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1 Introduction

The use of Cartan geometry in physics is ideally suited for the formulation of space-time

transformations as gauge theories as well as for the study of geodesics, see for instance [1, 2].

General Relativity (GR) can be incorporated into the scheme of gauge theories under its

Einstein-Cartan formulation [3, 4], see also [5] and for more insight on the subject see [6].

Relatively recent work [7–9] shows a renewed interest in the use of Cartan connections for

gravity theories.

In particular, conformal gravity is based on the conformal group, which contains the

Poincaré group, the Weyl symmetries (rescaling of a metric) and the special conformal

transformations (inversions). Since the latter cannot be globally defined, gauging the

inversions as local transformations is recommended. The mathematics of the second order

conformal structure is well understood, see for instance [10–15], and, as a framework for

gauge theories, it deserves to be studied for itself [16–18].

Regarding gauge symmetries in field theories, in [19, 20] was described a systematic

procedure to reduce gauge symmetries. The advocated scheme turns out to be a redefi-

nition of the field variables contained in the gauge theory at hand. It is grounded on the

identification, among the fields of the theory, of what we called a dressing field.

As a continuation of [19] we provide in the current paper a new example of such a

reduction of symmetries by the dressing field method applied to the second order conformal
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structure as a framework for gravity gauge theories. Thanks to the dressing field method,

we locally reduce the second order conformal structure to its Weyl subbundle i.e. reduction

to the conformal Weyl symmetry.

Then, at the algebraic level, we show that the dressing field method is compatible

with the usual Becchi-Rouet-Stora [21, 22] and Tyutin [23] (BRST symmetry) machinery

developed for Yang-Mills theories, a cornerstone for quantizing gauge theories. This leads

to the introduction of a composite ghost which handles the infinitesimal residual gauge

freedom of the initial symmetry if any, and which enters into a “Russian formula” for the

dressed connection.

We emphasize that the dressing field method has been systemized in [19] within the

physicist’s language of gauge field theory based on differential forms. Accordingly, it is well-

adapted to the algebraic differential structure of space of forms, connections and BRST

algebras. On the contrary, it is not well-suited (yet) for dealing with differential operators

such as covariant derivatives and the like. Conformal geometry, as an instance of parabolic

Cartan geometry, is also studied as a tractor calculus which is based on the construction

of a vector bundle associated with the Cartan geometry and a covariant derivative on its

sections. Here we shall not be concerned with tractor calculus since our purpose is to

treat, in a comparative way, one more explicit example of the dressing field method within

the common language already used in [19, 24, 25]. However, as far as gauge field theory

is concerned, both approaches are expected to be equivalent. Regarding the use of the

tractor calculus, we refer to [26, 27] and references therein.

The paper is organized as follows. In section 2, the geometrical framework underlying

the dressing field method is briefly recalled.

Then, in section 3, the dressing of a conformal Cartan connection is performed in two

steps with suitable dressing fields. For the normal conformal Cartan connection, we end up

with its so-called “Riemannian parametrization”, which straightforwardly provides known

geometric objects relevant in conformal geometry [10]. Composition of dressing is shown

to conspire in order to erase both the special conformal transformations (inversions) and

the Lorentz SO(1, m − 1)-gauge symmetry. The remaining symmetry turns out to be given

by the simple abelian group W ≃ R+ \ {0} of Weyl rescalings. This step by step reduction

rests on the fact that the two needed dressing fields satisfy some compatibility conditions

and can ultimately be merged together.

Section 4 investigates at the infinitesimal level the compatibility between the dress-

ing field method and the elegant and efficient language of the BRST differential alge-

bra [22, 28, 29]. A detailed account of the various modified BRST algebras coming out

from the dressing scheme is given. Two examples illustrate this point. The first one con-

cerns GR. The second one is the BRST treatment (linearized version) of the finite procedure

presented in the first part of the paper concerning the second order conformal structure.

Section 5 gathers some concluding remarks.
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2 The dressing field method in a nutshell

In this section, the main idea of the dressing scheme is introduced in a geometrical setting.

To start with the basics, it is recalled that the usual geometrical framework for dealing with

Yang-Mills theories is that of a principal bundle P = P(M, H) over a space-time M, with

structure group H. Let us denote by h its Lie algebra. Let ω ∈ Ω1(P, h) be a connection

1-form on P and Ω ∈ Ω2(P, h) its curvature; let Ψ denote a section of an associated bundle

constructed out of a representation (V, ρ) of H.

Through a local trivializing section σ : U ⊂ M → P, one gets the usual Yang-Mills

gauge potential A := σ∗ω, the field strength F := σ∗Ω and the matter field ψ := σ∗Ψ.

The local formulation on space-time will be understood with respect to the open set U

throughout the paper.

To characterize the geometry of gauge fields, one has to specify the action of the (local)

gauge group on each space of fields. The latter is defined by

H =
{
γ : U ⊂ M → H

}
,

with the group law inherited from H. The space H can also be considered as a space of

gauge fields for the following action of γ2 ∈ H (as a group) on γ1 ∈ H (as a space of fields):

γ1
γ

2 := γ−1
2 γ1γ2, (2.1)

which is compatible with the group law in H.

The field space A of Yang-Mills potentials carries the usual action of the gauge group

H: A 7→ Aγ := γ−1Aγ + γ−1dγ, and accordingly, F 7→ F γ := γ−1Fγ. One has ψ 7→ ψγ :=

ρ(γ−1)ψ for matter fields.

In the following, we consider new fields composed of “elementary” fields. For instance,

taking A ∈ A and γ1 ∈ H (as a space of fields), one constructs the “composed field”

Aγ
1 := γ−1

1 Aγ1 + γ−1
1 dγ1. An induced action of the gauge group H is naturally defined by

taking the gauge group action on each of the elementary fields. As an illustration, for Aγ
1

and for γ2 ∈ H (as a group) one has

(Aγ
1)γ

2 := (Aγ
2)γ

1

γ
2

= (Aγ
2)γ−1

2
γ

1
γ

2

= (γ−1
2 γ1γ2)−1(Aγ

2)(γ−1
2 γ1γ2) + (γ−1

2 γ1γ2)−1d(γ−1
2 γ1γ2)

= (γ1γ2)−1A(γ1γ2) + (γ1γ2)−1d(γ1γ2) = A(γ
1
γ

2
) , (2.2)

where A(γ
1
γ

2
) identifies with the action of γ1γ2 ∈ H (as a group) on A ∈ A. Notice that this

case is quite degenerate since Aγ
1 ∈ A and accordingly (Aγ

1)γ
2 = γ2

−1(Aγ
1)γ2 +γ2

−1dγ2 =

A(γ
1
γ

2
). More subtle situations will be encoutered in the following.

The dressing field method involves identifying, in a local trivialization of P, a local

dressing field in D = {u : U → G′} where G′ is a target Lie group. This target group G′

has to be chosen compatible with H and H and their representations. In particular, one

requires that there exists a subgroup H ′ ⊆ H such that D supports the following action of

the subgroup H′ := {γ′ : U → H ′} ⊆ H:

u 7→ uγ′

:= γ′−1
u.
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Contrary to (2.1) this action is not compatible with the natural group law in G′. The

clear distinction between H and D as H′-gauge field spaces, is crucial, and should be kept

in mind.

Another requirement on G′ is the possibility to define, starting from the gauge fields

A, F, ψ, and u, the following composite fields:

Â := Au = u−1Au + u−1du, F̂ := F u = u−1Fu, and ψ̂ := ψu = ρ(u−1)ψ. (2.3)

It can be checked that F̂ = dÂ + 1
2 [Â, Â]. These composite fields are readily seen to be

H′-gauge invariant ([19], Main Lemma).

At this stage, two possibilities are in order. First, if H ′ = H the above composite

fields are H-gauge invariant; the whole symmetry H has thus been erased. Second, if H ′ $
H, then the composite field might display a residual gauge freedom: only the symmetry

subgroup H′ has been neutralized. In either case, one can check indeed that, for instance

(similarly to (2.2)) (Au)γ′

:= (Aγ′

)
uγ′

= (Aγ′

)
γ′−1

u
= Au, for any γ′ ∈ H′ ⊆ H.

This construction turns out to be a geometrical root of the notion of “Dirac vari-

ables” [30, 31] and its generalization to non-abelian gauge field theories. As shown in [19]

the method applies to the electroweak sector of the Standard Model (see also [24]) and

to the Einstein-Cartan formulation of GR. In both cases it provided an interpretive shift

with respect to the usual viewpoint. In [25] we showed how the method ought to be at the

root of the so-called “Chen & al. trick” which has been sparking much work and reviving

controversies on the nucleon spin decomposition issue.

3 Composing dressing fields

3.1 The second order conformal structure

We refer to [15] for a detailed description of the Möbius geometry and its associated Cartan

geometry. See also [10, 11] for a formulation in terms of higher order frame bundles.

Notice that it is of prior importance to have a link between the second order conformal

structure and a matrix representation. In the latter, one gains a direct contact with the

usual formulation of a Yang-Mills gauge theory. Also, the matrix formulation allows easier

calculations. We just provide the basic material necessary to our construction.

Let M be a m-dimensional smooth manifold (m ≥ 3). Let CO(M) be the principal

bundle of orthonomal frames with respect to the Minkowski η metric of signature (1, m−1),1

with structure group

K0 ≃ CO(1, m − 1) =
{
M ∈ GLm(R); MT ηM = z2η, z ∈ W

}
= SO(1, m − 1) × W

where W = R+\{0} is the group of Weyl rescaling. The Lie algebra of K0 is

k0 := co(1, m − 1) =
{
v ∈ glm(R); vT η + ηv = ǫ1m, ǫ ∈ R

}
= o(1, m − 1) ⊕ R.

1One could have worked with an arbitrary signature (p, q), see e.g. [2].
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The principal bundle CO(M) is a reduction of GL(M) the principal bundle of linear

frames over M. This is a first order G-structure which can be prolongated to a second

order G-structure [11]. The latter is easier recast in the the following setting.

The Klein model geometry is the pair of Lie groups (G, H) where G=O(2, m)/{±Im+2}

with

O(2, m) =





M ∈ GLm+2(R) | MT ΣM = Σ, where Σ =




0 0 −1

0 η 0

−1 0 0








.

It is the isometry group of the de Sitter space dSm defined as the quadric Σ(x, x) = 0 in

Rm+2. H is the isotropy group of the point (1, 0, . . . , 0) such that dSm ≃ G/H and has

the following factorized matrix representation

H = K0 K1 =








z 0 0

0 S 0

0 0 z−1







1 r 1
2rrt

0 1 rt

0 0 1




∣∣∣∣ z ∈ W, S ∈ SO(1, m − 1), r ∈ Rm∗





,

where t stands for the η-transposition, namely for the row vector r one has rt = (rη−1)T

(where T is the usual matrix transposition) and Rm∗ is the dual of Rm. Notice that K1 is

an abelian subgroup of H. It can be shown that H ≃ CO(1, m − 1) ⋉Rm∗.

The infinitesimal Klein pair is (g, h), where both are graded Lie algebras [11]. They

can respectively be decomposed according to g = g−1 ⊕g0 ⊕g1 ≃ Rm ⊕ co(1, m − 1) ⊕Rm∗,

a splitting which gives the different symmetry sectors: translations + (Lorentz × Weyl) +

inversions, and h = g0 ⊕ g1 ≃ co(1, m − 1) ⊕ Rm∗. The quotient space is just g/h =: g−1 ≃

Rm. In matrix notation we have,

g =








ǫ ι 0

τ v ιt

0 τ t −ǫ




∣∣∣∣ (v − ǫ1) ∈ co(1, m − 1), τ ∈ Rm, ι ∈ Rm∗





⊃ h = g0 ⊕ g1 =








ǫ ι 0

0 v ιt

0 0 −ǫ




∣∣∣∣. . .





,

with the η-transposition τ t = (ητ)T of the column vector τ . The graded structure of the

Lie algebras, [gi, gj ] ⊆ gi+j , i, j = 0, ±1 with the abelian Lie subalgebras [g−1, g−1] = 0 =

[g1, g1], is automatically handled by the matrix commutator.

The second order conformal structure modelled on this Klein pair is a principal bundle,

P(M, H), with structure group H, together with a (local) Cartan connection ̟ ∈ Ω1(U, g)

with curvature Ω = d̟+̟2 ∈ Ω2(U, g). Accordingly, in matrix representation, the Cartan

connection is parametrized by the matrix of 1-forms

̟ =




a α 0

θ A αt

0 θt −a


 ,
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where θ is the soldering (or vielbein) 1-form which gives an isomorphism between each

tangent space TxM and g−1 ≃ Rm; while the curvature is given by

Ω =




f Π 0

Θ F Πt

0 Θt −f


 :=




da + αθ dα + α(A − a1) 0

dθ + (A − a1)θ dA + A2 + θα + αtθt dαt + (A + a1)αt

0 dθt + θt(A + a1) −da + θtαt


 ,

where the wedge product of forms is tacitly assumed.

The normal conformal Cartan connection is the unique ̟ (up to H-gauge transforma-

tions) whose curvature is constrained by the two conditions [10, 11, 15]

i) Θ ≡ 0, (torsion-free geometry), ii) Ric(F ) = F a
bac ≡ 0, (Ricci-null condition), (3.1)

where the Einstein summation convention is understood and will be used throughout the

paper. Combination of the latter with g−1-sector of the Bianchi identity dΩ + [̟, Ω] = 0

yields the traceless condition f = 0.

An element γ of the gauge group H can be factorized as

γ = γ0γ1 : U → H = K0 K1, with





γ0 ∈ K0 :=
{
γ : U → K0

}
,

γ1 ∈ K1 :=
{
γ : U → K1

}
.

Accordingly, with respect to K0, the gauge transformations of the Cartan connection are,

̟γ0 = γ−1
0 ̟γ0 + γ−1

0 dγ0

=:




aγ0 αγ0 0

θγ0 Aγ0 (αγ0)t

0 (θγ0)t −aγ0


 =




a + z−1dz z−1αS 0

S−1θz S−1AS + S−1dS S−1αtz−1

0 zθtS −a + zdz−1


 , (3.2)

and with respect to K1,

̟γ1 = γ−1
1 ̟γ1 + γ−1

1 dγ1 =:




aγ1 αγ1 0

θγ1 Aγ1 (αγ1)t

0 (θγ1)t −aγ1


 (3.3)

=




a − rθ ar − rθr + α − rA + 1
2rrtθt + dr 0

θ θr + A − rtθt θ 1
2rrt+Art− rtθtrt+ αt+ rta + drt

0 θt θtrt − a


 .

The principal bundle P(M, H) is a second order G-structure, a reduction of the second

order frame bundle L2M; it is thus a “2-stage bundle”. The bundle P(M, H) over M

can also be seen as a principal bundle P1 := P(P0, K1) with structure group K1 over

P0 := P(M, K0), see [11]. The whole structure group H = K0 K1 ≃ CO(1, m − 1) ⋉ Rm∗

is of dimension 1 + m(m−1)
2 + m.

As shown in the next section, the symmetry group H can be reduced to the 1-

dimensional Weyl group W through the dressing field method.
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3.2 The need for two dressing fields

The second order bundle geometry P1 → P0 → M suggests that the structure group K1

should be neutralized first, in order to reach the principal bundle PW := P(M, W).

First reduction. In order to neutralize K1 (inversions) and so to ‘reduce’ H = K0 K1

to the K0 factor, we seek a dressing field, that is a local map, see [20],

u1 : U → K1 such that u
γ

1

1 = γ−1
1 u1, for any γ1 ∈ K1,

whose matrix expression is

u1 =




1 q 1
2qqt

0 1 qt

0 0 1


 ,

where q : U → Rm∗ is a covector field.

Such a dressing field can be extracted from a ‘gauge-fixing-like’ constraint, χ(̟u1) = 0,

imposed on the dressed Cartan connection ̟1. The vanishing of the (1, 1)-component (thus

(3, 3) as well) of ̟u1 is taken to be such a constraint. On account of (3.3), it explicitly reads

χ(̟u1) : au1 = a − qθ = 0.

Solving the constraint for q leads to

a − qθ = a − qaθa = aµdxµ − qaea
µdxµ = 0 ⇒ qa = aµ(e−1)µ

a,

or in index free notation q = a·e−1, where “·” means greek index summation and will be

used throughout the paper. In the latter, some care should be taken, bearing in mind that

a is a covector, the scalar coefficients of the 1-form a. The distinction should be clear

according to the context. Remark that the contraint yields a solution q which is local in

the field theory sense, (i.e. a differential polynomial in the fields), contrary to the non local

realisation of a dressing field as can be found in [30, 31].

Now, the K1-gauge transformation of the Cartan connection (3.3) gives us,

aγ1 = a − rθ → (aγ1)µ = aµ − raea
µ, or in index free notation aγ1 = a − re,

θγ1 = θ → (eγ1)a
µ = ea

µ in index free notation eγ1 = e.

This implies qγ1 = aγ1 ·e−1γ1 = (a − re) · e−1 = a·e−1 − r = q − r. The other two entries of

uγ1

1 are computed to be (qt)γ1 = qt − rt, and 1
2(qqt)γ1 = 1

2(qqt + rrt) − rqt.

The K1-transformations of u1 is dictated by the K1-gauge transformations of the gauge

potentials i.e. the entries of the Cartan connection matrix. It is thus remarkable that they

precisely allow u1 to be truly a dressing field, as can be seen in matrix notation,

uγ1

1 = γ−1
1 u1 =




1 −r 1
2rrt

0 1 −rt

0 0 1







1 q 1
2qqt

0 1 qt

0 0 1


 =




1 q − r 1
2(qqt + rrt) − rqt

0 1 qt − rt

0 0 1


 . (3.4)
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It is worthwhile to notice, on the contrary, that for γ1, γ′
1 ∈ K1, a simple matrix calculation

shows that γ′
1

γ1 := γ−1
1 γ′

1 γ1 = γ′
1, since K1 is abelian.

Having now at our disposal the dressing field u1, we can proceed to the dressing of the

Cartan connection, in accordance with (2.3). One readily computes

̟1 := ̟u1 = u−1
1 ̟u1 + u−1

1 du1




0 α1 0

θ A1 αt
1

0 θt 0


 =




a − qθ (a − qθ)q + α − qA + 1
2qqtθt + dq 0

θ θq + A − qtθt
(
entry (1, 2)

)t

0 θt θtqt − a


 , (3.5)

where, by construction, a1 = a − qθ ≡ 0. Likewise, for the dressed curvature,

Ω1 := Ωu1 = u−1
1 Ωu1




f1 Π1 0

Θ1 F1 Πt
1

0 Θt
1 −f1


 =




f − qΘ Π − qF1 + fq − 1
2qqtΘt 0

Θ Θq + F − qtΘt
(
entry (1, 2)

)t

0 Θt Θtqt − f


 . (3.6)

By construction, ̟1 and Ω1 are K1-gauge invariant composite fields. This means in par-

ticular that the expression of ̟1 is invariant, that is a1 = 0 = aγ1

1 . It is worthwhile to

notice that in [15] the condition a ≡ 0 is considered as a gauge fixing, named “natural

gauge” in [32], while it actually emerges through a dressing. Moreover in [33], by using an

argument based on a specific Yang-Mills action, the Weyl potential a is set to zero while

our approach is model independent.

Let us now study the behaviour of the composite field ̟1 under Lorentz transforma-

tions, SO(1, m − 1) ⊂ K0, since any element γ0 ∈ K0 is factorized as

γ0 = WS :=




z 0 0

0 1 0

0 0 z−1







1 0 0

0 S 0

0 0 1


 , (3.7)

where z ∈ W and S ∈ SO(1, m − 1) –with ST ηS = η– has been identified with its matrix-

block representation. The action of the Weyl subgroup W is treated seperately in ap-

pendix A.

By its very construction, ̟S
1 depends on the Lorentz gauge transformations of the

Cartan connection ̟ (set z = 1 in (3.2))

̟S = S−1̟S + S−1dS =




a αS 0

S−1θ S−1AS + S−1dS S−1αt

0 θtS −a


 .

Since θS = S−1θ = eS · dx = S−1e · dx, we get qS = aS · (e−1)S = a · (e−1)S = qS,

(qS)t = (qS)t = S−1qt and thus (qqt)S = qqt. Hence, the transformed uS
1 of u1 under the

Lorentz group relies on those of the Cartan connection entries. Once more, it is remarkable

– 8 –
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that in matrix notation it can be recast as

uS
1 = S−1u1S =




1 0 0

0 S−1 0

0 0 1







1 q 1
2qqt

0 1 qt

0 0 1







1 0 0

0 S 0

0 0 1


 =




1 qS 1
2qqt

0 1 S−1qt

0 0 1


 . (3.8)

The latter shows that the K1-valued dressing field u1 is subject to a Lorentz gauge-like

transformation. Therefore, according to a calculation similar to (2.2), the composite fields

̟1 and Ω1 are Lorentz gauge transformed as

̟S
1 = S−1̟1S + S−1dS, ΩS

1 = S−1Ω1S. (3.9)

This allows to conclude that the entries of ̟1 and Ω1 are true SO-gauge fields. This means

that A1 is the true Lorentz/spin connection with curvature R1 := dA1 + A2
1. To sum up,

̟1 and Ω1 are K1-invariant composite fields but still remain SO-gauge fields.

Furthermore, if ̟ is chosen to be the normal conformal Cartan connection (3.1), then

̟1 satisfies similar normality conditions:

Θ1 = 0, Ric(F1) = 0. (3.10)

Indeed from (3.6) one has Θ1 = Θ = 0 and Ric(F1) = Ric(Θq + F − qtΘt) = Ric(F ) = 0.

Furthermore, the trace-free condition f1 = f − qΘ = 0 is obvious. We thus get

̟1 =




0 α1 0

θ A1 αt
1

0 θt 0


 , Ω1 =




0 Π1 0

0 F1 Πt
1

0 0 0


 =




0 dα1 + α1A1 0

0 R1 + θα1 + αt
1θt dαt

1 + A1αt
1

0 0 0


 (3.11)

where A1 is still the Lorentz/spin-connection, α1 may be referred to as the Schouten 1-form

(by solving in α1 the equation Ric(F1) = 0), R1 is the Riemann curvature 2-form, F1 may

be called the Weyl curvature 2-form, and finally, Π1 may be named the Cotton 2-form, that

is the covariant differential of the Schouten 1-form with respect to the spin-connection A1.

The SO-gauge fields ̟1 and Ω1 (normal or not) are associated with the first-order

structure P0 := P(M, K0) = CO(M), since SO ⊂ K0. It then makes sense to ask whether

the Lorentz gauge symmetry can be neutralized by finding an adequate second dressing

field. This is indeed possible as shown in the following.

Second reduction. We want to neutralize the Lorentz subgroup of K0, leaving only the

abelian Weyl subgroup as the final residual gauge symmetry. The suitable dressing field is

extracted from ̟S , or ̟S
1 . Indeed, we have θS = S−1θ which provides the transformation

law for the vielbein e ∈ GLm(R), eS = S−1e. Hence, one may define the local map

u0 : U → GLm+2(R) ⊃ K0, with matrix form, u0 =




1 0 0

0 e 0

0 0 1


 , such that

uS
0 = S−1u0 →




1 0 0

0 eS 0

0 0 1


 =




1 0 0

0 S−1 0

0 0 1







1 0 0

0 e 0

0 0 1


 =




1 0 0

0 S−1e 0

0 0 1


 . (3.12)
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Note that such a field u0 is valued in a larger group than the one to be erased, G′ ≃ GLm ⊃

SO = H ′. Moreover, from ̟γ
1 , see (3.3), one extracts

θγ1 = θ → eγ1 = e, which implies uγ1

0 = u0. (3.13)

Eqs. (3.12) and (3.13) secure that ̟1 can be dressed by u0. This gives rise to a new

composite field which is inert under both the K1- and SO-actions:

̟0 := ̟u0

1 = u−1
0 ̟1u0 + u−1

0 du0

=:




0 P 0

dx Γ g−1·P T

0 dxT·g 0


 =




0 α1e 0

e−1θ e−1A1e + e−1de e−1αt
1

0 θte 0


 , (3.14)

where g is the metric on M induced by the Cartan connection through eT ηe = g. In the

last matrix equality, Γ := e−1A1e + e−1de and P := α1e are definitions, the other entries

are directly obtained from the calculation. In great detail

e−1θ = e−1e·dx = δ ·dx = dx,

θte = θT ηe = dxT ·eT ηe = dxT·g,

e−1αt
1 = e−1η−1αT

1 = g−1·eT αT
1 = g−1·(α1e)T = g−1·P T .

In components, ̟0 thus reads

̟0 =




0 Pµν 0

δρ
µ Γρ

µν gρλPλµ

0 gµν 0


 dxµ, (3.15)

Actually, the transformation under coordinate changes of ̟0, in part due to u0, allows to

identify Γ as a linear connection 1-form. It turns out that ̟0 is parametrized by geometric

objects on M. The curvature associated to ̟0 is the following K1- and SO-invariant

composite field

Ω0 := Ωu0

1 = u−1
0 Ω1u0 =




f1 Π1e 0

e−1Θ e−1F1e e−1Πt

0 Θte −f1


 =:




f0 C 0

T W Ct

0 T t −f0


 . (3.16)

Instead, by computing Ω0 = d̟0 + ̟0
2 directly, the above matrix explicitly reads




f0 C 0

T W Ct

0 T t −f0


=




P ∧ dx dP + P ∧ Γ 0

Γ ∧ dx R + dx ∧ P + g−1·P T ∧ dxT·g ∇g−1 ∧ P T + g−1·CT

0 −dxT ∧
(
∇g + ΓT·g

)
dxT ∧ P T


, (3.17)

where R = dΓ+Γ2 is the curvature of the linear connection Γ on U, and ∇g = dg−ΓT g−gΓ

is the covariant derivative of the metric with respect to the linear connection. The metricity
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condition ∇g = 0 is automatically satisfied as can be checked due to the fact that A1 is

so-valued. Expressing (3.17) in components reads

Ω0 =
1

2




(f0)µσ Cν,µσ 0

T ρ
µσ W ρ

ν,µσ Cρ
µσ

0 Tν,µσ −(f0)µσ


 dxµ ∧ dxσ (3.18)

=




P[µ,σ] ∂[µPσ],ν + P[µ,λΓλ
σ],ν 0

Γρ
[µ,σ]

1
2Rρ

ν,µσ + δρ
[µPσ],ν + P[µ,λ gλρgσ]ν ∇[µgρλPλ,σ] + gρλ 1

2Cλ,µσ

0 ∇[µgσ]ν + Γ[µ,σ]
λgλν −P[µ,σ]


 dxµ ∧ dxσ.

Restricting ourselves to the normal case (3.1), ̟0 provides the so-called Riemannian

parametrization of the normal conformal Cartan connection [10]. The normality conditions

on ̟0 defined by:

T = 0, Ric(W ) = 0.

are fulfilled. Indeed, from both (3.16) and (3.18) one has

T = e−1Θ1 = 0, and Ric(W ) := Ric(e−1F1e) = Ric(e−1Fe) = Ric(F ) = 0, (3.19)

and hence f0 = f1 = P ∧ dx = 0.

Accordingly, T = 0 implies the symmetry of Γ in its lower indices, and it can be shown

in the usual way that Γ can be expressed as a function of g in order to get the Levi-Civita

connection on U. In addition, the condition f0 = 0 renders Pµσ symmetric which is nothing

but the so-called Schouten tensor, so that Cν,µσ = ∇µPσν is the Cotton tensor and W ρ
ν,µσ

is the Weyl tensor. To sum up, in the normal case we have,

̟0 =




0 Pµν 0

δρ
µ Γρ

µν gρλPλµ

0 gµν 0


 dxµ, with Pµν =

−1

(m − 2)

(
Rµν −

R

2(m − 1)
gµν

)
, (3.20)

Ω0 =
1

2




0 Cν,µσ 0

0 W ρ
ν,µσ gρλCλ,µσ

0 0 0


 dxµ ∧ dxσ. (3.21)

Formulae (3.20) and (3.21) are known as the Riemannian parametrization of the normal

conformal Cartan connection. In full generality, without assuming the normality condi-

tions, the composite field given in (3.14) thus provides a more general parametrization of

the conformal Cartan connection.

The composite fields ̟0 and Ω0 (normal or not) are now associated to the Weyl

bundle PW. Remark that this step of reducing P0, with structure group K0 = W × SO ≃

CO(1, m − 1), to P
W

with abelian structure group W, is quite analogous to the case of the

electroweak sector of the Standard Model where the initial bundle with structure group

SU(2) × U(1) was reduced to a subbundle with abelian structure group U(1); see [19, 24].
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Two steps in one: the compatibility conditions. It is possible to go from (̟, Ω) to

(̟0, Ω0) in a single step, because the dressing fields obey necessary compatibility conditions

which are the last two equations in the following collected set

uγ1

1 = γ−1
1 u1, uS

0 = S−1u0 equation (3.4) and (3.12) respectively.

uS
1 = S−1u1S, uγ1

0 = u0 equation (3.8) and (3.13).

These imply,

(
u1u0

)γ1 = uγ1

1 uγ1

0 = γ−1
1 u1u0 = γ−1

1

(
u1u0

)
,

(
u1u0

)S
= uS

1 uS
0 = S−1u1SS−1u0 = S−1(

u1u0
)
,

which show that the double dressing field u1u0 is a dressing for the groups K1 and SO

respectively. The above two equations say more, since they imply (in full detail),

(
u1u0

)Sγ1 =

((
u1u0

)S
)γ1

=

(
S−1(

u1u0
))γ1

= (Sγ1)−1(
u1u0

)γ1

= γ−1
1 S−1γ1γ−1

1

(
u1u0

)
= γ−1

1 S−1(
u1u0

)
= (Sγ1)−1(

u1u0
)
,

so that u1u0 turns out to be a dressing field for the whole gauge subgroup SO K1.

To sum up, had we guessed the sole composite dressing field u := u1u0 : U →

K1 GLm+2(R), we could have directly dressed the Cartan connection and its curvature

in order to get at once the composite fields ̟0 := ̟u and Ω0 := Ωu, constructed above.

Since ̟0 and Ω0 are associated to the Weyl bundle P
W

, a residual Weyl gauge symmetry

is expected to hold. The next section addresses this issue.

3.3 The residual Weyl symmetry

The goal of our analysis is to obtain the transformations of the final composite fields

̟0 (eq. (3.14)) and Ω0 (eq. (3.17)) under the residual Weyl symmetry. These residual

transformations arise from the combined transformations under the Weyl group of the

Cartan connection ̟ and its curvature Ω on the one hand, and, of the two dressing fields,

on the other hand. Indeed, one is led to define the Weyl transformation of the fields as

̟W
0 :=

(
̟u1u0

)W
=

(
̟W

)uW
1

uW
0 , and ΩW

0 :=
(
Ωu1u0

)W
=

(
ΩW

)uW
1

uW
0 , (3.22)

where W was defined in (3.7). The Weyl transformation of the Cartan connection is,

̟W = W −1̟W + W −1dW =




a + z−1dz z−1α 0

zθ A αtz−1

0 zθt −a + zdz−1


 , (3.23)

from which we can see that θW = zθ → eW = ze. Turning this into a matrix notation,

one has

uW
0 :=




1 0 0

0 eW 0

0 0 1


 = W̃u0 :=




1 0 0

0 z 0

0 0 1







1 0 0

0 e 0

0 0 1


 =




1 0 0

0 ze 0

0 0 1


 , (3.24)
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where W̃ is thus another matrix representation of the Weyl group, adapted to the dressing

field u0, different than the initial representation W .

The Weyl tranformation of the dressing u1 stems from (3.23): aW = a + z−1dz, where

a is a 1-form, so that in covector notation aW = a+z−1∂z =: a+ζ, where a now stands for

the scalar coefficients of the 1-form a := a·dx. Then, given u1 ∼ q := a·e−1, one computes

qW := aW · (e−1)W = (a + ζ)·z−1e−1 = z−1(
q + ζ ·e−1)

, (3.25)

likewise, (qt)W = (qW )t. One readily verifies (qqt)W = qW (qW )t. These transformation

laws suggest that the abelian composition law in the subgroup K1 must enter into the

game. Having this point in mind, a rather tricky matrix expression for the transformed

field uW
1 is found out

uW
1 =




1 qW 1
2qW (qW )t

0 1 (qW )t

0 0 1


=




1 z−1
(
q + ζ ·e−1

)
1
2z−2

(
q + ζ ·e−1

)(
q + ζ ·e−1

)t

0 1 z−1
(
q + ζ ·e−1

)t

0 0 1


 (3.26)

= W −1u1k1W = W −1k1u1W := W −1 u1




1 ζ ·e−1 1
2ζ ·e−1(ζ ·e−1)t

0 1 (ζ ·e−1)t

0 0 1


 W

which suggests to proceed as after (3.8) in order to get the Weyl transformations of the

composite fields.

Residual Weyl gauge symmetry of ̟0. In virtue of the definition (3.22), for the

composite field ̟0 we have,

̟W
0 :=

(
̟W

)uW
1

uW
0 =

(
̟W

)W −1u1k1W W̃ u0

= ̟u1k1u0W W̃ = ̟u1u0u−1

0
k1u0W W̃ = ̟0

u−1

0
k1u0W W̃

=: W̄ −1̟0W̄ + W̄ −1dW̄ .

where we have used the fact that [WW̃, u0] = 0 and defined the z-dependent matrix

W̄ := u−1
0 k1u0WW̃ =




z zζ 1
2z−1ζ ·g−1 ·ζT

0 zδ z−1g−1 ·ζT

0 0 z−1


 .

A straightforward calculation yields




0 P W 0

dxW ΓW (g−1P T )W

0 (dxT·g)W 0


 =




0 P + ∇ζ − ζ ·dxζ + 1
2ζ ·g−1·ζT dxT·g 0

dx Γ + z−1dzδ + ζdx − g−1·ζT dxT ·g z−2g−1·
(
entry (1, 2)

)T

0 dxT·z2g 0


 . (3.27)
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Let us elaborate on this result. Entry (2, 1) gives dxW = dx, which is the obvious invariance

of the coordinate chart under a Weyl rescaling. Entry (3, 2) gives,

(dxT · g)W = dxT · gW = dxT · (z2g), in components
(
gµν

)W
= z2gµν , (3.28)

which is the Weyl rescaling of the metric tensor under the conformal factor z2. Entry (2,

2) gives in components

(
Γρ

µν

)W
= Γρ

µν + δρ
ν ζµ + δρ

µ ζν − gρλ ζλ gµν , (3.29)

with ζµ := z−1∂µz. Entry (1, 2) gives in components,

(
Pµν

)W
= Pµν + ∇µζν − ζµ ζν +

1

2
ζλζλ gµν . (3.30)

with ζλ := gλαζα . Entry (2, 3) gives in components,

(
gρλPλµ

)W
= z−2gρλ

(
Pλµ + ∇µζλ − ζλζµ +

1

2
gλµ ζαζα

)
,

which is redundant with (3.28) and (3.30) respectively.

Remark. Equations (3.29) and (3.30) look like the familiar conformal transformations of

the Christoffel symbols and of the Schouten tensor. Notice however that in this framework,

the metricity condition ∇g = 0 being guaranteed, Γ reduces to the Levi-Civita connection

in the normal case (T = 0) only. We will return to that specific case down below. However,

the above calculations hold even without restricting ourselves to this assumption. We then

obtain at once the Weyl variation of both the symmetric and anti-symmetric parts of Γ

and P . Explicitly, decomposing Γρ
µν = Γρ

[µν] + Γρ
(µν) and Pµν = P[µν] + P(µν), then for

the Christoffel symbols of the linear connection

(
Γρ

[µν]

)W
= Γρ

[µν], and
(
Γρ

(µν)

)W
= Γρ

(µν) + δρ
ν ζµ + δρ

µ ζν − gρλ ζλ gµν , (3.31)

while for the coefficients of the 1-form P one gets

(
P[µν]

)W
= P[µν] − ζλΓλ

[µν]
(3.32)

and
(
P(µν)

)W
= P(µν) + ∂(µζν) − ζλΓλ

(µν) − ζµ ζν +
1

2
ζλζλ gµν ,

where ∂(µζν) = ∂µζν from the very definition of ζ. The two equalities concerning the

symmetric parts are nothing but the transformations of the Christoffel symbols and of the

Schouten tensor under Weyl rescaling of the metric.

Thus, with (3.29) and (3.30), not only do we recover classical results in a much more

effective way, but we have more: we do not need to assume a priori that Γ and P are

functions of the metric g, as it is usually the case when one works with the Levi-Civita

connection. It is pretty noticeable to find out these general Weyl transformations as a

‘top-down’ process.
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Residual Weyl gauge symmetry of Ω0. Similarly, for the composite field Ω0

(eq. (3.17)), formula (3.22) gives

ΩW
0 :=

(
ΩW

)uW
1

uW
0 =

(
ΩW

)W −1u1k1W W̃ u0 = Ωu1u0u−1

0
k1u0W W̃ =: W̄ −1Ω0W̄ ,




fW
0 CW 0

T W W W CtW

0 T tW
−fW

0


 =




f0 − ζ ·T C − ζ ·W + (f0 − ζ ·T )ζ + 1
2ζ ·g−1 ·ζT T T ·g 0

T W + Tζ − g−1 ·ζT T T·g z−2g−1
(
entry (1, 2)

)T

0 T T ·z2g (ζ ·T )T − f0


 . (3.33)

In components, entries (1, 1) and (3, 3) give

(
2P[µ,σ]

)W
= 2P[µ,σ] − ζλT λ

µσ, (3.34)

which just reproduces the first equation in (3.32) above, since 1
2T λ

µσ = Γλ
[µ,σ].

Entry (2, 1) gives,

(
T ρ

µσ

)W
= T ρ

µσ (3.35)

which reproduces the first equation in (3.31).

Entry (3, 2) is redundant with (3.35) and (3.28). Entry (2, 2) gives,

(
W ρ

ν,µσ

)W
= W ρ

ν,µσ + T ρ
µσ ζν − gρλζλ Tµσ

αgαν (3.36)

Entry (1, 2) leads to

(
Cν,µσ

)W
= Cν,µσ − ζλW λ

ν,µσ + ζλ δλ
ν fµσ +

1

2
(ζλgλαζα)Tµσ

βgβν − ζλT λ
µσ ζν . (3.37)

At last, entry (2, 3) is redundant with (3.28) and (3.37).

Residual Weyl gauge freedom of ̟0 and Ω0 in the normal case. It is now

straightforward to specialize the above transformations to the case where the initial Cartan

connection ̟ is normal. The dressed normal conformal Cartan connection ̟0 has been

given in (3.20), with curvature (3.21). It is readily seen from the Weyl variation ΩW
0 given

in (3.33) that the normality of ̟0, as stated by (3.19), is preserved under the action of the

Weyl gauge group.

Formula (3.27) remains formally unchanged but Γ becomes the Levi-Civita connection

and P is the Schouten tensor, while the Weyl variation of the curvature (3.33) reduces to

ΩW
0 =




0 CW 0

0 W W CW t

0 0 0


 =




0 C − ζ ·W 0

0 W z−2g−1
(
C − ζ ·W

)T

0 0 0


 .
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The Weyl rescaling of the metric tensor is still given by (3.28). But (3.29) and (3.30)

now expresses respectively the transformations of the Levi-Civita connection and of the

Schouten tensor under Weyl rescaling. Equation (3.36) reduces to

(
W ρ

ν,µσ

)W
= W ρ

ν,µσ (3.38)

and is the well known invariance of the Weyl tensor under Weyl rescaling. Finally, (3.37)

gives

(
Cν,µσ

)W
= Cν,µσ − ζλW λ

ν,µσ, (3.39)

which is the transformation of the Cotton-York tensor under Weyl rescaling.

4 The dressing field and the BRST framework

Since its inception in the mid 70’s by Becchi, Rouet and Stora [21, 22] and by Tyutin [23],

the BRST formalism has seeded considerable work, and has been generalized to a large

class of theories and became a standard tool in the analysis of gauge field theories and

their quantization. For further developments on the techniques, see for instance [34–39].

In the following, we give the minimal definition of the BRST algebra of a theory and

show how the latter is modified through the dressing field method. Then we apply the

construction to General Relativity (GR) and to the second order conformal structure.

4.1 Residual BRST algebra

Consider the bundle P(M, H) with a (local) connection A together with a section ψ of any

associated bundle. Given the h-valued ghost v, the BRST algebra is,

sA = −Dv, sF =
[
F, v

]
, sψ = −ρ∗(v)ψ, and sv = −

1

2
[v, v],

with D = d + [ω, ], and F = dA + 1
2 [A, A]. The commutator [α, β] = αβ − (−)|α| |β|βα

is graded according to total degree which consists of the form and ghost degrees. ρ∗ is the

representation of the Lie algebra h on matter fields. The BRST operator, s, is nilpotent:

s2 = 0.

This can be compactly rewritten under the elegant algebraic equation, the so-called

“Russian formula” [29] (also named “horizontality condition” [40, 41])

(d + s)(A + v) +
1

2
[A + v, A + v] = F , (4.1)

according to an expansion with respect to the ghost degree. The sum A + v is named the

“algebraic connection” [42].

As a first basic result, one states:

Lemma 1 (Modified BRST algebra). Let u : U → G′ be a field as in section 2 on which

the action of the gauge group H is not specified yet. Let

Â := u−1Au + u−1du, F̂ = u−1Fu, and ψ̂ := ρ(u−1)ψ,
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be the corresponding composite fields. Then there is a modified BRST algebra:

sÂ = −D̂v̂, sF̂ =
[
F̂ , v̂

]
, sψ̂ = −ρ∗(v̂)ψ̂, and sv̂ = −

1

2
[v̂, v̂], (4.2)

with new ghost given by

v̂ = u−1vu + u−1su. (4.3)

This composite ghost is the central new variable. To the best of our knowledge, first

appearances of such an object in specific examples can be found in [8, 43].

Proof. It is easily checked by expressing each variable of the initial BRST algebra as func-

tion of the composite variables and the dressing field. In the course of the checking, the

explicit expression for the variation su is not required.

Accordingly, we have the following

Corollary 2. One can define a composite algebraic connection,

Â + v̂ = u−1(
A + v

)
u + u−1(d + s)u (4.4)

which, by virtue of the above modified BRST algebra, satisfied the modified Russian formula,

(d + s)
(
Â + v̂

)
+

1

2

[
Â + v̂, Â + v̂

]
= F̂ . (4.5)

Three relevant possibilities. The modified BRST algebra of Lemma 1 can take various

presentations according to explicit expression of the composite ghost which is dictated by

a given BRST transformation of the field u : U → G′. In this respect, three cases will be

considered.

First case. Suppose u is subject to a gauge-like finite H-transformation, that is

uγ = γ−1uγ, for γ ∈ H. Then its BRST transformation, mimicking infinitesimal gauge

transformations with the ghost v as h-valued parameter, is

su =
[
u, v

]
. (4.6)

This implies that the ghost is kept unchanged v̂ = v and (4.2) reads

sÂ = −D̂v, sF̂ =
[
F̂ , v

]
, sψ̂ = −ρ∗(v)ψ̂, and sv = −

1

2
[v, v]. (4.7)

This is not a surprise since if u were a gauge element u ∈ H, the fields Â, F̂ and ψ̂ would

actually be the H-gauge transformed of A, F and ψ respectively, satisfying the same BRST

algebra.

Second case. Suppose that u is a dressing field for H that is uγ = γ−1u, for γ ∈ H.

Then its BRST transformation is,

su = −v u. (4.8)
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This implies that the composite ghost vanishes v̂ = 0. The H-symmetry is thus annihilated

and the modified BRST algebra (4.2) reduces to the trivial algebra,

sÂ = 0, sF̂ = 0, and sψ̂ = 0. (4.9)

This expresses that Â, F̂ and ψ̂ are H-gauge invariants fields. In that case, it is stressed

that the composite fields coming out from the dressing field method ought to be good

candidates for being “observables”.

Third case. Let H ′ ⊂ H be a Lie subgroup with Lie algebra h′. Suppose that u

transforms according to uγ′

= γ′−1u for γ′ ∈ H′. For the time being, we left unspecified

the transformation uγ0 for γ0 ∈ H \ H′. Suppose we can find a AdH -invariant complement,

p, to h′ in h, so that h = h′ ⊕ p. The ghost splits according to v = vh = vh′ + vp and

accordingly the BRST operator splits too as s = sh = sh′ + sp with

s2 = 0 ⇔ s2
h′ = s2

p = sh′ sp + sp sh′ = 0 ,
(4.10)

sv = −
1

2
[v, v] ⇔ sh′vh′ = −

1

2
[vh′ , vh′ ], sh′vp = −[vh′ , vp], spvp = −

1

2
[vp, vp].

The BRST transformation of the dressing field is then,

su = shu = sh′u + spu = −vh′u + spu, (4.11)

where spu is left unspecified. This implies for the composite ghost,

v̂ = u−1vhu + u−1shu = u−1vh′u + u−1vpu − u−1vh′u + u−1spu

= u−1vpu + u−1spu =: v̂p, (4.12)

showing that the whole H′ subsector has been neutralized. The composite ghost v̂p encodes

the residual gauge symmetry. Thus, the modified BRST algebra (4.2) reads

sÂ = −D̂v̂p, sF̂ =
[
F̂ , v̂p

]
, sψ̂ = −ρ∗(v̂p)ψ̂, and sv̂p = −

1

2

[
v̂p, v̂p

]
, (4.13)

and gives the infinitesimal residual H/H′ gauge transformations of the composite fields Â,

F̂ and ψ̂. This expresses the reduction of the BRST algebra we started with.

These three cases cover pertinent types of erasure (none, total, partial) of gauge sym-

metry. Let us apply these mechanisms to GR, on the one hand, and to the second order

conformal structure, on the other hand.

4.2 Application to the geometry of General Relativity

The geometry underlying GR considered as a gauge theory, is a Cartan geometry (P, ̟),

where P(M, H) = SO(M) is a principal bundle with H = SO(1, m − 1) the Lorentz group

and ̟ ∈ Ω1(U, g) is a (local) Cartan connection on U ⊂ M with values in g the Lie algebra

of the Poincaré group G = SO ⋉Rm. One has the matrix writing

̟ =

(
A θ

0 0

)
=

(
Aa

b,µ ea
µ

0 0

)
dxµ,
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with A ∈ Ω1(U, h) the Lorentz connection and θ ∈ Ω1(U,Rm) the vielbein 1-form. The

greek indices are spacetime indices, while latin indices are “internal” (gauge)-Minkowski

indices. The curvature is

Ω = d̟ +
1

2
[̟, ̟] = d̟ + ̟2 →

(
F Θ

0 0

)
=

(
dA + A2 dθ + A θ

0 0

)
,

with F the Riemann 2-form and Θ the torsion 2-form. In this matrix notation, the Lorentz

ghost reads v =

(
vL 0

0 0

)
and the Lorentz BRST algebra is

s̟ = −Dv, sΩ = [Ω, v], sv = −
1

2
[v, v] = −v2,

(
sA sθ

0 0

)
=

(
−DvL −vLθ

0 0

)
,

(
sF sΘ

0 0

)
=

(
[F, vL] −vLΘ

0 0

)
,

(
svL 0

0 0

)
=

(
−v2

L θ

0 0

)
.

Of course s2 = 0. This matrix algebra handles the infinitesimal SO-gauge transformations

of the variables of the theory.

As proposed in [19] the dressing field is the vielbein, u =

(
e 0

0 1

)
: U → GLm(R). The

corresponding composite fields express as

̟̂ = u−1̟u + u−1du =

(
e−1Ae + e−1de e−1θ

0 0

)
=:

(
Γ dx

0 0

)
,

where Γ is a linear connection compatible with the metric defined by g = eTηe, and

Ω̂ = u−1Ωu = D̂ ̟̂ = d ̟̂ + ̟̂ 2 =

(
dΓ + Γ2 Γ·dx

0 0

)
=:

(
R T

0 0

)
,

where R is the Riemann tensor and T is the torsion tensor.

The key element of the modified BRST algebra is of course the composite ghost. To find

its expression we only need to determine how the field u transforms under the action of the

(initial) BRST operator. It is readily read from s̟ above: sθ = −vLθ → se·dx = −vLe·dx.

Hence,

su = −vu →

(
se 0

0 0

)
=

(
−vLe 0

0 0

)
,

which is of course the defining BRST transformation of a dressing field. Therefore the

composite ghost vanishes by

v̂ = u−1vu + u−1su = u−1vu + u−1(−vu) = 0,

and we have the trivial modified BRST algebra,

s ̟̂ =

(
sΓ sdx

0 0

)
= 0, sΩ̂ =

(
sR sT

0 0

)
= 0.
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This expresses the invariance of the coordinate chart, and by construction the SO-gauge

invariance of Γ, R and T . The composite fields ω̂ and Ω̂ belong to the natural geometry of

M. They are blind to the initial Lorentz gauge symmetry since the latter has been fully

neutralized by the dressing field u. GR illustrates case two discussed above. Let us now

turn to the following less trivial example.

4.3 Application to the second order conformal structure

According to section 3.1, the structure group of the second order conformal structure

P(M, H) is H = K0 K1 = (SO × W) K1. Turning the infinitesimal parameters (vL, ǫ, ι)

into Faddeev-Popov ghosts for the Lie algebra co(1, m−1)⊕Rm∗ = so(1, m−1)⊕R⊕Rm∗,

the matrix-wise ghost decomposes into symmetry sectors (L for Lorentz, W for Weyl and

i for the inversions) as

v =




ǫ ι 0

0 vL ιt

0 0 −ǫ


 = v0 + vi = vL + vi + vW =




0 ι 0

0 vL ιt

0 0 0


 +




ǫ 0 0

0 0 0

0 0 −ǫ


 , (4.14)

where the Lorentz ghost vL is identified with its matrix block representation. The corre-

sponding Slavnov operation splits accordingly as

s = s0 + si = sW + sL + si ,

and fulfils (4.10).

With the K1-dressing field u1 : U → K1, see (3.4), in addition to the composite fields

̟1 = ̟u1 , Ω1 = Ωu1 , one constructs the first composite ghost

v̂1 := vu1 = u−1
1 vu1 + u−1

1 su1 = u−1
1

(
vW + vL + vi

)
u1 + u−1

1

(
sW + sL + si

)
u1.

Upon linearizing the finite transformations (3.4), (3.8) and (3.26), one obtains the following

BRST variations of the dressing field u1

siu1 = −viu1,

sLu1 =
[
u1, vL

]
,

and sWu1 =




0 −ǫq + ∂ǫ · e−1 −ǫqqt + ∂ǫ · e−1qt

0 0 (−ǫq + ∂ǫ · e−1)t

0 0 0


 , (4.15)

which illustrate the three cases discussed in section 4.1. The first composite ghost is then

v̂1 = u−1
1 vWu1 + u−1

1 vLu1 + u−1
1 viu1 + u−1

1 sWu1 + u−1
1

[
u1, vL

]
− u−1

1 viu1

= u−1
1 vWu1 + u−1

1 sWu1 + vL

=




ǫ ∂ǫ·e−1 0

0 vL (∂ǫ·e−1)t

0 0 −ǫ


 . (4.16)

In the course of the computation, the ghost vi for the inversion sector has been killed by

the dressing u1 so that the subalgebra corresponding to si is now trivial,

siω1 = 0 and siΩ1 = 0, (4.17)
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and expresses the expected K1-invariance of the composite fields ̟1 and Ω1. Thanks to

the dressing u1, the BRST operator s = s0 + si = sW + sL + si reduces to s0 = sW + sL,

and the Lorentz subalgebra is kept unchanged,

sL̟1 = −D1vL and sLΩ1 =
[
Ω1, vL

]
,

where D1 = d +
[
̟1,

]
is the covariant derivative with respect to ̟1. This means that

̟1 and Ω1 still behaves as connection and curvature under the Lorentz gauge group SO,

as warranted by sLu1 in (4.15). This is a hint, according to the example of GR treated

in section 4.2, that a new dressing operation to neutralize the Lorentz symmetry can be

performed.

Second reduction and final BRST algebra. With the dressing u0 :U→GLm+2(R) ⊃

SO(1, m − 1) given by (3.12), beside the composite fields ̟0 := ̟u0

1 and Ω0 := Ωu0

1

respectively given by (3.14) and (3.17), one construct the second composite ghost

v̂0 = u−1
0 v̂1u0 + u−1

0 s0u0

= u−1
0

(
u−1

1 vWu1 + u−1
1 sWu1

)
u0 + u−1

0 vLu0 + u−1
0 sWu0 + u−1

0 sLu0.

The BRST transformations of u0 under sW and sL are respectively obtained by linearizing

uW
0 (3.24) and uS

0 (3.12):

sWu0 = ǫ̃u0 →




0 0 0

0 sWe 0

0 0 0


 =




0 0 0

0 ǫ 0

0 0 0







1 0 0

0 e 0

0 0 1


 and sLu0 = −vLu0 (4.18)

The final composite ghost is then,

v̂0 = u−1
0

(
u−1

1 vWu1 + u−1
1 sWu1

)
u0 + u−1

0 vLu0 + u−1
0 ǫ̃u0 + u−1

0

(
− vLu0

)
,

= u−1
0

(
u−1

1 vWu1 + u−1
1 sWu1

)
u0 + ǫ̃u−1

0 u0,

=




1 0 0

0 e−1 0

0 0 1







ǫ ∂ǫ · e−1 0

0 0 η−1(e−1)T · ∂ǫ

0 0 −ǫ







1 0 0

0 e 0

0 0 1


 +




0 0 0

0 ǫδ 0

0 0 0


 ,

=




ǫ ∂ǫ 0

0 ǫδ g−1∂ǫ

0 0 −ǫ


 =: v̂W. (4.19)

Comparison with the first composite ghost (4.16) shows that the ghost vL has been killed

by the second dressing u0, and the Lorentz subsymmetry corresponding to sL is now trivial,

sL̟0 = 0 and sLΩ0 = 0. (4.20)

Furthermore the dressing u0 satisfies the compatibility condition siu0 = 0, which is the

infinitesimal version of (3.13), so that we also have

si̟0 = 0 and siΩ0 = 0. (4.21)
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The triviality of these two subalgebras expresses the K1- and SO-invariance of the composite

fields ̟0 and Ω0. Their infinitesimal residual Weyl gauge transformations are given by the

final reduced BRST algebra, with sW
2 = 0,

sW̟0 = −D0v̂W, sWΩ0 =
[
Ω0, v̂W

]
, and sWv̂W = −v̂ 2

W, (4.22)

with a final composite ghost v̂W depending only on the Weyl ghost ǫ and its first order

derivatives.

Two steps in one. Mirroring the finite version given in section 3.2, we can reduce the

inital BRST algebra with s = sW + sL + si to the final residual BRST algebra with sW in a

single step thanks to the dressing field u = u1u0 : U → K1 GLm+2(R). The corresponding

composite ghost reads,

v̂ = u−1vu + u−1su = u−1(vW + vL + vi)u + u−1(sW + sL + si)u

One collects the BRST variations of the two dressing fields u1 and u0

siu1 = −viu1, sLu0 = −vLu0, and sLu1 =
[
u1, vL

]
, siu0 = 0,

the last two being compatibility conditions,2 and proves (sL + si)u = −(vL + vi)u. This

means that u is a dressing under the subgroup SO K1. Hence, the composite ghost reduces

to (4.19) since

v̂ = u−1vWu + u−1 sWu = v̂W.

We see right away that vL and vi have been killed by the dressing u so that the correspond-

ing subalgebras are trivial,

si̟0 = 0 and siΩ0 = 0; sL̟0 = 0 and sLΩ0 = 0.

The triviality of these two subalgebras means that the composite fields ̟0 and Ω0 display

only a residual Weyl gauge freedom handled by the residual Weyl BRST algebra given

by (4.22).

To sum up, one has a dressing field

u := u1u0 =




1 q 1
2qqt

0 1 qt

0 0 1







1 0 0

0 e 0

0 0 1


 (4.23)

with u1 defined by a − qθ = 0 a gauge fixing like condition depending locally on entries of

the gauge field ̟. Upon writing

su u−1 =




0 −ι 0

0 −vL −ιt

0 0 0


 +




0 ∂ǫ·e−1 −ǫqqt

0 ǫ1 (∂ǫ·e−1)t − 2ǫqt

0 0 0


 =: −ℓ + ̺u−1

2See [20] for a general treatment in the BRST case.
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the BRST variation reads su = −ℓu + ̺, with ̺ = sWu, see (4.11). The first ghost matrix

−ℓ = −vL − vi in the r.h.s. cancels out both the K1 and Lorentz SO(1, m − 1) actions

according to

v̂ = u−1vu + u−1su = u−1(ℓ + vW)u + u−1(−ℓu + ̺) = u−1vWu + u−1̺ = v̂W

as a realisation of formula (4.12).

The residual Weyl BRST algebra: explicit results. We restrict ourselves to the

normal Cartan geometry. Let us recall (see (3.20) and (3.21))

̟0 := ̟u =




0 P 0

dx Γ g−1·P T

0 dxT·g 0


 , and Ω0 := Ωu =




0 C 0

0 W g−1·CT

0 0 0


 .

The residual BRST algebra given by (4.22) is straightforwardly computed thanks to the

matrix form. The infinitesimal residual Weyl gauge transformation of the dressed normal

conformal Cartan connection is,

sW̟0 = − dv̂W − ̟0v̂W − v̂W̟0

=




−dǫ −d(∂ǫ) 0

0 −dǫδ −d(g−1 ·∂ǫ)

0 0 dǫ


 −




0 P ·ǫδ Pg−1∂ǫ

dxǫ dx∂ǫ + Γǫδ Γg−1∂ǫ − g−1P T ǫ

0 dxT·g ǫδ dxT·g g−1∂ǫ




−




∂ǫdx ǫP + ∂ǫΓ ∂ǫg−1P T

ǫδdx ǫδΓ + g−1dǫdxT·g ǫδg−1 ·P T

0 −ǫdxT·g 0


 .

Reminding that ǫ anticommutes with forms of odd degree, that d = dx ·∂ and using the

metricity condition ∇g−1 = dg−1 + g−1ΓT + Γg = 0 in the computation of entry (2, 3), we

obtain



0 sWP 0

sWdx sWΓ sW

(
g−1 ·P T

)

0 sW

(
g ·dx

)
0


 =




0 −∇∂ǫ 0

0 −dǫδ − dx∂ǫ − g−1dǫdxT ·g −g−1 ·(∇∂ǫ)T − 2ǫg−1·P T

0 2ǫdxT ·g 0


 ,

where, ∇∂ǫ = d(∂ǫ) + ∂ǫ·Γ, is the covariant derivative. Let us detail each entry in com-

ponents. Entry (2,1) is sWdxµ = 0 and expresses the invariance of the coordinate chart.

This will be of constant use for the other entries. Entry (3, 2) is then,

sW gµν = 2ǫ gµν , (4.24)

which gives the infinitesimal Weyl rescaling of the metric tensor, see (3.28). Entry (2, 2)

reads in components,

sWΓρ
µν = δρ

ν∂µǫ + δρ
µ∂νǫ + gρλ∂λǫgµν , (4.25)
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which is the infinitesimal Weyl transformation of the Christoffel symbols, of the Levi-Civita

connection. Entry (1, 2) is,

sWPµν = ∂µ(∂νǫ) − ∂λǫΓλ
µν = ∇µ(∂νǫ), (4.26)

which is the infinitesimal Weyl transformation of the Schouten tensor. Finally entry

(2, 3) is,

sW

(
gρλPλµ

)
= −2ǫgρλPλµ + gρλ

(
∂µ(∂λǫ) − Γµλ

α∂αǫ

)
. (4.27)

This is redundant with (4.24) and (4.26).

Comparing with the finite transformations given in section 3.3 we see that the residual

BRST algebra gives very easily the complete infinitesimal counterpart. Except for the

Schouten tensor because the latter has a finite transformation which contains terms of

order two in the Weyl parameter ǫ. These terms are of course out of reach for the linear

approximation captured by the BRST machinery.

The infinitesimal Weyl gauge transformation of the dressed normal curvarture is given

by sWΩ0 = Ω0v̂W − v̂WΩ0. Remembering this time that ǫ commutes with even forms and

using Wg−1 = −g−1W T (due to the η-skew symmetry of F1), we obtain

sWΩ0 =




0 sWC 0

0 sWW sW

(
g−1 ·CT

)

0 0 0


 =




0 −∂ǫ·W 0

0 0 −g−1·W T ·∂ǫT − 2ǫg−1 ·CT

0 0 0


 .

Using again the fact that sWdxµ = 0 we can write the entries in components. Entry

(1, 2) gives,

sWCν,µσ = −∂λǫW λ
ν,µσ, (4.28)

which is the infinitesimal transformation of the Cotton tensor under Weyl rescaling. Entry

(2, 2) gives

sWW ρ
ν,µσ = 0, (4.29)

which states the invariance of the Weyl tensor under Weyl rescaling. Finally, entry (2, 3) is

sW

(
gρλCλ,µσ

)
= −2ǫgρλCλ,µσ − gρλWλ

α
,µσ∂αǫ. (4.30)

This is redudant with (4.28) and (4.24). Once more, it should be pointed out how easily

the modified BRST algebra provides the complete infinitesimal counterparts of the finite

transformations derived in section 3.3.

At last, the identity satisfied by the final composite ghost is,

sWv̂ = − v̂ 2
W →




sWǫ sW(∂ǫ) 0

0 sWǫδ sW

(
g−1∂ǫ

)

0 0 −sWǫ


 =




0 0 0

0 0 −2ǫg−1∂ǫ

0 0 0


 , (4.31)
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by recalling that ǫ anticommutes with itself (the same holds for ∂ǫ). This just gives back

the Weyl rescaling of the (inverse) metric sWg−1 = −2ǫg−1 which is redundant with (4.24),

but also

sWǫ = 0, (4.32)

which expresses the fact that the residual Weyl gauge group is abelian.

As a byproduct of this section, let us consider the composite algebraic connection

introduced in Corollary 2. It reads,

̟0 + v̂W =




ǫ P + ∂ǫ 0

dx Γ + ǫ δ g−1·(P + ∂ǫ)T

0 dxT·g −ǫ


 . (4.33)

Structurally, the algebraic connection is expressed as combinations between the metric g

and the Weyl ghost ǫ together with their derivatives. In [44–46] these combinations have

been obtained through a completely different approach and turn out to be relevant for the

algebraic study of the Weyl anomaly. Noteworthy, let us recall that in the present paper,

we were able to use the well-tested BRST setting [29, 47] on the normal conformal Cartan

connection, and we have subsequently modified the differential algebra by the dressing field

method. The route followed is rather robust and gives a clear well-grounded geometrical

picture from which these combinations naturally emerge.

5 Conclusion

In this paper, with a clear geometric view, we exhibited an example that extends the

dressing field method given in [19] to the second order conformal structure for which two

dressing operations have been performed. Their composition was secured by the fact that

the two dressing fields fulfilled compatibility conditions regarding their transformation laws

with respect to various symmetry sectors. The scheme can be generalized to any number

of dressing fields, for instance to higher order G-structures [20].

In this example, treated in the very useful matrix notation, the final composite fields

give the Riemannian parametrization of the normal conformal Cartan connection together

with its curvature. The remaining symmetry has been shown to be the Weyl rescalings.

The residual transformation of the composite fields provides at once well-known conformal

transformations of noticeable tensors in conformal geometry of M, namely, the (pseudo-

Riemannian) metric, the Schouten, Cotton and Weyl tensors and the Christoffel symbols

of the Levi-Civita connection. This is summarized in table 1. In short, the dressing

scheme provides gauge like transformation recombinations of the fields which amount to

eliminating spurious degrees of freedom to the benefit of geometrical objects together with

their properties under the Weyl symmetry.

Let us notice that expressions (3.11) of the normal conformal Cartan connection and its

curvature, after the dressing by u1, turn out to be the “tractor connection” and its curvature
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Starting geometry Outcoming geometry

Second order Degrees of freedom Natural geometry Degrees of freedom
conformal structure

(1) Variables ̟ ∈ Ω1(U, g) m
(
1+ m(m−1)

2 +2m
)

gµν

m(m+1)
2

Γρ
µν m3

Pµν 0

(2) Symmetries (SO × W)Rm∗ m(m−1)
2 + 1 + m W = R+\{0} 1

(3) Contraints Θ = 0 m m(m−1)
2 ∇g = 0 m m(m+1)

2

Ric(F)=0 m(m+1)
2 T = 0 m m(m−1)

2

f = 0 m(m−1)
2

Total degrees

of freedom

(1)−(2)−(3)

m(m+1)
2 − 1 m(m+1)

2 − 1

Table 1. Counting the degrees of freedom of the normal conformal geometry before and after the

dressing operation. Remark that the normal geometry is the most natural one since its total degrees

of freedom are those of the conformal class [g] of the metric g.

given in [48]. This suggests that the dressing field method ought to be implemented in the

language of tractor calculus related to parabolic Cartan geometries.3

The BRST counterpart of the dressing field method has been exhibited. Its central

object is the composite ghost which corresponds to a “field dependent change of generators”

and encodes the residual gauge symmetry of the composite field, if any. Applied to the

second order conformal structure, the composite algebraic connection (composite field +

composite ghost) is shown to give a structural geometric interpretation of the cohomological

results obtained in [44–46] regarding the Weyl symmetry. Morevover the corresponding

modified BRST algrebra provides in a very effective manner the linearized version of the

residual gauge symmetry of Weyl rescalings derived in the first part of the paper.

As already noticed in [19], the dressing field method accomodates different notion of

connections (Ehresmann, Cartan or some generalized connections): this makes compar-

isons easier between various examples of interest. For instance, a parallel can be made

between the electroweak part of the standard model [19, 24] and the conformal Cartan

structure. The erased subgroup SU(2) is the mirror of the Lorentz and special conformal

transformations, while the abelian residual gauge symmetry U(1) falls together with the

Weyl dilations.

All the computations were performed at the classical level and were governed by geo-

metrical considerations. It deserves to see how all the process goes through the quantiza-

3It is expected that applying the dressing field method in this context would give rise to the same

results, but, since the tractor calculus uses the language of differential operators, they may appear in a

more cumbersome formulation.
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tion, in particular the question of the quantum version of the composite fields and how to

manage the erasure of gauge sub-symmetries.

Furthermore, one could push further ahead the use of the BRST techniques by combin-

ing together conformal gauge transformations and diffeomorphisms (of M). This raises the

question of the compatibility with the dressing field method in order to reduce the whole

mixed symmetry to the Diff⋉Weyl symmetry with the goal to recover some of the results

obtained in [44, 45]. This issue will be addressed elsewhere [49] in a companion paper.
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A Weyl transformations of the first composite fields

For the sake of completeness, this appendix concerns the Weyl transformations (both finite

and BRST versions) on the first composite fields ̟1 and Ω1 obtained in (3.5) and (3.6)

respectively. Their finite transformations are computed similarly to (3.22) upon using uW
1

given in (3.26). A straightforward matrix computation yields, on the one hand,

̟W
1 := (̟u1)W = (̟W )uW

1 = (̟W
1 )W −1u1k1W

= ̟k1W
1 = (k1W )−1̟1(k1W ) + (k1W )−1d(k1W ) (A.1)




0 αW
1 0

θW AW
1 αt

1
W

0 θtW
0


=




0 z−1
(
α1 + D(ζ ·e−1) − (ζ ·e−1)θ(ζ ·e−1) + 1

2(ζ ·e−1)(ζ ·e−1)tθt
)

0

zθ A1 + θ(ζ ·e−1) − (ζ ·e−1)tθt ∗

0 zθt 0




where D(ζ · e−1) = d(ζ · e−1) − (ζ · e−1)A1 is the covariant derivative with respect to

the spin connection A1, where we have set ζ = z−1∂z as in the main text, and where

∗ = (entry(1, 2))t.

On the other hand,

ΩW
1 :=




fW
1 ΠW

1 0

ΘW
1 F W

1 Πt
1

W

0 Θt
1

W
−fW

1


= (ΩW )uW

1 =(ΩW
1 )W −1u1k1W = Ωk1W

1 = (k1W )−1Ω1k1W (A.2)

=




f1−(ζ ·e−1)Θ1 z−1
(
Π1−(ζ ·e−1)(F1−f1)−(ζ ·e−1)Θ1(ζ ·e−1)+ 1

2(ζ ·e−1)(ζ ·e−1)tΘt
1

)
0

zΘ1 F1+Θ1(ζ ·e−1)−(ζ ·e−1)tΘt
1 ∗

0 zΘt
1 ∗




where entry (2, 3) = (entry (1, 2))t and entry (3, 3) = − entry (1, 1).
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In the normal case, see (3.10), formula (A.1) remains formally unchanged but α1

becomes the Schouten 1-form, and the Weyl variation (A.2) reduces to (see (3.6))

ΩW
1 =




0 ΠW
1 0

0 F W
1 Πt

1
W

0 0 0


 =




0 z−1
(
Π1 − (ζ ·e−1)F1

)
0

0 F1 (entry(1, 2))t

0 0 0


 , (A.3)

with Π1 = dα1 + α1A1 is the Cotton 2-form, and F1 = dA1 + A2
1 + θα1 − (θα1)t is the Weyl

2-form.

Let us now turn to the corresponding BRST setting. It comes from the modification

of the initial BRST algebra by the dressing field u1. The matrix avatar of the Weyl ghost

ǫ is given by setting vL ≡ 0 in the ghost (4.16) and we keep the same notation v̂1. For the

composite field ̟1, one has thus

sW ̟1 = −dv̂1 − v̂1̟1 − ̟1v̂1




0 sW α1 0

sW θ sW A1 sW αt
1

0 sW θt 0


 =




0 −d(∂ǫ·e−1) − (∂ǫ·e−1)A1 − ǫα1 0

ǫθ −θ(∂ǫ·e−1) − (∂ǫ·e−1)tθt ∗

0 ǫθt 0


 (A.4)

where ∗ = (entry (1, 2))t. For its curvature Ω1

sW Ω1 = Ω1v̂1 − v̂1Ω1




0 sW Π1 0

0 sW F1 sW Πt
1

0 0 0


 =




0 −ǫΠ1 − (∂ǫ·e−1)F1 0

0 0 ∗

0 0 0


 (A.5)

where ∗ = (entry (1, 2))t.

These are the Weyl transformations of the normal conformal Cartan connection in the

internal Minkowski indices before the second dressing by u0. As seen in the main text, the

dressing field u0 allows to switch to spacetime (greek) indices.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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