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1 Introduction

Amplitudes in QCD are often computed by a decomposition into a sum of smaller pieces,

called primitive amplitudes [1, 2]. The primitive amplitudes are gauge invariant, colour-

stripped and have a fixed ordering of the external legs. Non-trivial relations between

different primitive tree amplitudes are a fascinating topic and have important applications.

For pure gluonic primitive tree amplitudes these relations are by now well-studied. Invari-

ance under cyclic permutations is trivial. The first non-trivial relations are the Kleiss-Kuijf

relations [3], which follow from the anti-symmetry of the colour-stripped vertices. More

interesting are the Bern-Carrasco-Johansson relations (BCJ-relations) [4]. The full set of

the BCJ-relations follows from the so-called fundamental BCJ-relations [5]. The funda-

mental BCJ-relation is a linear relation between primitive tree amplitudes with different

cyclic orderings. The cyclic orderings differ by the insertion place of one gluon. In the

fundamental BCJ-relation the coefficients of the relation are linear in the Lorentz invari-

ants 2pipj . The BCJ-relations are known to hold for pure gluonic tree amplitudes and for

tree amplitudes in N = 4 super-Yang-Mills theory. The BCJ relations have been proven

first with methods from string theory [6, 7] and later within quantum field theory with the

help of on-shell recursion relations [5, 8, 9]. On-shell recursion relations require a certain

fall-off behaviour for large momentum deformations. For amplitudes in N = 4 SYM it

is essential that not only the (bosonic) momentum components but also the (fermionic)

Grassmann components are shifted. The required fall-off behaviour has been established

for pure gluonic tree amplitudes and amplitudes in N = 4 SYM in [10–12]. Furthermore

BCJ relations have been derived for a pair of massive scalars and an arbitrary number of

gluons [13].

It is natural to consider primitive tree amplitudes in QCD as well, involving in addition

to gluons massless and/or massive quarks [14, 15]. The fundamental BCJ-relation singles

out three particles, which we will label 1, 2 and n. In the fundamental BCJ-relation the

positions of particles 1 and n are fixed, as there are positions of the remaining particles 3 to

(n−1). In the cyclic order particles 1 and n are adjacent. In the fundamental BCJ-relation

particle 2 is inserted in all possible places in the cyclic order between 1 and n, but not

between n and 1. Recently, Johansson and Ochirov conjectured [14] that the fundamental

BCJ-relations hold for primitive tree amplitudes in full QCD as well, provided particle 2

is a gluon. In this paper we prove this conjecture. The major part of our arguments is not

specific to four space-time dimensions. Only in the explicit definitions of the momentum

shifts we use spinor representations corresponding to four space-time dimensions. With a

suitable generalisation of these momentum shifts our proof will carry over to D space-time

dimensions.

This paper is organised as follows: in section 2 we introduce the conjecture, which we

are going to prove and give an outline of the proof. Section 3 carefully defines momen-

tum deformations through three-particle shifts. This is a necessary technical preparation

for our proof. In section 4 we discuss the large z-behaviour of the deformed fundamental

BCJ-relation under the three-particle shifts and show that there is no contribution from

infinity in BCFW-recursion relations. In section 5 we prove the fundamental BCJ-relation

– 2 –



J
H
E
P
0
9
(
2
0
1
5
)
1
9
7

by induction. Our conclusions are given in section 6. In an appendix we collected some

technical details on certain three-particle shifts with massive quarks (appendix A) and a

proof on the large z-behaviour in the eikonal approximation (appendix B). For the conve-

nience of the reader we also included the cyclic-ordered Feynman rules relevant to primitive

amplitudes in appendix C.

2 Overview

Tree amplitudes in QCD with any number of external quarks can be decomposed systemat-

ically into gauge-invariant primitive amplitudes with a fixed cyclic ordering [2, 16, 17]. Let

us consider a tree-level primitive QCD amplitude with n external particles, out of which

nq particles are quarks, nq particles are anti-quarks and ng particles are gluons. We have

the obvious relation

n = ng + 2nq. (2.1)

Without loss of generality we may assume that all quarks have different flavours. The

quarks may be massless or massive. In this paper we consider amplitudes with at least

one gluon (ng > 0). This excludes the case, where all external particles are either quarks

or anti-quarks (ng = 0 and hence n = 2nq). We are mainly interested in the case, where

there is in addition to gluons at least one quark-anti-quark pair (nq > 0). The pure

gluonic case (nq = 0) is not excluded, but already well studied. The tree-level primitive

QCD amplitudes are cyclic-ordered. We denote such an amplitude with the cyclic-order

(1, 2, . . . , n) by

An (1, 2, . . . , n) . (2.2)

The amplitudes satisfy the Kleiss-Kuijf relations [3]. In order to state the Kleiss-Kuijf

relation let

~α = (α1, . . . , αj) , ~β = (β1, . . . , βn−2−j) (2.3)

and ~βT = (βn−2−j , . . . , β1). The Kleiss-Kuijf relations read

An

(
1, ~β, 2, ~α

)
= (−1)n−2−j ∑

σ∈~αX ~βT

An (1, 2, σ1, . . . , σn−2) . (2.4)

Here, ~α X ~βT denotes the set of all shuffles of ~α with ~βT , i.e. the set of all permutations

of the elements of ~α and ~βT , which preserve the relative order of the elements of ~α and

of the elements of ~βT . A special case of the Kleiss-Kuijf relations is the situation, where

the set β contains only one element. In this case the Kleiss-Kuijf relation reduces to the

U(1)-decoupling identity ∑
σ∈Zn−1

An (σ1, σ2, . . . , σn−1, n) = 0, (2.5)

– 3 –
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where the sum is over the cyclic permutations of the first (n− 1) arguments. The Kleiss-

Kuijf relations in eq. (2.4) allow us to fix two legs at specified positions. We will use this

freedom to fix a particle at position 1 and a second particle at position n. Since we also

assume that there is at least one gluon, let us label this gluon by 2g. In [14] Johansson and

Ochirov conjecture that

n−1∑
i=2

 n∑
j=i+1

2p2pj

An (1, 3, . . . , i, 2g, i+ 1, . . . , n− 1, n) = 0. (2.6)

In this paper we prove this conjecture. An equivalent formulation of eq. (2.6) is

n−1∑
i=2

 i∑
j=1

2p2pj

An (1, 3, . . . , i, 2g, i+ 1, . . . , n− 1, n) = 0, (2.7)

which follows from eq. (2.6) by momentum conservation. Eq. (2.6) is the fundamental BCJ-

relation [4, 5] for tree-level primitive QCD amplitudes. It is well known that eq. (2.6) holds

in the pure gluonic case. It is also know that eq. (2.6) holds for amplitudes with one quark-

anti-quark pair (nq = 1) in massless QCD. This follows from the fact that these amplitudes

are identical to the corresponding amplitudes in N = 4 super-Yang-Mills theory, and the

fact that the BCJ-relations hold for the latter [8, 11].1 The aim of this paper is to show

that eq. (2.6) holds more generally in (massless or massive) QCD.

In order to prove the fundamental BCJ-relation we will make use of on-shell recursion

relations (or Britto-Cachazo-Feng-Witten recursion relations, BCFW-recursion relations

for short) [21]. Within on-shell recursion relations some distinguished external momenta

are deformed, such that momentum conservation and the on-shell conditions are respected.

Let us consider a deformation of the momenta p1, p2 and pn depending on a variable z.

This is called a three-particle BCFW-shift [22]. Since for our problem there are three

distinguished particles 1, 2g and n, a three-particle shift is more natural as compared to a

more conventional two-particle shift. It will turn out that a three-particle shift will simplify

the proof. We denote the deformed momenta by

p̂1(z), p̂2(z), p̂n(z). (2.8)

We further require

p̂1(0) = p1, p̂2(0) = p2, p̂n(0) = pn. (2.9)

For j 6= 1, 2, n we simply set p̂j(z) = pj . We introduce the quantity

In (z) =
n−1∑
i=2

 n∑
j=i+1

2p̂2p̂j

An
(
1̂, 3, . . . , i, 2̂g, i+ 1, . . . , n− 1, n̂

)
. (2.10)

1It is worth noting that all tree amplitudes in massless QCD can be obtained from tree amplitudes in

N = 4 super-Yang-Mills theory [18–20].
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For z = 0 the expression In(z) reduces to the left-hand-side of eq. (2.6). In(z) is clearly a

rational function of z. We have to show

In (0) = 0, (2.11)

or equivalently

1

2πi

∮
z=0

dz

z
In (z) = 0. (2.12)

We do this in two steps: we first show that In(z) has no pole at z = ∞, or equivalently,

that In(z) falls off for large z at least with 1/z. In the second step we use induction and

BCFW-recursion in order to prove eq. (2.11).

3 Momentum deformation

In this section we review the three-particle BCFW-shift for the external particles 1, 2g
and n. The types of particles 1 and n may either be a quark, an anti-quark or a gluon.

However, particle 2g is required to be a gluon. Quarks and anti-quarks may be massive

or massless. Therefore we will treat the general case with arbitrary masses for particles 1

and n. The case of massless quarks is included as the special case m1 = mn = 0. This

section may appear at a first reading a little bit technical, but actually it will pay off:

we define the momentum deformations in such a way, that we obtain the same large z-

behaviour independently of the helicity configuration and independently of the masses of

the particles. Most of the technical details are related to massive quarks and it might be

advantageous at a first reading to pay attention to the massless case only. In the massless

case the formulae simplify considerably.

3.1 Spinor definitions

For the definition of massive spinors we follow [23]. Let us consider two independent Weyl

spinors |q+〉 and 〈q + |. These two Weyl spinors define a light-like four-vector

qµ =
1

2
〈q + |γµ|q+〉. (3.1)

This four-vector can be used to associate to any not necessarily light-like four-vector p a

light-like four-vector p[:

p[ = p− p2

2p · q
q. (3.2)

The four-vector p[ satisfies (p[)2 = 0. Note that p[ depends implicitly on |q+〉 and 〈q + |.
The two Weyl spinors |q+〉 and 〈q + | are used as reference spinors in the definition of the

polarisations of the external particles. For quarks with momentum p we take the spinors

u and ū as

u(−) =
1

〈p[ + |q−〉
(p/+m) |q−〉, ū(+) =

1

〈q − |p[+〉
〈q − | (p/+m) ,

u(+) =
1

〈p[ − |q+〉
(p/+m) |q+〉, ū(−) =

1

〈q + |p[−〉
〈q + | (p/+m) . (3.3)
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The spinors v and v̄ are given by

v(−) =
1

〈p[ + |q−〉
(p/−m) |q−〉, v̄(+) =

1

〈q − |p[+〉
〈q − | (p/−m) ,

v(+) =
1

〈p[ − |q+〉
(p/−m) |q+〉, v̄(−) =

1

〈q + |p[−〉
〈q + | (p/−m) . (3.4)

We label the helicities as if all particles were outgoing. As a consequence, the spinors u(λ)

and v̄(λ), which correspond to particles with incoming momentum, have a reversed helicity

assignment. In the massless limit the definition reduces to

u(−) = v(−) = |p+〉, ū(+) = v̄(+) = 〈p+ |,
u(+) = v(+) = |p−〉, ū(−) = v̄(−) = 〈p− |, (3.5)

and the spinors are independent of the reference spinors |q+〉 and 〈q + |.
For massive fermions the reference spinors are related to the quantisation axis of the

spin for this fermion, and the individual amplitudes with label + or − will therefore depend

on the reference spinors |q+〉 and 〈q+ |. It should be noted that the spinors for the massive

fermions depend both on |q+〉 and 〈q + |: for the spinors with helicity “+” there is an

explicit dependence on |q+〉, while the dependence on 〈q + | enters implicitly through p[.

In a similar way we find that the spinors with helicity “−” have an explicit dependence on

〈q + |, while the dependence on |q+〉 enters implicitly through p[.

It is easy to relate helicity amplitudes of massive quarks corresponding to one choice

of reference spinors to another set of reference spinors. If |q̃+〉 and 〈q̃ + | is a second pair

of reference spinors we have the following transformation law(
ū(+, q̃)

ū(−, q̃)

)
=

(
c11 c12

c21 c22

)(
ū(+, q)

ū(−, q)

)
, (3.6)

where

c11 =
〈q̃ − |p/|q−〉
〈q̃p̃[〉[p[q]

, c12 =
m〈q̃q〉
〈q̃p̃[〉〈p[q〉

, c21 =
m[q̃q]

[q̃p̃[][p[q]
, c22 =

〈q̃ + |p/|q+〉
[q̃p̃[]〈p[q〉

.

(3.7)

Here, p̃[ denotes the projection onto a light-like four-vector with respect to the reference

vector 1
2〈q̃ + |γµ|q̃+〉. Similar, we have for an amplitude with an incoming massive quark(

u(+, q̃)

u(−, q̃)

)
=

(
c11 −c12

−c21 c22

)(
u(+, q)

u(−, q)

)
. (3.8)

Similar formulae exist for the spinors v and v̄ and can be obtained by the substitution

u→ v, ū→ v̄ and m→ −m.

For the polarisation vectors of a gluon with momentum p we take

ε+
µ =

〈p+ |γµ|q+〉√
2〈q − |p+〉

, ε−µ =
〈q + |γµ|p+〉√

2〈p+ |q−〉
. (3.9)

The dependence on the reference spinors |q+〉 and 〈q + |, which enters through the gluon

polarisation vectors will drop out in gauge invariant quantities.
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3.2 Decomposition of massive four-vectors into light-like four-vectors

The external momenta of particles 1 and n may be massive or massless. In the case where

they are massive (either one of them or both) we would like to write them as a linear

combination of two light-like four-vectors l1 and ln. The two light-like four-vectors l1 and

ln are constructed as follows [24, 25]: if p1 and pn are massless, l1 and ln are given by

l1 = p1, ln = pn. (3.10)

If p1 is massless, but pn is massive one has

l1 = p1, ln = −α1p1 + pn, α1 =
p2
n

2p1pn
. (3.11)

The inverse formula is given by

p1 = l1, pn = α1l1 + ln. (3.12)

If both p1 and pn are massive, one has

l1 =
1

1− α1αn
(p1 − αnpn) , ln =

1

1− α1αn
(−α1p1 + pn) . (3.13)

α1 and αn are given by

α1 =
2p1pn − sign(2p1pn)

√
∆

2p2
1

, αn =
2p1pn − sign(2p1pn)

√
∆

2p2
n

. (3.14)

Here,

∆ = (2p1pn)2 − 4p2
1p

2
n. (3.15)

The signs are chosen in such away that the massless limit p2
1 → 0 (or p2

n → 0) is approached

smoothly. The inverse formulae are given by

p1 = l1 + αnln, pn = α1l1 + ln. (3.16)

The light-like four-vectors l1 and ln define massless spinors |l1+〉, 〈l1 + |, |ln+〉 and 〈ln + |.

3.3 On the choice of the reference spinors

Particles 1 and n may be massive quarks or anti-quarks and we have to make a choice for

the reference spinors. In the massless case, the amplitude will be independent of the choice

of the reference spinors and this section is of no further relevance. However, if particle 1 (or

particle n) is massive, the choice of the reference spinors will define the spin quantisation

axis and the amplitude will depend on this choice. It is always possible to convert to a

different basis with the help of eqs. (3.6)–(3.8).

In section 3.2 we have constructed the spinors |l1+〉, |ln+〉, 〈l1 + | and 〈ln + |. For

generic momenta p1 and pn, the ket-spinors |l1+〉 and |ln+〉 span the two-dimensional

space of holomorphic spinors (or ket-plus-spinors). Similarly, the bra-spinors 〈l1 + | and

– 7 –



J
H
E
P
0
9
(
2
0
1
5
)
1
9
7

〈ln + | span the space of anti-holomorphic spinors (or bra-plus-spinors). For particle 1 we

parametrise the reference spinors |q1+〉 and 〈q1 + | as

|q1+〉 = |ln+〉+ λ1 |l1+〉 , 〈q1+| = 〈ln+|+ λ1 〈l1+| , (3.17)

with one parameter λ1. For particle n we parametrise the reference spinors |qn+〉 and

〈qn + | as

|qn+〉 = |l1+〉+ λn |ln+〉 , 〈qn+| = 〈l1+|+ λn 〈ln+| , (3.18)

with one further parameter λn. Working out |p[1+〉, |p[n+〉, 〈p[1 + | and 〈p[n + | one finds∣∣∣p[1+
〉

= c1 (|l1+〉 − αnλ1 |ln+〉) ,
〈
p[1+

∣∣∣ = c1 (〈l1+| − αnλ1 〈ln+|) ,∣∣∣p[n+
〉

= cn (|ln+〉 − α1λn |l1+〉) ,
〈
p[n+

∣∣∣ = cn (〈ln+| − α1λn 〈l1+|) , (3.19)

with

c1 =
1√

1 + αnλ2
1

, cn =
1√

1 + α1λ2
n

. (3.20)

The variables α1 and αn have been defined in eq. (3.14). We will use the freedom to choose

λ1 and λn to compensate a restriction on the possible BCFW-shifts for massive particles.

The shifted spinors of the massive particles have to satisfy the Dirac equation, as well

as orthogonality and completeness relations. This restricts the z-dependent part to be

proportional to the corresponding reference spinors [23]. This means if we shift a massive

spinor

û(−) = u(−)− z |η+〉 , (3.21)

the spinor |η+〉 has to be proportional to |q+〉:

|η+〉 = κ |q+〉 . (3.22)

Similarly, if we shift

ˆ̄u(+) = ū(+) + z 〈η+| , (3.23)

we have to require that

〈η+| = κ 〈q+| . (3.24)

3.4 BCFW-shifts

We now provide the explicit formulae for the three-particle shifts. We have to consider

all possible helicity configurations for the three particles 1, 2g and n. In all cases the

deformations are defined in such a way, that the external polarisations spinors and vectors

give the best possible large z-behaviour. This is a z−3-behaviour if the three particles 1,

2g and n are all gluons, a z−2-behaviour if one of them is a quark or an anti-quark and a

z−1-behaviour if two of them are quarks or anti-quarks. As particle 2g is required to be

a gluon, the case where all three particles are quarks or anti-quarks is not possible. The

large z-behaviour of the external polarisations is summarised in table 1.
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particles 1, 2g and n large z-behaviour

3 gluons z−3

2 gluons, 1 quark/anti-quark z−2

1 gluon, 2 quarks/anti-quarks z−1

Table 1. The large z-behaviour of the external polarisations under the three-particle shifts.

3.4.1 The helicity configuration 1+, 2+
g , n−

For the helicity configuration 1+, 2+
g , n

− we shift u1(−), u2(−) and ūn(+), while ū1(+),

ū2(+) and un(−) remain unchanged:

û1(−) = u1(−)− zy1|p[n+〉, ˆ̄un(+) = ūn(+) + zy1〈p[1 + |+ zy2〈p2 + |,

û2(−) = u2(−)− zy2|p[n+〉, (3.25)

where y1 and y2 are two non-zero constants. For massive particles we have to require,

that the shift is proportional to the corresponding reference spinors. Therefore we have to

require that the system of equations

κ1 |q1+〉 = y1

∣∣∣p[n+
〉
, κn 〈qn+| = y1

〈
p[1+

∣∣∣+ y2 〈p2+| , (3.26)

has a solution for some non-zero constants κ1 and κn. In appendix A.1 we show that this

is the case. The spinors û1(−) and ˆ̄u1(+) correspond to an on-shell particle with mass m1

and four-momentum

p̂µ1 = pµ1 −
1

2
zy1

〈
p[1 + |γµ| p[n+

〉
. (3.27)

The spinors û2(−) and ˆ̄u2(+) correspond to an on-shell particle with zero mass and four-

momentum

p̂µ2 = pµ2 −
1

2
zy2

〈
p2 + |γµ| p[n+

〉
. (3.28)

The spinors ûn(−) and ˆ̄un(+) correspond to an on-shell particle with mass mn and four-

momentum

p̂µn = pµn +
1

2
zy1

〈
p[1 + |γµ| p[n+

〉
+

1

2
zy2

〈
p2 + |γµ| p[n+

〉
. (3.29)

3.4.2 The helicity configuration 1+, 2−
g , n−

For the helicity configuration 1+, 2−g , n
− we shift u1(−), ū2(+) and ūn(+), while ū1(+),

u2(−) and un(−) remain unchanged:

û1(−) = u1(−)− zy2|p2+〉 − zyn|p[n+〉, ˆ̄u2(+) = ū2(+) + zy2〈p[1 + |,
ˆ̄un(+) = ūn(+) + zyn〈p[1 + |, (3.30)

– 9 –
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where y2 and yn are two non-zero constants. For massive particles we have to require that

the system of equations

κ1 |q1+〉 = y2 |p2+〉+ yn

∣∣∣p[n+
〉
, κn 〈qn+| = yn

〈
p[1+

∣∣∣ , (3.31)

has a solution for some non-zero constants κ1 and κn. In appendix A.2 we show that this

is the case. The spinors û1(−) and ˆ̄u1(+) correspond to an on-shell particle with mass m1

and four-momentum

p̂µ1 = pµ1 −
1

2
zy2

〈
p[1 + |γµ| p2+

〉
− 1

2
zyn

〈
p[1 + |γµ| p[n+

〉
. (3.32)

The spinors û2(−) and ˆ̄u2(+) correspond to an on-shell particle with zero mass and four-

momentum

p̂µ2 = pµ2 +
1

2
zy2

〈
p[1 + |γµ| p2+

〉
. (3.33)

The spinors ûn(−) and ˆ̄un(+) correspond to an on-shell particle with mass mn and four-

momentum

p̂µn = pµn +
1

2
zyn

〈
p[1 + |γµ| p[n+

〉
. (3.34)

3.4.3 The helicity configuration 1+, 2−
g , n+

For the helicity configuration 1+, 2−g , n
+ we shift u1(−), ū2(+) and un(−), while ū1(+),

u2(−) and ūn(+) remain unchanged:

û1(−) = u1(−)− zy1|p2+〉, ˆ̄u2(+) = ū2(+) + zy1〈p[1 + |+ zyn〈p[n + |,
ûn(−) = un(−)− zyn|p2+〉, (3.35)

where y1 and yn are two non-zero constants. For massive particles we choose

|q1+〉 = |qn+〉 = |p2+〉 , 〈q1+| = 〈qn+| = 〈p2+| (3.36)

as reference spinors. The spinors û1(−) and ˆ̄u1(+) correspond to an on-shell particle with

mass m1 and four-momentum

p̂µ1 = pµ1 −
1

2
zy1

〈
p[1 + |γµ| p2+

〉
. (3.37)

The spinors û2(−) and ˆ̄u2(+) correspond to an on-shell particle with zero mass and four-

momentum

p̂µ2 = pµ2 +
1

2
zy1

〈
p[1 + |γµ| p2+

〉
+

1

2
zyn

〈
p[n + |γµ| p2+

〉
. (3.38)

The spinors ûn(−) and ˆ̄un(+) correspond to an on-shell particle with mass mn and four-

momentum

p̂µn = pµn −
1

2
zyn

〈
p[n + |γµ| p2+

〉
. (3.39)
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3.4.4 The helicity configuration 1+, 2+
g , n+

For the helicity configuration 1+, 2+
g , n

+ we shift u1(−), u2(−) and un(−), while ū1(+),

ū2(+) and ūn(+) remain unchanged:

û1(−) = u1(−)− z
[
p2p

[
n

]
|η+〉,

û2(−) = u2(−)− z
[
p[np

[
1

]
|η+〉,

ûn(−) = un(−)− z
[
p[1p2

]
|η+〉. (3.40)

Here, |η+〉 is an arbitrary spinor. For massive particles we choose

|q1+〉 = |qn+〉 = |η+〉 , 〈q1+| = 〈qn+| = 〈η+| (3.41)

as reference spinors. The spinors û1(−) and ˆ̄u1(+) correspond to an on-shell particle with

mass m1 and four-momentum

p̂µ1 = pµ1 −
1

2
z
[
p2p

[
n

] 〈
p[1 + |γµ| η+

〉
. (3.42)

The spinors û2(−) and ˆ̄u2(+) correspond to an on-shell particle with zero mass and four-

momentum

p̂µ2 = pµ2 −
1

2
z
[
p[np

[
1

]
〈p2 + |γµ| η+〉 . (3.43)

The spinors ûn(−) and ˆ̄un(+) correspond to an on-shell particle with mass mn and four-

momentum

p̂µn = pµn −
1

2
z
[
p[1p2

] 〈
p[n + |γµ| η+

〉
. (3.44)

Momentum conservation is satisfied due to the Schouten identity.

3.4.5 The remaining helicity configurations

The shifts for the helicity configurations

(1−, 2−g , n
+), (1−, 2+

g , n
+), (1−, 2+

g , n
−), (1−, 2−g , n

−) (3.45)

can be obtained from the helicity configurations

(1+, 2+
g , n

−), (1+, 2−g , n
−), (1+, 2−g , n

+), (1+, 2+
g , n

+) (3.46)

by exchanging holomorphic and anti-holomorphic spinors.

4 Large-z behaviour

We consider In(z) for n ≥ 4. In(z) is a rational function in z. We have to show that In(z)

falls off at z =∞ at least with 1/z. We will distinguish the cases, where the three particles

1, 2g and n are
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(i) three gluons,

(ii) two gluons and one quark/anti-quark,

(iii) one gluon and two quarks/anti-quarks, not belonging to the same fermion line or

(iv) one gluon and a quark-anti-quark-pair belonging to the same fermion line.

Let us recall the definition of In(z):

In (z) =
n−1∑
i=2

 n∑
j=i+1

2p̂2p̂j

An
(
1̂, 3, . . . , i, 2̂g, i+ 1, . . . , n− 1, n̂

)
. (4.1)

We note that the factors (2p̂2p̂j) are at the worst linear in z. A sufficient condition is to

show that each amplitude An(1̂, 3, . . . , i, 2̂g, i + 1, . . . , n − 1, n̂) falls off at z = ∞ at least

with 1/z2. We will show that this holds for the cases (i)–(iii).

However, a 1/z2-fall-off behaviour of the amplitudes is not a necessary condition. In

fact, in the case (iv) the amplitudes fall off only with 1/z. In this case we show through a

more sophisticated argument that the full sum In(z) falls off at z =∞ with 1/z.

4.1 Three gluons

Let us start with the case (1g, 2g, ng). The external polarisation vectors contribute a factor

z−3. The most critical contribution from the vertices and propagators comes from diagrams,

where there are only three-gluon vertices along the z-flow. For these diagrams there will be

along the z-flow always one more three-gluon vertex as there are propagators, giving a net

factor of z1. Therefore we obtain from these diagrams a total contribution of z−3 ·z = z−2.

If internally a gluon propagator is replaced by a quark propagator, we have to change at

least two three-gluon vertices into quark-gluon vertices. This improves the estimate by

a factor 1/z. Similarly, the replacement of one three-gluon vertex by a four-gluon vertex

results in an improvement in the z-behaviour by a factor 1/z. We therefore conclude, that

the amplitude falls off at z =∞ at least with 1/z2.

4.2 Two gluons and one quark/anti-quark

The arguments for the cases (1q/q̄, 2g, ng) and (1g, 2g, nq/q̄) are very similar to the three

gluon case. Although the external polarisations contribute now only a factor z−2, the

estimate from the vertices and the propagators is now z0. Again, the worst diagrams are

the ones with a maximal number of three-gluon vertices along the z-flow. However, in the

case at hand we must have at least one quark-gluon-vertex along the z-flow, improving

the estimate by a factor 1/z. Again we see that the amplitude falls off at z = ∞ at least

with 1/z2.

4.3 One gluon and two quarks/anti-quarks, not belonging to the same fermi-

on line

Let us now discuss the case (1q/q̄, 2g, nq′/q̄′) with one gluon and two quarks/anti-quarks,

where the two fermions do not belong to the same fermion line. This sub-case is straight-

forward: although the external polarisations contribute now only a factor z−1, the estimate
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from the vertices and the propagators is now z−1. This is due to the fact that we have

to change yet another three-gluon vertex into a quark-gluon vertex. Again one concludes

that the amplitude falls off at z =∞ at least with 1/z2.

4.4 One gluon and a quark-anti-quark-pair belonging to the same fermion line

The case (1q, 2g, nq̄) and (1q̄, 2g, nq), where the two fermions belong to the same fermion

line, are more complicated. Power-counting gives now a factor z−1 from the external

polarisations and a factor z0 from the vertices and propagators. The individual amplitudes

fall off as 1/z for large z. In this case we show, that the sum In(z) falls off as 1/z for large

z. The worst diagrams are the ones, where the z-flow of gluon 2g goes only through three-

gluon vertices before it couples to the quark line. We have to show that in the sum the

leading z-behaviour of these diagrams actually vanishes. For the leading z-behaviour we

can use an argument of Arkani-Hamed and Kaplan [10]: for large z we may view particles

1, 2g and n as highly energetic particles moving in a soft background. All vertices along

the z-flow reduce in this limit to eikonal factors, except the one where the three branches

of the z-flow meet. In order to see this let us start from particle 2 and consider the first

vertex particle 2 meets. This three-gluon vertex couples particle 2, a current containing

only soft particles

J soft
µ = J soft

µ (k + 1, . . . , l) (4.2)

and a current containing the other hard particles 1 and n

Ĵhard
µ = Ĵhard

µ

(
1̂, 3, . . . , k, l + 1, . . . , n̂

)
. (4.3)

In the Feynman rule for the three-gluon vertex we only have to keep the z-dependent terms,

yielding for the cyclic order 2g, J
soft, Ĵhard

i
[
−
(
ε̂2 · J soft

)(
p̂hard · Ĵhard

)
+ (p̂2 · ε̂2)

(
J soft · Ĵhard

)
− 2

(
ε̂2 · Ĵhard

)(
p̂2 · J soft

)]
.

(4.4)

The contraction of p̂2 with ε̂2 vanishes: p̂2 · ε̂2 = 0. Furthermore, the current Ĵhard is

conserved and we have p̂hard · Ĵhard = 0. This leaves the eikonal contribution(
ε̂2 · Ĵhard,amputated

)(
− 2p̂2 · J soft

(p̂2 + psoft)
2

)
, (4.5)

with

Ĵhard,amputated = i (p̂2 + psoft)
2 Ĵhard. (4.6)

We may then repeat the argument with the next three-gluon vertex. A similar argument

can be given for the z-flow along the quark line. Let us start at particle 1 and let us

assume that this particle is a quark. We consider the first vertex particle 1 meets. This is

a quark-gluon vertex, connecting particle 1, a gluon current containing only soft particles

J soft
µ = J soft

µ (3, . . . , k) (4.7)
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and a hard spinorial current containing the other two hard particles 2 and n:

V̂ hard = V̂ hard
(
k + 1, . . . , 2̂, . . . , n− 1, n̂

)
. (4.8)

Let us further define the hard amputated spinorial current as

V̂ hard = i
(p̂/1 + p/soft) +m

(p̂/1 + p/soft)
2 −m2

V̂ hard,amputated. (4.9)

Again we may neglect soft momenta in the numerator and we find

− ˆ̄u1γ
µ p̂/1 +m

(p̂/1 + p/soft)
2 −m2

V̂ hard,amputatedJ soft
µ =

(
− 2p̂1 · J soft

(p̂/1 + p/soft)
2 −m2

)
ˆ̄u1V̂

hard,amputated +
ˆ̄u1 (p̂/1 −m) γµV̂ hard,amputated

(p̂/1 + p/soft)
2 −m2

J soft
µ .

(4.10)

In the first term on the right-hand side we recognise an eikonal factor, the second term

vanishes due to the Dirac equation. As before, we may repeat the argument with the next

quark-gluon vertex.

The argument for the branch with the external anti-quark at position n is identical

and not repeated here. The (1q̄, 2g, nq)-case is very similar and not discussed in detail.

The eikonal factors go to a constant for large z and we are left with a quark-gluon vertex

contracted for the (1q, 2g, nq̄)-case with ˆ̄u1, ε̂2 and v̂n. Let us denote this contribution by

O3 = iˆ̄u1γµv̂nε̂
µ
2 . (4.11)

The quantity O3 falls off like 1/z for large z. It is important to note, that O3 occurs in

every amplitude contributing to In(z) in the (1q, 2g, nq̄)-case. It may therefore be taken

out of the sum, and we have to show that the remaining sum goes to a constant for large

z. The remaining sum involves only the Lorentz invariants 2p̂2p̂j and the eikonal factors.

The proof is given in appendix B.

5 The proof by induction

In this section we prove the fundamental BCJ-relation by induction. With the preparations

of section 3 and section 4 we can do this independently of the helicity configurations and

the masses. This is possible, since we have for In(z) for all helicity configurations and

all masses a 1/z-behaviour for large z. However, we would like to point out one subtle

point for massive quarks: we would like to show that the fundamental BCJ-relations holds

for all helicities of the massive quark. The naive way to show this would be to fix a spin

quantisation axis through a choice of reference spinors |q+〉 and 〈q+| and to show the BCJ-

relation for the helicities “+” and “−” with respect to these reference spinors. This is not

what we are doing. The attentive reader of sections 3.4.1–3.4.4 might have noticed, that the

“+”- and “−”-helicities refer to different reference spinors. This is o.k., since amplitudes

with different spin quantisation axes are related through eq. (3.6) and eq. (3.8). Therefore
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it is sufficient to know two independent amplitudes (say “+”-helicity with respect to q and

“−”-helicity with respect to q̃) in order to know all amplitudes with spin quantisation axes

q and q̃. This remark applies to each external particle individually and covers all possible

cases for the external particles 1 and n, where we can have out of these two particles either

zero, one or two massive particles. In the latter case the masses may be equal or not.

5.1 Induction start: the case n = 3

To start the proof by induction we consider the case n = 3. Throughout this paper we work

with complex external momenta. The external momenta satisfy momentum conservation

p1 + p2 + p3 = 0, (5.1)

and the on-shell conditions

p2
1 = m2, p2

2 = 0, p2
3 = m2. (5.2)

Particle 2g will always be a gluon and is therefore massless. Particles 1 and 3 may be

massless or massive. In the massive case, particles 1 and 3 are necessarily a quark-anti-

quark pair of the same flavour. Therefore particles 1 and 3 will have the same mass m. For

n = 3 external particles the momentum configurations satisfying eq. (5.1) and eq. (5.2) are

in general complex. The fundamental BCJ-relation reduces to

2p2p3 A3 (1, 2g, 3) = 0. (5.3)

For generic external momenta A3(1, 2g, 3) is finite and

2p2p3 = (p2 + p3)2 −m2 = p2
1 −m2 = 0. (5.4)

5.2 The induction step

We now show that

Ij (0) = 0 (5.5)

holds for j = n, provided it holds for all j < n. We start from eq. (2.12)

In (0) =
1

2πi

∮
z=0

dz

z
In (z) , (5.6)

where the contour is a small counter-clockwise circle around z = 0. Deforming the contour

to a large circle at infinity and the residues at the finite poles zα 6= 0 we obtain

In (0) = B −
∑
α

res

(
In (z)

z

)
zα

, (5.7)

where B denotes the contribution from the large circle at infinity. In section 4 we have

shown that In(z) falls off at least with 1/z for z →∞ and therefore

B = 0. (5.8)
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It will be convenient to introduce the following notation for the various factorisation

channels:

An

(
1̂, 2, . . . , k, P̂ | − P̂ , k + 1, . . . , n− 1, n̂

)
=∑

λ

Ak+1

(
1̂, 2, . . . , k, P̂

) i

P 2
An−k+1

(
−P̂ , k + 1, . . . , n− 1, n̂

)
, (5.9)

together with the convention that the hatted quantities are evaluated at z = zα. The sum

is over the helicity of the intermediate particle. Let us look at the z-momentum flow for a

three-particle BCFW-shift. For each diagram we may divide the z-dependent propagators

into three segments. Each segment starts at the common vertex, where the z-dependent

momentum flow meets and goes outwards towards the particles 1, 2g and n. We may use

these segments to divide the finite residues into three groups and we write

In (0) = R1 +R2 +Rn, (5.10)

with

R1 =

n−1∑
i=2

 n∑
j=i+1

2p̂2p̂j

 i∑
k=3

An

(
1̂, 3, . . . , k, P̂ | − P̂ , k + 1, . . . , i, 2̂g, i+ 1, . . . , n− 1, n̂

)
,

R2 =

n−1∑
i=2

 n∑
j=i+1

2p̂2p̂j


×

i∑
k=2

n−1∑
l=i

(k,l) 6=(i,i)

An

(
k + 1, . . . , i, 2̂g, i+ 1, . . . , l, P̂ | − P̂ , l + 1, . . . , n− 1, n̂, 1̂, 3, . . . , k

)
,

Rn =
n−1∑
i=2

 n∑
j=i+1

2p̂2p̂j

 n−2∑
k=i

An

(
1̂, 3, . . . , i, 2̂g, i+ 1, . . . , k, P̂ | − P̂ , k + 1, . . . , n− 1, n̂

)
.

(5.11)

Let us first look at R1. We may exchange the summation over i and k as

n−1∑
i=2

i∑
k=3

f (i, k) =

n−1∑
k=3

n−1∑
i=k

f (i, k) . (5.12)

One obtains

R1 =
n−1∑
k=3

n−1∑
i=k

 n∑
j=i+1

2p̂2p̂j

An

(
1̂, 3, . . . , k, P̂ | − P̂ , k + 1, . . . , i, 2̂g, i+ 1, . . . , n− 1, n̂

)
.

(5.13)

We recognise the fundamental BCJ relation for (n − k + 2) external particles. For k ≥ 3

we have (n− k + 2) < n. We may therefore use the induction hypothesis and we conclude

R1 = 0. (5.14)
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The argument for Rn is very similar. We first exchange the summation indices as

n−1∑
i=2

n−2∑
k=i

f (i, k) =

n−2∑
k=2

k∑
i=2

f (i, k) . (5.15)

We then obtain

Rn = −
n−2∑
k=2

k∑
i=2

 i∑
j=1

2p̂2p̂j

An

(
1̂, 3, . . . , i, 2̂g, i+ 1, . . . , k, P̂ | − P̂ , k + 1, . . . , n− 1, n̂

)
= 0. (5.16)

Here we used momentum conservation in the sum over j. Again we recognise the funda-

mental BCJ relation in the form of eq. (2.7). It follows that Rn vanishes.

Exchanging the summation indices for R2 one obtains

R2 =

n−2∑
k=2

n−1∑
l=k+1

(5.17)

×
l∑

i=k

 n∑
j=i+1

2p̂2p̂j

An

(
k + 1, . . . , i, 2̂g, i+ 1, . . . , l, P̂ | − P̂ , l + 1, . . . , n− 1, n̂, 1̂, 3, . . . , k

)
.

We may split the sum over j as

n∑
j=i+1

2p̂2p̂j =

l∑
j=i+1

2p̂2p̂j︸ ︷︷ ︸
A

+

n∑
j=l+1

2p̂2p̂j︸ ︷︷ ︸
B

. (5.18)

The terms of type A vanish again by the induction hypothesis

l−1∑
i=k

 l∑
j=i+1

2p̂2p̂j

Al−k+2

(
P̂ , k + 1, . . . , i, 2̂g, i+ 1, . . . , l

)
= 0. (5.19)

Note that the sum over i extends only to (l − 1), the case i = l contributes only to the

terms of type B.

For the terms of type B the sum over j is independent of i and may be taken outside

the sum over i. The sum over i vanishes then due to the U(1)-decoupling relation, given

in eq. (2.5):  n∑
j=l+1

2p̂2p̂j

 l∑
i=k

Al−k+2

(
P̂ , k + 1, . . . , i, 2̂g, i+ 1, . . . , l

)
= 0. (5.20)

We therefore conclude that

R2 = 0. (5.21)

Putting the partial results for R1, R2 and Rn together we find that

In (0) = 0. (5.22)

This completes the proof.
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6 Conclusions

In this paper we provided a proof of the fundamental BCJ-relation, stated in eq. (2.6), for

primitive tree amplitudes in QCD. The proof holds for massless and massive quarks. For

the proof we used induction and BCFW-recursion relations.

A Reference spinors for massive particles

A.1 The helicity configuration 1+, 2+
g , n−

In this appendix we show that the system

κ1 |q1+〉 = y1

∣∣∣p[n+
〉
, κn 〈qn+| = y1

〈
p[1+

∣∣∣+ y2 〈p2+| (A.1)

has a solution. Expressing 〈p2 + | in terms of 〈l1 + | and 〈ln + |

〈p2+| =
[p2ln]

[l1ln]
〈l1+|+ [l1p2]

[l1ln]
〈ln+| , (A.2)

we obtain the system of equations

κ1 = y1cn,

κ1λ1 = −y1cnα1λn,

κn = y1c1 + y2
[p2ln]

[l1ln]
,

κnλn = −y1c1αnλ1 + y2
[l1p2]

[l1ln]
. (A.3)

The variables α1 and α2 are defined in eq. (3.14), the variables c1 and cn are defined in

eq. (3.20). We look for a solution for the variables κ1, κn, y1, y2, λ1 and λn. A possible

solution is

κ1 =
cn
c1
, κn = 1 +

2p2ln
2l1ln

, (A.4)

y1 =
1

c1
, y2 =

〈p2ln〉
〈l1ln〉

,

λ1 =
p2
n 〈l1 + |p/2| ln+〉

(2l1ln)2 − p2
1p

2
n + (2l1ln) (2p2ln)

, λn = − 2l1ln 〈l1 + |p/2| ln+〉
(2l1ln)2 − p2

1p
2
n + (2l1ln) (2p2ln)

.

A.2 The helicity configuration 1+, 2−
g , n−

In this appendix we show that the system

κ1 |q1+〉 = y2 |p2+〉+ yn

∣∣∣p[n+
〉
, κn 〈qn+| = yn

〈
p[1+

∣∣∣ (A.5)

has a solution. Expressing |p2+〉 in terms of |l1+〉 and |ln+〉

|p2+〉 =
〈p2ln〉
〈l1ln〉

|l1+〉+
〈l1p2〉
〈l1ln〉

|ln+〉 , (A.6)
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we obtain the system of equations

κn = ync1,

κnλn = −ync1αnλ1,

κ1 = yncn + y2
〈l1p2〉
〈l1ln〉

,

κ1λ1 = −yncnα1λn + y2
〈p2ln〉
〈l1ln〉

. (A.7)

A possible solution is

κ1 = 1 +
2l1p2

2l1ln
, κn =

c1

cn
, (A.8)

y2 =
[l1p2]

[l1ln]
, yn =

1

cn
,

λ1 = − 2l1ln 〈l1 + |p/2| ln+〉
(2l1ln)2 − p2

1p
2
n + (2l1ln) (2l1p2)

, λn =
p2

1 〈l1 + |p/2| ln+〉
(2l1ln)2 − p2

1p
2
n + (2l1ln) (2l1p2)

.

B The large z-behaviour in the eikonal approximation

Let us consider a theory with massless or massive scalar “hard” particles, denoted by a hat

and QCD-like “soft” particles (gluons, quarks, anti-quarks), denoted without a hat. The

momenta of the hard particles are of order z1, the momenta of the soft particles are of

order z0. The Feynman rules for this toy theory are as follows: the hard particles interact

only through three-valent vertices. The Feynman rule for the three-valent vertex involving

three hard particles with the cyclic order (1̂, 2̂, 3̂) is simply i, for the cyclic order (1̂, 3̂, 2̂)

we have (−i). Furthermore there is a three-valent vertex, involving two hard particles and

one soft gluon. The Feynman rule for the cyclic order (1̂, 2, 3̂) reads

i (p̂µ1 − p̂
µ
3 ) . (B.1)

There are no vertices involving only one hard particle. The Feynman rules for the vertices

involving only soft particles are the standard (cyclic-ordered) QCD Feynman rules, listed

in appendix C.

Let us consider the situation of three hard particles 1̂, 2̂ and n̂ and (n−3) soft particles

3, . . . , (n−1). We assume particle 2̂ to be massless and particles 1̂ and n̂ to have the same

mass m (which may be zero). We will denote an amplitude in this toy theory by

Aeikonal
n

(
1̂, 3, . . . , i, 2̂, i+ 1, . . . , n− 1, n̂

)
, (B.2)

and we define

Ieikonal
n (z) =

n−1∑
i=2

2p̂2p̂n +

n−1∑
j=i+1

2p̂2pj

Aeikonal
n

(
1̂, 3, . . . , i, 2̂, i+ 1, . . . , n− 1, n̂

)
. (B.3)
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We would like to show that Ieikonal
n (z) goes to a constant for large z. Then the quantity

O3 I
eikonal
n (z) (B.4)

with O3 defined as in eq. (4.11) falls off like 1/z.

It will be convenient to introduce soft currents

Jµsoft (a, . . . , b) , (B.5)

involving (b − a + 1) soft on-shell particles a, a + 1, . . . , b and one soft off-shell gluon leg.

The momentum of this soft current is

P =
b∑

k=a

pk. (B.6)

We may group the Feynman diagrams contributing to Ieikonal
n (z) into sets, where exactly

r soft currents couple to the hard particles 1̂, 2̂ and n̂ with 1 ≤ r ≤ n − 3. Therefore we

have a decomposition

Ieikonal
n (z) =

n−3∑
r=1

Ieikonal
n,r (z). (B.7)

We will show that each contribution Ieikonal
n,r (z) individually goes to a constant for large z.

Let us discuss Ieikonal
n,r (z) with r soft currents J soft

1 , . . . , J soft
r and associated momenta

P1, . . . , Pr. The cyclic order among the soft currents is respected in each diagram con-

tributing to Ieikonal
n,r (z). We will use the notation

Pa,a+1,...,b =

b∑
k=a

Pk. (B.8)

Let us first discuss the situation, where two or more soft currents couple to the hard line

2̂. These contributions add up to zero in Ieikonal
n,r (z). In order to see this, consider the

situation, where the two outermost soft currents coupling to 2̂ are J soft
a and J soft

a+1. There

are four possibilites, how these soft currents may couple to 2̂, shown in figure 1. With the

inclusion of the prefactors of the fundamental BCJ-relation, these contributions add up

to zero.

Let us now consider the case, where one soft current J soft
a couples to the hard particle

2̂. Here we get the contribution

− (2p̂2Pa)
2p̂2J

soft
a

(p̂2 + Pa)
2 = 2p̂1J

soft
a + 2p̂nJ

soft
a +O

(
z0
)
. (B.9)

We may now add up all contributions and obtain

Ieikonal
n,r (z) =

r∑
i=0

2p̂2p̂n +
r∑

j=i+1

2p̂2Pj

 (−1)i
(

i∏
k=1

2p̂1J
soft
k

2p̂1P1,...,k

)(
r∏

l=i+1

2p̂nJ
soft
l

2p̂nPl,...,r

)

+
r∑
i=1

(−1)i−1

(
i−1∏
k=1

2p̂1J
soft
k

2p̂1P1,...,k

)(
r∏

l=i+1

2p̂nJ
soft
l

2p̂nPl,...,r

)(
2p̂1J

soft
i + 2p̂nJ

soft
i

)
+O

(
z0
)
. (B.10)
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1̂ n̂

2̂

J
soft
a

J
soft

a+1

1̂ n̂

2̂

J
soft
a

J
soft

a+1

1̂ n̂

2̂

J
soft

a+1

J
soft
a

1̂ n̂

2̂

J
soft

a+1

J
soft
a

Figure 1. Diagrams showing how the two outermost soft currents J soft
a and J soft

a+1 may couple to the

hard particle 2̂. There may be further soft currents attached to the hard lines below the dashed line.

The terms in the first sum come from diagrams, where all soft currents couple either to the

hard particle 1̂ or n̂, the terms of the second sum correspond to diagrams, where exactly

one soft current couples to the hard particle 2̂. Noting that

2p̂2p̂n +

r∑
j=i+1

2p̂2Pj = 2p̂1P1,...,i − 2p̂nPi+1,...,r +O
(
z0
)

(B.11)

one sees that

Ieikonal
n,r (z) = O

(
z0
)
, (B.12)

as claimed.

C Cyclic-ordered Feynman rules

In this appendix we give a list of the cyclic-ordered Feynman rules. They are obtained

from the standard Feynman rules by extracting from each formula the coupling constant

and the colour part. The propagators for quark and gluon particles are given by

= i
p/+m

p2 −m2
,

=
−igµν

p2
. (C.1)

The cyclic-ordered Feynman rules for the three-gluon and the four-gluon vertices are

p
µ1

1

p
µ2

2
p
µ3

3

= i [gµ1µ2 (pµ31 − p
µ3
2 ) + gµ2µ3 (pµ12 − p

µ1
3 ) + gµ3µ1 (pµ23 − p

µ2
1 )] ,

µ1

µ2µ3

µ4

= i [2gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3 ] . (C.2)
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The Feynman rule for the quark-gluon vertex is given by

µ = iγµ, µ = −iγµ. (C.3)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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