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1 Introduction

There is a basic intuition in quantum field theory that renormalization group flows lead to

a decrease in the number of degrees of freedom in a system. For conformal field theories

(CFTs), this can be made quantitative if a weak C-function exists:1

CUV ≥ CIR . (1.1)

For even-dimensional CFTs on a curved background, Cardy proposed in reference [1] that

the quantity aD which appears in the trace anomaly (see e.g. [2]):

〈Tµµ 〉 = −
(
− 1

4π

)D/2
aDED + . . . (1.2)

provides such a C-function. Here, ED is the D-dimensional Euler density constructed

with respect to the background metric, and the other contributions to the anomaly are

constructed from the Weyl tensor, as well as (scheme dependent) divergences of currents.

In the case of odd-dimensional CFTs, there is a related quantity given by the universal

part of the free energy. A proof of the 2D a-theorem (i.e. the c-theorem) was given by

Zamolodchikov in reference [3], and a proof of the 4D a-theorem was given recently in

reference [4]. For 3D systems, there is the related F-theorem [5–7]. For recent work on the

status of the 6D a-theorem, see e.g. [8] and [9]. See also [10] for a recent proof for flows

between (2, 0) SCFTs, and see [11] for its status in the case (1, 0) SCFTs.

Our aim in this note will be to study the existence of weak C-functions for 6D SCFTs.

We use the recently completed classification of 6D SCFTs (see references [12–18] as well as

1There is also a notion of a “strong C-function” which is about monotonicity of a quantity along an

entire RG flow.
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earlier work [19–32]) which can be generated by compactifications of F-theory to search for

C-functions which obey the inequality CUV > CIR. Since the R-current and stress tensor

sit in the same Weyl multiplet [33, 34], the conformal anomalies of a 6D SCFT are given

by specific linear combinations of coefficients appearing in the anomaly polynomial:

I = αc2(R)2 + βc2(R)p1(T ) + γp1(T )2 + δp2(T ) + . . . (1.3)

Here, we have introduced formal characteristic classes c2(R) for the R-symmetry, and p1(T )

for a tangent bundle for a formal eight manifold. The “. . . ” refers to additional theory

specific flavor symmetry field strengths. A concrete algorithm for computing the anomaly

polynomial of a 6D SCFT was obtained in references [35, 36] (see also [37, 38] as well

as [39, 40]).

We seek to determine possible four-component vectors −→m such that the resulting linear

combination:

C = −→m · −→α (1.4)

satisfies CUV > CIR. Here, we have introduced the four-component vector −→α = (α, β, γ, δ).

In lower-dimensional systems, the existence of non-trivial dualities leads to tight bounds

on possible C-functions. For example, even before the 4D a-theorem was proved, it was

already known that a4D was the only candidate C-function which could be constructed

from a linear combination of the anomaly polynomial coefficients [41]. We find, however,

that in six dimensions there exist entire families of weak C-functions. This is in part due

to the fact that for our 6D theories, there do not appear to be non-trivial dualities.

From this perspective, it is natural to determine the precise contours of the region of

“m-space” that decreases monotonically under RG flows. First of all, we can already see

on general grounds that the coefficient δ is the same in the UV and IR [11, 38], and so m4

is a “null” direction. For Higgs branch flows, m3 is also a “null” direction and m1 > 0. In

the case of tensor branch flows, we also find the general analytic bound m1m3 > m2
2.

We expect that the more complex a SCFT is, the weaker the expected bound. Though

we have not performed a systematic sweep over the more complex cases of reference [17],

we have found that in all of these cases, there is a strictly bigger jump in the behavior of a

candidate C-function compared with less complex theories. For this reason, we focus on all

theories with a single tensor multiplet, as well as the “classical theories” of reference [17].

A classical theory has a tensor branch in which only classical gauge groups appear. Though

we have not performed a systematic sweep over theories with generalized conformal mat-

ter [14, 15], we expect these cases to provide weaker bounds. The reason is that a conformal

matter system is already an interacting SCFT, and therefore contains many degrees of

freedom. Higgsing such a theory is therefore expected to generate a jump which is bigger

compared with Higgsing a classical theory.

We find that in the case of Higgs branch flows, the tightest constraint comes from the

flow of the rank one E-string theory to a set of free hypermultiplets. This leads us to the

bound:

Higgs (numeric): 0 < m1 −
11m2

26
. (1.5)
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In the case of tensor branch flows, we find that the tightest bounds typically come from

theories with a single SO or Sp gauge group factor, although theories with multiple gauge

groups also make an appearance. In fact, we find that if we formally continue the anomaly

polynomial for the single SO and Sp case to a rank which is a general rational number, we

can cleanly state all of the resulting bounds in terms of the behavior of a single anomaly

polynomial. This leads us to the bounds:

Tensor (numeric): 0 < m1 −
m2

2
+
m3

16
(1.6a)

Tensor (numeric): 0 < m1 +
m2

6
+
m3

144
(1.6b)

Tensor (analytic): 0 < m1 (1.6c)

Tensor (analytic): m2
2 < m1m3 . (1.6d)

The bounds (1.5), (1.6a), and (1.6b), and (1.6c) are necessary conditions: any four-vector
−→m that fails to satisfy these conditions will not lead to a monotonically decreasing C-

function. The bound (1.6d) on the other hand, is a sufficient condition: any −→m satisfying

this bound will lead to a C-function that is monotonically decreasing under tensor branch

flows. However, we will see strong evidence that the converse statements are also true in

the appropriate regime: for suitably small |m2/m1|, the four necessary conditions (1.5)–

(1.6c) are sufficient, whereas for sufficiently large |m2/m1|, the sufficient condition (1.6d)

is more or less necessary.

As a simple application of our analysis, we present strong evidence that the specific

combination found in reference [11] (see also [42]):

a6D =
8

3
(α− β + γ) + δ (1.7)

is indeed well within the monotonic region of m-space. Indeed, a proof of this fact for tensor

branch flows was also presented in [11], but as far as we are aware no proof is yet available

for Higgs branch flows. Let us also emphasize that even if an a-theorem is eventually

established through some extension of the methods found in [11], it is still important to

note that we seem to have whole families of weak C-functions in six dimensions.

The rest of this note is organized as follows. First, in section 2 we collect some general

details on the empirically observed behavior of the anomaly polynomial under RG flows.

After this, we turn in section 3 to our determination of m-space for 6D SCFTs. We also

discuss the specific case of the conformal anomaly a6D. We conclude in section 4.

2 RG flows and anomaly polynomials

In this section we discuss in general terms the class of RG flows we shall consider, as well

as what we know about changes in the anomaly polynomial in flowing from the UV to the

IR. Our discussion mainly follows that given in reference [38].

We focus on RG flows which correspond to geometric deformations of an F-theory

compactification. Recall that in F-theory, we generate 6D SCFTs by working with a
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singular elliptically fibered Calabi-Yau threefold X → B with base B. We reach an SCFT

when two-cycles of the base B simultaneously contract to zero size.

The data of the base of an F-theory compactification is conveniently summarized by a

writing down a diagram of P1’s with prescribed self-intersection numbers. These numbers

can range from 1 up to 12 (see [43] for details), and must obey the condition that minus

the intersection pairing defines a positive definite quadratic form (see [12]). Here is an

example of a base configuration of curves:

Example of a base: 2, 2 . . . 2, 2︸ ︷︷ ︸
N

. (2.1)

When the elliptic fiber is trivial and all of the −2 curves of this configuration collapse

to zero size, we realize the AN (2, 0) SCFT. In addition to specifying the base, it often

happens that the elliptic fiber is non-trivial. As explained in [43], this occurs generically for

curves with self-intersection −n for 3 ≤ n ≤ 12. It can also happen for −1 and −2 curves

by further tuning the complex structure moduli of an F-theory model. We can incorporate

this additional data by the notation:
g
n

[Nf=k]
, (2.2)

that is, we have a curve of self-intersection −n wrapped by a seven-brane with gauge

symmetry algebra g. Finally, the number of flavors [Nf = k] which is often dictated by

anomaly cancellation considerations has also been indicated. Unless otherwise indicated,

a flavor will refer to a hypermultiplet in the fundamental representation (as this is by far

the most common situation). We shall denote such flavor contributions by square brackets.

Indeed, since we do not actually need the flavor symmetry group, we shall find it more

convenient to simply list all the flavors. Here is an example of a (1, 0) SCFT which exhibits

all of the rules mentioned above:

Example (1, 0) SCFT: [Nf = k]
suk
2 ,

suk
2 . . .

suk
2 ,

suk
2︸ ︷︷ ︸

N

[Nf = k] (2.3)

The classification results of references [12–18] amount to a determination of all possible

bases and all possible fiber decorations which can occur. An important outcome of this

analysis is that all of these theories can be viewed as generalized quivers in which the

links (i.e. matter) between distinct gauge group can sometimes also be interacting fixed

points [14, 15]. Such links therefore have many interacting degrees of freedom. That means

Higgs or tensor branch flows involving conformal matter will likely proceed by larger jumps

in a candidate weak C-function and will therefore likely give weaker bounds.

Having given a brief review of some aspects of how to build 6D SCFTs, let us now

turn to RG flows for these theories. There are two qualitatively distinct kinds of RG flows

which can be seen as deformations of the F-theory geometry. First of all, there are tensor

branch flows. Geometrically these correspond to resolving some of the singular curves of

the base B. In the 6D effective field theory, this corresponds to giving a vev to the scalar

of a tensor multiplet. In this flow, the UV R-symmetry remains unbroken (as the scalar is

neutral under SU(2)R). Second of all, there are Higgs branch flows. Geometrically these
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correspond to a complex structure deformation of the 6D SCFT. All of these flows can

be thought of as being triggered by a vev for generalized conformal matter (in the sense

of [14, 15]). In these flows, the UV R-symmetry is broken, but an R-symmetry is recovered

in the infrared.

Now, as empirically observed in reference [38], the change in the anomaly polynomial

for tensor branch flows and Higgs branch flows is:

∆TensorI =
(
pc2(R)− qp1(T )

)2
(2.4)

∆HiggsI = c2(R)
(
rc2(R)− sp1(T )

)
. (2.5)

Dirac quantization of the lattice of string charges enforces the condition that p, q, r, s are

rational numbers [37, 44]. Additionally, in the case of tensor branch flows, the factorization

into a perfect square is required to be consistent with general ’t Hooft anomaly matching

considerations [37]. Indeed, since this involves introducing an additional tensor multiplet

which can then be exchanged to cancel off this contribution, the overall sign of the difference

is also fixed to be positive. In the case of the Higgs branch flows, the fact that the UV R-

symmetry is broken means that if we switch off c2(R), the change in the anomaly polynomial

should vanish. This enforces the general form found here. Note that in both cases, there

is no contribution from p2(T ) because diffeomorphisms remain unbroken along the entire

flow [38].

Phrased in this way, our task reduces to sweeping over all possible flows for 6D SCFTs,

determining admissible values of p, q, r and s. Though we do not have a general proof, we

have found that in all known flows, we have:

r, s > 0 . (2.6)

Returning to our general expression for our candidate C-function C = −→m · −→α , we can now

calculate the change under both tensor branch and Higgs branch flows:

∆TensorC = m1p
2 − 2m2pq +m3q

2 (2.7)

∆HiggsC = m1r −m2s . (2.8)

Without specifying too many details, we can now establish two rather crude bounds on

the monotonic region of m-space. First of all, we observe that from the structure of Higgs

branch flows, m1 > 0. Second of all, from the structure of tensor branch flows, we see

that our expression in p and q defines a quadric in p and q. The condition that this is

positive imposes the condition that the discriminant D = 4m2
2−4m1m3 is strictly negative.

Putting this together, we can already obtain an analytic cut through m-space:

0 < m1 (2.9)

m2
2 < m1m3 (2.10)

While it is in principle possible to proceed further by purely analytic means, we shall

instead resort to the explicit classification of 6D SCFTs to start selecting candidate C-

functions. The rest of this section is organized as follows. First, we give some examples of
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RG flows, illustrating the general point that we expect the tightest bounds to come from

the simplest theories. Next, we turn to the explicit class of theories for which we perform

our sweeps. We then turn to a summary of our results from a numerical sweep over possible

theories.

2.1 Example flows and “bogus theories”

Some examples of tensor branch and Higgs branch flows were considered in [17] and [38].

The simplest Higgs branch flows start with a UV theory of a single tensor multiplet paired

with a vector multiplet and appropriate hypermultiplet matter and flow to an IR theory of

at most one tensor multiplet and a different gauge symmetry, along with the appropriate

hypermultiplet matter. An example is the flow,

e6
5

[Nf=1]

RG→
f4
5 t free hypers

Clearly, the 27 of e6 has acquired a vev in this case, and the e6 symmetry has been

spontaneously broken to f4.

This can be generalized to theories with multiple tensor multiplets. Here, some combi-

nation of hypermultiplets may simultaneously be given vevs, so multiple gauge symmetries

may be broken at once. For instance, we may consider the flow,

su3
2

[Nf=2]

su4
2

[Nf=5]

RG→
su2
2

[Nf=1]

su3
2

[Nf=4]
t free hypers

Here, both gauge symmetries have been broken to subgroups by giving vevs to charged

hypermultiplets.

Computationally, it is clear from this that the the number of Higgs branch flows will

be enormous for a theory with many tensor multiplets and gauge symmetries that are far

from minimal. For tensor branch flows, we can simplify the situation by decomposing any

flow as the composition of several flows which each involve only a single tensor multiplet.

For instance, the flow

1, 2, 2, 2, 2
RG→ 1, 2 t 2 t two free (2, 0) tensors

may be decomposed as

1, 2, 2, 2, 2
RG→ 1, 2, 2, 2 t free (2, 0) tensor

RG→ 1, 2 t 2 t two free (2, 0) tensors

by taking to infinity the vevs of the fifth and third tensor multiplet scalars, respectively.

Thus, in the case of tensor branch flows, it is enough to consider only the flows initiated by

giving a vev to a single tensor multiplet. If some anomaly polynomial coefficient is positive

under each of these flows, it is guaranteed to be positive under their compositions, and

hence it will be positive under all flows.

However, the analogous statement is not true for Higgs branch flows. For instance,

the flow

[Nf = 3]
su3
2

su3
2

su3
2

su3
2 [Nf = 3]

RG→ [Nf = 2]
su2
2

su2
2

su2
2

su2
2 [Nf = 2]
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cannot proceed in a piecewise manner in which each su3 is Higgsed to su2 one at a time.

There is no way three of the four nodes can hold an su2 gauge algebra while the fourth

holds an su3 gauge algebra without violating the convexity condition of [17], and so the

last step in the process can never be completed. Thus, not all Higgs branch flows can be

decomposed as single flows.

However, there is nothing stopping us from formally writing down the anomaly poly-

nomial for the would-be theory,

[Nf = 2]
su2
2

su2
2

[Nf=−1]

su2
3

[Nf=2]

su2
2 [Nf = 1]

The presence of −1 hypermultiplets on the second tensor multiplet indicates that this

theory does not exist, but nonetheless we may formally compute the anomaly polynomial

by simply subtracting the contribution Ihyper for a hypermultiplet charged under that gauge

symmetry. Once we allow for such non-existent theories, which we henceforth call “bogus

theories”, we may indeed decompose these Higgs branch flows into sequences of single-node

flows. In the previous example, we have (neglecting the free, decoupled matter sectors),

[Nf = 3]
su3
2

su3
2

su3
2

su3
2 [Nf = 3]

RG→ [Nf = 1]
su2
2

su3
2

[Nf=1]

su3
2

su3
2 [Nf = 3]

RG→ [Nf = 1]
su2
2

su3
2

[Nf=1]

su3
2

[Nf=1]

su2
2 [Nf = 1]

RG→ [Nf = 2]
su2
2

su2
2

[Nf=−1]

su3
2

[Nf=2]

su2
2 [Nf = 1]

RG→ [Nf = 2]
su2
2

su2
2

su2
2

su2
2 [Nf = 2]

Of course, there are multiple sequences with the same endpoints, but the difference of the

anomaly polynomial coefficients at the beginning and end of the flow depend only on the

endpoints and so are independent of the path taken. As long as some polynomial coefficient

is monotonically decreasing at each step of the sequence, then it is guaranteed to decrease

along the entire flow. This allows us to perform a large, systematic sweep of Higgs branch

flows.

The Higgs branch flows discussed so far all preserve the structure of the tensor branch

i.e. the F-theory base. However, there are other, more complicated flows which do not [38].

For example, separating two M5-branes probing an E8-wall along a direction parallel to

the wall corresponds to the flow,

1, 2→ 1 t 1 t free (2, 0) tensor

This is a Higgs branch flow, but it clearly does not preserve the tensor multiplet structure.

2.2 Flows for the sweeps

Although the form of 6D SCFTs is highly constrained, there are still too many theories to

perform a fully systematic sweep of RG flows. Our plan will be to focus on SCFTs with a

single tensor node, as well as the classical theories of reference [17] (see also [18]). Since we
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will be restricting our attention to these cases, let us briefly explain why we expect these

theories in particular to give us the tightest bounds.

In the case of a generalized quiver, we will typically need to discuss moving onto the

tensor branch or Higgs branch for a system by eliminating some amount of conformal

matter. Now, the important feature of conformal matter is that it typically is built of

smaller SCFTs which themselves contain a large number of degrees of freedom. From this

perspective, we expect to obtain the sharpest bounds from theories where the drop in the

number of degrees of freedom is the smallest. These are cases where the matter fields are

genuine weakly coupled hypermultiplets (in the tensor branch description).

Instead, we concentrate on tensor branch flows between (a) classical theories and

(b) UV theories of a single tensor node to IR theories without a tensor node, and we

concentrate on Higgs branch flows (which preserve the tensor multiplet structure) between

(c) classical theories and (d) theories of a single tensor node. From these, we map out the

monotonic region of m-space. We will find that this region is rather sizeable, indicating a

large family of monotonically decreasing functions.

“Classical theories” are defined to be theories built in F-theory from curves whose self-

intersection is either −1, −2, or −4, contain no spinors, and have no exceptional fiber types

(e.g. II, II, IV, etc.). The classical theories are easily classified and come in the following

families:
su(n1)

2 . . .
su(nk)

2

su(n1)

2
su(n2)

2
2

su(nt)

. . .
su(nk)

2

su(n1)

2
su(n2)

2
su(n3)

2
2

su(nt)

. . .
su(nk)

2

su(n0)

1
su(n1)

2 . . .
su(nk)

2

sp(n0)

1
su(n1)

2 . . .
su(nk)

2

su(m)

2
sp(n0)

1
so(n1)

4
sp(n2)

1 . . .
sp(nk−1)

1
so(nk)

4

su(m)

2
sp(n0)

1
so(n1)

4
sp(n2)

1 . . .
so(nk−1)

4
sp(nk)

1

sp(n0)

1
so(n1)

4
sp(n2)

1 . . .
so(nk−1)

4
sp(nk)

1

sp(n0)

1
so(n1)

4
sp(n2)

1 . . .
sp(nk−1)

1
so(nk)

4

so(n1)

4
sp(n2)

1 . . .
sp(nk−1)

1
so(nk)

4

sp(n0)

1
so(n1)

4
1

sp(m)

sp(n2)

1 . . .
so(nk−1)

4
sp(nk)

1

sp(n0)

1
so(n1)

4
1

sp(m)

sp(n2)

1 . . .
sp(nk−1)

1
so(nk)

4

so(n1)

4
sp(n2)

1
so(n3)

4
1

sp(m)

sp(n4)

1
so(n5)

4
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The gauge algebras in all of these theories obey the convexity conditions discussed in [17],

which we will not repeat here.

We initiate a tensor branch flow by taking the size of one or more of the curves to

infinity. It suffices to consider the case in which only a single curve is taken large, as a

general flow can be expressed as a composition of such flows. Thus, for each of the families

of flows considered, we list out all theories up to a given number of tensor nodes. For each

theory, we consider the flow induced by taking each node large in turn.

Similarly, a Higgs branch flow occurs when we decrease the rank of the gauge algebras

living on one or more of the tensor nodes. As discussed previously, decreasing the rank

of the gauge algebra of just a single tensor node will sometimes take us outside the class

6D SCFTs, but we may compensate for this by formally defining anomaly polynomials

for “bogus theories”. Thus, for each family of classical theories, we start with all theories

(real or bogus) up to a given number of tensor nodes. For each theory, we consider the

flow induced by minimally decreasing the gauge algebra on each node in turn and use

numerical optimization to determine the tightest possible bound such a flow could give for

any possible gauge algebra rank.

3 Analysis and results

We now turn to a summary of our automated sweeps. We find that the strongest constraints

on the change in the conformal anomalies come from the simplest theories. This means

that our brute force sweeps actually amount to strong evidence in favor of the existence of

such C-theorems.

As already mentioned, we focus on linear combinations:

C = −→m · −→α , (3.1)

where −→α = (α, β, γ, δ) is the vector of anomaly polynomial coefficients. Our goal is to study

the region in the 4-dimensional space of (m1,m2,m3,m4) such that C is monotonically

decreasing under RG flows. We will refer to this region as the “monotonic region” of m-

space. At times, we will distinguish the region that is monotonic under tensor branch flows

from the region that is monotonic under Higgs branch flows. The region that is monotonic

under both types of flows is then given by the intersection of these two monotonic regions.

From the form of the anomaly polynomial differences under tensor branch and Higgs

branch flows considered earlier, it is clear that the the m4 direction will be a null direction,

since ∆δ = 0 under all such flows. This reduces the parameter space of interest to the three-

dimensional space of (m1,m2,m3, 0). In the case of Higgs branch flows, the m3 direction

will also be null, but for tensor branch flows ∆γ 6= 0.

Our analysis consists of a large sweep over the classical theories. For Higgs branch

flows, we scan over each classical configuration consisting of 25 or fewer tensor nodes.

For each such configuration, we consider the bound placed on the monotonic region by

minimally lowering one of the gauge algebra ranks. We then numerically minimize the

quantity −∆α/∆β over the gauge algebra ranks for each possible flow.2 The bound on

2All numerical optimizations described in this paper were performed using Mathematica.
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the monotonic region from any Higgs branch flow is given by m2/m1 < −∆α/∆β, so by

minimizing this value, we determine the tightest possible bound on the monotonic region.

For example, the flow

suNL

2
[Nf=2NL−NR]

suNR

2
[Nf=2NR−NL]

RG→
suNL−1

2
[Nf=2NL−NR−2]

suNR

2
[Nf=2NR−NL+1]

t free hypers

yields an anomaly polynomial difference vector of (∆α,∆β,∆γ,∆δ) =
(
7NL
12 +NR

3 −
7
24 ,

1
48−

NL
24 , 0, 0

)
. For such a flow, we must have NL ≥ 2, NR ≥ 1, so we minimize the quantity

−∆α/∆β = 14 + 16NR
2NL−1 subject to these constraints. The minimum value of this quantity

is 14 in this example, and hence we find a bound m2/m1 < 14.

The theories consisting of a single tensor node are listed in section 6.1 of [17], and we

will not repeat them here. The single node Higgs branch flows begin with a UV theory

of a single tensor node and flow to an IR theory of a single tensor node via Higgsing of

the gauge algebra. The tensor branch structure is unaffected. Our sweep encompasses

all such flows as well as the flow of the E-string theory to free hypermultiplets, 1
RG→ free

hypers. This last flow lies at the bottom of the hierarchy of Higgs branch flows involving

theories with single tensor multiplets and ends up providing the only meaningful bound of

any Higgs branch flow.

For tensor branch flows, we similarly scan over every classical configuration consisting

of 25 or fewer tensor nodes. For each such configuration, we consider the bound placed

on the monotonic region by taking the vev of one tensor multiplet scalar to infinity. We

then numerically optimize over the gauge algebra ranks to determine the tightest possible

bound on the monotonic region.

Whereas in the case of Higgs branch flows it sufficed to minimize the quantity −∆α/∆β

along all flows and show that it increases with the number of tensor nodes, here there are

three quantities which must be considered. Our goal is to study the bounds in the range

−116/9 < m2/m1 < 26/11, and we want to know if any flows will provide tighter bounds

than the ones in (1.6a) and (1.6b). To ensure that all such bounds are trivial in this range,

it suffices to check that each of the following hold:

−∆α

∆β
> 2 OR − ∆α

∆β
< −6 (3.2a)

b := −26

11

∆β

∆γ
− ∆α

∆γ
<

32

11
(3.2b)

c :=
116

9

∆β

∆γ
− ∆α

∆γ
<

496

3
(3.2c)

These three conditions together ensure that none of the bounding lines ∆α+ ∆βm2/m1 +

∆γm3/m1 = 0 coming from a tensor branch flow cross above either of the two lines shown

in figure 4, meaning that these two flows do indeed provide the tightest bounds on the

monotonic region.

We also consider tensor branch flows for theories consisting of a single tensor node.

These flows are very simple: one takes the vev of the tensor multiplet scalar to infinity

and is left with a free tensor multiplet and an appropriate number of free vectors and free

hypers in the IR. Once again, our sweep encompasses all such flows.

– 10 –
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One may worry that we are overestimating the size of the monotonic region due to

the limited scope of our analysis. However, we will soon see that the strongest constraints

on monotonicity come from the simplest flows, so it appears highly unlikely to us that the

more complicated examples we have abstained from considering will provide meaningful

bounds.

In fact, our analysis is more likely to underestimate the size of the monotonic region

due to the fact that we are including “bogus theories” in our analysis. Any flow beginning

or ending on a bogus theory is a “bogus flow”, which does not actually exist yet may

introduce a constraint on the monotonic region. Any function which is monotonic under

all (possibly bogus) flows will necessarily be monotonic under all real flows, so the true

monotonic region may be underestimated using these methods.

However, it turns out that the tighest constraints from our sweep come from honest

tensor branch flows and Higgs branch flows, which do not involve any bogus theories, so it

appears that we are neither underestimating nor overestimating the size of the monotonic

region.

We now examine the monotonic region for both Higgs branch and tensor branch flows.

3.1 Higgs branch flows

The two key observations from our numerical sweep of Higgs branch flows are as follows:

1. The constraints on the monotonic region given by a Higgs branch flow from one

theory to a nearby theory grow weaker as the complexity of the theories increases.

2. The monotonic region for Higgs branch flows comes from a single flow. It is given

by moving onto the Higgs branch of the rank one E-string theory. On the Higgs

branch, we are left with 30 free hypermultiplets (including the center of mass degrees

of freedom), as dictated by matching the coefficient p2(T ) of the anomaly polynomial.

This yields the bound:3

1
RG→ free hypers. ⇒ 0 < m1 −

11m2

26
(3.3)

The first of these observations is crucial, for it gives us strong reason to believe that the

monotonic region will not shrink once more complicated Higgs branch flows are consid-

ered. As the gauge algebra rank is increased, the self-intersection number of the curve is

decreased, or the number of tensor nodes is increased, the constraints on the monotonic

region are strictly weaker. This is illustrated in figure 2, which shows how the quantity

−∆α/∆β and hence the bound m2/m1 < −∆α/∆β varies with the number of tensor nodes

for each of the classical families considered. Clearly, the bounds grow monotonically weaker

with the number of tensor nodes, eventually leveling off. This gives us strong grounds to

believe that (3.3) is the only constraint on the monotonic region for Higgs branch flows.

3Here and henceforth, we are assuming m1 > 0 in the monotonic region. We will see that this condition

is necessarily enforced by tensor branch flows, so it is safe to assume.

– 11 –
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Figure 1. The bounds on the monotonic region (m1,m2,m3,m4 = 0) from Higgs branch flows.

The only meaningful bound is m2/m1 < 26/11, and it comes from the simplest possible Higgs

branch flow, 1
RG→ free hypers.

Assuming this is accurate, it would establish the a-theorem for Higgs branch flows.

In [11] (see also [42]), it was shown that the a-type Weyl anomaly corresponds to the

vector,

−→ma =
8

3

(
1,−1, 1,

3

8

)
(3.4)

Thus, m2/m1 = −1 < 26/11, so −→ma lies comfortably within the monotonic region for Higgs

branch flows. This is shown in figure 1.

3.2 Tensor branch flows

We now present the two key observations from our analysis of tensor branch flows. The

first of these is an analytic result, whereas the second is an observation from our numerical

sweep:

1. The monotonic region for tensor branch flows has m1 > 0 and is well approximated

by the inequality m1m3 > m2
2.

2. Within the range −116/9 < m2/m1 < 26/11, the bounds appear to grow weaker as

the complexity of the theories involved increases, and the most stringent bounds from

– 12 –
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Figure 2. The minimum value of −∆α/∆β for each classical family, up to 25 tensor nodes.

Since each value of this quantity provides a bound m2/m1 < −∆α/∆β, only the smallest value is

meaningful, while the rest of the bounds are redundant. Clearly, the bounds weaken as the number

of tensor branch nodes increases, giving us strong reason to believe that the only meaningful bound

comes from (3.3).

our numerical sweep are

1
RG→ free tensor⇒ 0 < m1 −

m2

2
+
m3

16
(3.5a)

e8
12 or

e7
8 or

e6
6 or

f4
5 or

so8
4 or

su3
3

RG→ free tensor t free vectors⇒ 0 < m1 +
m2

6
+
m3

144
(3.5b)

2
RG→ free tensor t free hypers⇒ 0 < m1 (3.5c)

The flow in (3.5c) has ∆β = ∆γ = 0, ∆α > 0 and hence justifies the bound m1 > 0 on the

monotonic region.

Recall in section 2 we argued for the analytic bound m2
2 < m1m3. Thus, the monotonic

region for tensor branch flows is necessarily a subset of this region. In fact, this region

provides a rather good approximation to the monotonic region for tensor branch flows.

The flow
son
4

RG→ free tensor t free vectors t free hypers

gives the bound

0 < 4(n− 2)2m1 + 4(n− 2)m2 +m3 . (3.6)

Similarly, the flow

spn
1

Nf=10

RG→ free tensor t free vectors t free hypers

gives the bound

0 < 16(n+ 1)2m1 − 8(n+ 1)m2 +m3 . (3.7)

– 13 –
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Figure 3. The bounds on the monotonic region (m1,m2,m3,m4 = 0) from tensor branch flows

of
so(n)

4
[Nf=n−8]

theories (blue, negative slope lines) and
sp(n)

1
[Nf=8n+2]

theories (red, positive slope lines).

For large |m2/m1|, the shaded region m1m3 > m2
2 is well approximated by the bounds from these

flows.

Since m1 > 0, we can without loss of generality set m1 = 1, after which these bounds

correspond to lines in the m2-m3 plane. This is shown in figure 3. Clearly, each of these

lines is tangent to the parabola m3 = m2
2, which upon restoring m1 is just the hypersurface

m1m3 = m2
2. Recall that the monotonic region for tensor branch flows contains the region

m1m3 > m2
2 bounded by this hypersurface.

If we were to analytically continue the formulae (3.6) and (3.7) to arbitrary rational

n, we would find that the region they bound is precisely m1m3 > m2
2. However, in reality,

son on a −4 curve makes sense only for integral n ≥ 8 and spn on a −1 curve makes sense

only for integral n ≥ 0. Thus, the monotonic region for tensor branch flows is actually

slightly larger than the region m1m3 > m2
2, though as figure 3 illustrates, it is still a good

approximation. Furthermore, our sweeps reveal that tensor branch flows for theories with

more than one tensor node or non-classical configurations sometimes provide non-trivial

bounds. In other words, the monotonic region is even slightly tighter than the region given

by (3.6) and (3.7).

However, we also observe that the non-trivial bounds on m3 offered by more com-

plicated flows appear negligible for sufficiently small |m2/m1|. If we focus on the re-

gion −116/9 < m2/m1 < 26/11,4 we find that the only non-trivial bounds in our nu-

merical sweep come from the simplest tensor branch flows depicted in (3.5). All other

RG flows considered give strictly weaker bounds provided we concentrate on the region

−116/9 < m2/m1 < 26/11. In other words, starting with these incredibly simple flows, we

find no new bounds upon increasing the number of tensor multiplets or the gauge group

ranks. In fact, the quantity |∆α/∆β| of (3.2a) is monotonically increasing with the number

4Note that this number 26/11 is chosen because m2/m1 < 26/11 is the bound we observed on the

monotonic region from Higgs branch flows. The number −116/9 is chosen because a different tensor branch

flow provides a stronger bound once m2/m1 < −116/9.

– 14 –
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Figure 4. The bounds on the monotonic region (m1,m2,m3,m4 = 0) (shaded) from tensor branch

flows. The only meaningful restrictions come from the simple flows shown and give the bounds

in (3.5). The vector ~ma for the a-type Weyl anomaly (red) fits comfortably in the monotonic

region.

of tensor nodes across each classical family, while the quantities b and c of (3.2b) and (3.2c)

are monotonically decreasing, so the bounds on the monotonic region grow monotonically

weaker with the number of nodes in the region −116/9 < m2/m1 < 26/11. This is shown

in figures 5–7. Note that most of the families do not have any flows with ∆β > 0, and

these will trivially satisfy (3.2c), hence they are not shown here. Also, all of the tensor

branch flows with only −2 curves have ∆α > 0, ∆β = ∆γ = ∆δ = 0, so these all provide

the same bound m1 > 0. The families with only −2 curves are thus not included in any of

the plots.

The resulting monotonic region is shown graphically in figure 4. We have also indicated

on this plot the location of −→ma, the vector for the a-type Weyl anomaly. As expected, it

lies well within the monotonic region for tensor branch flows as well as Higgs branch flows.

3.3 Combined analysis

Finally, we combine the results of our Higgs branch and tensor branch analyses. The

resulting monotonic region is simply the intersection of the regions for each of these two

types of flows. We note that it fills a very large portion of m-space and contains −→ma. We

have plotted the resulting monotonic region in both the |m2/m1| small and |m2/m1| large

limits.

4 Conclusions

The existence of a C-function for CFTs provides a way to quantify the loss of degrees of

freedom in flows from the UV to the IR. In this note we have considered candidate C-

functions constructed from linear combinations of the anomaly polynomial coefficients of

6D SCFTs. We have presented strong evidence that for 6D SCFTs, there are actually large

families of such functions, and have delineated the precise boundaries of this monotonic

– 15 –
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Figure 5. The minimum value of |∆α/∆β| for each classical family, up to 25 tensor nodes. The

values increase monotonically with the number of tensor nodes for each classical family, indicating

that the bounds are getting weaker as the number of tensor nodes increases.

Figure 6. The maximum value of b for each classical family, up to 25 tensor nodes. The values

decrease monotonically with the number of tensor nodes for each classical family, indicating that

the bounds are getting weaker as the number of tensor nodes increases.

region of “m-space”. This is in stark contrast to the case of lower-dimensional (i.e. D ≤ 4)

systems, where there is a unique quantity, even for SCFTs. We have also shown that the

quantity a6D is indeed monotonic for all known flows for 6D SCFTs. In the remainder of

this section we discuss some avenues of future investigation.

In this note our primary emphasis has been on the linear combinations of anomaly

polynomial coefficients which are monotonic under all supersymmetric flows. It would be

quite illuminating to express these coefficients in terms of the conformal anomaly coeffi-
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Figure 7. The maximum value of c for each classical family for which ∆β > 0 under tensor branch

flows, up to 25 tensor nodes. The values decrease monotonically with the number of tensor nodes

for each classical family, indicating that the bounds are getting weaker as the number of tensor

nodes increases.

Figure 8. The bounds on the monotonic region (m1,m2,m3,m4 = 0) (shaded) from tensor and

Higgs branch flows for large |m2/m1|. The region fills a large portion of m-space and is well

approximated by the inequalities m1m3 > m2
2, 26/11 < m2/m1.

cients of a 6D CFT, perhaps using an extension of the results in reference [11], or perhaps

using the methods of reference [42].

Finally, in some sense, the classification of 6D SCFTs provides significantly more data

than just a few pieces of numerical data. It would be very interesting to map out the full

set of RG flows for 6D SCFTs.
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Figure 9. The bounds on the monotonic region (m1,m2,m3,m4 = 0) (shaded) from tensor and

Higgs branch flows for −116/9 < m2/m1 < 26/11. The only meaningful restrictions come from

the simple flows shown and give the bounds in (3.3) and (3.5). The vector ~ma for the a-type Weyl

anomaly (red) fits comfortably in the monotonic region.
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