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1 Introduction

Supersymmetric Yang-Mills theories (SYM) in higher dimensions than four [1] have been

uncovered to possess their own rich structure of supersymmetric (SUSY) quantum field

theories (QFT) in spite of their nature of lack of power counting renormalizability.

In five dimensional case the structure of Coulomb branch at long distance can be

determined exactly due to the fact that prepotential can be computed exactly by one-

loop [2, 3]. What was interestingly found is that if the number of matter multiplets is

small enough, there is no singularity of Landau pole and it becomes possible to take strong

coupling limit on smooth moduli space, which leads to an ultra-violet (UV) fixed point

with global symmetry enhancement depending on the matter content. This phenomenon

has been further studied by using brane construction [4–8], a superconformal index [9–13]

and direct state analysis [14–16].
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Maximally SYM in five dimensions has also attracted a great deal of attention and stud-

ied in relation to six dimensional (2,0) superconformal field theory (SCFT) [17, 18], whose

Lagrangian description is unknown. Although it was shown that UV divergence of five di-

mensional SYM appears at six loops [19], which indicates necessity of UV completion, BPS

sector of the theory is expected to encode information of that of (2,0) SCFT due to its insen-

sitivity to UV. It was shown that five dimensional maximally SYM contains Kaluza-Klein

modes coming from the sixth direction as states with instanton-particle charge [18, 20, 21].

Search of a SUSY gauge theory enjoying a non-trivial UV fixed point has also been

done in six dimensions [22]. The requirement is gauge anomaly cancellation as is the

case in even dimensional QFT. It has been shown that anomaly of matter multiplets can

cancel if the number is small enough for SU(2) gauge group. This was further studied

in other simple gauge groups [23]. Examples of nontrivial UV fixed points are provided

by compactification of string theory with strong coupling (or tensionless) limit [24–27].

See [28] for other examples of six dimensional gauge theories.

In comparison to these non-trivial developments of higher dimensional SUSY gauge the-

ories this paper performs a basic calculation for an aim to determine supersymmetry algebra

(superalgebra) of six dimensional SYM. Lagrangian description allows us to compute six di-

mensional superalgebra explicitly and dimensional reduction for the six dimensional result

enables us to compare the Kaluza-Klein momentum of the sixth direction and instanton-

particle charge, which are identified in earlier study. We also recover a basic result of su-

peralgebra of four dimensional N = 2 SYM including a hyper multiplet, which leads to the

formula of central charge with the holomorphic coupling constant insightfully chosen in [29].

The rest of this paper is organized as follows. In section 2 we review the method

to determine superalgebra by using ten dimensional SYM following [30]. In section 3

we compute superalgebra of SYM in six dimensions including contribution of a hyper

mutliplet (section 3.2). In particular the N = 2 algebra in six dimensions is determined

by dimensional reduction of ten dimensional one. In section 4, section 5 we determine

superalgebras of five and four dimensional SYM, respectively, by dimensional reduction

from six or ten dimensions. Section 6 is devoted to conclusion and discussion. Appendix

contains a formula of gamma matrix (appendix A) and convention in six dimensions used

in this paper (appendix B).

2 Superalgebra in 10d SYM

In this section we review the supersymmetry algebra in ten dimensional supersymmetric

Yang-Mills theory [30] using our convention. Results in this section are used to derive

similar results of maximally SYM in other dimensions by dimensional reduction later. The

fields of SYM in ten dimensions are a gauge field AM (M = 0, 1, · · · , 9)1 and a Majorana-

Weyl fermion (gaugino) λ, whose chirality we choose as positive.

Γ̂10λ = λ, λ = C10λ̄
T , (2.1)

1The gauge field in this paper is anti-hermitian.
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where ΓM are SO(1,9) gamma matrices, λ̄ = iλ†Γ0,

Γ̂10 = Γ01···9, C10 = −Γ03579. (2.2)

We realize the ten dimensional gamma matrices by using six dimensional ones as (3.45) in

section 3.3, which is useful for dimensional reduction carried out later. We employ matrix

notation for spinor indices and T acts only on them. The SYM Lagrangian (density) in ten

dimensions is given by

L10 =
1

g210
Tr

[

1

4
FMNFMN +

1

2
λ̄ΓMDMλ

]

(2.3)

where FMN = [DM, DN], DM = ∂M + AM. The action constructed from this Lagrangian

is invariant under supersymmetry transformation rule given by

∆AM = ǭΓMλ, ∆λ =
1

2
FMNΓMNǫ (2.4)

where ǫ is a supersymmetry parameter of Majorana-Weyl fermion satisfying Γ̂10ǫ = ǫ and

C10ǭ
T = −ǫ. The supersymmetry current is obtained as

SP =
1

g210
Tr

[

λ
1

2
FMNΓPΓMN

]

, SP =
1

g210
Tr

[

−1

2
FMNΓMNΓPλ

]

(2.5)

where the SUSY current satisfies SPǫ = ǫSP.

To compute the supersymmetry algebra of this theory, we compute variation of the

SUSY current under supersymmetry transformation.

2g210∆SP = Tr[∆λ̄FMNΓPΓMN + 2λ̄DM∆ANΓPΓMN]. (2.6)

The 1st term can be calculated as

Tr[∆λ̄FMNΓPΓMN]=−1

2
Tr[FQRFMN]ǭΓRQPMN−4Tr[FPMFMN]ǭΓN−Tr[FMNFMN]ǭΓP

(2.7)

The 2nd term is calculated as follows.

Tr[2λ̄DM∆ANΓPΓMN] = 2Tr[ǭΓNDMλλ̄ΓPΓMN]

=
−1

8

(

Tr[λ̄ΓQDMλ]ǭΓNΓQΓPΓMN +
1

3!
Tr[λ̄ΓQRSDMλ]ǭΓNΓSRQΓPΓMN

+
1

2 · 5!Tr[λ̄Γ
QRSTUDMλ]ǭΓNΓUTSRQΓ

PΓMN

)

, (2.8)

in which we used ten dimensional Fierz identity

χψ̄ =
−1

24

(

ψ̄ΓMχΓM +
1

3!
ψ̄ΓMNPχΓPNM +

1

2 · 5! ψ̄Γ
MNPQRχΓRQPNM

)

1− (−)ψΓ̂10

2
(2.9)
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where ψ, χ are Weyl fermions of the same chirality and we denote the chirality of ψ by

(−)ψ. By using the equation of motion of gaugino ΓMDMλ = 0 and a formula

ΓM1···M5ψχ̄ΓM1···M5 = 0 (2.10)

where ψ and χ are Weyl fermion with the same chirality, the above can be simplified as

(2.8) = Tr[λ̄ΓM1DM2λ]ǭΓ
M2M1P + 2Tr[λ̄ΓPDMλ]ǭΓM +Tr[λ̄ΓP

M1M2DM3λ]ǭΓ
M3M2M1 .

(2.11)

Summing up these terms we find2

2g210∆SP=−4g210TPMǭΓM− 1

2
Tr[FQRFMN]ǭΓP

RQMN− 1

4
∂M3Tr[λ̄ΓM1M2M3λ]ǭΓP

M2M1

+
1

2
∂M3Tr[λ̄ΓPM1M2λ]ǭΓ

M3M2M1 − 1

2
∂NTr[λ̄ΓPMNλ]ǭΓM (2.12)

where TPM is the stress tensor given by

TMP =
1

4g210

(

4Tr[FP
NFNM] + ηMPTr[FMNFMN]− 2Tr[λ̄Γ(MDP)λ]

)

(2.13)

and we used λ̄ΓM1M2M3DMλ = 1
2DM(λ̄ΓM1M2M3λ), and X(AYB) :=

1
2(XAYB +XBYA).

The supercharge is defined by

Q =

∫

d9xS0. (2.14)

Under the standard convention of canonical formalism, it can be shown that

∆O = [−iǭQ,O] (2.15)

for a gauge invariant operator O and a canonical bracket. Although it is not difficult to

show this computationally, it needs a little careful argument to justify this, as we shall do

below. The canonical momentum of the gaugino is computed as

Πλ =
∂L

∂(∂0λ)
=

1

2g210
[−λ̄Γ0]. (2.16)

Under the canonical commutation relation [Πλ, λ] = iδ, where δ is the unit matrix in terms

of implicit space, gauge and spinor indices, one can easily show that

∆λ = [−iǭQ, λ]. (2.17)

On the other hand, the canonical momentum of the gauge field is computed as

ΠAM
=

∂L
∂(∂0AM)

=
1

g210
F 0M, (2.18)

2Our result in the fermionic part is different from that in [30]. One of the reasons is that the stress

tensor given in [30] is not a symmetric one in the fermionic part. However the argument there does not

need modification since the fermionic part was neglected in other parts of that paper.

– 4 –



J
H
E
P
0
9
(
2
0
1
5
)
2
1
1

which has a vanishing component for time direction as ordinary Yang-Mills theory. This

suggests that there is no kinetic term of the time component of the gauge field in the (off-

shell) Lagrangian and the system is constrained by saddle point equation thereof, which

is given by DMΠM = 0, where M runs the space directions. This requires us to choose

a set of dynamical (or canonical) variables to quantize the system. We naturally choose

it as the gauge fields of the space directions. Then the canonical commutation relation is

[ΠAM
, AN ] = iδMN δ. By using this it is not difficult to show that

∆AM = [−iǭQ,AM ]. (2.19)

We stress that the SUSY variation (2.4) is reproduced for the dynamical gauge fields (AM )

and not for the auxiliary one (A0).
3 This argument is consistent with the fact that the

SUSY variation of supercurrent derived in (2.12) is an on-shell relation. One may ask that

there will be another constraint by fixing gauge symmetry which every Yang-Mills theory

possesses, in which case one has to use not the canonical bracket but a Dirac one for (2.19)

in order to be consistent with the gauge fixing. This should be the case though we still claim

that (2.15) holds for a canonical bracket. The argument is as follows. When one fixes gauge

symmetry, the initial supersymmetry transformation is not consistent with the fixed gauge

in general. One can modify the SUSY transformation so as to be consistent with the gauge

fixing by combining gauge transformation. Then the right-hand side of (2.19) replaced by

the Dirac bracket will reproduce the modified SUSY transformation for the gauge fields.

This suggests that the modified SUSY transformation for a gauge invariant operator should

agree with the initial one because the modification is given by a gauge transformation. Thus

one has only to use a canonical bracket and do not need to use a Dirac one in (2.15).

As a result, by using (2.12) and (2.15), algebra between the supercurrent and super-

charge in SYM in ten dimensions (local form of SUSY algebra) is given by

{Q,SP} = −2iTPMΓM + JPMΓM + JPM1M2M3Γ
M3M2M1 + iCM1M2ΓP

M2M1

+ JP
M5M4M3M2M1ΓM1M2M3M4M5 (2.20)

where we define

JPM =
−i

4g210
∂NTr[λ̄ΓPMNλ], (2.21)

CM1M2 = − 1

8g210
∂M3Tr[λ̄ΓM1M2M3λ], (2.22)

JPM1M2M3 =
i

4g210
∂M3Tr[λ̄ΓPM1M2λ], (2.23)

JP
M5M4M3M2M1 = − i

4g210
Tr[FQRFMN]εP

QRMNM5M4M3M2M1 , (2.24)

3This standpoint may be different from one argued in [31], where SUSY algebra of a general four

dimensional N = 2 SYM of an N = 2 vector multiplet was studied. It seems there that the SUSY variation

of all the components of the gauge fields was reproduced in appendix D, which may be incorrect for that

of the auxiliary gauge field.
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with ε01···9 = 1. Note that the contributions of fermions are total derivative terms. Espe-

cially we obtain supersymmetry algebra in ten dimensional SYM as

{Q,Q} = −2iPMΓM + ZMΓM + ZM1M2M3Γ
M3M2M1 + ZM5M4M3M2M1Γ

M1M2M3M4M5

(2.25)

where we used ∂M3Tr[λ̄ΓM1M2M3λ]ǭΓ0
M2M1 = 0 on shell, and we set

PM =

∫

d9xT 0M, ZM =

∫

d9xJ0M,

ZM1M2M3 =

∫

d9xJ0M1M2M3 , ZM5M4M3M2M1 =

∫

d9xJ0M5M4M3M2M1 .

(2.26)

3 Superalgebra in 6d SYM

In this section we compute supersymmetry algebra of six dimensional SYM with eight and

sixteen supercharges. We derive results of maximally SYM in six dimensions by dimensional

reduction of ten dimensional one obtained in the previous section.

3.1 Vector multiplet

First we consider a vector multiplet. This theory has SU(2) ≃ Sp(1) global symmetry.

The bosonic field contents are a gauge field AM , M = 0, 1, · · · , 5 and the SU(2) triplet

auxiliary fields DA
B which satisfy (DA

B)
† = DB

A, D
A
A = 0. The super partner λA is a

Sp(1)-Majorana Weyl fermion satisfying

Γ̂λA = +λA, εABC6(λB)T = λA (3.1)

where ε12 = ε12 = 1, and Γ̂ and C6 are a chirality matrix and a charge conjugation in six

dimensions, respectively, defined by

Γ̂ = Γ012345, C6 = Γ035. (3.2)

See appendix B for more details on our convention in six dimensions. In this convention,

the supersymmetric Lagrangian reads

LV =
1

g26
Tr

[

1

4
FMNFMN +

1

2
λAΓM [DM , λA] +

1

2
DA

BD
B
A

]

(3.3)

where FMN = [DM , DN ], DM = ∂M +AM . The supersymmeric transformation rule is

∆AM = ǫAΓMλA,

∆λA =
1

2
FMNΓMN ǫA + αDA

Bǫ
B,

∆DA
B = α

(

DMλBΓM ǫA − 1

2
δABDMλCΓM ǫC

)

,

(3.4)

where ǫA is also a symplectic-Majorana Weyl fermion such that Γ̂ǫA = ǫA and

εABC6(ǫB)
T = −ǫA. Thus the type of SUSY is (1,0). α is arbitrary parameter and thus
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one can set to zero as long as one considers only vector multiplet due to the fact that the

auxiliary field can be integrated out to be zero. Once one introduces coupling to a hyper

multiplet, which is done in the next subsection, α is uniquely determined as α =
√
2. The

supersymmetry current of this theory is computed in the same way as in ten dimensions.

SA
P =

1

g26
Tr

[

1

2
λAFMNΓPΓ

MN

]

, SA
P =

1

g26
Tr

[

−1

2
FMNΓMNΓPλ

A

]

, (3.5)

where they are determined so as to satisfy ǫASA
P = SA

P ǫ
A.

Let us compute the SUSY algebra of N = 1 SYM consisting of a vector multiplet.

2g26∆ǫSA
P = Tr[∆λAFMNΓPΓ

MN + 2λADM∆ANΓPΓ
MN ]. (3.6)

The 1st term can be calculated as

Tr[∆λAFMNΓPΓ
MN ]=−1

2
Tr[FQRFMN ]ǫAΓRQ

P
MN − 4Tr[FP

MFMN ]ǫAΓN − Tr[FMNFMN ]ǫAΓP

− αTr[(DA
B)

†FMN ]ǫB(ΓP
MN + δMP ΓN − δNP ΓM ). (3.7)

The 2nd term is calculated as follows.

Tr[2λADM∆ANΓPΓ
MN ] = 2Tr[ǫBΓNDMλBλAΓPΓ

MN ]

=
−1

2
Tr[λAΓM1DMλB]ǫBΓNΓM1ΓPΓ

MN

− 1

24
Tr[λAΓM1M2M3DMλB]ǫBΓNΓM3M2M1ΓPΓ

MN (3.8)

where we used a Fierz identity

χψ̄ =
−1

22

(

ψ̄ΓMχΓM +
1

3! · 2 ψ̄Γ
MNPχΓPNM

)

1− (−)ψΓ̂

2
(3.9)

for Weyl fermions ψ, χ with the same chirality. By using

ΓM1M2M3ψχ̄ΓM1M2M3 = 0 (3.10)

where ψ and χ are Weyl fermions with the same chirality, and

λAΓPDMλB =
1

2
DM (λAΓPλB) +

1

2
δBAλ

CΓPDMλC (3.11)

we find

Tr[2λADM∆ANΓPΓ
MN ] = 2∂MTr[λAΓPλ

B]ǫBΓM + 2Tr[λCΓPDMλC ]ǫAΓM (3.12)

where we also used the equation of motion of gaugino. Collecting these we obtain

2g26∆SA
P = −1

2
Tr[FQRFMN ]ǫAΓRQ

P
MN − 4Tr[FP

MFMN ]ǫAΓN − Tr[FMNFMN ]ǫAΓP

− αTr[(DA
B)

†FMN ]ǫB(ΓP
MN + 2δMP ΓN )

+ 2∂MTr[λAΓPλ
B]ǫBΓM + 2Tr[λCΓPDMλC ]ǫAΓM . (3.13)

– 7 –
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Integrating out the auxiliary field gives DA
B = 0. Then

2g26∆SA
P = −4g26TPM ǫAΓM − 1

2
Tr[FQRFMN ]ǫAεP

QRMNLΓL

+ 2∂MTr[λAΓPλ
B]ǫBΓM + 2Tr[λCΓ[PDM ]λ

C ]ǫAΓM (3.14)

where ε012345 = 1, TPM is the stress tensor on shell given by

TMP =
1

4g26
Tr
[

gMPFQNFQN + 4FP
NFNM − 2λAΓ(MDP )λ

A
]

. (3.15)

A supercharge with Sp(1) index is defined by

QA =

∫

d5xS0A. (3.16)

In the same argument given in section 2, one can show that ∆O = [−iǫAQA,O] for a gauge

invariant operator O. Then local form of supersymmetry algebra of SYM in six dimensions

is determined as

{QB, SA
P } = (−2iδBATPM + δBAJPM + δBAJ

′
PM + JB

A PM )ΓM (3.17)

where

JPM = − i

4g26
Tr[FQRFLN ]εPM

QRLN , (3.18)

J ′
PM = − i

2g26
∂NTr[λCΓPMNλC ], (3.19)

JB
A PM =

i

g26
∂MTr[λAΓPλ

B]. (3.20)

There are several comments. Firstly as in ten dimensional case the contributions of fermions

are given by total derivative terms. Secondly the terms in the right-hand side are all

conserved, which is consistent with the fact that the SUSY current in the left-hand side

is conserved. Especially for JPM , J ′
PM , these are off-shell divergenceless. These anti-

symmetric tensors are not distinguishable in the algebra (3.17). There also exists non-R

symmetric tensor JB
A PM . Those tensors are so-called brane currents [32], which describes

extended BPS objects in the theory.

One might ask whether total derivative terms of fermions appearing in the superalgebra

are truly physical or not, since they may be absorbed by an improvement transformation

preserving SUSY.4 A general study of this was done in four dimensions by using superfield

formalism [32]. As a result an improvement transformation keeping SUSY including oper-

ators with spin not more than one was determined.5 And a general supercurrent multiplet

called S-multiplet was classified into several irreducible supercurrent multiplets by whether

4The author would like to thank the referee for raising this question.
5Existence of an improvement transformation to kill a total derivative term is not sufficient to decide

the term as unphysical. To decide so, it also requires fields constructing the term to fall off fast enough at

spatial infinity.
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there exists an improvement transformation to kill a submultiplet inside the S-multiplet.

To perform this kind of general analysis of supercurrent in the current case, it is important

to develop superfield formalism in six dimensions which can determine an improvement

transformation including higher spin operators. We leave these problems to future work.

Volume integration of both sides of (3.17) leads to supersymmetry algebra of six di-

mensional SYM theory as

{QB, QA} = (δBA (−2iPM + ZM + Z ′
M ) + ZB

AM )ΓM (3.21)

where we set

PM =

∫

d5xT 0M , ZM =

∫

d5xJ0
M , Z ′

M =

∫

d5xJ ′0
M , ZB

AM =

∫

d5xJB
A

0
M .

(3.22)

ZM , Z ′
M , ZB

AM are brane charges corresponding to the brane currents mentioned above.

3.2 Inclusion of a hyper multiplet

In this subsection we determine supersymmetry algebra of six dimensional SYM including a

hyper multiplet. Extension to a multiple case is straightforward. A hyper multiplet consists

of two complex scalar fields qA, A = 1, 2, and a chiral fermion ψ which has the opposite

chirality to that of gaugino to interact therewith: Γ̂ψ = −ψ. We consider a case where

the hyper multiplet is in the fundamental representation of the gauge group for notational

simplicity. Generalization to other representation can be easily done. The supersymmetric

Lagrangian of the hyper multiplet is given by

LH=−DM (qA)†DMqA +
1

2
ψ /Dψ + εAB(qA)†λBψ − εABψ̄λ

AqB +
√
2(qA)†DA

Bq
B (3.23)

and the supersymmetry transformation is determined as

∆qA = εABǫBψ, ∆(qA)† = εABψ̄ǫ
B, (3.24)

∆ψ = 2εBAΓ
M ǫBDMqA, ∆ψ̄ = −2εBAǫBΓMDM (qA)†. (3.25)

The variation of the action of a hyper multiplet under the SUSY transformation is computed

as

∆

(
∫

d6xLH

)

=

∫

d6xSA
Mhyp∂M ǫA (3.26)

where

SA
P hyp = εABψΓPΓ

NDNqB−(DNqA)†ψTC6ΓPΓ
N−2(qA)†λBΓP q

B+(qB)†λAΓP q
B. (3.27)

Thus the supercurrent is given by

SA
P =

1

2g26
Tr[λAFMNΓPΓ

MN ] + εABψΓPΓ
NDNqB − (DNqA)†ψTC6ΓPΓ

N

− 2(qA)†λBΓP q
B + (qB)†λAΓP q

B. (3.28)

Note that SA
P can be determined by using ǫASA

P = SA
P ǫ

A.

– 9 –
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We can show that the supersymmetry current (3.28) is conserved: ∂MSA
M = 0 on shell.

To show this, we need equations of motion of the gauge multiplet

1

g26
DNFNM = − 1

g26
λAΓMλA +DMqA(qA)† − qADM (qA)† − 1

2
ψT (ΓM )T ψ̄T , (3.29)

1

g26
DMλAΓM = −(εABq

Bψ̄ + ψTC6(q
A)†), (3.30)

DA
B = −

√
2g26

(

qA(qB)† − 1

2
δABq

C(qC)†
)

, (3.31)

and those of the hyper multiplet

D2qA + εABλBψ +
√
2DA

Bq
B = 0, (3.32)

1

2
/Dψ + εABλ

BqA = 0, −1

2
DM ψ̄ΓM + εAB(qA)†λB = 0. (3.33)

We also need to employ another Fierz rearrangement

χψ̄ =
−1

4
(ψ̄χ+

1

2
ψ̄ΓMNχΓNM )

1− (−)ψΓ̂

2
(3.34)

where ψ, χ are Weyl fermions with different chirality, and a formula

Tr[λAΓM (λBΓMλB)] = 0. (3.35)

Let us determine supersymmetry algebra in six dimensional SYM theory including a

hyper multiplet. As seen from the equations of motion above, it is complicated to determine

SUSY algebra including fermionic sector, thus we neglect the fermionic part in this paper,

which we leave to future work. The variation of supercurrent under the supersymmetry

transformation is computed as follows.

∆SA
P = −2TPM ǫAΓM +

1

4g26
Tr[FQRFMN ]ǫAΓP

QRMN

− 4∂M

[

(qA)†DNqB − 1

2
δBA (q

C)†DNqC
]

ǫBΓP
MN (3.36)

where the stress tensor of the bosonic fields is given by

TMP =
1

4g26
Tr

[

gMP

(

FQNFQN +
1

2
DA

BD
B
A

)

+ 4FP
NFNM

]

+ 2D(M (qA)†DP )q
A − gMP∂N ((qA)†DNqA). (3.37)

Note that the quartic terms of the complex scalar fields vanish, which is required from

consistency with conservation of the supercurrent in the left hand side of the superalgebra.

As in the previous sections we can show that ∆O = [−iǫAQA,O]. Thus we obtain local

form of supersymmetry algebra of six dimensional SYM including a hyper multiplet.

{QB, SA
P } = δBA (−2iTPMΓM + JPMΓM ) + CB

APQRSΓ
SRQ (3.38)
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where

CB
A

PQRS =
2i

3
∂M

[

(qA)†DNqB − 1

2
δBA (q

C)†DNqC
]

εPMNQRS . (3.39)

Thus supersymmetry algebra in six dimensional SYM including a hyper multiplet is ob-

tained as

{QB, QA} = δBA (−2iPM + ZM )ΓM + Y B
A MNPΓ

PNM (3.40)

where we set

Y B
A

QRS =

∫

d5x CB
A

0QRS . (3.41)

3.3 6d N = 2 superalgebra

In this section we determine supersymmetry algebra of N = 2 SYM by performing dimen-

sional reduction from that of ten dimensional SYM, which was computed in section 2. N =

2 SYM in six dimensions is constructed by a pair of vector multiplet and hyper multiplet in

the adjoint representation. Thus six dimensional N = 2 SYM Lagrangian is given by addi-

tion of the Lagrangians of those multiplets, which were derived in the previous subsections.

LN=2 =
1

g26
Tr

[

1

4
FMNFMN +

1

2
λA /DλA +

1

2
DA

BD
B
A +

√
2(qA)†[DA

B, q
B]

−DM (qA)†DMqA +
1

2
ψ /Dψ + εAB(qA)†[λB, ψ] + εABψ̄[λ

B, qA]

]

. (3.42)

Note that the coupling constants of the vector multiplet and the hyper multiplet are the

same. Integrating out the auxiliary field results in

LN=2 =
1

g26
Tr

[

1

4
FMNFMN +

1

2
λA /DλA − 1

2
D′A

BD
′B
A

−DM (qA)†DMqA +
1

2
ψ /Dψ + εAB(qA)†[λB, ψ] + εABψ̄[λ

B, qA]

]

(3.43)

where

D′A
B = −

√
2

(

[qA, (qB)†]− 1

2
δAB[q

C , (qC)†]
)

. (3.44)

In order to determine N = 2 supersymmetry transformation and show that the La-

grangian (3.43) has sixteen maximal supersymmetry, we perform dimensional reduction

for the SYM Lagrangian in ten dimensions. We compactify four directions xm+5, where

m = 1, 2, 3, 4. Then Xm = −iAm+5 become four real scalar fields in six dimensions. We

decompose the SO(1,9) gamma matrices denoted by Γ
(10)
M as

Γ
(10)
M = ΓM ⊗ 1, Γ

(10)
m+5 = Γ̂⊗ γm (3.45)

where ΓM (M = 0, · · · , 5) are SO(1,5) gamma matrices and γm are SO(4) gamma matrices,

which we realize by a chiral expression

γm =

(

0 σ̄m

σm 0

)

(3.46)
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where σ̄i = σi (i = 1, 2, 3) are Pauli matrices and σ̄4 = −σ4 = i. Then the chirality matrix

and charge conjugation matrix in ten dimensions are computed as

Γ̂10 = Γ̂⊗
(

1 0

0 −1

)

, C10 = C6 ⊗
(

iσ2 0

0 −iσ2

)

. (3.47)

Therefore the Majorana-Weyl condition (2.1) in ten dimensions reduces to

λ =

(

λA
+

λA
−

)

, Γ̂λA
± = ±λA

±, λA
± = ±εABC6λB

±
T
, (3.48)

where A = 1, 2. This means that a ten-dimensional Majorana-Weyl fermion reduces to two

sympletic-Majorana Weyl fermions λA
± in six dimensions. Then ten dimensional N = 1

SYM Lagrangian reduces to

LN=2 =
1

g26
Tr

[

1

4
FMNFMN − 1

2
DMXmDMXm +

1

4
[Xm, Xn][X

m, Xn] (3.49)

+
1

2
λA
+Γ

MDMλA
+ +

1

2
λA
−Γ

MDMλA
− +

1

2
(λA

+(σ̄m)AB[iX
m,−λB

−] + λA
−(σm)AB[iX

m, λB
+])

]

.

Note that this Lagrangian has manifest SO(4) ≃ SU(2) × SU(2) symmetry. This SO(4)

symmetric Lagrangian (3.49) agrees with (3.43) under the following identification.

λA
+ = λA, λ1

− =
1√
2
ψ,

X1 =
(q1)† − q1√

2i
, X2 =

(q1)† + q1

−
√
2

, X3 =
q2 − (q2)†√

2i
, X4 =

q2 + (q2)†√
2

.

(3.50)

The N = 2 supersymmetry transformation rule boils down to

∆AM = ǫA+ΓMλA
+ + ǫA−ΓMλA

−,

∆Xm = i(ǫA+(σ̄m)ABλ
B
− − ǫA−(σm)ABλ

B
+),

∆λA
+ =

1

2
FMNΓMN ǫA+ − iDMXmΓM σ̄mA

Bǫ
B
− − 1

2
[Xm, Xn]σ

mnA
Bǫ

B
+,

∆λA
− =

1

2
FMNΓMN ǫA− + iDMXmΓMσmA

Bǫ
B
+ − 1

2
[Xm, Xn]σ̄

mnA
Bǫ

B
−.

(3.51)

where the supersymmetry parameters ǫA± satisfy

Γ̂ǫA± = ±ǫA±, ǫA± = ∓εABC6ǫB±
T
. (3.52)

Therefore the type of SUSY is (1,1).

Performing dimensional reduction for ten dimensional SUSY current (2.5), we obtain

two supersymmetry currents in six dimensions.

S−A
P =

1

g26
Tr

[

1

2
λA
+FMNΓPΓMN − iλB

−(σ̄
n)BAΓ

PΓMDMXn − 1

2
λB
+(σ

mn)BA[Xm, Xn]Γ
P

]

,

S+
A
P =

1

g26
Tr

[

1

2
λA
−FMNΓPΓMN + iλB

+(σ
n)BADMXnΓ

PΓM − 1

2
λB
−(σ̄

mn)BA[Xm, Xn]Γ
P

]

.

(3.53)
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The N = 2 supersymmetry algebra in six dimensions is computed by dimensional reduction

of that of ten dimensional N = 1 algebra calculated in section 2. To simplify the situation,

we ignore the contributions of fermions. SUSY charges are

QA
± =

∫

d5xS0A
± (3.54)

and ∆O = −i[ǫB+Q
B
− + ǫB−Q

B
+,O], which is justified by the ten dimensional result.

From (2.20) we calculate the local form of SUSY algebra of N = 2 SYM in six dimen-

sions.

{QB
−, S−A

P } = −2iδBATPMΓM + JPMδBAΓ
M + Cnm

P
QRSσnmB

AΓSRQ, (3.55)

{QB
+, S−A

P } = −2iTPmσmB
A + Cm

PKLσm
B
AΓ

LK + C l
P
QRSTσl

B
AΓTSRQ, (3.56)

{QB
+, S+

A
P } = −2iδBATPMΓM − JPMδBAΓ

M − Cnm
P
QRS σ̄nmB

AΓSRQ, (3.57)

{QB
−, S−A

P } = 2iTPmσ̄mB
A + Cm

PKLσ̄m
B
AΓ

LK − C l
P
QRST σ̄l

B
AΓTSRQ, (3.58)

where we used the equation of motion of the gauge field

DMFM
P − [DPX

n, Xn] = 0, (3.59)

and we set

TPM =
−1

4g26
Tr
[

gMP (FNQF
NQ + 2DMXmDPXm − [Xm, Xn][X

m, Xn])

+ 4(FM
NFNP −DMXmDPXm)

]

, (3.60)

TPm =
i

g26
∂NTr[FP

NXm], (3.61)

Cnm
P
QRS =

−i

6g26
εP

MNQRS∂MTr[XnDNXm], (3.62)

Cm
PKL =

−1

4g26
εPRMNKL∂

RTr
[

XmFMN
]

, (3.63)

ClP
QRST =

−1

72g26
εP

NQRSTσqrml∂NTr[[Xq, Xr], Xm]. (3.64)

Note that σ1234 = 1. This leads to supersymmetry algebra of six dimensional N = 2 SYM.

{QB
−, Q

A
−} = (−2iPM + ZM )ΓMδBA + Zmn

QRSσmn
B
AΓ

SRQ, (3.65)

{QB
+, Q

A
−} = −2iPmσmB

A + Zm
MNσm

B
AΓ

NM + Zm
QRSTσm

B
AΓ

TSRQ, (3.66)

{QB
+, Q

A
+} = (−2iPM − ZM )ΓMδBA − Zmn

QRS σ̄mn
B
AΓ

SRQ, (3.67)

{QB
−, Q

A
+} = 2iPmσ̄mB

A + Zm
MN σ̄m

B
AΓ

NM − Zm
QRST σ̄m

B
AΓ

TSRQ, (3.68)

where

PM =

∫

d5xT 0M , Pm =

∫

d5xT 0m, (3.69)

Zmn
MNP =

∫

d5xCmn0
MNP , Zm

KL =

∫

d5xCm0
KL, Z l

QRST =

∫

d5xC l0
QRST . (3.70)
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4 Superalgebra in 5d SYM

In this section we study supersymmetry algebra of SYM in five dimensions. We derive this

by dimensional reduction from higher dimensional SUSY algebra studied in the previous

sections.

4.1 Vector multiplet

We first consider SYM consisting of one vector multiplet. This theory can be obtained by

dimensional reduction of six dimensional theory studied in section 3.1. We degenerate the

fifth direction and the gauge field of this direction becomes a scalar field in the adjoint

representation, A5 = iϕ, where ϕ takes a real value. We decompose the gamma matrices

in six dimensions into five dimensions ones in the following way.

Γµ = γµ ⊗ σ1, Γ5 = 1⊗ σ2. (4.1)

Then the six dimensional chirality matrix and the charge conjugation matrix is computed as

Γ̂ = 1⊗ σ3, C6 = C5 ⊗ iσ2, (4.2)

where C5 = −iγ03. The Sp(1)-Majorana Weyl fermion λA
6d in six dimension constrained

by (3.1) reduces to

λA
6d =

(

λA

λ′A

)

, λ′A = 0, εABC5λB = λA, (4.3)

which is simply the Sp(1)-Majorana condition in five dimensions.

From the six dimensional Lagrangian of N = 1 SYM of a vector multiplet given

by (3.3), we obtain that of five dimensional one as

LV =
1

g25
Tr

[

1

4
FµνF

µν − 1

2
DµϕD

µϕ+
1

2
DA

BD
B
A +

1

2
λA /DλA − 1

2
λA[ϕ, λA]

]

(4.4)

where g5 is a coupling constant of this theory and /D = γµDµ. The SUSY transformation

rule can also be obtained from six dimensional one given by (3.4).

∆Aµ = ǫAγµλ
A,

∆ϕ = ǫAλA,

∆λA =
1

2
Fµνγ

µνǫA − /DϕǫA + αDA
Bǫ

B,

∆DA
B = α

(

DµλBγµǫA − [ϕ, λB]ǫA − 1

2
δAB(DµλCγµǫC − [ϕ, λC ]ǫC)

)

,

(4.5)

where ǫA is a fermionic supersymmetry parameter satisfying −εABC5ǫB = ǫA. α is arbi-

trary when we consider only a vector multiplet while α =
√
2 when a hyper multiplet is

introduced. The supersymmetry current of the Lagrangian (4.4) is computed by dimen-

sional reduction from (3.5).

SA
ρ =

1

g25
Tr

[

λA

(

1

2
Fµνγ

ργµν −Dµϕγ
ργµ
)]

. (4.6)
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The supersymmtery algebra of this theory can be computed in the same way. The super-

symmetry variation of the SUSY current is computed as follows.

∆SA
ρ =−2TρµǫAγ

µ + 2iTρ5ǫA

+
1

4g25
(Tr[FµνFσλ]ǫAγρ

µνσλ+4∂σTr[Fµνϕ]ǫAγρ
µνσλγλ+2∂µTr[ϕDσϕ]ǫAγρ

µσνλγλν)

+
1

g25
∂µTr[λAγρλ

B]ǫBγµ − 1

2g25
∂ν(Tr[λCγρµνλ

C ]ǫAγµ +Tr[λC(−γρν)λ
C ]ǫA) (4.7)

where γ01234 = −i,

Tµρ =
1

4g25
Tr
[

gµρ(FνσF
νσ − 2DνϕD

νϕ) + 4(Fµ
νFνρ +DµϕDρϕ)− 2λAγ(µDρ)λ

A
]

,

Tρ5 =
i

g25
∂νTr

[

Fρ
νϕ
]

+
1

4g25
Tr
[

− iλAγρ[ϕ, λ
A]− iλADρλ

A
]

. (4.8)

The supercharge is

QA =

∫

d4xS0A, (4.9)

and SUSY transformation is given by ∆O = [−iǫAQA,O], which is already justified from

the higher dimensional result. Thus anti-commutation relation of the supercharge and

supercurrent is computed as

{QB, SρA} = δBA (−2iTρµγ
µ − 2Tρ5 + jρ + j′ρ + (jρµ + j′ρµ)γ

µ + jρνλγ
λν) + j′BA ρµγ

µ (4.10)

where we set

jρ =
i

4g25
Tr[FµνFσλ]γρ

µνσλ, (4.11)

jρλ =
i

g25
∂σTr[Fµνϕ]γρ

µνσ
λ, (4.12)

jρνλ =
i

2g25
∂µTr[ϕDσϕ]γρ

µσ
νλ, (4.13)

j′BA ρµ =
i

g25
∂µTr[λAγρλ

B], (4.14)

j′ρµ = − i

2g25
∂ν(Tr[λCγρµνλ

C ], (4.15)

j′ρ =
i

2g25
∂νTr[λCγρνλ

C ]. (4.16)

Note that jρ is instanton-particle number current. Volume integration of both sides gives

SUSY algebra of five dimensional SYM as

{QB, QA} = δBA ((−2iPµ + Zµ + Z ′
µ)γ

µ − 2P5 + Z + Z ′ + Zνλγ
λν) + Z ′B

A µγ
µ (4.17)

where

Pµ =

∫

d4xT 0µ, P 5 =

∫

d4xT 05, (4.18)
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Z =

∫

d4xj0, Zλ =

∫

d4xj0λ, Zνλ =

∫

d4xj0νλ, (4.19)

Z ′B
A µ =

∫

d4xj′BA
0
µ, Z ′

µ =

∫

d4xj′0µ, Z ′ =
∫

d4xj′0. (4.20)

P 5 is the Kaluza-Klein momentum arising by circle compactification of six dimensional

SYM and Z is the instanton-particle charge. These are different but indistinguishable in

the superalgebra.

4.2 Inclusion of a hyper multiplet

We can obtain a theory of a hyper multiplet in five dimensions by dimensional reduction

for six dimensional theory studied in section 3.2. The chiral fermion in six dimensions

denoted by ψ6d reduces to

ψ6d =

(

ψ′

ψ

)

, ψ′ = 0. (4.21)

By using this notation we obtain the Lagrangian of a hyper multiplet from (3.23).

LH = −DM (qA)†DMqA − (qA)†ϕ2qA +
1

2
ψ /Dψ +

1

2
ψϕψ

+ εAB(qA)†λBψ − εABψλ
AqB +

√
2(qA)†DA

Bq
B. (4.22)

The SUSY transformation is computed from six dimensional one as

∆qA = εABǫBψ, ∆ψ = 2εBA(γ
µǫBDµ − ǫBϕ)qA. (4.23)

Five dimensional SUSY current is computed as

SA
ρ =

1

g25
Tr

[

λA

(

1

2
Fµνγ

ργµν −Dµϕγ
ργµ
)]

+ εABψ−γρ(γνDνq
B − ϕqB)

+ (Dνq
A)†ψTC5γργ

ν − (qA)†ϕψTC5γρ − 2(qA)†λBγρq
B + (qB)†λAγρq

B. (4.24)

Supersymmetry variation of supercurrent is computed from (3.36) as

∆SA
ρ = −2TρµǫAγ

µ + 2iTρ5ǫA

+
1

4g25
(Tr[FµνFσλ]ǫAγρ

µνσλ+4∂σTr[Fµνϕ]ǫAγρ
µνσλγλ+2∂µTr[ϕDσϕ]ǫAγρ

µσνλγλν)

− 2∂µ[(q
A)†Dνq

B − 1

2
δBA (q

C)†Dνq
C ]ǫBγρ

µνσλγλσ

+ 4∂µ[(q
A)†ϕqB − 1

2
δBA (q

C)†ϕqC ]ǫBγρµ (4.25)

where the stress tensor of the bosonic fields is given by

Tµρ =
1

4g25
Tr
[

gµρ(FνσF
νσ − 2DνϕD

νϕ) + 4(Fµ
νFνρ +DµϕDρϕ)

]

+ 2D(µ(q
A)†Dρ)q

A − gµρ∂ν((q
A)†DνqA), (4.26)
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Tρ5 =
i

g25
∂νTr

[

Fρ
νϕ
]

+ iDµ(q
A)†ϕqA − i(qA)†ϕDµq

A. (4.27)

By using ∆O = [−iǫAQA,O], we obtain local supersymmetry algebra of five dimensional

SYM including a hyper multiplet.

{QB, SA
ρ } = δBA (−2iTρµγ

µ − 2Tρ5 + jρ + jρλγ
λ + jρνλγ

λν) + cBAρσλγ
λσ + cBAρνσλγ

λσν (4.28)

where

cBAρσλ = −2i∂µ

[

(qA)†Dνq
B − 1

2
δBA (q

C)†Dνq
C

]

γρ
µν

σλ, (4.29)

cBAρ
νσλ =

2i

3
∂µ

[

(qA)†ϕqB − 1

2
δBA (q

C)†ϕqC
]

γρ
µνσλ. (4.30)

Thus supersymmetry algebra in SYM in five dimensions is obtained as

{QB, QA} = δBA ((−2iPµ + Zµ)γ
µ − 2P5 + Z + Zνλγ

λν) + Y B
A µνσγ

σνµ + Y B
A νµγ

µν (4.31)

where Z,Zµ, Zνλ are given by (4.19), and

Pµ =

∫

d4xT 0µ, P 5 =

∫

d4xT 05, Y B
A

νµ =

∫

d4xcBA
0νµ, Y B

A
νσλ =

∫

d4xcBA
0νσλ.

(4.32)

Note that one can add a real mass parameter m for the hyper multiplet by giving a vev

to the adjoint scalar field ϕ. Modification of SUSY algebra is done by replacing ϕ → m+ϕ.

4.3 5d N = 2 superalgebra

We study SUSY algebra of maximally supersymmetric Yang-Mills theory in five dimensions

in this subsection. This was studied in a different notation in [18]. This theory can be

obtained by reducing six dimensional N = 2 SYM to five dimensional one. Two Sp(1)-

Majorana Weyl fermions in six dimensions denoted by λA
± in section 3.3 reduces to

λA
+ =

(

λA
1

λ′A
1

)

, λA
− =

(

λ′A
2

λA
2

)

(4.33)

with

λ′A
1 = λ′A

2 = 0, εABC5λB
1

T
= λA

1 , εABC5λB
2 = λA

2 . (4.34)

The six dimensional N = 2 Lagrangian given by (3.49) reduces to

LN=2=
1

g2
5

Tr

[

1

4
FµνF

µν− 1

2
DµϕD

µϕ− 1

2
DµXmDµXm+

1

2
[ϕ,Xm][ϕ,Xm]+

1

4
[Xm, Xn][X

m, Xn]

+
1

2
λA
1
γµDµλ

A
1
− 1

2
λA
1
[ϕ, λA

1
] +

1

2
λA
2
γµDµλ

A
2
+

1

2
λA
2
[ϕ, λA

2
]

+
1

2
(−iλA

1
(σ̄m)AB [X

m, λB
2
] + iλA

2
(σm)AB [X

m, λB
1
])

]

. (4.35)

Five dimensional N = 2 transformation rule is obtained from (3.51).

∆Aµ = ǫA1 γµλ
A
1 + ǫA2 γµλ

A
2 , (4.36)
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∆ϕ = ǫA1 λ
A
1 − ǫA2 λ

A
2 ,

∆Xm = iǫA1 (σ̄m)ABλ
B
2 − iǫA2 (σm)ABλ

B
1 ,

∆λA
1 =

1

2
Fµνγ

µνǫA1 − /DϕǫA1 − i /DXmσ̄mA
Bǫ

B
2 − i[ϕ,Xm]σ̄mA

Bǫ
B
2 − 1

2
[Xm, Xn]σ

mnA
Bǫ

B
1 ,

∆λA
2 =

1

2
Fµνγ

µνǫA2 + /DϕǫA2 + i /DXmσmA
Bǫ

B
1 − i[ϕ,Xm]σmA

Bǫ
B
1 − 1

2
[Xm, Xn]σ̄

mnA
Bǫ

B
2 ,

where ǫ1, ǫ2 are fermionic SUSY parameters satisfying εABC5ǫB1
T
= −ǫA1 , ε

ABC5ǫB2 = −ǫA2
One can rewrite the Lagrangian (4.35) in a SO(5) symmetric form. This can be easily

done by dimensional reduction from ten dimensional SYM. Degenerating the five directions

xI , where I = 5, 6, 7, 8, 9, we obtain five real scalar fields from the gauge fields of those

directions, denoting by XI = −iAI . We decompose the ten dimensional gamma matrices

in a way that

Γµ = γµ ⊗ 1⊗ σ1, ΓI = 1⊗ γI ⊗ σ2 (4.37)

where γµ (µ = 0, · · · , 4) are SO(1,4) gamma matrices, γI are SO(5) gamma matrices. Then

ten dimensional chirality matrix and charge conjugation matrix are computed as

Γ̂10 = 1⊗ 1⊗ σ3, C10 = C5 ⊗ ω ⊗−iσ2 (4.38)

where ω = γ68 is an Sp(2) invariant matrix. The Majorana-Weyl condition in ten dimen-

sions (2.1) reduces to

λ =

(

λA

λ′A

)

, λ′A = 0, λA = ωABC5λB
T
, (4.39)

where A = 1, 2, 3, 4. In other words, a ten dimensional Majorana-Weyl fermion reduces to

an Sp(2)-Majorana fermion in five dimensions. Under this notation the ten dimensional

SYM Lagrangian reduces to

LN=2 =
1

g25
Tr

[

1

4
FµνF

µν − 1

2
DµXID

µXI +
1

4
[XI , XJ ][X

I , XJ ]

+
1

2
λAγµDµλ

A − 1

2
λA(γI)AB[XI , λ

B]

]

. (4.40)

This Lagrangian has manifest SO(5) ≃ Sp(2) symmetry. To connect the Sp(2)-invariant

Lagrangian (4.40) with (4.35), one has to decompose the Sp(2)-Majorana fermion into two

Sp(1)-Majorana ones, which breaks manifest Sp(2) symmetry. Realizing the SO(5) gamma

matrices γI by a chiral expression, we can rewrite the Sp(2)-Majorana condition given

by (4.39) as

λA =

(

λA
+

λA
−

)

, λA
± = ±εABC5λB

±
T

(4.41)

where A,B = 1, 2. The Lagrangian (4.40) agrees with that given by (4.35) under an

identification such that

λA
+ = λA

1 , λA
− = iλA

2 , X5 = ϕ. (4.42)
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Five dimensional supersymmetry current can be obtained by dimensional reduction

from ten dimensional supersymmetry current (2.5).

SA
ρ =

1

g25
Tr

[

1

2
FµνλAγργµν −DµX

IλB(γI)BAγργµ − 1

2
[XI , XJ ]λBγρ(γIJ)BA

]

. (4.43)

The N = 2 supersymmetry algebra in five dimensions is also computed by dimensional

reduction of that of ten-dimensional supersymmetry algebra, which keeps manifest SO(5)

symmetry. We neglect the contributions of fermions for simplicity. From (2.12) we calculate

∆SA
ρ =−2TρµǫAγµ−2iTρIǫB(γ

I)BA+
1

4g2
5

Tr[FλσFµν ]ερ
λσµνǫA− 1

g2
5

γρ
λσµν∂σTr[X

IFµν ]ǫBγI
B
Aγλ

+
1

2g2
5

γρ
λσµν∂µTr[X

IDνX
J ]ǫBγIJ

B
Aγλσ +

1

6g2
5

∂νTr[[X
I , XJ ], XK ]ǫBγρ

νεIJKLMγML
B
A

(4.44)

where ε12345 = 1,

Tµρ=
1

4g25
Tr
[

gµρ(FνσF
νσ−2DνXID

νXI+[XI , XJ ][X
I , XJ ])+4(Fµ

νFνρ+DµX
IDρXI)

]

,

TρI=
i

g25
∂νTr

[

Fρ
νXI

]

. (4.45)

The supercharge with Sp(2) index is

QA =

∫

d4xS0A, (4.46)

and ∆O = −i[ǫBQB,O]. Then the local supersymmetry algebra of N = 2 SYM is

{QB, SA
ρ } = −2iTρµδ

B
Aγµ + 2TρI(γ

I)BA + jρδ
B
A + jIρλγI

B
Aγλ

+ jIJρλσγIJ
B
Aγλσ + jLMρµσλγ

λσµγML
B
A (4.47)

where

jIρλ = − i

g25
γρλ

σµν∂σTr[X
IFµν ], (4.48)

jIJρλσ =
i

2g25
γρλσ

µν∂µTr[X
IDνX

J ], (4.49)

jLMρµσλ =
i

36g25
∂νTr[[XI , XJ ], XK ]γρνµσλε

IJKLM . (4.50)

Thus supersymmetry algebra is computed as

{QB, QA} = −2iPµγ
µδBA + 2PI(γ

I)BA + ZδBA + ZI
λγI

B
Aγλ

+ ZIJ
λσγIJ

B
Aγλσ + ZLM

µσλγ
λσµγML

B
A (4.51)

where we set

Pµ =

∫

d4xT 0µ, P I =

∫

d4xT 0I , (4.52)
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ZI
λ =

∫

d4xjI0λ, ZIJ
λσ =

∫

d4xjIJ0λσ, ZLM
µσλ =

∫

d4xjLM 0
µσλ. (4.53)

This result agrees with that in [18] up to the conventions, except the quadratic and quartic

terms of the scalar fields. In [18] the quartic term remains as Zi
0, though it always vanishes

in our results, which is required for conservation of supercurrent or supercharge. Another

one is the relative coefficients of the term XIDνX
J mismatch between those results. Note

that these mismatches do not affect the analysis done in [18].

5 Superalgebra in 4d SYM

In this section we investigate superalgebras in four dimensional SYM by performing di-

mensional reduction for higher dimensional SYM studied in the previous sections. The

torus compactification gives four dimensional N = 2 SYM with the kinetic term canonical.

Thus strictly speaking our study is not so general as to apply to general N = 2 SYM,

which admit exact analysis to turn out to have rich structure of SUSY QFT [29, 33] and

are to be obtained by Riemann surface compactification of six dimensional (2,0) SCFT

describing an M-five brane [34, 35]. However relying on the Lagrangian description it be-

comes possible to give an explicit expression for a generic form of N = 2 superalgebra

including fermionic contributions. Especially on an instanton or monopole background

there exist fermionic zero modes [36–40], which can a priori affect the central charge for-

mula in Coulomb branch [41]. Our analysis implies that contribution of such a fermionic

zero mode vanishes in the superalgebra. In addition our study provides another method

to derive extended supersymmetry algebra in four dimensions, which may be simpler than

direct computation in canonical formalism especially for the fermionic part [31].

5.1 N = 2 vector multiplet

First we consider N = 2 SYM consisting of an N = 2 vector multiplet, which can be

obtained by six dimensional SYM studied in section 3.1. We compactify six dimensional

theory in x4, x5 directions. Degeneration of the two tori leads to two real scalar fields from

the gauge fields of these direction. We combine them to be a complex scalar field so that

φ =
A4 − iA5√

2
. (5.1)

We decompose six dimensional gamma matrices into four dimensional ones by

Γµ = γµ ⊗ 1, Γ4 = γ̂ ⊗ σ1, Γ5 = γ̂ ⊗ σ2 (5.2)

where γ̂ = iγ0123 is a chirality matrix in four dimensions. Then six dimensional chirality

matrix and charge conjugation matrix can be computed as

Γ̂ = γ̂ ⊗ σ3, C6 = C4γ̂ ⊗ iσ2 (5.3)

where C4 = −iγ03. Thus six dimensional symplectic-Majorana Weyl fermion constrained

by (3.1), which we denote by λ6d, is decomposed as follows.

λA
6d =

(

λA
+

λA
−

)

, γ̂λA
± = ±λA

±, λA
± = εABC4(λB

∓)
T . (5.4)
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By using the last condition above, we can always write the fermionic part of the theory

only in terms of λA
+. From (3.3) we obtain the Lagrangian of N = 2 SYM as

LV =
1

g24
Tr

[

λA
+[ /D, λA

+] +
1

4
FµνF

µν −Dµφ
†Dµφ+

1

2
DA

BD
B
A − 1

2
[φ, φ†]2

+
1√
2
(−εABλA

+C4[φ, λB
+

T
] + εAB(λ

B
+)

TC4[φ
†, λA

+])

]

(5.5)

where g4 is a coupling constant of this theory. The N = 2 supersymmetry transformation

rule is computed from (3.4). The supersymmetry parameter denoted by ǫA6d is subject to

similar decomposition to gaugino in (5.4) so that

ǫA6d =

(

ǫA+

ǫA−

)

, γ̂ǫA± = ±ǫA±, ǫA± = −εABC4(ǫB∓)
T . (5.6)

Eliminating ǫA− by using the last equation of (5.6) we obtain N = 2 SUSY transformation.

∆Aµ = ǫA+γµλ
A
+ + λA

+γµǫ
A
+, (5.7)

∆φ =
√
2εAB(ǫ

B
+)

TC4λ
A
+,

∆λA
+ =

1

2
Fµνγ

µνǫA+ +
√
2[ /D, φ]εABC4ǫB+

T − [φ, φ†]ǫA+ + αDA
Bǫ

B
+,

∆DA
B = α

(

DµλB
+γ

µǫA+ − ǫB+γ
µDµλ

A
+ −

√
2εBC [φ

†, (λC
+)

T ]C4ǫ
A
+ +

√
2εAC [φ, λB

+]C4ǫC+
T

− 1

2
δAB(DµλC

+γ
µǫC+−ǫC+γ

µDµλ
C
+−

√
2εDC [φ

†, (λC
+)

T ]C4ǫ
D
++

√
2εDC [φ, λD

+ ]C4ǫC+
T
)

)

,

where α is arbitrary when one considers only a vector multiplet though α =
√
2 when we

also consider coupling of a hyper multiplet, which is introduced in the next subsection.

The supersymmetry current in this theory is computed from (3.5). The result is

SA
ρ = Tr

[

1

2
FµνλA

+γ
ργµν +

√
2εAB(λ

B
+)

TC4Dµφ
†γργµ − λA

+γ
ρ[φ, φ†]

]

,

SA
ρ = Tr

[

1

2
Fµνγ

µνγρλA
+ −

√
2Dµφγ

µγρεABC4(λB
+)

T + [φ, φ†]γρλB
+

]

.

(5.8)

From the supercurrent we obtain supercharge in four dimensions

QA =

∫

d3xS0A, (5.9)

then ∆O = −i[ǫB+Q
B +QBǫB+,O]. Performing dimensional reduction for (3.36) we obtain

local form of supersymmetry algebra of four dimensional SYM.

{QB, SA
ρ } = ((−2iTρµ + jρµ + j′ρµ)δ

B
A + jBAρµ)γ

µ, (5.10)

{QB
T
, SA

ρ } = εAB(2iTρ − jρ − j′ρ)C4, (5.11)

{QB
T
, (SA

ρ )
T } = ((−2iTρµ − jρµ + j′ρµ)δ

A
B − jABρµ)(γ

µ)T , (5.12)
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{QB, (SA
ρ )

T } = εBA(2iTρ − jρ − j′ρ)
†C4, (5.13)

where

Tµρ =
1

4g24
Tr
[

gµρ(FνσF
νσ − 4DνφD

νφ† − 2[φ, φ†]2) + 4(Fµ
νFνρ + 2D(µφDρ)φ)

− 2(λA
+γρDµλ

A
+ −DµλA

+γρλ
A
+)
]

, (5.14)

Tρ = −
√
2

g24
∂νTr[Fρ

νφ†] +
1

2g24
εABTr[λA

+C4Dρ(λB
+)

T ]

+

√
2

4g24
(Tr[λA

+γρ[φ
†, λA

+]− [φ†, λA
+]γρλ

A
+]), (5.15)

jρµ = − 1

g24
∂λTr[φDνφ− φ†Dνφ

†]iσρµλν , (5.16)

jρ = −
√
2

g24
∂λTr[φ

†Fµν ]iσρ
λµν , (5.17)

j′ρ = − i

g24
εCD∂µTr[λC

+γρµC4λD
+

T
], (5.18)

jBAρµ =
2i

g24
∂µTr[λA

+γρλ
B
+ − 1

2
δBAλ

C
+γρλ

C
+], (5.19)

j′ρν = − i

g24
σρνµσ∂

µTr[λC
+γ

σλC
+], (5.20)

with σ0123 = −i. Note that in the bosonic terms there exists a brane current which describes

one dimensional object (string) as jρµ.
6 Performing volume integration for both sides, we

obtain supersymmetry algebra in four dimensional N = 2 SYM.

{QB, QA} = ((−2iPµ + Zµ + Z ′
µ)δ

B
A + ZB

A µ)γ
µ, (5.21)

{QB
T
, QA} = εAB(2iP − Z − Z ′)C4, (5.22)

{QB
T
, (QA)T } = ((−2iPµ − Zµ + Z ′

µ)δ
A
B − ZA

Bµ)(γ
µ)T , (5.23)

{QB, (QA)T } = εBA(−2iP† − Z† − Z ′†)C4, (5.24)

where we set

Pµ =

∫

d3xT 0µ, P =

∫

d3xT 0, Z =

∫

d3xj0, Zλ =

∫

d3xj0λ, (5.25)

Z ′B
A µ =

∫

d3xj′BA
0
µ, Z ′

µ =

∫

d3xj′0µ, Z ′ =
∫

d3xj′0. (5.26)

This result shows that contributions of fermion zero modes to the superalgebra vanishes.

This is because a fermionic zero mode (on an instanton background) is essentially given by

6Although improvement transformations keeping N = 2 SUSY are not known, those in N = 1 were

studied in [32], which suggests that Schwinger terms in a superalgebra can be reabsorbed if it behaves

suitably at the boundary. Thus since jρµ, jρ, j
′
ρµ in our superalgebra are Schwinger terms, these may be

reabsorbed into an improvement transformation. However, these are not always removable because, for

example, jρ measures a background magnetic charge in the Coulomb phase and affects the physical central

charge. We leave a problem to clarify whether other Schwinger terms are physical to future works.
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a shift generated by SUSY transformation [40], λ ∼ Fµνγ
µνǫ0 with ǫ0 a constant spinor,

which implies that the zero mode scales as r−2 near the boundary r ∼ ∞.

In particular we obtain the famous formula of central charge as

{QB
T
, QA} = 2

√
2εABZC4 (5.27)

where

Z =
1√
2

(

iP − 1

2
Z − 1

2
Z ′
)

. (5.28)

For example, let us consider SYM with SU(2) gauge group in the Coulomb branch.

φ = a∗σ3, λA = 0, (5.29)

where a is a complex number. In electrically and magnetically charged background such

that

ne =
1

g24

∫

d3x∂i(if
i0), nm =

1

4π

∫

d3x∂i

(

i
1

2
εijkfjk

)

, (5.30)

where fµν = Tr[Fµνσ3], one can show that the central charge is computed as

Z = nea+ nmaD (5.31)

where aD = τ0a with the holomorphic coupling τ0 = 4πi
g24

.7 This gives the same formula as

in [33].

5.2 Inclusion of a hyper multiplet

In this subsection we study four dimensional N = 2 SYM including a hyper multiplet by

dimensional reduction. We use the same notation for two complex scalar fields qA. A six

dimensional chiral fermion ψ6d reduces to

ψ6d =

(

ψ−

ψ+

)

, γ̂ψ± = ±ψ±, (5.32)

Then the Lagrangian of a hyper multiplet reduces to

LH = −Dµ(q
A)†DµqA +

1

2
(ψ+ /Dψ+ + ψ− /Dψ−) +

√
2(qA)†DA

Bq
B

+ εAB(qA)†λB
+ψ− + (qA)†(λA

+)
TC4ψ+ + εABψ−λB

+q
A − ψ+C4(λA

+)
T qA

+
1√
2
(ψ−φψ+ + ψ+φ

†ψ−)− (qA)†{φ, φ†}qA. (5.33)

The SUSY transformation boils down to

∆qA = εABǫB+ψ− − (ǫA+)
TC4ψ+, (5.34)

∆ψ− = 2(γµεBAǫ
B
+Dµq

A +
√
2C4ǫA+φq

A), (5.35)

7The real part of the holomorphic coupling appears once the topological term F ∧ F is introduced.
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∆ψ+ = 2(−γµC4ǫA+
T
Dµq

A −
√
2εBAǫ

B
+φ

†qA). (5.36)

The supercurrent is computed from six dimensional one (3.28). Since the part of a vector

multiplet was already computed as (5.8), we have only to compute the part of a hyper

multiplet. The result is

SA
ρ hyp = εABψ−γργµDµq

B+εABψ+γρ(−
√
2φ†)qB+(Dµq

A)†ψT
+C4γργ

µ+(qA)†
√
2φ†ψT

−C4γρ

− 2(qA)†λB
+γρq

B + (qB)†λA
+γρq

B, (5.37)

SA
ρ hyp = −γµγρC4ψ+

T
Dµq

A + γρC4ψ−
T√

2φqA + (Dµq
A)†γµγρψ− + (qA)†

√
2φγρψ+

− 2(qB)†γρλA
+q

B + (qB)†γρλA
+q

B. (5.38)

Supercharge in four dimensions is given by (5.9). From (3.36) we obtain local supersym-

metry algebra of four dimensional SYM including the contribution of a hyper multiplet.

{QB, SA
ρ } = ((−2iTρµ + jρµ)δ

B
A + (jBAρµ + cBAρµ))γ

µ, (5.39)

{QB
T
, SA

ρ } = εAB(2iTρ − jρ)C4 − εCBc
C
AρσλC4γ

λσ, (5.40)

{QB
T
, (SA

ρ )
T } = ((−2iTρµ − jρµ)δ

A
B − (jABρµ + cBAρµ))(γ

µ)T , (5.41)

{QB, (SA
ρ )

T } = εBA(2iTρ − jρ)
†C4 − εCA(cCBρσλ)

†γλσC4, (5.42)

where

Tµρ =
1

4g24
Tr
[

gµρ(FνσF
νσ − 4DνφD

νφ† − 2[φ, φ†]2) + 4(Fµ
νFνρ + 2D(µφDρ)φ)

]

+ 2D(µ(q
A)†Dρ)q

A − gµρ∂ν((q
A)†DνqA), (5.43)

Tρ =
−
√
2

g24
∂νTr[Fρ

νφ†]−
√
2Dρ(q

A)†φ†qA +
√
2(qA)†φ†Dρq

A, (5.44)

cBA
ρλ = 4i∂µ

[

(qA)†Dνq
B − 1

2
δBA (q

C)†Dνq
C

]

σρµνλ, (5.45)

cBA
ρσλ = −2i

√
2∂µ

[

(qA)†φ†qB − 1

2
δBA (q

C)†φ†qC
]

σρµσλ. (5.46)

This leads to supersymmetry algebra in four dimensional N = 2 SYM.

{QB, QA} = ((−2iPµ + Zµ)δ
B
A + (ZB

A µ + yBAµ))γ
µ, (5.47)

{QB
T
, QA} = εAB(2iP − Z)C4 − εCBy

C
A
µνC4γνµ, (5.48)

{QB
T
, (QA)T } = ((−2iPµ − Zµ)δ

A
B − (ZA

Bµ + yBAµ))(γ
µ)T , (5.49)

{QB, (QA)T } = εBA(−2iP† − Z†)C4 − εCA(yCB
µν)†γνµC4, (5.50)

where we set

yBAµ =

∫

d3x cBA
0
µ, yBAµν =

∫

d3x cBA
0
µν . (5.51)

Due to inclusion of a hyper multiplet there appear brane currents cBA
ρλ, cBA

ρσλ in the local

form of superalgebra and corresponding brane charges yBA
λ, yBAµν in the superalgebra.
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One can include a complex mass m of a hyper multiplet in this superalgebra by shifting

the adjoint scalar field in the vector multiplet in a way that φ → m√
2
+ φ. Under this shift

Tρ → Tρ − imJρ, where Jρ = i(qA)†Dρq
A − iDρ(q

A)†qA is the U(1) flavor current. Thus

the formula of central charge (5.28) is changed as

Z =
1√
2

(

iP +mF − 1

2
Z

)

. (5.52)

where F =
∫

d3xJ0 is the U(1) flavor charge.8

Let us compute this central charge with SU(2) gauge group in the Coulomb branch.

The Kaluza-Klein momentum is computed as

P = −i
√
2aNe (5.53)

where we used the equation of motion of the gauge field and set

Ne =
2

g24

∫

d3x∂i(if
i0). (5.54)

Remark that the hyper multiplet contributes to the Kaluza-Klein momentum so that the

electric charge is twice as great as that in pure N = 2 SYM case with the form of central

charge fixed.9 The Dirac quantization condition requires us to redefine the magnetic charge

to be half compared to the pure SYM case.

Nm =
1

8π

∫

d3x∂i

(

i
1

2
εijkfjk

)

. (5.55)

Then Z is computed as

Z = −2
√
2aDNm (5.56)

where aD = τa with τ = 8πi
g24

. Finally the central charge is obtained as

Z = Nea+NmaD +
1√
2
Fm (5.57)

which matches the formula given in [29] with the same normalization of the holomorphic

coupling τ . This normalization of the holomorphic coupling is important for the N = 2

SU(2) SYM with four flavors to enjoy SL(2, Z) symmetry [29] as well as to obtain the

correct moduli space of N = 2 SU(3) SYM with six flavors as the enlarged fundamental

region in the upper half complex plain, in which the genuine strong coupling limit exists

as Imτ → 0 [42].

8In multiple flavor case, this changes as Z = 1√
2
(iP +miF

i − 1
2
Z), where mi is the mass of ith hyper

multiplet and Fi is the flavor U(1) charge of the ith hyper multiplet.
9The factor two in (5.54) does not depend on the number of hyper multiplets.
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5.3 N = 4 superalgebra

In this final subsection we determine superalgebra in N = 4 SYM by dimensional reduction

for ten dimensional SYM. By compactifying six directions x3+m, where m = 1, 2, · · · , 6, the
gauge fields of these directions become scalar fields, which we denote by Xm = −iA3+m.

Accordingly we decompose the ten-dimensional gamma matrices as

Γµ = γµ ⊗ 1, Γm = γ̂ ⊗ γm (5.58)

where γm are SO(6) gamma matrices, respectively. Since N = 4 SYM has SU(4) R-

symmetry, it is convenient to rewrite the SO(6) vector representation by SU(4) anti-

symmetric representation.

γa4 =
1

2
(γa − iγa+3), γab = εabc(γc4)

†, (5.59)

where a, b, c = 1, 2, 3. These satisfy

γAB = −γBA, γAB =
1

2
εABCDγCD = (γAB)

† (5.60)

where A,B,C,D = 1, 2, 3, 4. We do the same thing for Xm. γAB is explicitly realized as

γAB =

(

0 −ρ̃AB

ρAB 0

)

, (5.61)

where

(ρAB)
CD = δCAδDB − δCBδDA , (ρ̃AB)CD = εABCD. (5.62)

Then the ten-dimensional chirality matrix and charge conjugation matrix are computed as

Γ̂10 =

(

γ̂ 0

0 −γ̂

)

, C10 =

(

0 −C4γ̂

−C4γ̂ 0

)

. (5.63)

A ten-dimensional Majorana-Weyl fermion (2.1) is decomposed as

λ =

(

λ+A

λA
−

)

, γ̂λ± = ±λ±, λA
− = C4(λ+A)T , λA

− = −λT
+AC4. (5.64)

The SYM Lagrangian in ten dimensions (2.3) reduces to

LN=4 =
1

g24
Tr

[

1

4
FµνF

µν − 1

2
DµXABD

µXAB +
1

4
[XAB, XCD][XAB, XCD]

+ λ+A /Dλ+A + λ+C[iXCD, C4(λ+D)T ]− λT
+AC4[iX

AB, λ+B]

]

. (5.65)

The supersymmetry transformation rule is

∆Aµ = ǫ+Aγµλ+A − ǫT+AγTµ λ+A
T
,

∆XAB = εABCDǫT+CC4λ+D + ǫ+AC4(λ+B)
T − ǫ+BC4(λ+A)T ,
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∆λ+A =
1

2
Fµνγ

µνǫ+A − 2i /DXABC4(ǫ+B)
T − 2[XAB, X

BC]ǫ+C, (5.66)

where we used

ǫ =

(

ǫ+A

ǫA−

)

, γ̂ǫ± = ±ǫ±, ǫA− = −C4(ǫ+A)T , ǫA− = ǫT+AC4. (5.67)

Let us perform dimensional reduction for SUSY current. The result is

Sρ
−A =

1

g24
Tr

[

1

2
Fµνλ+Aγργµν − 2iDµX

BAλB
−γ

ργµ + 2[XBC, X
CA]λ+Bγ

ρ

]

, (5.68)

SρA
+ =

1

g24
Tr

[

1

2
FµνλA

−γργµν − 2iDµXBAλ+Bγ
ργµ + 2[XBC, XCA]λB

−γ
ρ

]

. (5.69)

Sρ
−A, SρA

+ are determined so as to satisfy ǫB−S
ρB
+ = Sρ

−Bǫ+B, ǫ+BS
ρ
−B = SρB

+ ǫB−. Then the

supercharge with SU(4) index is

Q−A =

∫

d3xS0
−A, QA

+ =

∫

d3xS0A
+ , (5.70)

and ∆O = −i[ǫ+BQ−B + ǫB−Q
B
+,O]. The N = 4 superalgebra in four dimensions can be

computed by dimensional reduction from ten dimension as done in five dimensions. We

neglect the contribution of fermions, which is given by total derivative terms and thus

vanishes as discussed in the pure N = 2 SYM. The local version of supersymmetry algebra

of N = 4 SYM is

{Q−B, Sρ−A} = −2iTρµδ
A
Bγµ + jAB ρµγ

µ, (5.71)

{QB
+, Sρ−A} = −2iTBA

ρ + jBA
ρ + jBA

ρσλγ
λσ, (5.72)

{QB
+, Sρ

A
+} = −2iTρµδ

B
Aγµ − jBAρµγ

µ, (5.73)

{Q−B, Sρ
A
+} = −2iTρBA − jρBA − jBAρσλγ

λσ, (5.74)

where

Tµρ =
1

4g24
Tr
[

gµρ(FνσF
νσ − 2DνXABD

νXAB + [XAB, XCD][XAB, XCD])

+ 4(Fµ
νFνρ +DµX

ABDρXAB)
]

, (5.75)

TρAB =
2i

g24
∂νTr

[

Fρ
νXAB

]

, (5.76)

jAB ρµ = − 4i

g24
σρσνµ∂

σTr[XBCD
νXCA], (5.77)

jBA
ρ = − 2

g24
σρ

σµν∂σTr[X
BAFµν ], (5.78)

jBA
ρσλ = − 4

3g24
σρνσλ∂

νTr[[XBC, XCD], XDA]. (5.79)
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Volume integration of both sides leads to supersymmetry algebra in N = 4 SYM.

{Q−B, Q−A} = −2iPµδ
A
Bγµ + ZA

B µγ
µ, (5.80)

{QB
+, Q−A} = −2iPBA + ZBA + ZBA

σλ γλσ, (5.81)

{QB
+, Q

A
+} = −2iPµδ

B
Aγµ − ZB

Aµγ
µ, (5.82)

{Q−B, Q
A
+} = −2iPBA − ZBA − ZBAσλγ

λσ, (5.83)

where we set

Pµ =

∫

d3xT 0µ, PAB =

∫

d3xT 0AB, (5.84)

ZA
B µ =

∫

d3xjAB
0
µ, ZBA =

∫

d3xjBA0, ZAB
λσ =

∫

d3xjAB0
λσ. (5.85)

As an example, let us consider the case of SU(2) gauge group in the Coulomb branch.

X12 =
a√
2
σ3, X13 = X14 = 0. (5.86)

Then (5.83) is computed as

{Q−1, Q2
+} = {Q−3, Q4

+} = 2
√
2Z (5.87)

where

Z = nea+ nmaD (5.88)

with ne, nm given by (5.30), aD = τ0a, τ0 = 4πi
g24

. The formula of the central charge with

normalization of the holomorphic coupling in N = 4 SYM is the same as pure N = 2 SYM,

which is again consistent with the result in [29].

6 Discussion

We have determined supersymmetry algebra of SYM of a vector multiplet in six dimen-

sions including the contribution of fermions, which is given by boundary terms. We have

extended this calculation to the case including a hyper multiplet. For SUSY algebra of

six dimensional maximally SYM we have carried out dimensional reduction for that in

ten dimensions. From six dimensional results we have performed dimensional reduction to

determine SUSY algebras of five and four dimensional SYM. From six to five the Kaluza-

Klein momentum arising from torus compactification is different from the instanton-particle

charge though they are indistinguishable in the superalgebra. And the Kaluza-Klein mo-

mentum corresponds to the electric charge part in the famous formula of central charge.

We have derived the whole extended supersymmetry algebra as well as the holomorphic

coupling constant introduced in [29] against the four dimensional N = 2 SYM including

fundamental hyper multiplets and N = 4 SYM.

Since we started from SYM in six dimensions with the canonical kinetic term in this

paper, the theory obtained by dimensional reduction inherited this property. Computing

SUSY algebra of general SYM with the non-canonical kinetic term is left to future work,
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though the general structure of the algebra will remain unchanged. Especially in five and

four dimensions a general Lagrangian contains topological terms such as Chern-Simons

term and F ∧ F , respectively, which has an extra effect on physics of the theory [43].

It should be possible to determine BPS states in maximally SYM in six dimensions in

Higgs branch. In terms of brane picture, maximally SYM in six dimensions is realized on

D-five branes, and Higgs branch corresponds to separation thereof. Then BPS states on this

branch will correspond to supersymmetric brane configuration realized on the separated

D-five branes set up. It would be interesting to clarify relations between those BPS states

in six dimensional SYM and those in five dimensional maximally SYM in broken phase,

which has close relationship with the (2,0) theory describing M-five branes [18].

We hope to come back to these problems in the future.

Acknowledgments

The author was supported by the Israeli Science Foundation under grant 352/13 and

504/13.

A A formula of gamma matrix

In this appendix, we derive a formula of gamma matrix given in appendix of [44]. We use

notation such that

Γµ0···µn = Γ[µ0 · · ·Γµn] =
1

(n+ 1)!

∑

σ∈Sn+1

(−)σΓµσ(0) · · ·Γµσ(n) (A.1)

where SN is the set of permutation of N elements.

Denoting Cn,m, Dn,m by

ΓM1···MmΓN1···NnΓMm···M1 = Cn,mΓN1···Nn , (A.2)

(−)m−1ΓM1···Mm−1[N1ΓN2···Nn]ΓMm−1···M1 = Dn,mΓN1···Nn , (A.3)

we can relate Cn,m, Dn,m by

Cn,m = (−)mCn−1,m + 2m(−)m+nDn−1,m−1, (A.4)

Dn,m =
1

2
(Cn,m + (−)mCn+1,m). (A.5)

From these we find

Cn,m = (−)mCn−1,m +m(−)m+nCn−1,m−1 +m(−)n+1Cn,m−1. (A.6)

One can easily check that

Cn,0 = 1, C0,m = D(D − 1) · · · (D − (m− 1)), (A.7)

where D is an arbitrary dimension. By using (A.6) and (A.7) one can determine Cn,m (and

thus Dn,m) inductively. As examples, we determine Cn,m when D = 6, 10. The result of

D = 6 matches that given in [44].
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m = 3 120 0 −24 0

m = 2 30 10 −2 −6

m = 1 6 −4 2 0

m = 0 1 1 1 1

Cn,m n = 0 n = 1 n = 2 n = 3

Table 1. D = 6.

m = 5 30240 0 −3360 0 1440 0

m = 4 5040 1008 −336 −336 48 240

m = 3 720 −288 48 48 −48 0

m = 2 90 54 26 6 −6 −10

m = 1 10 −8 6 −4 2 0

m = 0 1 1 1 1 1 1

Cn,m n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

Table 2. D = 10.

B Convention in six dimensions

In this appendix we collect convention in six dimensions used in this paper. We realize

SO(1,5) matrices satisfying {ΓM ,ΓN} = 2gMN , where (gMN ) = diag(−1, 1, · · · , 1), in two

ways. One is

Γµ = γµ ⊗ σ1, Γ5 = 1⊗ σ2 (B.1)

where γµ (µ = 0, 1, 2, 3) are SO(1,3) matrices realized as

γµ =

(

0 σ̄′
µ

σ′
µ 0

)

, (B.2)

where σ̄′
0 = σ′

0 = iσ2, σ̄
′
1 = σ′

1 = σ1, σ̄
′
2 = σ′

2 = σ3, σ̄
′
3 = −σ′

3 = i with σi Pauli matrices

satisfying σiσj = δij + iεijkσk. This realization is useful when we consider dimensional

reduction from six dimensions to five ones. The other is

Γµ = γµ ⊗ 1, Γ4 = γ̂ ⊗ σ1, Γ5 = γ̂ ⊗ σ2 (B.3)

where γ̂ = iγ0123 is a chirality matrix in four dimensions. This is convenient when we do

dimensional reduction from six to four. In both cases, we define the charge conjugation

matrix as C6 = Γ035, which satisfies

C2
6 = 1, C∗

6 = C6, CT
6 = C6, C6Γ

M = −(ΓM )TC6. (B.4)

In Lorentzian six dimensions there exists a symplectic majorana Weyl spinor. By

denoting Sp(1)-Majorana fermion by λA it satisfies

λA = εABC6λB
T
. (B.5)
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Two symplectic Majorana fermions ψA, χA satisfy

ψAγµ1 · · · γγkχB = (−)k+1(χAγµk
· · · γγ1ψB − δBAχ

Dγµk
· · · γγ1ψD). (B.6)

Especially taking trace in terms of Sp(1) index gives

ψAγµ1 · · · γγkχA = (−)kχAγµk
· · · γγ1ψA. (B.7)

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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[13] O. Bergman, D. Rodŕıguez-Gómez and G. Zafrir, 5d superconformal indices at large-N and

holography, JHEP 08 (2013) 081 [arXiv:1305.6870] [INSPIRE].

[14] Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge

theories, Prog. Theor. Exp. Phys. 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].

– 31 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(77)90328-5
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B121,77
http://dx.doi.org/10.1016/0550-3213(96)00212-X
http://arxiv.org/abs/hep-th/9603150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603150
http://dx.doi.org/10.1016/S0370-2693(96)01215-4
http://arxiv.org/abs/hep-th/9608111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608111
http://dx.doi.org/10.1016/S0550-3213(97)00472-0
http://arxiv.org/abs/hep-th/9704170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704170
http://dx.doi.org/10.1088/1126-6708/1998/01/002
http://arxiv.org/abs/hep-th/9710116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710116
http://dx.doi.org/10.1088/1126-6708/1999/03/006
http://arxiv.org/abs/hep-th/9902179
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902179
http://dx.doi.org/10.1088/1126-6708/2009/09/052
http://arxiv.org/abs/0906.0359
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0359
http://dx.doi.org/10.1007/JHEP03(2014)112
http://arxiv.org/abs/1311.4199
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4199
http://dx.doi.org/10.1007/JHEP10(2012)142
http://arxiv.org/abs/1206.6781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6781
http://arxiv.org/abs/1211.4886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4886
http://arxiv.org/abs/1310.7509
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7509
http://dx.doi.org/10.1007/JHEP01(2014)079
http://arxiv.org/abs/1310.2150
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.2150
http://dx.doi.org/10.1007/JHEP08(2013)081
http://arxiv.org/abs/1305.6870
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6870
http://dx.doi.org/10.1093/ptep/ptv040
http://arxiv.org/abs/1501.01031
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.01031


J
H
E
P
0
9
(
2
0
1
5
)
2
1
1

[15] G. Zafrir, Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO

and exceptional gauge theories, JHEP 07 (2015) 087 [arXiv:1503.08136] [INSPIRE].

[16] K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver

gauge theories, JHEP 07 (2015) 167 [arXiv:1505.04743] [INSPIRE].

[17] M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011

[arXiv:1012.2880] [INSPIRE].

[18] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and

quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

[19] Z. Bern, J.J. Carrasco, L.J. Dixon, M.R. Douglas, M. von Hippel and H. Johansson, D = 5

maximally supersymmetric Yang-Mills theory diverges at six loops,

Phys. Rev. D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].

[20] H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of

M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].

[21] H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes,

arXiv:1211.0144 [INSPIRE].

[22] N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions,

Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

[23] U.H. Danielsson, G. Ferretti, J. Kalkkinen and P. Stjernberg, Notes on supersymmetric

gauge theories in five-dimensions and six-dimensions, Phys. Lett. B 405 (1997) 265

[hep-th/9703098] [INSPIRE].

[24] O.J. Ganor and A. Hanany, Small E8 instantons and tensionless noncritical strings,

Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].

[25] N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions,

Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].
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