears. Precisely, we restrict to the sector including contributions proportional to
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the product of three different colors, NA−1NANA+1. We stress that this simplification

has been made possible by the fact that we work with quiver theories with a different

gauge group in each node.

• In section 4 we first expand the matrix model at the desired perturbative order and in

the selected color sector, in order to be able to compare it with the Feynman diagram

computation. We find that at third order a non-vanishing, purely imaginary correc-

tion appears. Comparing it with a perturbative calculation done at non-vanishing

framing, we prove that this contribution corresponds to a loop correction to the fram-

ing factor of the Wilson loop due to interacting matter [13]. Therefore, we expect no

three-loop corrections to the expectation value of the actual 1/2 BPS operator when

computed in ordinary perturbation theory at framing zero.

• In section 5 we finally perform the three-loop perturbative evaluation of the Wilson

loops in the aforementioned regime. We find that a non-vanishing correction indeed

appears, which is opposite in sign for the two operators. This proves that the de-

generacy of the operators is uplifted quantum mechanically at this order. Moreover,

since from the matrix model expansion for the 1/2 BPS operator we expect a van-

ishing result, we conclude that the quantum supersymmetric Wilson loop is given by

the average of the two operators

W1/2 =
Wψ1 +Wψ2

2
(1.1)

where odd orders cancel out. We argue that this relation holds at all orders in

perturbation theory.

Finally, it is interesting to note that the Wilson loop operator defined by the difference

(Wψ1 − Wψ2), although non-1/2 BPS, exhibits interesting quantum properties. In fact,

thanks to the relation that holds at even and odd orders in the expansion of the two

original Wilson loops, this operator has a real non-vanishing expectation value given by

a purely odd perturbative series. Moreover, as comes out from our explicit calculation at

three loops, it seems to feature lower transcendentality.

2 BPS Wilson loops in N = 4 CS-matter theories

We begin by reviewing BPS Wilson loop (WL) operators for N = 4 CS-matter theories

introduced in [2, 3].

We consider a Chern-Simons-matter theory associated to a necklace quiver with gauge

group U(N0) × U(N1) × · · ·U(N2r−1) (N2r ≡ N0) (see figure 1). The field content of

the theory is given by Aµ(A) gauge vectors in the adjoint representation of the group

U(NA) plus r scalars (qI(2A+1))
j

ĵ
((q̄(2A+1)I)

ĵ
j) in the (anti)bifundamental representation

of the U(N2A+1), U(N2A+2) nodes (indices j and ĵ, respectively) and in the fundamen-

tal of the R-symmetry SU(2)L (I = 1, 2), r twisted scalars (qÎ(2A))
ĵ
j ((q̄(2A)Î)

j

ĵ
) in the
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N1
N2

N3

N0

N2r−1

Figure 1. Quiver diagram corresponding to N = 4 supersymmetric CS-matter theory. Solid lines

represent matter hypermultiplets, while dashed lines are twisted hypermultiplets.

(anti)bifundamental representation of U(N2A), U(N2A+1) nodes and in the fundamen-

tal of the R-symmetry SU(2)R (Î = 1, 2), plus the corresponding fermions (ψ(2A+1)Î)
j

ĵ

((ψ̄Î(2A+1))
ĵ
j) and (ψ(2A)I)

ĵ
j ((ψ̄I(2A))

j

ĵ
), respectively.

The theory is N = 4 supersymmetric if the CS levels satisfy the condition

kA =
k

2
(sA − sA−1), sA = ±1, k > 0 (2.1)

We will consider the case sA = (−1)A+1, which leads to alternating ∓k levels. Details

concerning the action, the propagators and the relevant interaction vertices are given in

appendix A.

This theory has a string dual description in terms of M-theory in the orbifold back-

ground AdS4 × S7/(Zr ⊕ Zr)/Zk. When N0 = · · · = N2r the dual description is given by

M-theory on the AdS4 × S7/(Zr ⊕ Zrk).
In analogy with the more famous examples of ABJ(M) models, bosonic BPS WL can

be introduced that contain only couplings to scalars, and fermionic BPS WL that contain

couplings to fermions as well. The building blocks of these operators are defined “locally”

for each quiver node A and contain matter fields that are at most linked to nodes A − 1

and A + 1. In order to simplify equations that would be otherwise cumbersome, without

loosing generality we will restrict to the specific case A = 1.

2.1 The bosonic 1/4 BPS WL

Following [2, 3] we introduce the bosonic WL defined as

W+
1/4[Γ] =

1

N1 +N2
TrP exp

(
−i
∫

Γ
dτL+

1/4(τ)

)
, L+

1/4(τ) =

(
L(1)

1/4 0

0 L(2)
1/4

)
(2.2)

where

L(1)
1/4 = ẋµA(1)µ −

i

k

(
q̄(0)Î(σ3)Î

Ĵ
qĴ(0) + qI(1)(σ3) JI q̄(1) J

)
|ẋ|

L(2)
1/4 = ẋµA(2)µ −

i

k

(
q̄(1)I(σ3)IJ q

J
(1) + qÎ(2)(σ3) Ĵ

Î
q̄(2) Ĵ

)
|ẋ| (2.3)

Note that matter couplings involve scalars q(1) from the hypermultiplet connecting nodes 1

and 2 (solid line in figure 1), and scalars q(0), q(2) from the adjacent twisted hypermultiplets

(dashed lines in figure 1).
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The operator can be conveniently expressed in terms of WL associated to nodes 1

and 2 as

W+
1/4 =

N1W
(1)
1/4 +N2W

(2)
1/4

N1 +N2
(2.4)

where we have defined

W
(A)
1/4 [Γ] =

1

NA
TrP exp

(
−i
∫

Γ
dτL(A)

1/4(τ)

)
A = 1, 2 (2.5)

When Γ is a maximal circle in S2 operator (2.2) preserves 1/4 of the supersymmetry

charges. We will work in this case, parametrizing the path as

Γ : xµ(τ) = (cos τ, sin τ, 0) 0 ≤ τ < 2π (2.6)

2.2 The fermionic 1/2 BPS WL

The addition of fermions leads to two inequivalent WL depending on which SU(2) compo-

nent we consider [3].

The first operator, called the ψ1-loop in [3], is defined in terms of ψ(1)1̂ and ψ̄1̂
(1)

fermionic components. It is given as the generalized holonomy

Wψ1 [Γ] =
1

N1 +N2
TrP exp

(
−i
∫

Γ
dτLψ1(τ)

)
(2.7)

where

Lψ1 =

 A(1) c̄αψ
α
(1)1̂

cαψ̄1̂
(1)α A(2)


A(1) = ẋµA(1)µ −

i

k

(
qI(1)δ

J
I q̄(1)J + q̄(0)Î(σ3)Î

Ĵ
qĴ(0)

)
|ẋ|

A(2) = ẋµA(2)µ −
i

k

(
q̄(1)Iδ

I
J q

J
(1) + qÎ(2)(σ3) Ĵ

Î
q̄(2) Ĵ

)
|ẋ| (2.8)

and the commuting spinors c, c̄ are defined in (B.7).

We will consider the case of Γ being the maximal circle (2.6) for which the operator is

1/2 BPS.

An independent WL operator can be introduced that contains the ψ(1)2̂ and ψ̄2̂
(1)

fermionic SU(2) components [3]. BPS invariance requires to slightly modify also the bosonic

couplings, so that the ψ2-loop is given by

Wψ2 [Γ] =
1

N1 +N2
TrP exp

(
−i
∫

Γ dτLψ2(τ)
)

(2.9)

where

Lψ2 =

 B(1) d̄αψ
α
(1)2̂

dαψ̄2̂
(1)α B(2)


B(1) = ẋµA(1)µ −

i

k

(
−qI(1)δ

J
I q̄(1)J + q̄(0)Î(σ3)Î

Ĵ
qĴ(0)

)
|ẋ|

B(2) = ẋµA(2)µ −
i

k

(
−q̄(1)Iδ

I
J q

J
(1) + qÎ(2)(σ3) Ĵ

Î
q̄(2) Ĵ

)
|ẋ| (2.10)

with the commuting spinors d, d̄ given in (B.14).
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Precisely, in addition to the replacement ψ1̂
(1) → ψ2̂

(1) this loop differs from the previous

one for δ JI → −δ JI in the scalar couplings and for different fermion couplings (eq. (B.7)

vs. (B.14)). Again, when Γ is a maximal circle this operator is 1/2 BPS.

2.3 Cohomological equivalence

As proved in [2, 3], the classical fermionic 1/2 BPS loops are both cohomologically equiva-

lent to the 1/4 BPS bosonic operator given in eq. (2.4). In fact, the following relations hold

Wψi = W+
1/4 +QVψi i = 1, 2 (2.11)

where the Q-terms are both proportional to the same supercharge. Therefore, more gen-

erally any linear combination of the form

a1Wψ1 + a2Wψ2

a1 + a2
(2.12)

gives a 1/2 BPS WL that is cohomologically equivalent to the bosonic one.

If the classical equivalence survives at quantum level, one can use Q as the supercharge

to localize the path integral that computes 〈W+
1/4〉 on S3. As a consequence, the corre-

sponding matrix model provides an all-order prediction not only for the bosonic W+
1/4 but

also for fermionic operators of the form (2.12), provided that they survive quantization as

BPS operators.

From the string dual description we know that at quantum level only one 1/2 BPS

WL should survive, being the corresponding 1/2 BPS M2-brane configuration unique.

Therefore, we expect that the degeneracy (2.12) gets uplifted by quantum effects and only

one particular combination with fixed ā1, ā2 will correspond to the exact quantum 1/2 BPS

operator. For this operator we will have

〈W1/2〉f=1 = 〈 ā1Wψ1 + ā2Wψ2

ā1 + ā2
〉f=1 = 〈W+

1/4〉f=1 (2.13)

where the subscript “f = 1′′ indicates that this is the matrix model result, therefore at

framing one.1

The uplift mechanism that breaks degeneracy at quantum level is expected to be gen-

erated by field interactions that do not occur at classical level. However, since localization

actually provides the quantum exact result for the bosonic 1/4 BPS operator, this mecha-

nism for the fermionic ones cannot be understood within this approach.

The only possibility to disclose the degeneracy breaking mechanism is to perform a

perturbative calculation of the two fermionic WL and look for potential contributions that

turn out to give a different result at some loop order. In fact, if at a given order in perturba-

tion theory we find 〈Wψ1〉 6= 〈Wψ2〉, then comparison with the localization prediction (2.13)

will provide a non-trivial equation that uniquely fixes the relative coefficient between Wψ1

and Wψ2 , so leading to the correct quantum BPS fermionic operator.

1As discussed in [14], the Matrix Model result always refers to framing one, as the only point-splitting

regularization compatible with the supersymmetry used to localize is the one where both the original and

the deformed WL contours belong to the Hopf fibration of S3.
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With this motivation in mind, we will go through the perturbative evaluation of 〈Wψ1〉
and 〈Wψ2〉 searching for potential differences, and match it with the weak coupling expan-

sion of the matrix model result for 〈W+
1/4〉.

3 All-loop relation between Wψ1 and Wψ2

We approach the perturbative analysis by first deriving an all-loop identity between the

Wψ1 and Wψ2 expectation values. In particular, we prove that as a consequence of the

planarity of the contour Γ in (2.6), at a given order L the two WL are related by

〈Wψ2〉(L) = (−1)L 〈Wψ1〉(L) (3.1)

Here L counts the power of the coupling 1/k.

To prove this relation, as an intermediate step we introduce a third fermionic operator

that is defined from Wψ1 by applying a SU(2)L × SU(2)R transformation that exchanges

the R-symmetry indices 1 ↔ 2, 1̂ ↔ 2̂. From the Wψ1 defining equations (2.8), we then

obtain a new operator W̃ψ2 given by the holonomy of the following superconnection

L̃ψ2 =

 Ã(1) c̄αψ
α
(1)2̂

cαψ̄2̂
(1)α Ã(2)


Ã(1) = ẋµA(1)µ +

i

k

(
−qI(1)δ

J
I q̄(1)J + q̄(0)Î(σ3)Î

Ĵ
qĴ(0)

)
|ẋ|

Ã(2) = ẋµA(2)µ +
i

k

(
−q̄(1)Iδ

I
J q

J
(1) + qÎ(2)(σ3) Ĵ

Î
q̄(2) Ĵ

)
|ẋ| (3.2)

where the commuting spinors c, c̄ are still given in (B.7).

Since the action of the theory is invariant under the R-symmetry group it is a matter

of fact that computing perturbatively the expectation value of W̃ψ2 we find

〈W̃ψ2〉 = 〈Wψ1〉 (3.3)

at any given order.

The interesting observation is that Wψ2 differs from W̃ψ2 simply by an overall sign

change in the scalar couplings and the replacement of the spinor couplings c→ d.

Therefore, for a diagram containing nS scalar couplings from the WL expansion (see

figure 2) the contribution to 〈Wψ2〉 is obtained from 〈Wψ1〉 simply as

〈Wψ2〉 = (−1)nS 〈W̃ψ2〉|c→d = (−1)nS 〈Wψ1〉|c→d (3.4)

We now discuss what is the effect of replacing c spinors with d ones.

A diagram containing 2nF fermionic couplings from the Wψ1 expansion (see figure 2) is

proportional to nF bilinears of the form (cγµ1γµ2 · · · γµp c̄) where the gamma matrices come

from fermionic propagators, eq. (A.17) and gauge-fermion vertices, eq. (A.22). The gamma

indices are then contracted either with external vectors, that is xµ(τ) or ẋµ(τ) integrated

on the contour, or with x-coordinates associated to internal vertices and then subject to 3D

– 7 –
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nA

2nf

nS

Figure 2. Sketchy structure of loop diagrams contributing to the term in the WL expansion with

nA gauge fields, nF (ψ, ψ̄) couples and nS scalar bilinears. The arguments of this section are not

sensitive to the order of the contour points.

integration. According to p being even or odd, using identities (A.3) for gamma matrices,

the bilinears can always be reduced to linear combinations of the following structures

(cγµ1γµ2 · · · γµ2m c̄) −→ (cc̄) and εµiµjν(cγν c̄) (3.5)

(cγµ1γµ2 · · · γµ2m+1 c̄) −→ (cγµi c̄) and εµiµjµk(cc̄) (3.6)

times delta and epsilon structures that account for the other µ-indices.

Multiplying all the bilinears associated to a given diagram once reduced in this way,

we end up with a linear combination of structures that contain powers of (cc̄) times powers

of (cγc̄). Let’s call nγ the total number of (cγc̄) bilinears.

According to the identities in appendix A, these bilinears may differ at most by an

overall sign when we replace c with d spinors. Precisely, (cc̄) = (dd̄), (cγ1,2c̄) = −(dγ1,2d̄)

and (cγ3c̄) = (dγ3d̄). Therefore, the effect of the replacement c→ d in (3.4) will be at most

an overall sign, but it is important to count how many signs we get in a given diagram.

If we perform all Feynman integrals associated to internal vertices, before solving

the contour integrals we obtain a function of the bilinears and external coordinates xµ(τ)

and/or ẋµ(τ). Moreover, the planarity of the contour (2.6) requires having an even number

of epsilon tensors that can then be traded with products of Kronecher deltas.2 It follows

that the nγ (cγc̄) structures end up being necessarily contracted either among themselves

or with external points. However, since structures of the form (cc̄) and (cγν c̄)(cγν c̄) do

not contribute with any sign, we can restrict the discussion to the set of (cγc̄) contracted

with external points. Once again, the planarity of the contour (2.6) implies that the final

expression will contain only bilinears of the form (cγ1,2c̄) that, according to the identities

in appendix A, will contribute with a sign change under replacement c→ d.

From this preliminary analysis we can conclude that a given diagram containing nS
scalar couplings and proportional to nγ bilinears (cγc̄) provides contributions to the ex-

pectation values of the two fermionic WL that are related as

〈Wψ2〉|nS ,nγ = (−1)nS+nγ 〈Wψ1〉|nS ,nγ (3.7)

2In fact, any string of an odd number of ε tensors can be always reduced to a linear combination of

products of Kronecker deltas times one epsilon tensor that would be eventually contracted with external

indices, so leading to a vanishing result at framing 0.
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Now, combining power counting arguments with constraints coming from planarity it can

be proven that (nS + nγ) has the same parity of the loop order L, or equivalently that

nγ has the same parity of L + nS . We leave the details of the proof of this statement in

appendix C. Using this result in (3.7) we finally obtain the initial claim (3.1).

Using similar arguments, in appendix C we also prove that all results derived pertur-

batively at trivial framing are real.

The loop identity (3.7) implies that the expectation values of the two fermionic WL

are exactly the same at any even order L, while they are opposite in sign at odd orders.

Therefore, if quantum uplift occurs it has to be necessarily searched at odd orders. In

section 5 we perform a systematic investigation up to L = 3 and provide an explicit

computation showing that this is the first odd order where non-vanishing (then non-trivially

opposite in sign) contributions arise.

4 The matrix model result for 1/4 BPS Wilson loop

The evaluation of both the partition function and the 1/4 BPS Wilson loop for the necklace

quiver theories described in section 2 can be reduced to a putative matrix integral through

localization techniques [14]. An integral representation for the former can be easily obtained

by combining the basic building blocks given in [14]. We easily find [15]

Z=N
∫ ∏
B,i

dλBie
2ik`Bλ

2
Bi

2r−1∏
B=0

∏
i<j sinh2 (λBi − λBj)∏
i,j cosh (λBi − λB+1,j)

, (4.1)

where we recognize the contribution of the classical action,
∏
Bi e

2ik`Bλ
2
Bi , the one-loop

fluctuations of the vector multiplets
∏
i<j sinh2 (λBi − λBj) and those of the hypermulti-

plets
∏
i,j cosh (λBi − λB+1,j). The constant N is an overall normalization, whose explicit

form is irrelevant in our analysis. To be consistent with the perturbative calculation we

set lB = (−1)B.

In this context the 1/4 BPS Wilson loop is given by the vacuum expectation value of

the following matrix observable

W (A) =
1

NA

NA∑
i=1

e2λAi = 1+
2

NA
Tr(ΛA)+

2

NA
Tr(Λ2

A)

+
4

3NA
Tr(Λ3

A) +
2

3NA
Tr(Λ4

A) +O
(
Λ5
A

)
(4.2)

where we have introduced the diagonal matrix ΛA ≡ diag(λA1, · · · , λANA) for future con-

venience. In the r.h.s. of (4.2) we can actually neglect all the odd powers in ΛA since their

expectation value vanishes at all orders in 1
k due to the symmetry property of the integrand

in (4.1) under the parity transformation λAi → −λAi.
The first step to construct the perturbative series of W (A) is to rescale all the eigen-

values λAi by 1√
k

and expand the integrand in (4.1) for large k. The measure factor for
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large k reads

2r−1∏
A=0

∏
i<j sinh2 λAi−λAj√

k∏
i,j cosh

λAi−λA+1,j√
k

=

=

[
1+

1

k

2r−1∑
A=0

PA +
1

k2

2r−1∑
A=0

QA +
1

k3

2r−1∑
A=1

SA +O
(

1

k4

)] 2r−1∏
A=0

∏
i<j

(λAi − λAj)2

k
, (4.3)

Since we shall write the final result as a combination of vacuum expectation values in the

Gaussian matrix model, we have chosen to use the usual Vandermonde determinant as the

reference measure.

Order 1/k in the expansion (4.3) is governed by the combination

PA ≡
1

3
(NATr(Λ2

A)− Tr(ΛA)2)︸ ︷︷ ︸
B2(ΛA)

− 1

2
(NA+1Tr(Λ2

A)+NATr(Λ2
A+1)−2Tr(ΛA)Tr(ΛA+1))︸ ︷︷ ︸

C2(ΛA,ΛA+1)

.

(4.4)

The next order is instead controlled by QA, whose expression can be naturally written as

the sum of four different terms

QA = B4(ΛA)− C4(ΛA,ΛA+1) +
1

2
PA

2r−1∑
B=0

PB −
1

2
[B2

2(ΛA)− C2
2 (ΛA,ΛA+1)]. (4.5)

In (4.5)B4(ΛA) is a shorthand notation for the coefficient of 1/k2 when we expand the factor

in the measure due to the vector multiplet living in the node A. Instead C4(ΛA,ΛA+1)

arises when we expand the contribution to the measure of the hypermultiplet connecting

the node A with the node A + 1 at the same order. Their explicit expressions are quite

cumbersome, so we report them in appendix D. The last two terms, containing PA and

(B2, C2) respectively, originate from lower order terms when we take the product over

different nodes.

Finally the explicit form 1
k3

term SA in (4.3) is irrelevant since it does not affect the

evaluation of the Wilson loop. In fact, its contribution cancels out with the normalization

provided by the partition function.

With the help of the expansions (4.2) and (4.3), it is straightforward to write down the

expectation value of the Wilson loop W
(B)
1/4 in terms of PA and ΛA up to 1

k3
order. We find

〈W (B)
1/4 〉 = 1+

2

NBk
〈Tr(Λ2

B)〉0+
1

NBk2

[
2

3
〈Tr(Λ4

B)〉0 + 2

2r−1∑
A=0

[
〈Tr(Λ2

B)PA〉0

−〈Tr(Λ2
B)〉0〈PA〉0

]]
+

1

NBk3

[
4

45
〈Tr(Λ6

B)〉0 +
2

3

2r−1∑
A=0

[〈Tr(Λ4
B)PA〉0

〈Tr(Λ4
B)〉0〈PA〉0] + 2

2r−1∑
A=1

[
〈Tr(Λ2

B)QA〉0−〈Tr(Λ2
B)〉0〈QA〉0

−〈Tr(Λ2
B)PA〉0

∑
C

〈PC〉0+〈Tr(Λ2
B)〉0〈PA〉0

∑
C

〈PC〉0
]]

+O
(

1

k4

)
. (4.6)
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where the subscript 0 in the expectation values indicates that the average is taken in the

Gaussian matrix model. The evaluation of orders 1
k and 1

k2
was discussed in ref. [1] and

we shall not repeat the analysis here. We simply recall the final result

〈W (B)
1/4 〉 = 1− i`BNB

2k
− 1

24k2
(4N2

B − 3NB−1NB − 3NB+1NB − 1) +O
(

1

k3

)
, (4.7)

which coincides with the perturbative result for the 1/4 BPS Wilson loops dressed with a

phase corresponding to framing one [1]. The combination (2.4) reads at this order

〈W+
1/4〉f=1 = 1 +i

N1−N2

2k
− 1

24k2

(
4N2

1 +4N2
2−7N1N2−1− 3

N0N
2
1 +N2

2N3

N1 +N2

)
+O

(
1

k3

)
(4.8)

4.1 Range-three result at three loops

The next step is to analyze the structure of the 1
k3

contribution. An exhaustive evaluation

of all the relevant contributions in (4.6) is quite tedious and cumbersome. However, as

already mentioned, in order to investigate the uplift of the cohomological equivalence it

is sufficient to focus our attention on terms proportional to a particular color structure.

A convenient choice is to look at contributions which depend on three neighboring sites

(A− 1, A,A+ 1) (range-three sector). They can arise only from the part not depending on

QA in the last sum in (4.6). In fact the other terms in (4.6) vanish unless A = B − 1 or

A = B and thus they depend only on two nodes.

Actually, most of the contributions present in the last sum in (4.6) face a similar fate

and we remain with the following putative three-node term

1

NBk3

∑
A,C

[
〈Tr(Λ2

B)PAPC〉0 − 〈Tr(Λ2
B)〉0〈PAPC〉0 − 2〈Tr(Λ2

B)PA〉0〈PC〉0

+ 2〈Tr(Λ2
B)〉0〈PA〉0〈PC〉0

]
=

1

NBk3

∑
A,C

〈Tr(Λ2
B)PAPC〉conn.

0

=
2

NBk3
〈Tr(Λ2

B)PB−1PB〉conn.
0 , (4.9)

since the connected correlator can be different from zero only if either (A,C) = (B− 1, B)

or (A,C) = (B,B − 1). If we use the explicit expressions for PB and PB−1, we can easily

single out the only non-vanishing term which depends on three gauge groups. We find

NB−1NB+1

4NBk3
2〈Tr(Λ2

B)Tr(Λ2
B)Tr(Λ2

B)〉conn.
0 = − i`B

16k3
NB−1NBNB+1 (4.10)

Specializing the results at sites A = 1, 2 and inserting in the definition (2.4) we finally have

〈W+
1/4〉

(3)
f=1

∣∣∣
range 3

=
i

16k3

N0N
2
1N2 −N1N

2
2N3

N1 +N2
(4.11)

We note the appearance of imaginary contributions at odd orders. As we are going to

discuss in the next subsection, they can be recognized as framing contributions.
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4.2 Removing framing

In three dimensional CS theories, expectation values of supersymmetric WL when com-

puted via localization acquire imaginary contributions that have the interpretation of fram-

ing effects.

This concept was originally introduced in pure CS theories in order to define a topo-

logically invariant regularization for WL [16]. Precisely, it consists in a point-splitting

regularization procedure based on the requirement that in correlation functions of gauge

connections different gauge vectors run on auxiliary contours Γf , infinitesimally displaced

from the original one. As a consequence, WL expectation values only depend on the linking

number χ(Γ,Γf ) between the framing path and the WL contour via an overall phase factor

that exponentiates a one-loop contribution [16]

〈WCS〉 = eiπλχ(Γ,Γf ) ρ(λ) (4.12)

where ρ is a framing independent function of the coupling λ = N/k. The result above can

be reproduced by localization for circular Wilson loops in N = 2 supersymmetric CS [14],

where in order to preserve supersymmetry the framing contours are Hopf fibers and hence

have linking number one.

For CS theories coupled to matter the identification of framing contributions in WL

expectation values computed with localization and their perturbative origin is less clear.

This issue has been recently analyzed in [13] for the 1/6 BPS WL in the ABJ(M) model.

There, it has been shown that starting from three loops matter interactions induce non-

trivial perturbative corrections to the one-loop framing factor in (4.12), reproducing the

localization prediction at third order.

We now apply the procedure of [13] to N = 4 CS-matter theory under investigation

to provide a perturbative explanation of the imaginary terms in localization results (4.8)

and (4.11) as coming from framing. In order to do so, we focus on the bosonic 1/4 BPS WL

W+
1/4, whose framing contributions are easier to understand perturbatively. The cohomo-

logical equivalence (2.11) then guarantees that the 1/2 BPS WL has the same expression

at framing one.

At one loop framing originates by a gluon exchange diagram (as in pure CS). Using

the explicit expressions in Landau gauge (see eq. (A.13)) and taking into account that A(1)

and A(2) propagators differ by an overall sign, we obtain

〈W (A)
1/4 〉

(1) = i (−1)A+1 NA

k

1

4π

∮
Γ
dxµ

∮
Γf

dyν εµνρ
(x− y)ρ

|x− y|3

≡ i (−1)A+1 NA

k
χ(Γ,Γf ) (4.13)

where the Gauss integral is indeed proportional to the linking number between the deformed

contour Γf and the original WL path Γ. Combining these results for A = 1, 2 according

to (2.4) and setting χ(Γ,Γf ) = −1 (framing 1 in our conventions) we reproduce exactly

the one-loop framing contribution in the result (4.8).

At two loops the framing dependence of the individual 1/4 BPS bosonic WL arises

from the pure gauge sector and exponentiates the one loop contribution. Adding this to
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Figure 3. Three-loop diagram contributing to framing.

the framing independent pieces and combining the WL as in (2.4) reproduces the two-loop

result from localization (4.8).

At three loops, focusing on contributions in the range-three color sector, the only non-

vanishing diagram is the one in figure 3. It is associated to the exchange of one effective

gauge propagator at two loops where only the one-particle reducible (1PR) corrections

〈A(2A+1)µ(x)A(2A+1)ν(y)〉(2)
1PR = − i

4π

(N2A+2 +N2A)2

16 k3
εµνρ

(x− y)ρ

|x− y|3

〈A(2A)µ(x)A(2A)ν(y)〉(2)
1PR =

i

4π

(N2A+1 +N2A−1)2

16 k3
εµνρ

(x− y)ρ

|x− y|3 (4.14)

can contribute with the right color structure for A = 0, 1, respectively. The mechanism is

then the same as in the one-loop computation and we obtain

〈W (1)
1/4〉

(3)
range 3 = − i

4π

N0N1N2

16 k3
χ(Γ,Γf ) 〈W (2)

1/4〉
(3)
range 3 =

i

4π

N1N2N3

16 k3
χ(Γ,Γf ) (4.15)

Combining them in 〈W+
1/4〉 and setting χ(Γ,Γf ) = −1 we reproduce exactly the third

order contribution (4.11). We have then proved that in the matrix model result also the

imaginary term (4.11) at three loops has a framing origin.

More generally, from the expansion of the matrix model (4.1) one can argue that the

expectation value of the WL is purely imaginary at odd loop orders. On the other hand,

we show in appendix C that the perturbative computation performed at trivial framing

produces real terms only. Comparing the two results we infer that all the imaginary odd

order terms of the localization expression originate from framing.

The framing factor pointed out above constitutes a new kind of contribution that arises

from the matter sector, in contradistinction with the pure CS phase. We stress that such

an occurrence shares the same ilk of that recently uncovered at three loops for the 1/6 BPS

WL in the ABJM model in [13] and mentioned at the beginning of this section. In that

situation an analogous 1PR diagram contributes, along with other diagrams, to reproduce

the three loop imaginary term of the localization weak coupling expansion. For the quiver

theories under investigation in this paper, the possibility of distinguishing different color

factors allows to single out a unique contribution from this diagram in the range-three

sector, thus providing an even sharper signature of matter triggered framing phenomena.

We now turn to the fermionic 1/2 BPS operator, whose framing factor we want to

isolate and remove, in order to be able to perform a comparison between the localization

result and the field theory computation. In this case the role played by framing in fermionic

diagrams is less clear. In the context of the 1/2 BPS WL in the ABJM model it is

– 13 –
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believed that fermionic diagrams contribute to framing in such a way that its total effect

exponentiates into the phase exp i
2(λ1 − λ2), in agreement with the localization result [10,

17, 18]. By analogy with that picture and by comparison between the two-loop results, as

carried out in [1], we expect that the contribution of framing still exponentiates in the 1/2

BPS operator for N = 4 CS-matter theories. Therefore we remove the framing dependence

from the localization result by taking its modulus

〈W1/2〉f=0 = 1− 1

24k2

(
N2

1 +N2
2 −N1N2 − 1− 3

N0N
2
1 +N2

2N3

N1 +N2

)
+O(k−4) (4.16)

This expression can be checked against a three-loop perturbative calculation done in or-

dinary perturbation theory at framing zero. In particular, it does not contain any third

order, range-three term once the framing phase has been stripped off.

5 Quantum uplift of cohomological equivalence

According to the cohomological arguments in section 2 that lead to identity (2.13) and prop-

erly removing the framing factor, localization result (4.16) should provide the expectation

value at weak coupling for the actual quantum 1/2 BPS fermionic WL. In particular, this

implies that while at two loops the BPS combination
(ā1Wψ1

+ā2Wψ2
)

ā1+ā2
receives a non-trivial

contribution, at one and three loops in the range-three color sector it should not receive

any non-vanishing contribution as long as the calculation is performed at framing zero.

On the other hand, from a perturbative perspective the general identity (3.1) tells us

that computing separately Wψ1 and Wψ2 , at two loops they turn out to be identical while

at one and three loops non-vanishing contributions differ by an overall sign. Therefore,

while no information about the actual BPS combination can be extracted at two loops,

if there are non-vanishing contributions at one or three loops, matching localization and

perturbative results will fix a2 = a1 in (2.12).

This is what we are going to discuss in this section by performing an explicit calculation

at three loops.

In [1] a preliminary analysis at two loops for Wψ1 and Wψ2 has been performed using

ordinary perturbation theory at framing zero. At one loop the result is zero for both WL

due to the planarity of the contour, so moving to three loops the possible uplift of the

classical degeneracy.

At two loops the result reads

〈Wψ1〉(2) = 〈Wψ2〉(2) = − 1

24k2

[
(N2

1 +N2
2 −N1N2 − 1)− 3

N0N
2
1 +N3N

2
2

N1 +N2

]
(5.1)

and can be used as an explicit confirmation of the general identity (3.1), besides being a

non-trivial check of the matrix model result.

At three loops, there is evidence that some diagrams are non-vanishing so they could

give rise to a different result for the two WL. In [1], a particular triangle diagram with

three scalar vertices has been computed and the result turns out to be non-vanishing and

opposite in sign for the two WL, in agreement with the all-loop identity (3.1).
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Figure 4. Range-three fermionic diagrams. Black dots represent one-loop corrections to gauge

propagators.

Here, we perform a systematic investigation at three loops in the range-three color

sector. From a careful analysis it turns out that in this sector the only non-trivial contri-

butions are the ones drawn in figure 4. Moreover, thanks to identity (3.1) we can focus

only on the evaluation of Wψ1 .

The momentum integrals arising from diagrams in figure 4 are in general UV divergent.

We evaluate them using DRED prescription in D = 3 − 2ε. This regularization has been

already proved to be consistent with supersymmetry in three-dimensional CS theories [1,

13, 19–23].

At one loop the gauge propagator (A.14) contains a total derivative term that could be

removed by a gauge transformation. Therefore, being the WL a gauge invariant observable,

we expect that this kind of contributions coming from diagrams (a), (c) and (e) sum up

to zero. In the main body of the calculation we are going to neglect these terms, while

we prove their actual cancellation in appendix E. This is in fact a non-trivial check of the

calculation.

From the experience gained at two loops, in the calculation it is convenient to pair

diagrams containing a one-loop gauge propagator with the ones where the gauge propagator

is substituted by a scalar loop. Therefore, we are going to discuss them in pairs. We

concentrate on contributions proportional to N0N
2
1N2, since terms proportional to the

other color structure N1N
2
2N3 can be easily inferred from the first ones.

Diagrams (a) and (b). We start by considering the first two diagrams in figure 4 for

which we need the third order expansion of the Wilson loops, which is proportional to∫
dτ1>2>3 Tr

{
c̄2c3 〈A(1)(τ1)ψ(τ2)ψ̄(τ3)〉 + c2c̄3 〈A(2)(τ1)ψ̄(τ2)ψ(τ3)〉

+ c̄3c1 〈ψ̄(τ1)A(1)(τ2)ψ(τ3)〉 + c3c̄1 〈ψ(τ1)A(2)(τ2)ψ̄(τ3)〉
+ c̄1c2 〈ψ(τ1)ψ̄(τ2)A(1)(τ3)〉 + c1c̄2 〈ψ̄(τ1)ψ(τ2)A(2)(τ3)〉

}
(5.2)

The terms involving A(1) and A(2) give rise to contributions to the range-three color struc-

tures N0N
2
1N2 and N1N

2
2N3, respectively. Focusing only on the first color class, we have

(a)ψ1
= Cab

∫
dτ1>2>3

[
(c3γµγνγρc̄2)ẋν1∂

ρ
2∂

µ
3 I(2,1,1)−

(
1→2→3→1

)
+
(
3→2→1→3

)]
(5.3)

(b)ψ1
= −Cab

∫
dτ1>2>3

[
(c3γµγρc̄2)∂ρ2∂

µ
3 I(2,1,1)−

(
1→2→3→1

)
+
(
3→2→1→3

)]
(5.4)
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where we have defined3

I(2,1,1) =

∫
d3−2εw

1

(x2
1w)1−2ε

1

(x2
2w)1/2−ε

1

(x2
3w)1/2−ε (5.5)

and

Cab =
2iN0N

2
1N2

(N1 +N2)k2

(
Γ(1

2 − ε)
4π3/2−ε

)4

(5.6)

Summing the two contributions relevant simplifications occur and the remaining integrals

can be computed in a completely analytical way. We refer the reader to appendix F for

details in the resolutions of the integrals. Here we only quote the final result after expanding

at small ε

[(a) + (b)]ψ1 =
N0N

2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε

[
16

ε
+ 16(4 + 6 log 2) +O(ε)

]
(5.7)

Diagrams (c) and (d). These diagrams contain two-loop corrections to the fermion

propagator. In momentum space, for both flavors it is given by

N0N1

k2
Tr(ψ̄(1)(p)γ

µψ(1)(−p))
pµ

(p2)2ε
(I(c) + I(d)) (5.8)

where

I(c) =
− csc(2επ) sec(επ)Γ(1/2− ε)

25−6επ1/2−2εΓ(5/2− 3ε)Γ(1− ε)Γ(−1/2 + ε)
=

1

96π2ε
+

3− γE + log(4π)

48π2
+O(ε)

(5.9)

is the gauge correction expanded at small ε, whereas

I(d) = 22
1

(4π)3−2ε

Γ3(1/2− ε)Γ(2ε)

3Γ(3/2− 3ε)
= 22

(
1

192π2ε
+

3− γE + log(4π)

96π2
+O(ε)

)
(5.10)

is the scalar correction. Here, Yukawa vertices in (A.23) have been used.

We can now insert these results into the WL expression and, after integrating over the

contour parameters the sum of the two integrals gives

[(c) + (d)]ψ1 = 96
N0N

2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε
(5.11)

Diagrams (e) and (f). To compute diagram (e) and (f) we need the fourth order

expansion of the WL operators that is proportional to (we consider only terms for the

N0N
2
1N2 color structure)∫
dτ1>2>3>4 Tr

{
c̄1c2 〈ψ(τ1)ψ̄(τ2)A(1)(τ3)A(1)(τ4)〉+ c̄2c3 〈A(1)(τ1)ψ(τ2)ψ̄(τ3)A(1)(τ4)〉

+c̄3c4 〈A(1)(τ1)A(1)(τ2)ψ(τ3)ψ̄(τ4)〉+ c1c̄4 〈ψ̄(τ1)A(1)(τ2)A(1)(τ3)ψ(τ4)〉
}

(5.12)

3Along the calculation we use the shortening notations x2iw ≡ (x(τi) − w)2 and τij ≡ (τi − τj).
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To evaluate diagram (e) it is sufficient to make the substitution A(1)(τi) → A(1)µ(τi)ẋ
µ
i ,

whereas for diagram (f) we take A(1)(τi)→ − i
k (q̄(0)Î(σ3)Î

Ĵ
qĴ(0))τi . Performing contractions

and omitting the gauge-dependent part, for the ψ1-loop we obtain

(e)ψ1
= Cef

∫
dτ1>2>3>4

[(
sin2 τ12

2

)−1+ε cos τ34(
sin2 τ34

2

)1−2ε + cyclic

]
(5.13)

(f)ψ1
= −Cef

∫
dτ1>2>3>4

[(
sin2 τ12

2

)−1+ε 1(
sin2 τ34

2

)1−2ε + cyclic

]
(5.14)

where we have defined

Cef = − N0N
2
1N2

(N1 +N2)k3

Γ(3/2− ε)Γ2(1/2− ε)
27−6επ9/2−3ε

(5.15)

and “+cyclic” means +(1→ 2→ 3→ 4→ 1) + (1↔ 3, 2↔ 4) + (1→ 4→ 3→ 2→ 1).

Combining the two diagrams we can write

[(e) + (f)]ψ1 =− 2Cef

∫
dτ1>2>3>4

[(
sin2 τ12

2

)−1+ε(
sin2 τ34

2

)2ε

+ cyclic

]
=

N0N
2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε

(
− 16

ε
− 96 log 2 +O(ε)

)
(5.16)

The final result. We are now ready to sum the contributions from (a) to (f) and ob-

tain the final result for the fermionic ψ1-loop. We note that divergent contributions from

diagrams (a)+ (b) and (e) + (f) exactly cancel leading to a finite, non-vanishing result.

Including also the contributions coming from the lower triangle in the WL (the A(2) part),

it reads

〈Wψ1〉
(3)
range 3 =

5

8π

N0N
2
1N2 +N1N

2
2N3

(N1 +N2)k3
(5.17)

We note that this is a real result, in agreement with the general arguments of appendix C

that ensure the reality of the WL expectation values at any perturbative order. Moreover,

the result does not exhibit maximal transcendentality.

According to identity (3.1) the result for the ψ2-loop differs simply by an overall

minus sign. Therefore, if we now consider the linear combination (2.12) at range-three

we can write 〈a1Wψ1 + a2Wψ2

a1 + a2

〉(3)

range 3
=
a1 − a2

a1 + a2

5

8π

N0N
2
1N2 +N1N

2
2N3

(N1 +N2)k3
(5.18)

The comparison with the matrix model result cleansed from the framing contributions at

three loops, eq. (4.16), necessarily implies a1 = a2.

We have then proved that the classical degeneracy of fermionic WL gets uplifted at

three loops and the quantum 1/2 BPS WL in N = 4 CS-matter theories is given by

W1/2 =
Wψ1 +Wψ2

2
(5.19)
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6 Discussion

In this paper we have identified the correct linear combination of fermionic Wilson loops

that corresponds to the quantum 1/2 BPS operator in N = 4 CS-matter theories associated

to necklace quivers. Working on the first nodes of the quiver, we have found the result in

eq. (5.19). The analysis can be straightforwardly generalized to any site and we obtain 2r

1/2 BPS WL with similar structure. Corresponding string solutions exist [3] and can be

compared to localization predictions.

Our result solves the puzzle arisen in [3]. The expectation value of 1/2 BPS Wilson

loops in N = 4 CS-matter theories can be exactly evaluated through localization proce-

dure and reduced to a matrix integral. The relevant configurations for the holographic

description of 1/2 BPS Wilson loops are well understood (see [3] and reference within) and

amenable, in principle, of concrete calculations. On the field theory side the story instead

is more convoluted, due to a classical degeneracy in the 1/2 BPS sector that seems to call

for a quantum resolution. More precisely, for circular quivers, two apparently independent

1/2 BPS Wilson loops can be constructed at field theory level that are indistinguishable

at localization level, due to their classical cohomological equivalence. On the other hand,

at holographic level there is no evidence of this classical degeneracy, suggesting its up-

lift due to honest quantum mechanical corrections [3]. Uplift is indeed detected at three

loops, where the explicit perturbative computation distinguishes the two different 1/2 BPS

Wilson loops and only the combination (5.19) coincides with the matrix integral result.

A general analysis of the perturbative series for the two fermionic WL has revealed

two important properties. First, there is an easy relation between the expectation values of

the two operators, as they always coincide at even orders and are opposite at odd orders.

Second, the result obtained at framing zero is always real at any perturbative order. These

properties have important consequences when we match the perturbative result with the

localization prediction. In fact:

• At any odd order the matrix model expansion exhibits just pure imaginary contri-

butions. On the other hand, as we have mentioned, whatever the 1/2 BPS linear

combination is, the perturbative result at framing zero is always real at any order.

Matching the two results allows then to conclude that odd order terms in the local-

ization calculation have a framing origin induced by the consistency of the procedure

that necessarily require to work at framing one. We have supported this prediction

with a direct three-loop calculation done at non-vanishing framing.

Our analysis thus enlightens the role of framing in the localization procedure, extend-

ing the results of [13] to the N = 4 CS-matter case. In analogy with the ABJ(M)

case, we expect the framing contributions to exponentiate, so that the expectation

values of WL at framing zero should be obtained by taking the modulus of the matrix

model expansion. In particular, this implies that the correct quantum BPS opera-

tors have vanishing contributions at odd orders if computed in ordinary perturbation

theory with no framing.

• The all-loop relation between the expectation values of the two WL, eq. (3.1), suggests

that potential uplifts can arise only at odd orders, if non-vanishing contributions
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appear there. As we have discussed in this paper, three loops is indeed the first

odd order where this happens. There, the request to have a three-loop vanishing

contribution to 〈W1/2〉 at framing zero, as suggested by the localization prediction,

necessarily leads to the conclusion that the average (5.19) is the correct combination

where unwanted terms cancel.

More generally, the arguments above allow to conclude that (5.19) is the exact 1/2

BPS operator at all-loop orders. In fact, whatever the non-vanishing contributions

are that appear at higher odd orders for the two WL, they will be always real and

opposite in sign. The linear combination (5.19) is then the only one that has vanishing

odd-order terms.

We have taken advantage of working with different gauge groups in each site. This

has allowed to focus only on one specific color sector where the number of non-vanishing

diagrams is reasonably small. We cannot easily conclude anything in the orbifold case

(N0 = N1 = . . .) [24] since contributions from all the other sectors should be included.

In particular, we cannot conclude that at three-loops we obtain a non-vanishing result,

although it seems quite natural. We remark that in this case an elegant formulation of the

theory also exists in terms of a Fermi-gas description [25], which allows for efficient Wilson

loop average computations. It would be nice to identify suitable limits that admit all-order

comparisons with perturbation theory.

Our results indicate that the straightforward localization procedure hides sometimes

delicate questions regarding the quantum nature of (composite) field operators and the

choice of a regularization scheme. In the present case, while combination 1
2(Wψ1 + Wψ2)

is enhanced to a true 1/2 BPS operator with a well-defined holographic dual, the other

independent combination (Wψ1 −Wψ2) would deserve a closer inspection. This operator

seems not to be 1/2 BPS and not detectable by localization. Although it is cohomologically

trivial at classical level, its expectation value is non-vanishing at three loops, it is real and,

quite unexpectedly, of lower transcendentality (see eq. (5.18)). Moreover, it is reasonable

to expect that it will be non-trivially corrected also at higher orders and from our general

power counting arguments the complete result at framing zero should be a real function

of the couplings given by an odd-order expansion. We do not have a priori arguments

to exclude the appearance of divergent contributions. However, our three-loop calculation

seems to suggest that divergences might be absent, given that at this order the two fermionic

WL turn out to be separately finite. This might be an indication that some supersymmetry

survives. It would be interesting to further investigate the physical meaning of this operator

and find its dual brane configuration.

A Conventions and Feynman rules

We work in euclidean three-dimensional space with coordinates xµ = (x1, x2, x3). The set

of gamma matrices satisfying {γµ, γν} = 2δµν is chosen to be

(γµ) β
α = {σ3, σ1, σ2} (A.1)
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with matrix product

(γµγν) β
α ≡ (γµ) γ

α (γν) β
γ (A.2)

Useful identities are

γµγν = δµνI + iεµνργρ

γµγνγρ = δµνγρ − δµργν + δνργµ + iεµνρI
γµγνγργσ − γσγργνγµ = 2i (δµνερση + δρσεµνη + δνηερµσ + δµηενρσ) γη (A.3)

Tr(γµγν) = 2δµν

Tr(γµγνγρ) = 2iεµνρ (A.4)

Spinorial indices are lowered and raised as (γµ)αβ = εαγ(γµ) δ
γ εβδ, where

εαβ =

(
0 1

−1 0

)
εαβ =

(
0 −1

1 0

)
(A.5)

It follows that

(γµ)αβ = {σ3, σ1,−σ2} (A.6)

In addition,

(γµ)αβ = {σ1, σ3, iI} = (γµ)βα

(γµ)αβ = {−σ1, σ3, iI} = (γµ)βα (A.7)

are symmetric matrices.

We conventionally choose the spinorial indices of chiral fermions to be always up, while

the ones of antichirals to be always down. Therefore

(η1γ
µη̄2) ≡ (ηα1 (γµ) β

α η̄2 β) (A.8)

In order to study BPS WL in N = 4 supersymmetric Chern-Simons-matter theories

associated to linear quivers it is sufficient to concentrate “locally” on three quiver nodes

U(N0)×U(N1)×U(N2). We will then consider the gauge-matter theory for this group.

The action relevant for two-loop calculations is (Γ =
∫
e−S)

S = SCS + Smatter + Sgf (A.9)

SCS = − i
2
k

∫
d3x εµνρ

[
Tr

(
A(1)µ∂νA(1)ρ +

2

3
iA(1)µA(1)νA(1)ρ

)
(A.10)

−Tr

(
A(0)µ∂νA(0)ρ +

2

3
iA(0)µA(0)νA(0)ρ

)
−Tr

(
A(2)µ∂νA(2)ρ +

2

3
iA(2)µA(2)νA(2)ρ

)]
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Smatter =

∫
d3xTr

[
Dµq

Î
(0)D

µq̄(0)Î + i ψ̄I(0)γ
µDµψ(0)I

+Dµq
I
(1)D

µq̄(1)I + i ψ̄Î(1)γ
µDµψ(1)Î

+Dµq
Î
(2)D

µq̄(2)Î + i ψ̄I(2)γ
µDµψ(2)I

]
+ Sint

Sgf =
k

2

∫
d3xTr

[
1

ξ(1)
(∂µA

µ
(1))

2 + ∂µc̄(1)D
µc(1) −

1

ξ(0)
(∂µA

µ
(0))

2 − ∂µ¯̂c(0)D
µĉ(0)

− 1

ξ(2)
(∂µA

µ
(2))

2 − ∂µ¯̂c(2)D
µĉ(2)

]
where (qI(2A+1))

j

ĵ
((q̄(2A+1)I)

ĵ
j), I = 1, 2, are matter scalars in the bifundamental (antibi-

fundamental) representation of the (2A+ 1), ˆ(2A+ 2) nodes and in the fundamental repr.

of the R-symmetry SU(2)L, whereas (qÎ(2A))
ĵ
j ((q̄(2A)Î)

j

ĵ
), Î = 1, 2 are twisted scalars in

the bifundamental representation of ˆ(2A), (2A+ 1) nodes and in the fundamental repr. of

the R-symmetry SU(2)R. Analogously, (ψ(2A+1)Î)
j

ĵ
((ψ̄Î(2A+1))

ĵ
j) and (ψ(2A)I)

ĵ
j ((ψ̄I(2A))

j

ĵ
)

describe the corresponding fermions.

The covariant derivatives are defined as (A = 0, 1)

Dµq
Î
(2A) = ∂µq

Î
(2A) + iA(2A)µq

Î
(2A) − iqÎ(2A)A(2A+1)µ

Dµq
I
(2A+1) = ∂µq

I
(2A+1) + iA(2A+1)µq

I
(2A+1) − iqI(2A+1)A(2A+2)µ

Dµψ(2A)I = ∂µψ(2A)I + iA(2A)µψ(2A)I − iψ(2A)IA(2A+1)µ

Dµψ(2A+1)Î = ∂µψ(2A+1)Î + iA(2A+1)µψ(2A+1)Î − iψ(2A+1)ÎA(2A+2)µ (A.11)

Dµq̄(2A)Î = ∂µq̄(2A)Î − iq̄(2A)ÎA(2A)µ + iA(2A+1)µq̄(2A)Î

Dµq̄(2A+1)I = ∂µq̄(2A+1)I − iq̄(2A+1)IA(2A+1)µ + iA(2A+2)µq̄(2A+1)I

Dµψ̄
I
(2A) = ∂µψ̄

I
(2A) − iψ̄I(2A)A(2A)µ + iA(2A+1)µψ̄

I
(2A)

Dµψ̄
Î
(2A+1) = ∂µψ̄

Î
(2A+1) − iψ̄Î(2A+1)A(2A+1)µ + iA(2A+2)µψ̄

Î
(2A+1) (A.12)

From the action (A.10) we obtain the following Feynman rules:

The propagators:

Tree-level vector propagators in Landau gauge:

〈(A(2A+1)µ)ij(x)(A(2A+1)ν)kl(y)〉(0) = δilδ
k
j

i

k

Γ(3
2 − ε)

2π
3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

= δilδ
k
j

1

k
εµνρ

∫
dnp

(2π)n
pρ

p2
eip(x−y)

〈(A(2A)µ)î
ĵ
(x)(A(2A)ν)k̂

l̂
(y)〉(0) = −δî

l̂
δk̂
ĵ

i

k

Γ(3
2 − ε)

2π
3
2
−ε

εµνρ
(x− y)ρ

[(x− y)2]
3
2
−ε

= −δî
l̂
δk̂
ĵ

1

k
εµνρ

∫
dnp

(2π)n
pρ

p2
eip(x−y) (A.13)
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One-loop vector propagators:

〈(A(2A+1)µ)ij(x)(A(2A+1)ν)kl(y)〉(1) =

= δilδ
k
j

(N2A +N2A+2)

k2

Γ2(1
2 − ε)

8π3−2ε

[
δµν

[(x− y)2]1−2ε
− ∂µ∂ν

[(x− y)2]2ε

4ε(1 + 2ε)

]

= δilδ
k
j

(N2A +N2A+2)

k2

Γ2(1
2 − ε)Γ(1

2 + ε)

22−2επ
3
2
−εΓ(1− 2ε)

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(
δµν −

pµpν
p2

)
〈(A(2A)µ)î

ĵ
(x)(A(2A)ν)k̂

l̂
(y)〉(1) =

= δî
l̂
δk̂
ĵ

(N2A−1 +N2A+1)

k2

Γ2(1
2 − ε)

8π3−2ε

[
δµν

[(x− y)2]1−2ε
− ∂µ∂ν

[(x− y)2]2ε

4ε(1 + 2ε)

]
= δî

l̂
δk̂
ĵ

(N2A−1 +N2A+1)

k2

Γ2(1
2 − ε)Γ(1

2 + ε)

22−2επ
3
2
−εΓ(1− 2ε)

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε

(
δµν −

pµpν
p2

)
(A.14)

Scalar propagator:

〈(qÎ(2A))
ĵ
i (x)(q̄(2A)Ĵ)l

k̂
(y)〉(0) = δÎ

Ĵ
δliδ

ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

[(x− y)2]
1
2
−ε

= δÎ
Ĵ
δliδ

ĵ

k̂

∫
dnp

(2π)n
eip(x−y)

p2
(A.15)

〈(qI(2A+1))
ĵ
i (x)(q̄(2A+1)J)l

k̂
(y)〉(0) = δIJδ

l
iδ
ĵ

k̂

Γ(1
2 − ε)

4π
3
2
−ε

1

[(x− y)2]
1
2
−ε

= δIJδ
l
iδ
ĵ

k̂

∫
dnp

(2π)n
eip(x−y)

p2
(A.16)

Tree-level fermion propagator:

〈(ψα(2A)I)
j

î
(x)(ψ̄J(2A)β) l̂k(y)〉(0) = −i δJI δ l̂îδ

j
k

Γ(3
2 − ε)

2π
3
2
−ε

(γµ)αβ (x− y)µ

[(x− y)2]
3
2
−ε

= − δJI δ l̂îδ
j
k (γµ)αβ

∫
dnp

(2π)n
pµ
p2
eip(x−y) (A.17)

〈(ψα
(2A+1)Î

) j
î

(x)(ψ̄Ĵ(2A+1)β) l̂k(y)〉(0) = −i δĴ
Î
δ l̂
î
δjk

Γ(3
2 − ε)

2π
3
2
−ε

(γµ)αβ (x− y)µ

[(x− y)2]
3
2
−ε

= − δĴ
Î
δ l̂
î
δjk (γµ)αβ

∫
dnp

(2π)n
pµ
p2
eip(x−y) (A.18)

One-loop fermion propagator:

〈(ψα(2A)I)
j

î
(x)(ψ̄J(2A)β) l̂k(y)〉(1) =

=
i

k
δJI δ

l̂
î
δjk δ

α
β (N2A+1 −N2A)

Γ2(1
2 − ε)

16π3−2ε

1

[(x− y)2]1−2ε

=
i

k
δJI δ

l̂
î
δjk δ

α
β (N2A+1 −N2A)

Γ2(1
2 − ε)Γ(1

2 + ε)

23−2επ
3
2
−εΓ(1− 2ε)

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε
(A.19)
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〈(ψα
(2A+1)Î

) j
î

(x)(ψ̄Ĵ(2A+1)β) l̂k(y)〉(1) =

=
i

k
δJI δ

l̂
î
δjk δ

α
β (N2A+1 −N2A+2)

Γ2(1
2 − ε)

16π3−2ε

1

[(x− y)2]1−2ε

=
i

k
δJI δ

l̂
î
δjk δ

α
β (N2A+1 −N2A+2)

Γ2(1
2 − ε)Γ(1

2 + ε)

23−2επ
3
2
−εΓ(1− 2ε)

∫
dnp

(2π)n
eip(x−y)

(p2)
1
2

+ε
(A.20)

The interaction vertices:

1) Gauge cubic vertices (from (−S))

−k
3
εµνρ

∫
d3x (A(1)µ)ij(A(1)ν)jk(A(1)ρ)

k
i (A.21)

k

3
εµνρ

∫
d3x (A(0)µ)î

ĵ
(A(0)ν)ĵ

k̂
(A(0)ρ)

k̂
î
,

k

3
εµνρ

∫
d3x (A(2)µ)î

ĵ
(A(2)ν)ĵ

k̂
(A(2)ρ)

k̂
î

2) Gauge-fermion cubic vertex from (−S) (we only need ψ(1) vertex)∫
d3xTr

[
ψ̄Î(1)γ

µA(1)µψ(1)Î − ψ̄Î(1)γ
µψ(1)ÎA(2)µ

]
(A.22)

3) Yukawa couplings. From the action in [26] suitably rotated to Euclidean space we

read (from (−S) and only terms relevant for our calculation)

2i

k
Tr

[
− εABεĈD̂ψ̄αB(0) q

D̂
(0)q

A
(1)ψ̄

Ĉ
α(1) − εABεĈD̂ q̄(0)Ĉψ

α
(0)Aψα(1)D̂ q̄(1)B

+ ψ̄αA(0) q
B̂
(0)ψ(1)αB̂ q̄(1)A + q̄(0)B̂ψ

α
(0)Aq

A
(1)ψ̄

B̂
α(1)

]
+

2i

k
Tr

[
1

2
ψα

(1)1̂
ψ̄1̂
α(1)q̄(0)K̂(σ3)K̂

L̂
qL̂(0) −

1

2
ψα

(1)2̂
ψ̄2̂
α(1)q̄(0)K̂(σ3)K̂

L̂
qL̂(0)

+ ψα
(1)1̂

ψ̄2̂
α(1)q̄(0)2̂q

1̂
(0) + ψα

(1)2̂
ψ̄1̂
α(1)q̄(0)1̂q

2̂
(0)

]
(A.23)

Finally, we recall our color conventions. We work with hermitian generators for U(NA)

gauge groups (A = 0, 1, 2), satisfying

Tr(T a(A)T
b
(A)) = δab ,

N2
A∑

a=1

(T a(A))ij(T
a
(A))kl = δilδjk , fabc(A)f

abc
(A) = 2N3

A (A.24)

B Useful identities on the unit circle

We parametrize a point on the unit circle Γ as

xµi = (cos τi, sin τi, 0) , ẋµi = (− sin τi, cos τi, 0) , |xi|2 = 1 (B.1)
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Simple identities that turn out to be useful along the calculation are

(xi − xj)2 = 4 sin2 τi − τj
2

(B.2)

xi · xj = ẋi · ẋj = cos (τi − τj) (B.3)

xi · ẋj = sin (τi − τj) (B.4)

(xi · xj)(ẋi · ẋj)− (xi · ẋj)(ẋi · xj) = 1 (B.5)

(xi − xj) · (ẋi + ẋj) = 2 sin (τi − τj) (B.6)

We now consider bilinears constructed in terms of c spinors in [3]. These are different

for the two kinds of femionic WL.

The ψ1-loop: in this case we have

c(τ) =
C

cos τ2 + sin τ
2

(cos τ, 1 + sin τ) = C

(
cos

τ

2
− sin

τ

2
, cos

τ

2
+ sin

τ

2

)

c̄(τ) =
C̄

cos τ2 − sin τ
2

(
1− sin τ

cos τ

)
= C̄

(
cos τ2 − sin τ

2

cos τ2 + sin τ
2

)
(B.7)

with CC̄ = − i
k . Writing ci ≡ c(τi) we have

(cic̄j) = −2i

k
cos

τi − τj
2

(B.8)

(ciγ
1c̄j) =

2i

k
sin

τi + τj
2

(B.9)

(ciγ
2c̄j) = −2i

k
cos

τi + τj
2

(B.10)

(ciγ
3c̄j) =

2

k
sin

τi − τj
2

(B.11)

(ciγµc̄j) (xi − xj)µ = −4i

k
sin

τi − τj
2

(B.12)

More generally, we can write

(ciγ
µc̄j) =

2

k2

1

(cic̄j)

[
− ẋµi − ẋ

µ
j + i εµνρ ẋνi ẋ

ρ
j

]
(B.13)

The ψ2-loop: in this case we have

d(τ) =
D

cos τ2 − sin τ
2

(− cos τ, 1− sin τ) = −D
(

cos
τ

2
+ sin

τ

2
,− cos

τ

2
+ sin

τ

2

)

d̄(τ) =
D̄

cos τ2 + sin τ
2

(
1 + sin τ

− cos τ

)
= D̄

(
cos τ2 + sin τ

2

− cos τ2 + sin τ
2

)
(B.14)

with DD̄ = i
k , and the corresponding bilinears are

(did̄j) = −2i

k
cos

τi − τj
2

(B.15)

(diγ
1d̄j) = −2i

k
sin

τi + τj
2

(B.16)
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(diγ
2d̄j) =

2i

k
cos

τi + τj
2

(B.17)

(diγ
3d̄j) =

2

k
sin

τi − τj
2

(B.18)

(diγµd̄j) (xi − xj)µ =
4i

k
sin

τi − τj
2

(B.19)

More generally, we can write

(diγ
µd̄j) =

2

k2

1

(cic̄j)

[
ẋµi + ẋµj + i εµνρ ẋνi ẋ

ρ
j

]
(B.20)

We note a sign difference in the µ = 1, 2 bilinears of the two WL (formulae (B.9), (B.10)

vs. (B.16), (B.17)).

C Parity and reality of a generic WL diagram

Here we prove that for any loop diagram at order (1/k)L with nS contour insertions of the

scalar bilinears, the number nγ of fermion bilinears (cγc̄) that get produced after γ-algebra

reduction has the same parity of L + nS . This result is crucial to prove identity (3.1) in

the main text.

To this end, we consider a diagram containing nS scalar, 2nF fermion and nA gauge

couplings from the WL expansion (see figure 2). Moreover, we assume that the bulk of

the diagram is built up with iA cubic gauge vertices, iS esa-scalar vertices, iY Yukawa

couplings, iAF gauge-fermion vertices, iAS cubic and jAS quartic gauge-scalar vertices, iAG
cubic gauge-ghost vertices, and IA gauge, IG ghost, IS scalar and IF fermion propagators,

respectively. These assignments are summarized in table 1.

From the structure of the vertices we have the following constraints

2IA = nA + 3iA + iAF + iAS + 2jAS + iAG

IF = nF + iAF + iY

IS = nS + 3iS + iY + iAS + jAS

IG = iAG (C.1)

We begin by proving the following statement

L+ nS = [(iY + nF ) + (IA + iA)] mod(2) = [n+ nε] mod(2) (C.2)

where n is the total number of initial gamma matrices (coming from fermionic propagators

and iAF vertices) distributed in nF bilinears, and nε is the total number of initial epsilon

tensors (coming from gauge propagators and cubic gauge vertices).

Now, taking into account the Feynman rules in appendix A the power L in the coupling

constant 1/k is given by

L = nF + nS + IA − iA + iY + 2iS + IG − iAG
= nF + nS + IA − iA + iY + 2iS (C.3)

where the last identity in (C.1) has been used.
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IA iAF iA

IS iAS iS

IF jAS iAG

IG iY

Table 1. Definition of number of propagators and vertices.

Moreover, the number n of original gamma matrices (coming from fermion propagators

and iAF vertices) and the number nε of original ε tensors (coming from gauge propagators

and iA vertices) are

n = # gamma matrices = IF + iAF = nF + iY + 2iAF

nε = # ε tensors = IA + iA (C.4)

where the second identity in (C.1) has been used. Merging results (C.3) and (C.4) we

finally obtain identity (C.2) that allows us to trade the parity of L+nS with that of n+nε.

We then study the two cases, L + nS even or odd, by separately discussing the four

possible configurations

(L+ nS)

even
⇒

{
(1a) (n, nε) = (even, even)

(1b) (n, nε) = (odd, odd)

(L+ nS)

odd
⇒

{
(2a) (n, nε) = (even, odd)

(2b) (n, nε) = (odd, even)

and prove that in the first two configurations nγ turns out to be even, whereas in the last

two ones it is odd.

In case (1a), the condition that the total number of gamma matrices n must be even

implies that the matrices can be distributed among an arbitrary (but ≤ nF ) number of

bilinears containing an even number of matrices times an even number of bilinears con-

taining an odd number of matrices. Therefore, taking into account reductions (3.5), (3.6)

that follow from gamma matrix identities, the initial structure of the contribution from

this diagram can be sketchily written as

(even # of ε)× [(cc̄) + ε(cγc̄)] · · · [(cc̄) + ε(cγc̄)]︸ ︷︷ ︸
any #≤nF

× [ε(cc̄) + (cγc̄)] · · · [ε(cc̄) + (cγc̄)]︸ ︷︷ ︸
even #

(C.5)
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After performing all the products, the planarity of the contour implies that non-vanishing

contributions will arise only from terms containing an even total number of epsilon tensors.

In fact, any string of an odd number of tensors can be always reduced to a linear combi-

nation of products of Kronecker deltas times one epsilon tensor that would be necessarily

contracted with external indices.

Therefore, in the product of the square brackets in (C.5) we can have an even number

of ε(cγc̄) from the first set of brackets times an even number of ε(cc̄) from the second set.

But since the total number of second type of brackets is even, this implies having an even

number of (cγc̄) as well. Therefore, the only non-vanishing products will contain a total

number nγ of (cγc̄) bilinears which is even. Otherwise, we can have an odd number of

ε(cγc̄) from the first set of brackets times an odd number of ε(cc̄) from the second set.

But since the total number of second type of brackets is even, this implies having an odd

number of (cγc̄) from the second set. Therefore, this leads still to a total number nγ which

is (odd + odd) = even.

Let’s consider case (1b). Since the number n of gamma matrices is odd, this time

we have an odd number of bilinears containing an odd number of matrices. The sketchy

structure of the result is

(odd # of ε)× [(cc̄) + ε(cγc̄)] · · · [(cc̄) + ε(cγc̄)]︸ ︷︷ ︸
any #≤nF

× [ε(cc̄) + (cγc̄)] · · · [ε(cc̄) + (cγc̄)]︸ ︷︷ ︸
odd #

(C.6)

Again, performing all the products, the only non-vanishing contributions come from strings

containing a total even number of epsilon tensors. This requires having an even number

of ε(cγc̄) from the first set of brackets times an odd number of ε(cc̄) from the second set.

But since the total number of second type of brackets is odd, this also implies having an

even number of (cγc̄). In conclusion, the only non-vanishing products will contain a total

number nγ of (cγc̄) bilinears which is even. Alternatively, we can have an odd number

of ε(cγc̄) from the first set of brackets times an even number of ε(cc̄) from the second

one, which implies having an odd number of (cγc̄). In total, we still end up with an even

number nγ .

Therefore we have proved that for L+ nS even, planarity implies nγ even.

A similar analysis can be applied to the case where L+ nS is odd. For instance, if we

consider (2a) case, the general structure of the contribution reads

(odd # of ε)× [(cc̄) + ε(cγc̄)] · · · [(cc̄) + ε(cγc̄)]︸ ︷︷ ︸
any #≤nF

× [ε(cc̄) + (cγc̄)] · · · [ε(cc̄) + (cγc̄)]︸ ︷︷ ︸
even #

(C.7)

In order to realize a string containing an overall even number of epsilon tensors, we can

take an even number of ε(cγc̄) from the first set of brackets times an odd number of ε(cc̄)

from the second one. But since the number of brackets in the second set is even, this

implies having an odd number of (cγc̄) as well. In total we have (even + odd) number of

(cγc̄) bilinears, leading to nγ odd. The same conclusion is reached if we alternatively take

an odd number of ε(cγc̄) from the first set of brackets times an even number of ε(cc̄) from

the second one that comes together with an even number of (cγc̄).
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The analysis of case (2b) goes similarly and we are led to the conclusion that for L+nS
odd, planarity implies nγ odd. We have then proved that nγ always has the same parity

of L+ nS .

We conclude this appendix with an analysis of the reality of the perturbative expansion

of fermionic WL. We will prove that the result at any order is always real, as a consequence

of the planarity of the contour and the fact that we work at framing zero.

In order to prove it, we apply counting arguments similar to the ones used above, this

time keeping track of the different sources of the immaginary unit i.

Focusing on Wψ1 in (2.8) we first notice that from expansion of the Wilson loop we have

a factor inA+2nF . Moreover, as explained in section 3 each fermionic bilinear can be always

reduced to a linear combination of expressions (B.8)–(B.11). However, the planarity of the

contour eventually rules out the appearance of γ3 bilinear. Since all the other ones contain

an i factor, we can count an additional immaginary unit for each of the nF structures. We

are thus left with an overall power i(nA+nF ) (mod 2). Next we count the i factors coming

from internal vertices and propagators, getting a further power iIF+IA+iAS+iY +iAG . Putting

everything together we are left with a total power ip with

p = nA + nF + IF + IA + iAS + iY + iAG (mod 2) (C.8)

Making repeated use of identities (C.1) this can be rewritten as

p = IA + iA (mod 2) (C.9)

But, as discussed above, IA + iA = nε, which is the number of initial epsilon tensors.

Therefore we have an overall inε . Any other ε tensor coming from γ-algebra reduction

always enters with an additional i (see identities in appendix A). We thus have a total

factor (iε)nε+m and, from planarity and at framing zero, we must have nε + m = even.

Therefore, we end up with an even number of i and the result is always real, independently

of the pertubative order. Thanks to identity (3.1) this result extends trivially to Wψ2 .

D Useful formulae for the matrix model analysis

The expression for B4(ΛA) and C4(ΛA,ΛA+1) appearing in the expansion of QA are given by

B4(ΛA) =
1

90

((
5N2

A − 3
)

Tr
(
Λ2
A

)2 −NATr
(
Λ4
A

)
− 10NATr

(
Λ2
A

)
Tr(ΛA)2

+ 4Tr
(
Λ3
A

)
Tr(ΛA) + 5Tr(ΛA)4

)
(D.1)

C4(ΛA,ΛA+1) =
1

24

(
3N2

A+1Tr
(
Λ2
A

)2
+ 6Tr

(
Λ2
A+1

) (
(NA+1NA − 2)Tr

(
Λ2
A

)
−2NATr(ΛA)Tr(ΛA+1))− 2NA+1Tr

(
Λ4
A

)
−12NA+1Tr(ΛA)Tr

(
Λ2
A

)
Tr(ΛA+1) + 3N2

ATr
(
Λ2
A+1

)2
− 2NATr

(
Λ4
A+1

)
+ 8Tr(ΛA)Tr

(
Λ3
A+1

)
+ 8Tr

(
Λ3
A

)
Tr(ΛA+1)

+ 12Tr(ΛA)2Tr(ΛA+1)2
)
. (D.2)
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Consider now the gaussian model defined by the matrix integral∫
dΛ e−αTr(Λ2) (D.3)

The expectation values that we have used in our analysis are

〈Tr(Λ2k)〉0 = α−k
(2k)!

(2kk!)

k∑
j=0

(
k

j

)(
N

k − j + 1

)
2−j (D.4)

and

〈Tr(Λ2)mTr(Λ)2k〉0 =
(−1)m∫

dΛ e−αTr(Λ2)

dm

dαm
d2k

dy2k

∫
dΛ e−αTr(Λ2)+yTr(Λ)

∣∣∣∣
y=0

=
(−1)m∫

dΛ e−αTr(Λ2)

dm

dαm
d2k

dy2k

(∫
dΛ e−αTr(Λ2)+yTr(Λ)

)∣∣∣∣
y=0

=
(−1)m∫

dΛ e−αTr(Λ2)

dm

dαm
d2k

dy2k

(
e
Ny2

4α

∫
dΛ e−αTr[(Λ)2]

)∣∣∣∣
y=0

= (−1)m
(π
α

)−N2

2 dm

dαm
d2k

dy2k

(
e
Ny2

4α

(π
α

)N2

2

)∣∣∣∣∣
y=0

(D.5)

E Cancellation of gauge dependent terms

In the computation of diagrams (a), (c) and (e) we have neglected the contributions from

one-loop corrected gauge propagator (A.14) containing the double derivatives. As already

mentioned in section 5, we expect these gauge dependent contributions to cancel each

others. Here we confirm this expectation.

The gauge dependent contribution from diagram (a) reads

(a)g =− Cab

4ε(1 + 2ε)

∫
dτ1>2>3

[
(c3γµγνγρc̄2)ẋ1η∂

ρ
2∂

µ
3 ∂

η
1∂

ν
1

∫
d3−2εw

(x2
1w)2ε

(x2
2w)1/2−ε

1

(x2
3w)1/2−ε

−
(
1→2→3→1

)
+
(
3→2→1→3

) ]
(E.1)

with Cab defined in (5.6). Working out the γ-algebra and performing the integrations

we obtain

(a)g =
N0N

2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε
48 (E.2)

The gauge dependent part of diagram (c) produces a correction to the fermion propagator

of the form

N0N1

k2
Tr(ψ̄(p)γµψ(−p)) pµ

(p2)2ε
I(c)g

(E.3)

with

I(c)g
= − csc(2επ) sec(επ)Γ(3/2− ε)

25−6επ1/2−2εΓ(3/2− 3ε)Γ(1− ε)Γ(3/2 + ε)
= − 1

32π2ε
+
−1 + γE − log(4π)

16π2

(E.4)
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This can be inserted into the loop contour to get

(c)g = − N0N
2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε
24 (E.5)

The gauge dependent part coming from diagram (e) is given by

(e)g = − Cef

1 + 2ε

∫
dτ1>2>3>4

[(
sin2 τ12

2

)−1+ε (4ε cos2 τ34
2 − 1)(

sin2 τ34
2

)1−2ε + cyclic

]
where Cef and “cyclic” are defined in (5.15) and below. Solving the integral we get

(e)g = − N0N
2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε
24 (E.6)

It is immediate to see that (E.2) + (E.5) + (E.6) = 0.

F Details on diagrams (a) and (b)

Here we give details on the calculation of the two integrals appearing in eqs. (5.3), (5.4)

(a)ψ1
= Cab

∫
dτ1>2>3

[
(c3γµγνγρc̄2)ẋν1∂

ρ
2∂

µ
3 I(2,1,1)−

(
1→2→3→1

)
+
(
3→2→1→3

)]
(F.1)

(b)ψ1
= −Cab

∫
dτ1>2>3

[
(c3γµγρc̄2)∂ρ2∂

µ
3 I(2,1,1)−

(
1→2→3→1

)
+
(
3→2→1→3

)]
(F.2)

with I(2, 1, 1) defined in (5.5). In both cases we focus on the first contribution, while adding

the cyclic permutations later on. We are eventually interested in the result [(a) + (b)].

One possibile way to get rid of the derivatives is to first Feynman parametrize I(2,1,1)

and integrate over the internal point w. From

I(2,1,1) =
Γ(1

2 − 3ε)π3/2−ε

Γ(1
2 − ε)2Γ(1− 2ε)

∫
[dα]3

α−2ε
1 (α2α3)−1/2−ε(

α1α2x2
12 + α2α3x2

23 + α1α3x2
13

)1/2−3ε
(F.3)

we obtain

∂ρ2∂
µ
3 I(2,1,1) =

Γ(5
2 − 3ε)π3/2−ε

Γ(1
2 − ε)2Γ(1− 2ε)

∫
[dα]3

4α−2ε
1 (α2α3)−1/2−ε(

α1α2x2
12 + α2α3x2

23 + α1α3x2
13

)5/2−3ε

×
(
α1α

2
2α3x

ρ
12x

µ
23 + α2

1α2α3x
ρ
12x

µ
13 − α2

2α
2
3x
ρ
23x

µ
23 − α1α2α

2
3x
ρ
23x

µ
13

)
+

Γ(3
2 − 3ε)π3/2−ε

Γ(1
2 − ε)2Γ(1− 2ε)

∫
[dα]3

2α−2ε
1 (α2α3)1/2−ε η̂ρµ(

α1α2x2
12 + α2α3x2

23 + α1α3x2
13

)3/2−3ε

(F.4)
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We begin by analyzing the first integral in (F.4), once inserted in (F.1) and (F.2). We need

to work out the following bilinears for diagram (a)

(c3γµγνγρc̄2)ẋν1x
ρ
12x

µ
23 = −4i

k
sin(τ12) sin

(τ23

2

)
(F.5)

(c3γµγνγρc̄2)ẋν1x
ρ
12x

µ
13 = −8i

k
sin
(τ12

2

)
sin
(τ13

2

)
(F.6)

(c3γµγνγρc̄2)ẋν1x
ρ
23x

µ
23 = −8i

k
cos

(
τ12 + τ13

2

)
sin2

(τ23

2

)
(F.7)

(c3γµγνγρc̄2)ẋν1x
ρ
23x

µ
13 = −4i

k
sin (τ13) sin

(τ23

2

)
(F.8)

and the corresponding ones for diagram (b)

(c3γµγρc̄2)xρ12x
µ
23 = −4i

k
sin (τ1 − τ2) sin

(τ23

2

)
(F.9)

(c3γµγρc̄2)xρ12x
µ
13 = −8i

k
sin
(τ12

2

)
sin
(τ13

2

)
(F.10)

(c3γµγρc̄2)xρ23x
µ
23 = −4i

k
cos
(τ23

2

)(
1− cos(τ23)

)
(F.11)

(c3γµγρc̄2)xρ23x
µ
13 = −4i

k
sin (τ13) sin

(τ23

2

)
(F.12)

It is easy to see that if we consider the sum [(a) + (b)], most of the bilinear terms cancel

and we are only left with the difference between (F.7) and (F.11). Inserting the result into

the integrals and restoring the cyclic permutations we find

− iCab

k

Γ(5
2 − 3ε)43π3/2−ε

Γ(1
2 − ε)2Γ(1− 2ε)

∫
dτ1>2>3

[
sin
(τ12

2

)
sin
(τ13

2

)
sin2

(τ23

2

)
×
∫

[dα]3
α−2ε

1 (α2α3)3/2−ε(
α1α2x2

12 + α2α3x2
23 + α1α3x2

13

)5/2−3ε
+ cyclic

]
(F.13)

where Cab has been defined in (5.6).

This integral can be further elaborated by using the standard two-fold Mellin-Barnes

representation for the denominator obtaining

C̃ab

∫ −i∞
−i∞

dudv

(2πi)2
Γ(−u)Γ(−v)Γ(u+ v + 5/2− 3ε)Γ(2ε− u)Γ(2ε− v)Γ(u+ v + 1− 2ε)

×
∫
dτ1>2>3

[
sin
(τ12

2

)1+2u
sin
(τ13

2

)1+2v
sin
(τ23

2

)−3+6ε−2u−2v
+ cyclic

]
(F.14)

with

C̃ab =
N0N

2
1N2

(N1 +N2)k3

Γ(1
2 − ε)2

Γ(1− 2ε)Γ(1 + 2ε)

1

π9/2−3ε26−6ε
(F.15)

Exploiting the possibility to perform change of variables in the Mellin-Barnes integrations,

one can prove that the integrand is symmetric under any exchange of two τ ’s, although in
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previous formula this not manifest. Thus we can trade the ordered integration
∫
dτ1>2>3

with a free one 1
3!

∫ 2π
0 dτ1

∫ 2π
0 dτ2

∫ 2π
0 dτ3 and use the identity (G.1) of appendix G. We

finally obtain

C̃ab

∫ −i∞
−i∞

dudv

(2πi)2
Γ(−u)Γ(−v)Γ(u+ v + 5/2− 3ε)Γ(2ε− u)Γ(2ε− v)Γ(u+ v + 1− 2ε)

× 4π3/2 Γ(1 + u)Γ(1 + v)Γ(−1 + 3ε− u− v)Γ(1/2 + 3ε)

Γ(2 + u+ v)Γ(3ε− v)Γ(3ε− u)
(F.16)

After expanding in ε the contour integrations can be performed and we obtain the final

result

2π5/2C̃ab

[
1

ε
+

3γE − 2(1 + 6 log 2)

3

]
=

N0N
2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε

[
8

ε
− 16

3
+ 48 log 2

]
(F.17)

A similar approach can be applied to the second integral in (F.4). In this case we need the

following bilinears

(c3γµγνγρc̄2)ẋν1 η̂
ρµ =

2i (D − 2)

k

[
cos
(τ12

2

)
cos
(τ13

2

)
− sin

(τ12

2

)
sin
(τ13

2

)]
(F.18)

(c3γµγρc̄2)η̂ρµ = −2iD

k
cos
(τ23

2

)
(F.19)

where D = 3 − 2ε. Summing the contributions from diagrams (a) and (b) and inserting

back into the integrals we are left with

Cab Γ(3
2 − 3ε)2π3/2−ε

Γ(1
2 − ε)2Γ(1− 2ε)

∫
dτ1>2>3

[(
−4i(D−2)

k
sin
(τ12

2

)
sin
(τ13

2

)
+

4i(D−1)

k
cos
(τ23

2

))

×
∫

[dα]3
α−2ε

1 (α2α3)1/2−ε(
α1α2x2

12 + α2α3x2
23 + α1α3x2

13

)3/2−3ε
+ cyclic

]
(F.20)

We evaluate the two different trigonometric structures in the first line of (F.20) separately.

The first term, after Mellin-Barnes parametrization, turns out to yield the same

trigonometric integral as the one found in (F.14) and can be elaborated exactly as before

C̃ab

(
1

2
− ε
)∫ −i∞
−i∞

dudv

(2πi)2
Γ(−u)Γ(−v)Γ(u+v+3/2−3ε)Γ(2ε−u)Γ(2ε−v)Γ(u+v+1−2ε)

×
∫
dτ1>2>3

[
sin
(τ12

2

)1+2u
sin
(τ13

2

)1+2v
sin
(τ23

2

)−3+6ε−2u−2v
+ cyclic

]
=

N0N
2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε

[
8

ε
− 16 + 48 log 2

]
(F.21)

where we have symmetrized the integration region and used identity (G.1).

The second term in (F.20), after the introduction of Mellin-Barnes parameters, pro-

duces a slightly different trigonometric structure compared to the previous ones and requires
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separated treatment. Its evaluation is reported in appendix G, while here we use the final

result (G.7) to obtain

C̃ab(ε− 1)

∫ −i∞
−i∞

dudv

(2πi)2
Γ(−u)Γ(−v)Γ(u+v+3/2−3ε)Γ(2ε−u)Γ(2ε−v)Γ(u+v+1−2ε)

×
∫
dτ1>2>3

[
sin
(τ12

2

)2u
sin
(τ13

2

)2v
sin
(τ23

2

)−3+6ε−2u−2v
cos
(τ23

2

)
+ cyclic

]
=

N0N
2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε

256

3
(F.22)

We can now collect all the pieces (F.17) (F.21) (F.22) and obtain the final result

[(a) + (b)]ψ1 =
N0N

2
1N2

(N1 +N2)k3

e3γEε

44π1−3ε

[
16

ε
+ 16(4 + 6 log 2)

]
(F.23)

G Trigonometric integrations

We detail here the evaluation of the trigonometric integrals of appendix F. We first need

the integrals that enter in equations (F.14) and (F.21). This type of integrals has been

solved in [21], where the following general identity was found

J (α, β, γ) =

∫ 2π

0
dτ1

∫ 2π

0
dτ2

∫ 2π

0
dτ3

[
sin2

(
τ12

2

)]α [
sin2

(
τ23

2

)]β [
sin2

(
τ13

2

)]γ
= 8π3/2 Γ(1

2 + α)Γ(1
2 + β)Γ(1

2 + γ)Γ(1 + α+ β + γ)

Γ(1 + α+ γ)Γ(1 + β + γ)Γ(1 + α+ β)
(G.1)

This identity can be immediately specialized to solve (F.14) and (F.21).

Next we concentrate on the non-trivial evaluation of the following general integral

I[α, β, γ] =

∫
dτ1>2>3

[(
sin2 τ12

2

)α(
sin2 τ13

2

)β(
sin2 τ23

2

)γ
cos

τ23

2

−
(

sin2 τ23

2

)α(
sin2 τ12

2

)β(
sin2 τ13

2

)γ
cos

τ13

2

+

(
sin2 τ13

2

)α(
sin2 τ23

2

)β(
sin2 τ12

2

)γ
cos

τ12

2

]
(G.2)

that enters equation (F.22).

After non-trivial change of variables the integral can be put in the simpler form

I[α, β, γ] = π

∫ 2π

0
dτ1

∫ 2π

0
dτ2

(
sin2 τ1

2

)α (
sin2 τ2

2

)β (
sin2 τ12

2

)γ
cos

τ12

2
(G.3)

where one of the contour integrations has been trivially performed. Up to the cos τ12
2 factor,

this integral is very similar to (G.1). Using the following trigonometric identity

2 cos
τ12

2
=

sin τ2
2

sin τ1
2

+
sin τ1

2

sin τ2
2

− sin2 τ12
2

sin τ1
2 sin τ2

2

(G.4)
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we can write

I[α, β, γ] =
π

2

∫ 2π

0
dτ1

∫ 2π

0
dτ2

(
sin2 τ1

2

)α− 1
2
(

sin2 τ2

2

)β+ 1
2
(

sin2 τ12

2

)γ
+
π

2

∫ 2π

0
dτ1

∫ 2π

0
dτ2

(
sin2 τ1

2

)α+ 1
2
(

sin2 τ2

2

)β− 1
2
(

sin2 τ12

2

)γ
− π

2

∫ 2π

0
dτ1

∫ 2π

0
dτ2

(
sin2 τ1

2

)α− 1
2
(

sin2 τ2

2

)β− 1
2
(

sin2 τ12

2

)γ+1
(G.5)

Using the expression of the J integral (G.1) in terms of Gamma functions we finally have

I[α, β, γ] =
1

4

[
J
(
α− 1

2
, γ, β +

1

2

)
+ J

(
α+

1

2
, γ, β − 1

2

)
− J

(
α− 1

2
, γ + 1, β − 1

2

)]
= 2π3/2Γ(1 + α+ β + γ)

[
Γ(α)Γ(1

2 + γ)Γ(1 + β)

Γ(1
2 + α+ γ)Γ(3

2 + β + γ)Γ(1 + α+ β)

+
Γ(1 + α)Γ(1

2 + γ)Γ(β)

Γ(3
2 + α+ γ)Γ(1

2 + β + γ)Γ(1 + α+ β)

− Γ(α)Γ(3
2 + γ)Γ(β)

Γ(3
2 + α+ γ)Γ(3

2 + β + γ)Γ(α+ β)

]
(G.6)

which further simplifies to

I[α, β, γ] = 4π3/2 Γ(1 + α+ β + γ)Γ(1 + α)Γ(1 + β)Γ(1
2 + γ)

Γ(3
2 + α+ γ)Γ(3

2 + β + γ)Γ(1 + α+ β)
(G.7)
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