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ABSTRACT: We consider the effective theory of large D stationary black holes. By solving
the Einstein equations with a cosmological constant using the 1/D expansion in near zone
of the black hole we obtain the effective equation for the stationary black hole. The effective
equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black
ring solution as its solutions. In this effective theory the black hole is represented as an
embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its
mean curvature is given by the surface gravity redshifted by the background gravitational
field and the local Lorentz boost. The local Lorentz boost property of the effective equation
is observed also in the metric itself. In fact we show that the leading order metric of
the Einstein equation in the 1/D expansion is generically regarded as a Lorentz boosted
Schwarzschild black hole. We apply this Lorentz boost property of the stationary black
hole solution to solve perturbation equations. As a result we obtain an analytic formula
for quasinormal modes of the singly rotating Myers-Perry black hole in the 1/D expansion.
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1 Introduction

The infinite dimensional limit of General Relativity gives not only various interesting pic-
tures of black hole physics, but also new useful analytic method to solve gravitational
problem [1-10]. The perturbation problem, such as quasinormal modes (QNMs), has been
solved for general static black holes [7, 8] and the Myers-Perry black hole with equal spin [6].
As for non-linear problem the effective theory for the large D black hole has been consid-
ered recently in [9, 10] and some non-trivial static solutions were constructed. In this paper



we study the effective theory of the large D stationary black hole in asymptotically flat or
Anti-de Sitter (AdS) background.

The reason for the simplification of the gravity at large D is simple [2]. The radial
gradient of the gravitational field around black holes becomes very large with O(D/rg) at
large D. rg is the black hole size. So the tangential dynamics along the horizon becomes
sub-dominant, and the system reduces to the ordinarily differential equation system with
respect to the radial direction. In addition the appearance of the hierarchical sale, ro/D
and 7o, gives two separated excitations around the black hole, that is, the non-decoupled
mode with the frequency wrg = O(D) and decoupled mode wrg = O(D"). While the non-
decoupled mode is universal for black holes [5], the decoupled mode has a particular and
interesting feature for each black hole. For instance the instability of the ultraspinning back
holes and black branes are belonging to this decoupled sector [2, 6]. These two facts, the
dominance of the radial dynamics and appearance of two hierarchical scales, make General
Relativity simple and analytically solvable, but still non-trivial at large D.

Achievements in QNMs by large D method motivate us to construct the effective theory
for general black hole solutions in the 1/D expansion as a next step. The gravitational
field of the black hole is localized in the near region of the horizon due to its large gradient
at D — oo. Then the black hole can be regarded as a membrane X5 in the background
spacetime like the membrane paradigm [11-13] at this limit. The physical feature of ¥p
is determined by solving Einstein equations in near zone of the black hole. If we consider
the decoupled mode dynamics of the black hole, the Einstein equations can be solved
consistently only in near zone. The obtained solution gives the boundary condition for X5
as physical properties. Then we can construct the effective theory of the large D black
hole as the membrane 5 in the background spacetime. This construction of the effective
theory has been considered in [9] for static black holes and for more general solutions with
time dependences in [10].

Here we study the effective theory for general large D stationary black holes in the
Minkowski or AdS background such as the (AdS)Myers-Perry black hole, bumpy black holes
and black ring. These solutions have been known as exact solutions [14-16] or numerical
solutions [17-19]. We obtain the general analytic metric for the stationary black holes in the
1/D expansion, which describes these solutions in the unified manner. The solution gives
the equation for the embedding of X5 in the background. This embedding determines the
horizon topology and its geometric shape. Then the effective equation for the embedding
of X p is given by the equation for the mean curvature K of Xp as

UK =2k, (1.1)
3B
where v is a redshift factor containing both the gravitational redshift on the membrane

from the background geometry and the Lorentz redshift from the local rotation along the
membrane, i.e.,

v = \/—Qtt(l — Q4 R3). (1.2)

k and Qg are the surface gravity and horizon angular velocity of the black hole respectively.



R¢ is the rotation radius of X defined by

| Y¢
Ry=,/—"
? gt

A solution of this effective equation gives the black hole metric which solves the leading

(1.3)

¥pB

order Einstein equation in the 1/D expansion. This effective equation is one of main
results of this paper. In the static case this effective equation reduces to one of static
black holes [9].

The effective equation implies that the mean curvature of ¥ g is regarded as the surface
gravity redshifted by the local Lorentz boost. This local Lorentz boost property of the
effective equation turns out to be also the property of the leading order metric itself.
Actually we find that the leading order metric in near zone is obtained as a Lorentz boosted
Schwarzschild black hole. This property of the leading order solution would not hold if we
go to the higher order structure in the 1/D expansion. However it can still play a crucial role
in solving the Einstein equations. As one interesting example, we show that perturbation
equations on the obtained leading order general stationary black hole can be explicitly
solved by using the solution of one of the Schwarzschild black hole. This perturbation
solution, of course, contains the solution of perturbation equations of the Myers-Perry
black hole. Going to the higher order of perturbation equations in the 1/D expansion
we obtain an analytic formula for QNMs frequency of the singly rotating Myers-Perry
black hole both for the axisymmetric and non-axisymmetric perturbations. As a result
the threshold angular momentum of the ultraspinning instability of the singly rotating
Myers-Perry black hole is found to be

[\

=2%g—1, kg=1,2,3,... (1.4)
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where r( is the horizon radius and kg is a positive integer. This result can be obtained
in a much easier and simpler manner by examining the effective equation (1.1) for the
embedding of the bumpy black hole. Note that there is no dynamical instability at the
threshold angular momentum of the case kg = 1. The threshold for kg = 1 does not imply
any existence of a bifurcation zero-mode. There is only a trivial perturbation along the
Myers-Perry solution branch.

The remaining of this paper is organized as follows. In section 2 we consider the
effective theory for stationary black holes at large D. We give the leading order solution
and its boost representation. The effective equation for the large D stationary black holes is
derived from this leading order metric. We study a simple solution and non-trivial solutions
of the effective equation there. In section 3 we apply the boost property of the leading
order solution to solve perturbation equations on the general stationary solutions. The
section 4 pursues the consideration for the perturbation in the previous section in more
detail. We concentrate on the perturbation of the Myers-Perry black hole and obtain the
QNMs frequency analytically. We close this paper by discussion and outlook in section 5.
The appendices contain some technical details of calculations for the main part.



2 Large D stationary black holes

We study the D dimensional stationary black hole solution and its large D effective theory.
The following analysis is performed in the similar way with static case [9].! We use the
small expansion parameter 1/n where

n=2D-3, (2.1)
instead of 1/D.

2.1 Set up
The large D black hole has a very large gradient along the radial direction, p, with O(n).

Then our metric ansatz for the D dimensional stationary black hole is given by

N(p,z)?

ds? = v dp? + gapdz®dz®. (2.2)

z is one of D — 1 dimensional coordinate z®. In this paper we consider the metric which
has only one inhomogeneous coordinate, z, other than p for simplicity. The generalization
to several inhomogeneous coordinate case would be straightforward as done in [9]. Then
the Einstein equation with a cosmological constant

(D—-1)(D -2)
A=— i (2.3)
is decomposed on p = constant surface to
(D-1)(D-2)
—R‘}'KQ—Kabea—T — O, (24)
V. K%9—V,K =0, (2.5)
D-1 1
%apmb = —KK+ R+ =50 = V'VN, (26)
and
K = %) (2.7)
b — 2N(p, Z)g pdch - .

R, and V,, is the Ricci curvature and covariant derivative of D — 1 dimensional metric gqp
respectively. Ky is the extrinsic curvature of D — 1 dimensional p = constant surface.

We consider stationary solutions with a rotation. Then the D — 1 dimensional metric
ansatz for gqp, is

ds% | = gapdatda®
= —A(p, Z)th2 + F<p7 Z)Z(Ckb - W(p7 Z)dt)Z
+G(p, 2)%dz* + H(p, 2)?qapdrda®, (2.8)
where z4 and gap are a coordinate and the standard metric on SP~* respectively. We
solve the Einstein equations for K, and metric functions A(p, z), F(p, z), W(p, z), G(p, 2)

and H(p, z) by using the 1/D expansion. In the following we specify large D behaviors of
these functions and boundary conditions as a set up.

'But the index notation is changed from [9] .



Large D behavior. At first each metric functions should be O(n°). In particular
9zz = O(no) (29)

implies that the derivative with respect to z is O(n®). The hierarchical scaling between p—
and z— dependence makes the leading order equation at D — oo be ordinary differential
equations with respect to p. Next we assume that the leading order of G(p, z) and H(p, z)
has only z-dependence and no p-dependence. This assumption is motivated by the exact
solution of the Myers-Perry black hole (see appendix A) and the fact that the large dimen-
sionality of the sphere gives another D factor in p-dependent terms through the trace on
SP=4 Thus we assume

K* K% =00, (2.10)
while the leading order of A(p, z), F(p, z) and W (p, z) has p-dependences as
K', K'y, K% K = O(n), (2.11)

From these assumptions we can derive the scaling law of various geometric quantities at
large D. For example, the Ricci scalar R of gqp is O(n?).

Boundary condition. The boundary conditions are imposed on the horizon and at the
asymptotic infinity of near zone defined by n > p > 1.2 At the horizon the extrinsic curva-
ture has a singular behavior essentially only in one component. This condition guarantees
the regularity of following quantities

K-K'- K% K- K%, (2.12)

on the horizon. For the static case K ¢¢ should be regular on the horizon. In this paper
we consider the asymptotically flat or AdS black hole. Then the boundary condition at
asymptotic infinity of near zone is

A(p,z) =Vo(2) + O(1/n,e™2P), Wi(p,z) = O(e” ). (2.13)

Note that the Newton potential of the black hole is O(e~2*) in our gauge. So this asymptotic
boundary condition means the leading order metric becomes the flat or AdS metric other
than the potential term at p > 1. While g;4 should be damping exponentially in p at all
order of 1/D, g has some terms which does not decay at the asymptotic infinity in the
higher order solution in the 1/D expansion when we consider the asymptotically AdS case
(See appendix A). Since we solve the leading order equations in this section, we do not
explore this structure in detail. The boundary condition (2.13) is enough for the leading
order solutions.

2The effective theory of the large D black holes is described as the membrane physics seen from the far
zone [9]. In the overlap zone n > p > 1 we can obtain physical properties of the membrane by the near
zone solution as the boundary condition.



2.2 Solving the leading order equation

We solve the leading order equation of the Einstein equation in the 1/D expansion by
performing p integrations. This integration gives free functions of z as integration functions.
They consist of the effective theory of large D stationary black holes.

Our large D scaling assumptions give following large D behaviors

N(p,z) = No(z) + O(1/n), (2.14)
G(p,z) =14+ 0(1/n), (2.15)
H(p,z) = Ru(z) + O(1/n), (2.16)

where p-dependence of the leading order of N(p, z) and z-dependence of the leading order
of G(p, z) have been absorbed into the definition of p and z coordinate respectively. The
leading order of the Ricci scalar of g, can be calculated from this ansatz as

1 1 Riy(2)?
R=n?|— — 4 2.17

(22 =~ R 217
where here and in the following we omit O(1/n) symbols showing the existence of subleading
corrections in 1/D for the simplicity in the representation. Then the trace part of eq. (2.6)
is integrated to

_ o (N
K= th<r0<z> (o= sl >>), (2.18)

where we defined r(z) by

(2.19)

po(z) is the horizon position p = pg(z), so we can set to po(z) = 0 by a gauge choice. The
residual gauge in p coordinate can be used to have

No(z) = 2r9(2). (2.20)

Note that this choice for Ny(z) is different from [9] by factor two. This is just a gauge
choice and it does not affect physical properties. The equations for K, K! & and K ¢¢ in
eq. (2.6) are solved by

C’tt(z)

Cip(2) t — o Cool2)
ro(2)sinh 2p’

Kt = — — e
¢ =0 ro(z) sinh 2p’ ¢ ro(2) sinh 2p

K', = (2.21)

Cii(z), Cip(z) and Cye(z) are integration functions with respect to the p integration. The
boundary condition on the horizon (2.12) gives

1-— C’tt(z) — C¢¢(Z) = 0. (2.22)



In the following we eliminate Cgyy(2) by this condition. Then we can integrate other
components of eqs. (2.6) and (2.7), and obtain the following leading order solutions

Ao(2)?Fy(2)? tanh? p

Al = F 7~ A Crole) 1k 22)
F(p,2)* = Fy(2)* — Ag(2)Ciy(2)* tanh? p, (2.24)
~ F(2)2(1 = Cu(2)) — Ao(2)*Cig(2)*Ciue(2) tanh® p
W2 = e R ()? — Ao(2)2Cro(ef tankZp (2:25)
and
ro(2)? [ RY(z
G(p,z)=1— 2 012 ) (gigzg — I;) log (cosh p), (2.26)
H(p,z) = Ru(z) (1 + %log (cosh p)) . (2.27)

Ap(z) and Fy(z) are integration functions. The integration functions of G(p, z) and H(p, 2)
are absorbed into the O(1/n) redefinition of z coordinate and Ry (z). The scalar constraint
equation (2.4) could be satisfied by choosing the integration function in W(p, z) properly.
We can see that these solutions reduce to the static solution [9] if we set to

Ctt(Z) = 1, Ct¢ = 0. (228)

We could solve the scalar constraint equation (2.4) and all evolution equations of egs. (2.6)
and (2.7). The remaining equation is the vector constraint equation (2.5). The vector
constraint equation gives an additional condition between integration functions as

d AO(Z)Ctt(Z) d Ctt(Z) -
ilo <r0(z)> -(1- Ctt(z))glog (%(z)) =0. (2.29)

This equation, at first glance, seems to be a non-trivial condition. However we can make
this equation trivial in the following sense. To realize this we observe the surface gravity
r and angular velocity Qg of the horizon of the leading order solution. These quantities
are read as

o — QAo(Z) = 1_Ctt(z>
2 ro(2)’ Cip(2)

These quantities should be constant on the horizon [20]. Then, using the condition that s

(2.30)

and Qg are constant, we can see that the constraint equation (2.29) is satisfied automati-
cally. Thus the vector constraint equation becomes trivial under the constancy condition
of the surface gravity and angular velocity of the horizon. This is the same situation with
the static case [9]. In the static case the vector constraint is equivalent to the constancy
condition of the surface gravity. In stationary case the vector constraint can be satisfied if
we use the constancy condition of not only the surface gravity but also the horizon angular
velocity. One may feel that this statement is strange since originally the constancy of the
surface gravity and angular velocity of the horizon was shown by using the Einstein equa-
tions [20]. It means that the constancy condition of the surface gravity and horizon angular



velocity should be derived conditions, not additionally imposed one to satisfy the Einstein
equation. In fact the constancy conditions (2.30) can be derived if we use eq. (2.29) and
another equation which is obtained at the next-to-leading order of 1/D expansions. The
regularity condition of the next-to-leading order correction of K#, on the horizon requires
one additional condition between Ag(z) and Fy(z) (see eq. (B.17)). Then these two equa-
tions give the constancy condition of the surface gravity and horizon angular velocity as
eq. (2.30). The detail of this argument will be given in the appendix B. So, here, we as-
sume the constancy conditions (2.30) on the leading order solution in advance. If constancy
conditions (2.30) are not satisfied, the next-to-leading order solutions becomes singular at
the horizon although the leading order solutions still regular. So we can replace Ag(z) and
Cig(2) by Cy(z), £ and Qy using eq. (2.30).

Finally we impose the boundary condition at the asymptotic infinity (2.13) on the
leading order solutions. Then we find

Vo(2)? 5 Vo(2)% — 4i%ry(2)?
tt(z) 4/%27"0(2)2’ 0(2) 4%29%{?"0(’2)2 ) ( )
where we defined the reduced surface gravity & by
K = nk. (2.32)

As a result we obtain regular leading order solutions as

52 2 2 12
oo = PP sy o
Vo(2)? + 4i%rg(2)? sinh” p
Vo(2)? 4 4i2ro(2)? sinh? p

402 &2r¢(2)2 cosh? p

F(p,2)* = (Vo(2)? — 4i%ro(2)?) (2.34)

Qn
Vo(2)2 + 442ro(2)2 sinh? p’

and egs. (2.26) and (2.27) for G(p, z) and H(p, z). One can check that the (AdS)Myers-
Perry black hole is described by this leading order solution as seen in appendix A.

2.3 Effective equation

In the same spirit with [9] we can obtain the effective equation for the stationary black
hole from the leading order solution of near zone obtained above. The near zone metric
is matched with the far zone metric at overlap zone n > p > 1 under the boundary
condition (2.13). The near zone metric on p = constant surface ¥ at overlap zone is

Vo(2)? — 4k2ro(2)

2
o2 d¢? + d2* + Ru(2)?qapda’dz®,  (2.36)
H

ds?|s,, = —Vo(z)%dt* +

where we neglect the potential terms O(e~2?). Notice that the trace of the extrinsic cur-
vature, K, is read as

K|l = (2.37)



where 7¢(z) is given in eq. (2.19). The gravitational redshift factor of ¥ by the background
spacetime, gy, is

V=gitlsz = Vo(2). (2.38)

Using egs. (2.37) and (2.38), we can see that the leading order solution in near zone gives
the following embedding equation for X5 at overlap zone as

\/—gtt(l — Q%Ré) K‘Es = 2k, (2.39)

where we defined the rotational radius R by

[ 9oé
Re =] ——
¢ it

The effective equation (2.39) gives the mean curvature of ¥ as the surface gravity red-

(2.40)

XB

shifted by the gravitational effect and the local Lorentz boost effect with the boost velocity
vy defined by

v = QRy. (2.41)

The regular leading order solution contains arbitrary functions, Vo(z) and Ry(z). These
functions can be determined by specifying the embedding into the background. If one
consider the embedding into the Minkowski background, we have Vj(z) = 1 and there is
only one remaining function Ry (z) which should satisfy eq. (2.39). On the other hand, if
one considers the embedding into AdS background, the embedding would give a non-trivial
redshift factor Vo(z) of X p. Thus the embedding into the AdS background should satisfy
egs. (2.38) and (2.39) for Vo(z) and Ry(z2).

The effective equation (2.39) for the stationary black hole can be still interpreted by a
soap-film equation as one for the static case [9].> The membrane (soap-film) between two
fluids satisfies the following equation for the mean curvature K of the membrane (see eq.
(2.15) in [21])

_YTAs—Ap

g

K (2.42)

where o is the surface tension, T is the temperature, As and Ap are the differences between
the entropy density and the energy density of the fluids at both sides of the membrane.
is the same redshift factor as in eq. (1.2): in eq. (2.14) in [21], one just has to extract £2 =
—gut. If we now consider a case in which Ap is negligible, then the equation (2.42) becomes

-1
K — 2.43
7y — (2.43)

so if we identify 2k = T'As/o, then this is the same as eq. (2.39) (of course in this iden-

tification T', As, and o are not independently determined, instead only their combination
into & is fixed).

3This interpretation of the effective equation (2.39) is due to Roberto Emparan. We thank him for
sharing it with us.



There are two remarks on the metric (2.36) at ¥p. One is that the metric (2.36) does
not need to have a component of g;4. The metric (2.36) describes the background metric
where the solution is embedded, and it does not need to be rotating itself although the
solution is rotating. Thus the metric (2.36) does not need to have g;4 component. Another
remark is about the static limit. The static limit corresponds to the zero horizon angular
velocity Qg = 0. Then the metric (2.36) requires

Vo(2)? = 4i2ro(2)? (2.44)

at the static limit. One may think that the appearance of this additional condition is
curious. However one can immediately find that the condition (2.44) is nothing but the
effective equation of general static solutions [9]

V=guK L= 2k, (2.45)

B

by using eqgs. (2.37) and (2.38). This embedding equation can be obtained also by the
static limit of eq. (2.39). So there is no appearance of new additional condition at the
static limit.

The embedding in the Minkowski background has a constant redshift factor as

Vo(z) = 1. (2.46)

For the static embedding in this Minkowski background we have only one unique embedding
by a round sphere corresponding to the Schwarzschild black hole [9, 22]. This fact is
consistent with the uniqueness theorem of the static solution [23]. On the other hand,
however, the embedding of the stationary solution allows various embeddings as seen below.
This is due to the appearance of new degree of freedom in the horizon deformation described
by QR4 in the effective equation.

2.3.1 Ellipsoidal embedding

As one application of the effective equation (2.39) we consider an ellipsoidal embedding
in the Minkowski background. We embed the leading order solution by r = r(f) in the
Minkowski background using the ellipsoidal coordinate. The flat metric in the ellipsoidal
coordinate is

r2 + a? cos? f

2 2
ds® = —dt* + 21 o2

dr® 4 (12 + a® cos® 0)db?
r2+a

+ (1% 4 a?) sin® 0dp? + 1% cos® 00T, _,. (2.47)

a is a parameter describing the oblateness of the ellipsoidal. We set

1
= 2.48
R=g (2.48)

by using the normalization of near zone t-coordinate for simplicity. The relation z and 6
can be seen from eqs. (2.36) and (2.47) with r = r(0) as

d \/ (Ru(9)” +a” cos' 0)(Ru(6)” + (Ry (6) + tanORu(6))? + a>cos?6)

do cos? 0(Ru(0)? + a? cos? 0) ’

,10,



where we used the relation
r(0) cos = Ru(0) (2.50)
in the leading order solution. Then the effective equation (2.39) becomes
Q3% tan? 0(a® cos® 0 + Ry (0)* + cos 0 sin ORu (0)Riz(0))? (a” cos® 6 + Ry (0)?)

+ (Ru(0)? — 1)(a® cos 0 + Ryu(9)?)?

+ 2 cos O sin ARy (0)Rig(0)(Ru(0)? — 1)(a® cos® 6 + Ry (6)?)

+ cos? AR 1 (0)*Riy(0)%(a® cos™ 6 + Ry (0)? — sin? ) = 0. (2.51)
We solve this equation for Ry (f) in some cases below.

Myers-Perry solution. The Myers-Perry solution is described by the embedding

Ru(0) = cos, Q= —

—_ — 2-2
1+ a?’ (2.52)

in the ellipsoidal embedding for arbitrary a.

Bumpy black holes. The Myers-Perry black hole has marginally stable quasinormal
modes w = 0 in the ultraspinning region [24-26]. The marginally stable modes suggest the
existences of new deformed solution branching off the Myers-Perry solution branch. These
solutions, so called bumpy black holes, have been constructed numerically in [17, 18]. Here
we consider this solution by using the effective equation (2.51). To study this we perform
the perturbative analysis of the effective equation (2.51) around the Myers-Perry black
hole. We expand the embedding function Ry (f) around the Myers-Perry black hole as

Ry (0) = cosb [1 +R(B)e+ O (62):| , (2.53)
where
— Q- (2.54)
CTMHT I a2 '
Then, perturbing eq. (2.51) with respect to €, we find the perturbative solution
. 14 a2)2 sin? . 14a?
R(0) = a(l + a*)?sin” 0 LS 0 (2.55)

(1 —a2)(1+ a?cos? ) 1+ a?cos?6’
where A is an integration constant describing the perturbation amplitude. The first part
describes just the trivial perturbation adding the angular momentum along the Myers-
Perry black hole solution branch. The second part is the non-trivial deformation of the
solution into the bumpy black hole solution branch. For general a and A # 0, we have a
non-analytic behavior in the solution at § = 0. The regularity of the solution at 6 = 0

requires?

a? =2k — 1, k=1,2,3,... (2.56)

“Here the regularity means that any derivatives of R(6) should be finite at § = 0 and R(#) be an even
function around 6 = 0. To satisfy this requirement a should be discretized by k as given in eq. (2.56). As
we can see in appendix C this regularity condition at # = 0 is equivalent to the condition for the spheroidal
harmonics at large D. Furthermore this discretization parameter k corresponds to the angular momentum
number 4.

— 11 —



ac‘k:l ac‘k:Q ac‘k:S ac’k:4
eq. (2.56) 1 V3 =1.732 | /5 =12.236 | /7 =2.646

numerical (D =6) | 1.097 1.572 1.849 2.036
numerical (D =7) | 1.075 1.714 2.141 2.487
numerical (D =8) | 1.061 1.770 2.275 2.725
numerical (D =9) | 1.051 1.792 2.337 2.807
numerical (D = 10) | 1.042 1.795 2.361 2.855
numerical (D =11) | 1.035 1.798 2.373 2.879

Table 1. Comparison of our analytic formula (2.56) for the threshold of the instability of the Myers-
Perry black hole with numerical results in [26]. The analytic formula shows quite good agreements
with numerical results within the expected error O(1/D). The value of a. for k = 1 by [26] has
perfect agreements with eq. (2.57).

For k =1, i.e., a. = 1, the solution is same with the first part of eq. (2.55), so it corresponds
to the Myers-Perry black hole with a different angular momentum. The value a. for k =1
is known analytically in all D by the thermodynamic argument [24] as

@G e

ro is the horizon radius of the Myers-Perry black hole (see appendix A). At the large D

limit the formula (2.57) gives same value with eq. (2.56) for £ = 1. For £ > 1 we have
non-trivial bumpy black hole solutions by eq. (2.55). Eq. (2.56) gives the threshold angular
momentum of the ultraspinning instability of the Myers-Perry black hole. In table 1 we
show the comparison of eq. (2.56) with numerical results in [26]. Actually we have good
agreements within the expected error O(1/D). This threshold angular momentum will be
reproduced also by observing the quasinormal mode frequency directly in section 4.

In appendix A we generalize the above analysis to the AdS Myers-Perry black hole.
Then we obtain the threshold angular momentum for the ultraspinning instability of the
AdS Myers-Perry black hole in the 1/D expansion.

2.4 Boost representation

One important property of the leading order solution in near zone is its local Lorentz boost
representation. The effective equation (2.39) has the interpretation that the embedded
surface X p is the locally Lorentz boosted membrane. This local Lorentz boost property
holds also for the metric itself in near zone. To see this we rewrite the (¢, ¢) part of the

obtained leading order metric in near zone as

Vo(2)? — 4&?ro(2)?

ds, 5 = —Vo(z)dt* + e d¢?
H
1 Vo(2)? — 4&%r2 ?
* 4#210(2)2 cosh? p <V0(z)2dt - O()QHOCM)> ' (2.58)
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By introducing the boost parameter o(z) defined by

Vo(Z)

cosho(z) = S7ero(2)

(2.59)

and new local frame dx? by

da?(z) = (Vo(z)dt, VVo(2)? - 4’%2T0(Z)2d¢> , (2.60)
Qg

the leading order metric is written in a very simple form as

4 2
ds? = mn(;)dp2 + <77pq + C:;’g;p) daPdz? + dz? + Ru(2)%dQ3,_,, (2.61)

where 7,4 is the flat metric on two dimensional spacetime. The fluid velocity w,, is

VVo(2)? — 4210 (2)?

upda? = Vy(z) cosho(z)dt — o

sinh o (2)d¢. (2.62)
Note that the leading order metric of the Schwarzschild black hole is (see appendix A)
4
ds* = ﬁdﬁ — tanh? p dt* + dz? + sin? 0d¢?® + cos? 0d3,_,. (2.63)

Thus the stationary solution can be represented as the locally boosted Schwarzschild black
hole under the following boost transformation

B VVo(2)2 — 4i2ro(2)

2d¢> sinh o (2), (2.64)
Qy

dt — Vo(z)dt cosho(z)

de — \/VO(Z)QQ;WTO(Z) d¢ cosh () — Vo (2)dt sinh o (2). (2.65)
This boost representation is known for the Myers-Perry black hole [3, 6]. However our
leading order solution covers much wider class of solutions including the asymptotically AdS
black holes. This boost representation is the universal feature for the large D stationary
black holes under our ansatz.

The boost parameter, o(z), is not constant and the boost transformation is inhomoge-
neous in z-direction. This z-dependence also appears as the horizon radius inhomogeneity
in gpp. Thus the identification with the Schwarzschild black hole by the boost transforma-
tion is valid only locally in z-direction. However this inhomogeneity along z-direction is not
so crucial since the dynamics along z-direction is sub-dominant compared with the radial
dynamics. This boost transformation is the property of the radial dynamics, which is the
leading order dynamics of large D black holes. The local effect by z-dependence would be
introduced at the sub-leading order in 1/D expansion as corrections. Such z-dependent
dynamics in the higher order structure of the 1/D expansion contains the essential effects
by the rotation and horizon topology.
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3 Perturbation

As one interesting application of the boost property in the leading order solution we con-
sider the perturbation problem. By using the boost transformation we can obtain the solu-
tion of the perturbation equation of the stationary black hole from one of the Schwarzschild
black hole. In the following we investigate the decoupled mode perturbation, whose the
frequency is w = O(D?) [7], of the asymptotically flat black hole given by

VO(Z> =1, (3'1)
in the leading order metric in section 2. The extension to the asymptotically AdS black
hole is straightforward.

3.1 Schwarzschild black hole

We study the perturbation on the Schwarzschild black hole. Next we perform the boost
transformation on the perturbation solutions to obtain the perturbation solution of the
stationary solution. There are various ways in the representation of the perturbation
around the Schwarzschild black hole [27, 28]. Here we fix the gauge for the perturbation,
Iy, to solve the perturbation equation. Especially we use the transverse traceless gauge as

VA =0,  §"hy, =0, (3.2)

where ﬁu is the covariant derivative of the D dimensional background metric g,,,. Then
the perturbation equation becomes equivalent to the Lichnerowicz equation given by

VPV ol + 2R w0 h?” = 0, (3.3)

where Ru,,pg is a background Riemann tensor. The explicit components of the perturbation
equation are complicate so we do not show them here. The background spacetime is the
D = n + 3 dimensional Schwarzschild black hole given by

ds* = —f(r)~tdt* + f(r)"'dr® + r? (d6? + sin® 0d¢? + cos® 0dQF,_,) (3.4)

where

fr)=1- (’%’)n 1 %. (3.5)

Here we introduced the new radial coordinate R = (r/rg)™. This radial coordinate R is
related with the radial coordinate p which we used in the previous section by

R = cosh? p. (3.6)

The perturbation is decomposed into the scalar, vector and tensor type with respect to
SP=4 in the metric.? In this paper we investigate the scalar and vector type perturbation

on SP~%. Using the vielbein

e(s?h =/ f(r)dt, eélc)h = f:;?“)’ eéi)h = rd0, eégc)h = rsin 0do, 6(512})1 = rcos Hé(A), (3.7)

®Note that the usual scalar, vector and tensor type perturbation of the Schwarzschild black hole is based

SD—4

on the decomposition on SP~2 [27]. Then, for example, our scalar type perturbation on consists of

the scalar, vector and tensor type perturbation on SP~2,
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(5)

where é4) is a vielbein on the unit sphere SP~*, the scalar type perturbation, hy/, on

SP=4 can be written by

S v —iwt_im )Schy,(S) (I (S)Sch A
i datda? = e | FENY el o)+ fiPSD AT Vel e

+ 72 cos? O(Hy, J269 )SChY(s) +H(S)SChYE45}%J)dxAde}, (3.8)

where I,J =0,1,2,3. Y§-S) is the scalar harmonics on SP~* satisfying
2 (5) _
(D +)\S)Yj =0, (3.9)
where the eigenvalue \g is given by
As =j(j+ D —5). (3.10)
The scalar derived tensor harmonics Y( )9 is defined by
S);j s As (S
v = DaDpY(¥ + 5 4Y§ ) qap. (3.11)
The vector type perturbation, hf}i), on SP~% is given by
hﬁt‘i)dx“dm” — piwtimé fI(V)SchY;V)je(I)e(A) i Hg/)Ygg’e( )6(3)]’ (3.12)
where ng)j and Yggj are the vector harmonics on SP~* defined by
V)j V)j 1%
O+ 2 Y =0, DAY =0, ¥ Y =Dy, (3.13)

with the eigenvalue Ay given by
Av=3j({+D-5)—1 (3.14)

The perturbation equation is a coupled PDE system for scalar and vector type perturba-
tions. At large D the situation is changed and the perturbation equations become decou-

S)Sch

pled ODE system. We can find decoupled perturbation variables FI( J) for the scalar

type perturbation easily as

Sch S)Sch (S )Sch S)Sch S)Sch  ,(S)Sch (S)Sch _ ((S)Sch

Sch )Sch S)Sch )Sch (S)Sch )Sch (S)Sch _ p(S)Sch
_f02 ’ _f03 ’ F12 _f12 ’ 13 —J13 ’

(S)Sch o )Sch (S)Sch )Sch (S)Sch )Sch
F22 _f22 ’ 23 _f23 ’ F33 _f33 ) (315)

and

F](S)Sch _ fI(S)SChy F}?SCh _ H(S)Sch' (316)

The vector type perturbation has following decoupled perturbation variables at large D

F[(V)SCh _ f[(V)Sch’ FéV)SCh _ HéV)SCh. (3‘17)
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Then each decoupled perturbation variables are expanded at large D as

(k)F(S)SCh (k)F(S)Sch (k)F(S)Sch
S)Sch a S)Sch a S)Sch T,L
R D e e £ A B AL
k>0 k>0 k>0
for the scalar type perturbation and
(k:)F(V)SCh (k)F(V)SCh
(V)Sch I (V)Sch L
DI piuls May U et it (3.19)
k>0 k>0

for the vector type perturbation. By using transverse traceless gauge conditions we can
obtain F} (5)Sch F}SI}SCh and F' éV)SCh from F I(:S;)SCh and F' I(V)SCh. Thus the equations to be

solved are the equations of FI(E)SCh for the scalar type perturbation and FI(V)SCh for the
vector type perturbation. The perturbation equations for F }i)SCh are
o Y (k) p(5)Sch _ 00 _ (k) ()
a 9 (k)F(S)Sch
Y (k) p(S)Sch _ " "lo1 (k) g(S)
8 ) (k)F(S)SCh
Y (k) 2(S)Sch _ (k) c(9)
a 9 (k’)F(S)SCh
Y (k) p(S)Sch _ 03 _ (k) c(9)
0 0 ssen  WEDSM S
ﬁR(R )8R(k)F1(1) - 1R1 - (k)5£1)7 (3~24)
8 9 (k)F(S)Sch
Y (k) pp(5)Sch _ _ (k) c(9)
(k) ;p(S)Sch_ 13 _ (k) ()
8RR(R )8R F13 4R(R _ 1) 813 ’ (326)
K 0 s Sch _ s
0 0 S)Sch s
SRRR—1) 8R<k>F§ e = s, (3.28)
0 0 Sch S
FRR(R )8R(k)F3(3) = sl (3.29)

The k—th order source term (k)SL(lf) is coming from the lower order solutions and the

source term does not have the decoupling property. The perturbation variables, (k)FI(i)SCh,

depend on R and 0.5 However the perturbation equation becomes ordinarily differential
equation with respect to R at large D. Furthermore each k-th order variables () F (S)SCh

are decoupling and we can solve the solution by the straightforward integration procedure

5The Schwarzschild black hole has a spherical symmetry. So the perturbation equation can be reduced to

the ordinarily differential equation in principle. Here, for the usefulness in the following discussion, we use

SD—4

the harmonics on and the perturbation equation becomes the apparent partial differential equation.
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at each order. The vector type perturbation has the same property. The perturbation

equation for F I(V)SCh is
b 9 (k)F(V)Sch
< _ 1) L k) p(V)Sch _ 0 _ (k) (V)
aRR(R 1)8R Fy IRR= 1) Sy 7, (3.30)
b ) (k)F(V)Sch
0 ooy 9 (k) m(V)Sch h _ (e
BRR(R 1)8R Fy 74R(R Y S 7, (3.31)
0 0
9 9 k) p(V)Seh _ (k) o(V)
8RR(R 1)8R F, S, 7, (3.32)
0 0
s 1\ Y (k) (V)Sch _ (k) (V)
8RR(R 1)8R F Sy . (3.33)
The leading order solution satisfying the regularity condition on the horizon and at infinity
is given by
(0) (S)Sch _ A(0) ©) ()8 _ AWO) () (s)sen _ B(0)
Foo R—1 For R_1 o2 RR—1) (3:34)
(0) f(S)Seh _ C(9) (0) fr(S)Sch _ D(0) (0) f2(S)Seh _ B(0) 535
©0) p(SSch _ C(9) 0) (S5 _ ¢ ©0) S8 _ O) S5 _ o (3.36)

RR-1)" °
for the scalar type perturbation and

©pWsa _ WO o posen _ W) (o) p(viseh _ () p(VISeh _

0 R(R— 1)7 1 R(R— 1)7 2 3 0, (337)

for the vector type perturbation. The leading order perturbation solution contains undeter-
mined integration functions A(#), B(6), C(6), D(#) and W (0) for each type perturbation.
If we go to the higher order of k& we can obtain the non-trivial relation between integra-
tion functions. KEspecially the solution at £k = 1 and k = 2 order gives quasinormal mode
frequency of the Schwarzschild black hole for the vector and scalar type perturbation re-
spectively. The detail analysis and results of this will be given in section 4 and appendix D.

3.2 Stationary solution

We apply the boost transformation to the perturbation solution of the Schwarzschild black
hole. At first, before taking large D limit, we give the general procedure for the perturbation
of the stationary black hole solution given by

0% = —A(p, 22t + B(p.2)2dg* + F(p, 2)(d6 — w(p, =)dt)?
+ G(p, 2)%dz> + H(p, 2)%d0%_,. (3.38)

We consider the scalar and vector type perturbation on SP~%. To give perturbation vari-
ables we use the following vielbein

6(0) = A(p, Z)dt7 6(1) = B(p> Z)dp> 6(2) = F(p, Z)(d¢ - W(p, Z)dt) (339)
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and

e® = G(p, 2)dz, e = H(p,z)eW, (3.40)

A)

where ¢ is the vielbein on the unit sphere SP—% again. Then the perturbed metric

is given by the components with respect to these vielbeins as
h/(;?/)dx“da:” _ e—iwteimqb{ }i)Y§S)e(1)e(J) i fI(S) DAy§5)e(I)€(A)
+ H(p, 2)2(HY Y qap + HOYGY )dxAde} . (3.41)
for scalar type perturbation and

h/(),f)dac“dxy = g wlgime [fI(V)Yg/)je([)e(A) + H£V)YE4‘2J€(A)6(B)]7 (3.42)

for the vector type perturbation. Then we perform the boost transformation on these
perturbed metrics of the leading order solution obtained in section 2. The boost transfor-
mation gives the relation between vielbeins as

92— 2 1 — si h2 1_ 5
e = ro(z) 1 —stah’p) o) _Smhp\/ RGeS @) (343)
7"o(Z)QCoshp\/ 14 ro(2)2sinh? p 14 ro(2)2sinh? p

S COShp 6(2) _ 2+ 7"0(25.)2 Sinh2 p 1— TO(Z)2 6(0)
\/1 + 7"0(2)2 sinh? p ro sinh p 1+ To(z) sinh2 p

: (3.44)

where we used the vielbein of the Schwarzschild black hole (3.7) and of the stationary
solution (3.39) for the leading order metric (2.61).” This relation between vielbeins gives
also the relation between the perturbation variables of the Schwarzschild black hole and
general stationary solutions. Since we know the decoupled perturbation variables on the
Schwarzschild black hole, we can obtain the following decoupled perturbation variables,
Fl(i), FI(S), Fj(i?]z, FI(V) and FI(JV) of the general stationary solution at large D as

7S _ cosh? p (s) _ 2sinhpcosh py/1—10(2)? )
00 14 79(2)2sinh? p 00 1+ 79(2)2sinh? p 02
(1 —ro(2)?)sinh? p () (5)
s 3.45
1+ 7(2)? sinh? p 2 + /i ( )

79 _ cosh? p S) 2sinh p cosh py/1 —19(2)? ()

U 1 4 ro(2)2sinh? p” 1+ ro(2)2sinh? p 02
(1—ro(2)*)sinh?p (s)  (s) (3.46)
1+ ro(2)2sinh? p "% t '
S _ cosh? p — (1 — 19(2)?) sinh? p (s)
0z 14 7r9(2)2sinh? p 02
1 —1rp(2)? s1nhpCOShp(f(§6q) n féég))7 (3.47)

14 ro(2)2sinh? p

"We consider the asymptotically flat black hole Vo (z) = 1.
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s) cosh? p (s) _ 2sinhpcoshpy/1—19(2)* ()
22 14 r9(2)2sinh? p° *2 1+ 7o(2)2sinh? p 02
(1 —7ro(2)?)sinh? p (g)

) 3.48
1+ ro(2)2sinh?p "% (3.48)

g cosh p g . 1 —7r9(2)?
Fo(1) = 0(1) - Smhp\/ ( ) f12 , (3.49)
sinh?

\/1 +1o(2)2 1+ 79(2)2sinh? p
) cosh p S . 1—ro(z
F1(2 f1(2) - smhp\/l (=) W2, fo1 ) (3.50)
\/1 + 70(2)2 sinh? p +70(2)?sin
s) cosh p g . 1 —1ro(2)? g
Fyy) = ) - Smhp\/l )2( .) 2 35, (3.51)
\/1 + 70(2)2 sinh? p +7o(2)? sinh”p
S) cosh IS . 1—ro(z
By = £ 155 - Slnhp\/l =) nZ, 83, (3.52)
\/1 + 70(2)2 sinh? p +70(2)?sin
h 1-— 2
P = P £ — sinh p\/ ro(e)® _ ps), (3.53)
\/1 +7o(2)2 sinh? p 14 ro(2)?sinh” p
h 1- 2
S = cosp £ — sinh p\/ T°2(Z‘) — 19 (3.54)
\/1 +7o(2)2 sinh? p 1+ 79(2)%sinh” p

and
S S S S S S S S
Y =13, mY =15, K=/, BY=pY B =H), (355)

for the scalar type perturbation and

\/1+r0 2 sinh? p 1+7o(z ) sinh” p

h 1-— 2
V) = COSLp V) _ sinh p 7’02(2') — ¥, (3.57)
\/1 + 7o(2)? sinh? 1+ 79(2)?sinh® p

R Y 355)

and

for the vector type perturbation. Each perturbation variables are expanded at large D as

(k) () (k) g (9) (k) 2(5)
S S T,L
I S L D DR ALY
k20 k>0 k>0
wd V) (V)
k) p k)
) _ I V) L
Frl=2 nk ’FTL—ZT' (3.60)
k>0 k>0
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Then the perturbation equation for these decoupling variables can be obtained from the
Lichnerowicz equation under the transverse traceless gauge condition. Now we have ob-
tained the leading order metric of the stationary black hole in the 1/D expansion in sec-
tion 2. Then the perturbation equation for £ = 0 order is also obtained by using the
leading order metric. The perturbation equation of the decoupling variables can be found
to satisfy same equations with one of the Schwarzschild black hole at the leading order by
changing the radial coordinate from p to R by®

R = cosh? p. (3.61)

At higher orders the perturbation equation of the stationary solution becomes different
from the boosted one of the Schwarzschild black hole in source terms. This is because
the boost relation is valid only in the leading order metric, and higher order structure
gives the essential effect coming from the difference from the Schwarzschild black holes.
However the homogeneous part of the equation at each order is always same with one of the
Schwarzschild black hole. So, in principle, the perturbation equation is a set of decoupled
ordinarily differential equations and we can solve it by a straightforward integration method
with the Green’s function.

The regular leading order solution of the perturbation equation for the stationary black

hole is
© p(s) _ AlD) Ops) _ A0 ops _ Bl
FOO R _ 1? FOI R _ 1? F02 R(R o 1)’ (362)
Op® __C0O0) ops _ DO gpe __ BO (3.63)
03 R(R—l), 11 R ’ 12 R(R—l)’
S c(o S S S
ORp SO opm_o  0mD_s 00 ooy

for the scalar type perturbation and

OFY) = %0), O pV) - Wég), OFV) = OpV) — g, (3.65)
for the vector type perturbation. In the derivation of the perturbation equations and
solutions we need only the leading order solution of general stationary solutions given in
section 2. To go to more higher order perturbation equations, the higher order solutions
of stationary solutions are required. In the next section we consider the higher order
perturbation equation of the Myers-Perry black hole, which is a known exact solution.
Note that the quasinormal mode frequency of the decoupled mode perturbation is ob-
tained by solving higher order perturbation equation in 1/D. The higher order structure
of the perturbation equation reflects the higher order structure of the background metric,
which does not have the boost property. Hence the frequency does not have the boost prop-
erty either. This implies that the quasinormal mode frequency of the Myers-Perry black

8This relation can be understood by the horizon position. The Schwarzschild black hole has the horizon
at R =1 and the general stationary black hole horizon position is set to be p = 0.
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hole cannot be obtained by the boost transformation from one of the Schwarzschild black
hole. This non-boost property allows the existence of the instability mode in the decoupled
sector of the perturbation of the Myers-Perry black hole. In contrast the quasinormal mode
of the non-decoupled sector perturbation is obtained in the leading order structure and we
expect that such mode has the boost property as the universal feature [5].

4 QNMs of Myers-Perry black hole

We pursue the decoupling property of perturbation variables at large D expansion shown in
the previous section to more higher order structure to obtain the quasinormal mode (QNM)
frequency of the D = n + 3 dimensional singly rotating Myers-Perry black hole. This
was calculated numerically in [29] for non-axisymmetric perturbations. Here we give the
analytic formula of the QNM frequency both for the axisymmetric and non-axisymmetric
perturbations. The metric of the Myers-Perry black hole is given in the appendix A and it
is written by the following parameter setting

1+a?

T 1+da2cosf’
(4.1)

in the leading order metric obtained in section 2. Our detail analysis in this section con-

a

= 1o a2 R(6) = cos b, 7"0(9)_2

VO(Z) :1, /%25, QH

centrates on the scalar type perturbation since the analysis of the vector type perturbation
is performed in the same manner. The only result of the QNM frequency for the vector
type perturbation will be given later. The scalar type perturbation variables are defined

in the same way with one in section 3 as
hyvdxtdz” = e~ Wt gime {fang.S)e(a)e(b) + faDAYg-S)e(a)e(A)

+r2cos? O(HrYVqap + HLY ) detda? |, (4.2)

where the vielbein was defined in section 3. So the perturbation is parameterized by w,
m and j. j describes the deformation parameter on SP~4. Thus j = 0 correspond to the
perturbation without the deformation on SP~*. Then the decoupled perturbation variables
can be constructed and expanded at large D as

(k)

an FY Iry,

Fry=) o Fo=> o Prp=>) ko (4.3)
k>0 k>0 k>0

where D = n + 3. The boundary condition for the perturbation on the horizon is the
ingoing boundary condition [29] as

Py (7, 0) = B, (1, 0) (1 — 7y ) o0 mSk) /26, (4.4)

where r, is the horizon position and k is a surface gravity. The component of ﬁW in the
Eddington-Finkelstein ingoing coordinate should be regular on the horizon. Here we omit

9We omit the index (¥) representing the scalar type perturbation in section 3.

— 21 —



the ¢, ¢ and =4 dependence just for the simplicity.' The boundary condition at infinity
R > 1 is the decoupled mode condition [7] as

hu = O(R™). (4.5)

This condition is equivalent to the outgoing wave boundary condition at infinity for the
decoupled mode defined by wrq = O(DY).

In the following we give the brief summary of perturbation solutions of the scalar type
perturbation up to & = 2 order. At k = 2 we obtain QNM frequency for the first time.

Leading order solution (k = 0). The leading order solution satisfying the boundary
conditions is

70 _ Ao®) 0 _ Ao ®) 20 __Bo®
00 R—1" 01 R—1" 02 R(R_l)’
Co)(9) Do) (0) Bo(9)
o © 0 _ Do 0 ©
Y = 202 FY = , FY = , 4.6
03 R(R— 1) 11 R 12 R(R— 1) ( )
Co)(9)
0 0 0 0 0
F1(3) = R((Ii—1)7 F2(2) =0, Fz(3) =0, F?E:s) =0

At leading order we have four independent integration functions, which cannot be deter-
mined by the boundary condition. The solution for F ](0) and F:(FO% can be obtained by the
transverse traceless gauge condition, and we omit them since it is not so important.

Next to leading order solution (k = 1). The next to leading order solution of Fr;
is represented by

ro=200 gy g =200 g,

R - RO £, A - A

R U e had

Y-l ) ARy Ao M- G

where the solution with the hat comes from the integration of the source term composed
by the leading order solution. At this order we have new four integration functions Ay 9),
B1)(0), C1y(0) and D(yy(0). To satisfy boundary conditions we obtain some non-trivial
relations for A)(0), B(o)(0), C(0)(#) and Dg)(#). Conditions we find are

B (6) =0,  C)(6) =0, (4.8)

10,4 {5 a coordinate on SP~*.
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and

cos O(1 + a” cos® 0) ((1 + a?) cos 0 A(0)(0) — sin HDZO)(H))
+ [j + (=1 +iam + a*(—=3 + 2j — iw) — iw) cos® @
+a*(1+ iam + a*(j — 1 — iw) — iw) cos” 0] D) (6) = 0. (4.9)

Using this condition we can eliminate A )(#). To obtain QNM frequency we should specify
the function D g)(0), and we can do it at next to next to leading order.

Next-to-next-to leading order solution (k = 2). At this order we can obtain the
solutions in the same way with the next to leading order. We find additional non-trivial
condition for integration functions. By eliminating A (), the additional conditions are
written as

c1(0) 6/1)(9) + 02(9)CE1)(9) + ¢3(0)C1) (0)
+ C4(9)D(O) (9) + C5(9)D20) ((9) + Cﬁ(@)D(O)(Q) =0, (4.10)
and
d1(0) D(y (6) + d2(0) D(g) (0) + d3(0)D{g, (0)
+ d4(9)D(0) (9) + d5(9)0£1)(9) + dG(G)C(D (9) =0. (4.11)

Each functions ¢;(f) and d;(#) have messy forms so we do not show them here. They
are given in the appendix E. In general it seems that we should solve these differential
equations to obtain the QNM frequency. However, we find that the QNM frequency can
be obtained only from the boundary conditions.!! At § = 7/2 the boundary condition is
read from egs. (4.10) and (4.11) as

Cty(O)g=rjo = cos’ 20, Dg)(0)|g=r/2 = cos’ 6. (4.12)
On the other hand the behavior at § = 0 is
Ci1y(0)]o=o = sin®>710,  Dyg)(0)|o=o = sin 6, (4.13)

where (55 depends on a, m, j and w. To see which value (55 should take, we observe the
spherical harmonics, S (G)Gim‘z’YgS), on SP~2, defined by

[Agp-2 + £(£ + D — 3]sty

_ 1 d (. D4y
B [sin@cosD—49d9 (SIDQCOS 9d98>

m? o ji+D-5)

4 4
— L0+ D —
sin2 0 cos2 f ST+ e+ 3)8

m S
Moy =0, (4.14)

" Actually we can confirm that eqgs. (4.10) and (4.11) can be solved regularly under the QNM frequency
obtained below. Thus there may be some non-trivial structure in the solutions of egs. (4.10) and (4.11) and
the boundary conditions.
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The solution of this equation can be written by the hypergeometric function as
St = cos? 0 sinl™ 0 o Fy (—kg, ks + |m| + j +n/2, |m| + 1;sin?6), (4.15)
where kg is a non-negative integer satisfying
{=j+|m|+ 2ks. (4.16)
At large D this solution becomes

St = sin7 hcos’ 0 + O(1/D)
= sinl™*%s g cos’ 0 + O(1/D). (4.17)

ks describes the overtone number of S¢ along # direction, and this overtone number can
be observed from the behavior of S¢ at § = 0 at large D limit as seen eq. (4.17). From
this observation on the spherical harmonics we impose the following condition on 55 as the
harmonics condition

85 =0—3j
= 2k + |m], (4.18)

where ¢ is parametrized as eq. (4.16) by non-negative integer kg. Then egs. (4.10) and (4.11)
under the condition (4.18) give one non-trivial algebraic condition on w. This non-trivial
condition on w can be regarded as the QNM condition. In the following we solve the
condition eq. (4.18) for w in some cases. The explicit form of the QNM condition (4.18) is
given in the appendix F.

Note that the condition (4.18) is equivalent to the regularity condition to derive
eq. (2.56) in section 2. The condition (4.18) is suggested by the analysis for spherical
harmonics at large D. However, as we can see in appendix C, the analysis of the spheroidal
harmonics also gives same condition (4.18). Thus we expect that the condition (4.18) would
hold also in the gravitational perturbation of the Myers-Perry black hole.

4.1 QNM frequency

We show some explicit results of the QNM frequency of the scalar and vector type pertur-
bations by solving the QNM condition (4.18). The instability exists only in the scalar type
perturbation and the vector type perturbation is always stable for the decoupled sector
perturbation.'? We set the horizon radius to unity as

ro =1, (4.19)

by fixing the unit.

2The instability mode is conjectured to exist only in the decoupled sector (saturated mode) [29]. The
tensor type perturbation of the singly rotating Myers-Perry black hole does not have the decoupled sector
and it was shown to be stable [31].
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4.1.1 Scalar type perturbation

The QNM frequency is given by the solution of the algebraic equation (4.18), which can be
solved analytically. We solve eq. (4.18) for some cases below. Since the j # 0 modes do not
show any instability, we consider only j = 0 modes. The perturbation with j # 0 describes
the deformation of SP~* of the Myers-Perry black hole. So we might be able to say that
the axisymmetric instability occurs only in the “S-wave” sector in the perturbation similar
to the Gregory-Laflamme instability of the black brane [32, 33].

Then, for this mode, the quasinormal mode condition (4.18) can be written in a rela-
tively simple form as

(1+a®)3w® — (14 a®)*(4i — 3¢ + 3am)w?
+ (14 a®) (=4 470 — 302 —6iam(L — 1) + a®> — 4+ 30+ 3m?)w
+ (—il® 4 £2(3i + ia® + 3am) — £(2i + 5am + a®*m — ia®*(—2 + 3m?))
+ am(2 — 2iam — a*(m? — 2))) = 0. (4.20)

At a = 0 the scalar type perturbation has the physical degree of freedom for ¢ > 2 [30]
and, hence, we study the modes of £ > 2.

Schwarzschild black hole. At a = 0 where the solution is the Schwarzschild black hole
we can solve eq. (4.20) explicitly by

w=+tVI—1—i(t—1), w=—il. (4.21)

These modes correspond to the decoupled scalar and vector type mode of Schwarzschild
black hole on SP~2 [7].

Axisymmetric perturbation. Next we consider the axisymmetric perturbation m =0
with a # 0. In this perturbation we find that there are stationary perturbations w = 0 at

a. where

a?=10-1

= 2kg — 1, (4.22)

and we used eq. (4.16) with 7 = m = 0. The assumption of ¢ > 2 implies kg > 1 for
j = m = 0, and this result reproduces the result (2.56) derived from the effective theory
obtained in section 2. In figure 1 we give the plot of the QNM frequency with (¢,m, j) =
(4,0,0). The black thick line, purely imaginary frequency mode, shows the instability mode
and it becomes the marginally stable mode at a? = 3. For the axisymmetric perturbation
with w =0 and j = 0 we can solve egs. (4.10) and (4.11) explicitly by

. 2
sintte” ¢

Col®) =0, Dolb) = Doz ooy

(4.23)
where Dy is a constant. Then we can see that this stationary solution is equivalent to the

perturbation solution (2.55) obtained in the effective theory. This equivalence suggests the
validity of our QNM condition (4.18).
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Figure 1. The QNM frequency for (¢,m, j) = (4,0,0). The black thick line is the pure imaginary
mode and it shows the instability at a? > 3. The gray thick line is the stable mode.

Non-axisymmetric perturbation. The non-axisymmetric mode perturbation also
shows the instability at a® > a? where a.. is given in eq. (4.22) as

a?=10-1

= |[m| + 2ks — 1. (4.24)

At the critical rotation the instability mode satisfies the superradiance condition as

aem
Wama, = : j_ i mQy(ae). (4.25)
(&

Hence the dynamical instability mode shows the superradiance instability at the same
time. This coincidence of the onsets of dynamical and superradiant instability has been
also observed in the QNMs of the Myers-Perry black hole with equal spin [6] up to O(1/D)
correction. The numerical results [34] also suggest the coincidence for the equal spin case.
On the other hand the numerical analysis of QNMs of the singly rotating Myers-Perry
black hole does not show such coincidence [29, 35]: the superradiant instability appears at
slower rotation than the critical rotation of the dynamical instability. Thus our coincidence
is just the property only at large D limit. If one considers 1/D corrections of QNMs of
singly rotating Myers-Perry black hole, there would be a difference between the onset of
the superradiant and dynamical instability.
For the bar mode defined by m = ¢, we can solve eq. (4.20) explicitly by

tvym—1+a(m—-1) m—-1Faym—1 am .om
= —1 Wiy = —1 .
1+ a? 1+ a? ' 7152 1+a

W+ (4.26)

w4 shows the instability at a > a. and saturates the superradiance condition at a = a.. In
figure 2 we show the plot of the bar mode QNM frequency for m = 2. The QNM frequency
for the bar mode was obtained numerically in [29]. The behavior of the frequency shows
good agreements with our analytic results.

The non-axisymmetric perturbation with ¢ > m also shows the instability. But its
origin is different from one of the bar mode. The instability mode of the bar mode pertur-
bation comes from the scalar type perturbation of the Schwarzschild black hole at a = 0
where the frequency is complex (see eq. (4.21)). On the other hand non-axisymmetric
mode with ¢ > m has an instability in the mode coming from the vector type perturbation
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Figure 2. The plot of the bar mode QNM frequency of (¢,m,j) = (2,2,0) is shown. The black
dashed line is the superradiance condition. The onset of the dynamically unstable mode is same as

the one of the superradiance instability.

Re[wr,]

20

15

100 /0

os f ==
05 10 15 20 25 30

Figure 3. The plot of the QNM frequency of (¢, m,j) = (4,2,0) is shown. The black dashed line is
the superradiance condition. The gray thick line is the stable mode w_, while the black thick line
shows the unstable mode w;. The dynamical instability appears exactly when the superradiance

condition is satisfied.

of the Schwarzschild black hole, whose frequency is a pure imaginary as (4.21). This is

same situation with the perturbation of the Myers-Perry black hole with equal spin [6]. In

figure 3 we give the plot of QNM frequency for ¢ = 4, m = 2. As we can see, the mode

showing instability becomes purely imaginary at a = 0, which corresponds to the vector

type perturbation of the Schwarzschild black hole.

4.1.2 Vector type perturbation

The QNM frequency of the vector type perturbation can be given as
1% v, W 2
W' =wio + =+ 0(1/n?),

where
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and

2am .
wl‘\I/Lo:m(f—l—i—aQ(]—l)—l—log(l—I—aQ))
(o (L@ =)+ —2) - 2a%m?
—1<(J—1) + 1+ a2)?

+ (j —-1- 16;52 + (21<f—_a?j))2) log (1 + a2)>. (4.29)

We have solved the perturbation equation up to kK = 2 order and obtained the QNM
frequency up to 1/D correction. This QNM frequency is obtained by imposing the same
harmonics condition with the scalar type perturbation on the behavior at § = 0 motivated
by eq. (4.17). The QNM frequency (4.28) reduces to the vector type perturbation on SP~2
of the Schwarzschild black hole [7] at a = 0 as

w=—i({—1) <1 + E_Tl + O(l/n2)) : (4.30)

5 Summary

The large D expansion method has been found to be useful to solve the gravitational
problem as shown in [1-10]. In this paper we have performed the next step for the further
developing of the large D expansion method by constructing the effective theory of the large
D stationary black hole in asymptotically flat or AdS spacetime. Considering the additional
degree of freedom of the horizon, rotation radius of the black hole, the effective theory
becomes non-trivial and allows the existence of various solutions compared to the static
case in the asymptotically flat spacetime which has only one unique solution, Schwarzschild
black hole [9]. This new degree of freedom appears as the Lorentz boost of the black hole
along the rotational direction, and we can rewrite the solution of the effective equation in
very simple and illuminative expression by using this boost property.

As applications of the effective theory we have considered the ellipsoidal embeddings
and obtained the Myers-Perry black hole and bumpy black hole solutions in perturbative
manner. Then we have succeeded to derive the threshold angular momentum of the insta-
bility of the Myers-Perry black hole. The bumpy black hole construction and perturbation
analysis of the Myers-Perry black hole had been investigated numerically. These numerical
studies of the solution and perturbations need very advanced and sophisticated technique.
However the effective theory obtained in this paper is rather simple equation and we can
obtain the solution easily.

As another application we have obtained the quasinormal mode frequencies of the
singly rotating Myers-Perry black hole. Our effective theory is only for the stationary
black hole. But, if we consider the dynamics with wrg = O(DV), the time-dependence
becomes sub-dominant compared with the radial dynamics. As a result we could solve the
perturbation equation as the ordinarily differential equation with respect to the radial di-
rection. Furthermore the leading order solution of our effective theory has a very important
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property, the boost property. All stationary black hole solution is represented as the boost
transformation of the Schwarzschild black hole. Thus various things which Schwarzschild
black hole possess are common with stationary black holes. Using this useful feature we
have solved the perturbation equation of the singly rotating Myers-Perry black hole ex-
plicitly and obtained the quasinormal mode condition, which is just an algebraic equation,
analytically. Although originally the perturbation equation is the partial differential equa-
tion system, the large radial gradient and boost property of the large D Myers-Perry black
hole reduce the equation to the analytically solvable ordinarily differential equation.

We can consider many directions of the extension of our work. In this paper we
consider the solution with only one angular momentum in vacuum. Thus it is interesting
to include more angular momentum, matter fields such as a gauge field or some compact
dimensions into the effective theory of stationary black holes. These inclusions would give
further additional degree of freedom for the deformation of the horizon. So its dynamics
becomes much richer. Another direction of the extension is the more detail investigation
of the effective theory of stationary black hole by searching other solution such as black
ring solutions and going to more higher order nonlinear solutions. By constructing such
solution we can draw the phase diagram of black holes analytically and compare with
numerical results. Actually the higher order investigation of the effective theory for the
static solution [9] allows very interesting phenomena such as the existence of the critical
dimension of the non-uniform black string [36].
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A Singly rotating AdS Myers-Perry black hole

In this appendix we give the metric of the AdS Myers-Perry black hole and its large D
limit in our notation. The D = n + 3 dimensional singly rotating AdS Myers-Perry black
hole is given by [15, 16]'3

ds* = —A(r,0)%dt® + B(r,0)%dR? + F(r,0)*(d$ — w(r,0)dt)?
+ G(r,0)%d0* 4 1% cos® 0dO%_,, (A1)
where

AgAg(r? 4 L?)(r? + a? cos® §)

A(r,0)? =
(r.0) L2EAR(r? 4 a? cos? 0) 4+ r2L2Ng(r? + a?) ’

(A.2)

13We change the ¢ coordinate by
a
¢ ¢— zdt

from [15, 16] to satisfy the boundary condition (2.13).
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B(r,0)* =

2
F(r,0)* =sin?0

w(r,§) =

and

Here we defined

and following functions

r2 IA?(T‘Q + a2 cos? 0)

n2R2

Ag

a2

)

a2r2

(| +

+

ar’Ag

sin?
22(r2 + a2 cos? )R |

L2=A;

G(r,0)? =

R

Ag =12~ (r? +d?) (1+

r2 + a2 cos?6

(r2 + a?cos? 0) + r2L2Ag(r? + a?)’

Ag
=_1- 0
) L27
2 2
o\ 4 a
L2> R, Ay = l—ﬁCOSQQ.

The horizon position, r = r,, is defined by the positive real root of Ag by

L is the AdS curvature and the metric is the solution of the Einstein equation

cosmological constant

A=—

Ag(ry) =0.

(D—-1)(D - 2)

L2

At the large D limit the metric is simplified to'4

ds® =

dR? L2(1 + a?cos? 0)

2sinh () cosh o ()

R

- R dt do + A,
where we introduced
R= (L+ a22(21 +L7) R, cosh? o(0) =
df and d¢ are defined by
df? = %’d#, a = 110

11 the following we set 7o = 1.

n2 (1+a2)(1+ L2)R(R—1)
- (1 - COShQJ(g)) df2 + <1 +

~ 14 a®cos®6
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R

sinh? 0(9)> i3

d6* + cos® 04932, _,,

(14 a*)Ag
(14 a2cos?260)="

(A.6)

(A7)

(A.8)

(A.9)

with a

(A.10)

(A.11)

(A.12)

(A.13)



At the large D limit the horizon is located on

Rl =1+0(1/n). (A.14)

T=r4

This solution can be reproduced by the leading order solution in section 2 by

14+ LA
V0(6)2 = (_LQE:)’ RH(Z) — COS 9, (A15)
and
dz 1+ a?cos? 6 9
— =y —— R = cosh” p. A.16

The surface gravity and horizon angular velocity at the leading order of large D limit are

11+ L2 a 1+L?
£ = Q= —— -~ Al
T = 15ae 12 (A-17)
The metric (A.11) becomes the large D metric of the Schwarzschild black hole [3]
4
ds* = ﬁdﬁ — tanh? p dt* + dz* + sin® 0d¢? + cos? 0dQ%,_,, (A.18)

when a =0 and 1/L = 0. We changed the coordinate by R = cosh? p.

Structure in 1/D correction. Let us consider the 1/D correction in gy of the AdS
Myers-Perry black hole at a = 0. Using

log R

r=1+-——=+0(1/n% (A.19)
we find that g becomes
g = —A(r,0)? )
— 1+ % - é + 271:)55 +0(1/n?). (A.20)

At large R g4 has a linear term in p since the relation between p and R is

A L? 9
R = h“ p. A21
14+ L2 coshp ( )

Thus, in general, the higher order corrections in A(p, #) cannot be assumed to be damping
exponentially at the overlap region n > p > 1 in the presence of the cosmological constant
as mentioned in section 2.
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A.1 Ellipsoidal embedding

The AdS-Myers-Perry black hole is described as the solution of the effective equation (2.39)
for the ellipsoidal embedding in the AdS background. The ellipsoidal coordinate in AdS is
given by!®

L3(r? + a?cos? ) | ,

2 2
Ap(L” +r )dt2+ r

L2= (r2 4+ a?)(L2? +12)
72 + a? cos? 9d92 n (r? + aj) sin? 6
Ay =
The ellipsoidal embedding is defined by

ds® = —

d¢® + 12 cos> 0dO%,_,. (A.22)

and the leading order metric of the AdS Myers-Perry black hole in the 1/D expansion
is reproduced by 7(f) = 1 when we fix the horizon position by ry = 1 with the surface
gravity and horizon angular velocity given in eq. (A.17). We consider the perturbation
around this AdS Myers-Perry black hole embedding. As done in section 2 the obtained
perturbed solution would give the bumpy black hole solution in AdS in the perturbative
manner. At first we fix the surface gravity to

1+ L2

h=——— A.24
= (A.24)

by using the time coordinate normalization in near zone. The perturbed embedding is
Ru(f) = cosb [1 +€eR(0) + O (62)} , (A.25)

where
a 1+L2
=Qy——————. A2

‘ 714 12 (4.26)

Then, perturbing eq. (2.39) with respect to €, we find the perturbative solution

s a(l+a?)?sin?6 (sin 9)6MPA61)—5MP/2
R(e) N E'(l B a2)(1 + a? cos? 9) +4 1+ a2cos26 ’ (A27)

where

(1+a*)(L% 1)

T2z (A.28)

omp =

This perturbation solution becomes regular at # = 0 when a = a. given by

»  (2k—1)L*+1
T ITrok-1 (4.29)

5The coordinate transformation from the usual AdS coordinate to the ellipsoidal coordinate is [15]

2.2 =12 | 2y . 2 2 2 2 2
r sin“ 0 — Z (r" 4+ a”)sin” 0, r~cos” @ — r° cos” 0.
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where k is a positive integer. At L — oo eq. (A.29) reproduces the threshold angular
momentum (2.56). Hence we expect that eq. (A.29) gives the threshold angular momentum
of the AdS Myers-Perry black hole and branching angular momentum for the bumpy black
hole in AdS. It is interesting to check this result by solving the perturbation equation of the
AdS Myers-Perr black hole and obtaining the QNM frequency as done for the Myers-Perry
black hole in section 4.

B Next-to-leading order analysis

Here we briefly give results for next-to-leading order solutions. In particular we will see
how the constancy condition of the surface gravity and horizon angular velocity, eq. (2.30),
can be obtained.

Our D = n + 3 dimensional metric ansatz is

N
ds? = 722)d 2 — A(p, 2)%dt* + F(p, 2)*(dp — W (p, 2)dt)*
+ G(p, 2)%dz* + H(p, 2)*qapdada®. (B.1)

We solve the Einstein equations for metric functions and the extrinsic curvature on p =
constant surface defined by

n
K = o g0y gep. B.2
b= Nyt O 2

The Einstein equations are decomposed on p = constant surface as

.y (D=1)(D-2)
~R+ K? - KYK° — P =0, (B.3)
VoK% — VK =0, (B.4)
D-1 1
%apmb = ~KK+ R + —5-0% — V"VyN. (B.5)

The leading order solutions which are regular on the horizon are

Ao (2 )2Fo(2)2t8tnh2 p

A2 = FF — A2 Crlo tan®p B0
Flp.2)? = Fo=)® — Ap(2)Crg(2)? tamh? p, (B.7)
. F0(2)2(1 — Ctt(z)) + A()( )20t¢( )QCtt(Z) tanth
W(pa Z) - th) ) (Z )QCt(p( )3 tanh2p ) (BS)
and
ro(2)? [ RE(z
G(p,z)=1- 2 OT(L ) (ZEEZ? — I;> log (cosh p), (B.9)
H(p,z) = Ru(z) (1 + %log (cosh p)) . (B.10)
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To satisfy the boundary conditions at p > 1, Cy and Cyy4 are found to be

1 _ Fp(2)4/1 — Ag(2)?
Aoe =T A

Then we can see that the leading order solutions satisfy the boundary condition at p > 1 as

C’tt(z) =

(B.11)

Alp,2) =1+0(?),  W(p,2) =O0(). (B.12)
Furthermore the functions in this leading order solution should satisfy one equation coming
from the vector constraint (B.4) given by

io Ao(2)Cu(2)\ 1 ; io Cyu(z) _
leg(ﬁ)(z) > (1 = C( ))dzlg(cw(z)) 0. (B.13)

This equation is rewritten by using eq. (B.11) as

_ )2
dii log (Agro(2)) + mi log (Ao(z)Fo(z) 1 Ao(z)2) —0.  (B.14)

We consider the 1/D corrections to the leading order solutions. Especially, by solving
eq. (B.5), we found that the 1/D correction to K?,, say (W K*Z,, has the following form
(1)
W = =

K z — 5Kzz sy 2 ), B.1
sohp T (p,2) (B.15)

where Cg) is an integration function with respect to p-integration. 6 K?,(p, z) is a solution
coming from the integration of the source term at next-to-leading order. Cg) is used
to eliminate the divergence of O(p~!) in 6K?,(p, z) at the horizon p = 0. Even though
the O(p~1!) divergence is eliminated by the integration function, (M K*?, cannot satisfy the
regularity condition at the horizon. Actually 6 K%,(p, z) has the following behavior after
eliminating O(p~!) divergence at the horizon

. _ ro(2)log p
T 09 = ~ (T o) Aol PR 2%
< [Fo2)4(2) + (1 - A Ao(2) Ey()] + 0. (B.16)

To satisfy the regularity condition on the horizon we should eliminate also this O(p~! log p)
divergence. Then Ap(z) and Fy(z) should satisfy additional condition

Fo(2)4(2) + (1 — AR Ao(2) Fy(z) = 0. (B.17)

This condition can be solved by

Fo(z) = YL Ao2] (B.18)

QHAO(Z)

where we introduce an integration constant Q. Using this solution (B.18), eq. (B.14) is
reduced to the equation only for Ap(z), and it can be solved by

Ap(z) = 2kro(2), (B.19)

where & is an integration constant.

— 34 —



Let us summarize above results. We obtained additional condition (B.17) from the
boundary condition on O(1/D) corrections. By combining this additional condition with
the leading order vector constraint (B.14) we get the expressions of Ayp(z) and Fy(z) in
terms of 7¢(z) and integration constants as eqs. (B.18) and (B.19). Using eq. (B.11) we
can see that eq. (2.30) is obtained by defining x = nk.

C Spheroidal harmonics at large D

We give some analysis for the spheroidal harmonics in the 1/D expansion. Let us consider
the massless scalar field equation

0w =0, (C.1)
in the D = n + 3 dimensional flat spacetime in the ellipsoidal coordinate given by

2 4 42 cos20
ds® = —dt* + r_‘_za—cojdr2 + (12 + a® cos® 0)db?
r“4a

+ (12 + a?) sin” 0d¢? + 2 cos® O3, _,. (C.2)
a is an oblateness parameter. The scalar field can be decomposed as
T = e~ “heimPy(r)S(0)Y;. (C.3)

Y, is the spherical harmonics on SP~* with the angular momentum number j. Eq. (C.1)
becomes equations for ¢ (r) and S(0) as

1 , (r?+a®)w+am)?  a?((j+n—2))
R . _ — A =0, 4
[rn—la o+ 72+ g2 2 e(r) =0 (C.4)
and
1 , o (awsin?0 +m)?  j(j +n—2)
_— n — — A = U. .
[sin@cosn—l 9(99 sin @ cos™ ™" 09y Zd p—y +A|S(0)=0. (C.5)

A is the separation constant. The spheroidal harmonics, S(0), is defined by the solution
of eq. (C.5). While there are numerical analysis [37] to find solution and eigenvalue of
eq. (C.5), but it is hard to obtain analytic solutions of eq. (C.5). Here we apply the large
D expansion to solve eq. (C.5). At first we assume that the parameters in eq. (C.5) have
following orders at large D

w=0(1), a=0(1), m=0(1), j=0(), A=0m).  (C.6)

The reason for A = O(n) can be seen by considering a = 0 limit. At a = 0 eq. (C.5) is
reduced to the equation for the spherical harmonics. The equation at a = 0 can be solved
by S=9 ()

5@=0)(9) = cos? 0 sinl™ 0 o F\(—kg, ks + |m| + j +n/2,|m| + 1;sin? ), (C.7)
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with the separation constant
A=) — (0 4 n). (C.8)
kg is given by
—j—|m]
5 .
Then, at a = 0, the separation constant is O(n). The spheroidal harmonics becomes the

ks (C.9)

spherical harmonics at ¢ = 0. Thus it is natural to assume A = O(n) also at a # 0.
The important observation is that the spherical harmonics (C.7) has the following large D
behaviors

Slf"zo) (0) = sin®~7 G cos?O + O(1/n). (C.10)

Usually the spherical harmonics S éazo) (#) is understood as the function which has ¢ nodes.
This ¢ is the overtone number along 6 direction. At large D limit the situation is changed,
and any nodes would disappear according to the large D limit solution (C.10). Instead
the quantum number ¢ can be read from the behavior only around 6 = 0 as the degree of
vanishing as

SE=0) = ' (1+0(6,n7Y)). (C.11)

Although it is not still unclear why we can obtain the quantum number ¢ only by the
behavior around 6 = 0, not by the behavior both at # = 0 and § = 7/2, such behavior is
useful for the quasinormal mode analysis of the Myers-Perry black hole.

Next we consider the contributions by a # 0 to the spheroidal harmonics. Let us
assume that the spheroidal harmonics S(#) is modified by the contributions from a and
w as

S(8) = SY=(0) (1 +55(6)) . (C.12)

Substituting this into eq. (C.5) and linearizing the equation with respect to 6.5(6), we can
obtain the equation for §S(6). The obtained equation, however, does not have a and w
dependences in its equation at the leading order of the large D limit. This is because the
contributions of a and w are not leading order effects in eq. (C.5) in the 1/D expansion.
Thus §5(0) can be set to zero also for the spheroidal harmonics S(#) at the leading order
in the 1/D expansion. Hence the spheroidal harmonics has the following large D form

S(0) = S (6) + 0(1/n)
= sin~7 fcos’0 + O(1/n), (C.13)
and the separation constant also becomes
A= (1+0(n™1), (C.14)

where £ is non-negative integer. The quantum number along 6 direction, ¢, can be obtained
again only by the behavior around 6 = 0. If one considers the 1/D corrections to the
spheroidal harmonics we can obtain the 1/D correction to the separation constant. In the
analysis of this paper we consider only the leading order results of the quasinormal modes,
so we do not pursue this analysis in more detail here.
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D Detail analysis on the vector type perturbation

In this appendix we show the detail analysis of the vector type perturbation of the Myers-
Perry- black hole. The vector type perturbation on the Myers-Perry black hole is decom-
posed to

P datda = e=teim? | (VISR IeDA) 4 gy (i@ e®)] (D.1)

where the vielbein and the vector harmonics were defined in section 3. The decoupling
perturbation variables are defined by

h 1-— 2
FéV cosiip éV) o Slnhp\/ T02(Z.) 5 fQ(V)) (D2)
\/1 + ro(2)2 sinh? 14 ro(2)?sinh® p

h 1-— 2
A = o é”—sinhp\/ v ()
\/1+r0 2 sinh? p 14 ro(2)?sinh® p

and
1% v 1% % 1% 1%
V=W FV =V FY) = g»), (D.4)
The decoupling perturbation variables are expanded by
(k) p(V) (k)Fév)

V) _ I V) _
=) —— P =)
k>0 k>0

. (D.5)

Changing coordinate by R = cosh? p, the perturbation equation at each order becomes

) ) ) V)
eV To  _ (kgV)
aRRR=Dgr " Fo 4R(R—1) S0 (D-6)
B b (k)F(V)
(k) p(V) _ 1 _ (k) c(V)
8RR(R )8R & 4R(R —1) St (D-7)
o) )
FRRR =12 W = B, (D.8)
o) )
sRRR -~ D WE" = W5, (D.9)

The boundary condition is the same with one of the scalar type perturbation, the ingoing
boundary condition on the horizon (4.4) and decoupling mode condition (4.5) at asymptotic
infinity of near zone.

Leading order (kK = 0). The regular solution at the leading order is

W)
RR—-1)

Oy =O0Op = Opy =0OR —o. (D.10)

The leading order solution has an undetermined function W) by the boundary condition.
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Next-to leading order (k = 1). The regular solution at the next to leading order is

wpy = Y0 g wpy Y0 @py) (D.11)
RR—1) RR—1)
and
Oy =Y, (O)FSV — (1)}3’?}/’ (D.12)

where terms with the hat come from the integrations of source terms. The next to leading
order solution has an undetermined function W(;) by the boundary condition again. At

this order we obtain the non-trivial condition for W as
cos 0sin? (1 + a” cos? G)W(’O) (9)
+ |—j(1 4+ a® cos? ) + i cos® B(a’ cos® H(w — i) — adm cos? O
+ a?(cos® O(w + 1) +w — 2i) +w — am) |[Wy(6) = 0. (D.13)
This condition can be solved explicitly as

. . 0)sV
cos’ <9sm< ol 0

W) (0) = T 2ol (D.14)
where
OV = —(1+a®)(j — 1) —iam + i(1 + a*)w. (D.15)
The harmonics condition on Wy(0) is eq. (4.18) as
OV =0 —j, (D.16)
and ¢ is parameterized by the non-negative integer ky by
=7+ |m|+2ky. (D.17)

This harmonics condition gives the leading order QNM frequency for the vector type per-
turbation by

am . l—3j
WKO:H-a?_ZQ_l—Fl—i—a?)' (D.18)

Next-to-next-to leading order. At this order we can obtain the solution and unde-
termined function in the same manner. Furthermore we find the non-trivial condition on
W(1)(0). Although we omit the explicit form of it since it is not so illuminative, the solution

of the non-trivial condition gives the following behavior around # = 0 on the horizon R =1
v 0% 2
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where
oV = OV 4w (D.20)
n
Y is given in eq. (D.15). M§Y is

MY = a?(—=a®(j — 1)? + 2ia(j — D)m+ j2 —2j —m> + 1)
—a(2a(j — 1) + imlog (1 + a?)) + w(i(a® — 1)log (1 + a?)
+2ia®(a®(j — 1) +dam + j — 1)) + (1 + a?)?w?. (D.21)

Then the harmonics condition gives

OgV + (1)7521/ =0—j (D.22)
n
This condition is solved by
wY =wlo + w‘N;LO +0(1/n?), (D.23)
where
wiio = fi”;(g ~14a%(j 1) +log (1 +a?)
(g e i
+ (j -1- 16_;52 + (21(f-_ag))2> log (1 + a2)>. (D.24)

E Explicit forms of ¢;(6) and d;(0)

The scalar type perturbation can satisfy the boundary condition on the horizon at the next
to next to the leading order if the integration functions are solutions of following equations:

c1(0)C(1)(8) + 2(0)C(1y(0) + 3(0)Ca ()
+ c4(0) Dy (8) + ¢5(0) Dl (6) + c6(6) Dy (6) = 0, (E.1)

and

d1(0)D{)(9) + d2(0) D (0) + ds(6) D{g) (6)
+ ds(0) D) (0) + d5(9)CE1)(9) +dg(0)C(1)(0) = 0. (E.2)
Each coefficients are following;:

cos? fsin® 6 (1 + a? cos 92)

2 (1 + a2)/?

c1(0) = , (E.3)
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cos fsin? 0
2(1 4 a2)>/?
+ cos 0 (a?(4] — 2iew — 5) + 2iam — 2iw — 2) +25 + 1], (E.4)

co(0) = {2a2 cos* 0 (a*(j — iw) + iam — iw + 2)

c3(0) = 2(1Sz1129)5/2 [aQ cos® 0 (a®(j — iw) + iam — iw + 2)2
+cos? 0 (a? (352 + j(—4 — 2iw) — 1) + 2iajm + j(—4 — 2iw) + 4)
+ cos? 9(a4 (352 + j(—6 — 4iw) — w* + 6iw + 4) + 2a’*m(2ij + w — 3)
—a? (m? +2 (20(j — 2w+ w? — 1)) + 2am(w — i) — w(w - 20))

+ 5% +2j -3, (E.5)
sin? ¢ 2 2 ‘ . , . ‘
ca(0) = —m [cos 0 (a*(—5j + 3iw + 2) — 3iam + j + 3iw + 5)
+ cos 0 (a*(—2j + 3iw + 3) — 3ia®*m + a®(j + 2iw + 1) — iw)
—ia® (1+ a2) weos® § — 35 — 5}, (E.6)
c5(0) = T COS?;Z el [cos2 0<a2 (1052 + 2j(8 — Biw) — Tiw — 3)

+ia(6) + T)m — 252 + j(—19 — 6iw) — Tiw — 9)

+ a* (a2 +1) wcos' g (a2(2ij + 2w — i) — 2am + 2w + 3i)

+ cos® 9(a4 (1252 4 j(—6 — 16iw) — 3w? — iw — 9) + a®m(164j + 6w + 1)

— a® (657 + 45 (7 + 3iw) + 3m® + 6w” — Yiw + 2)

+ am(—2ij + 6w — 9i) + j(5 + diw) — 3w? + 10iw + 4)

+ a2 cos® 0<a6 (72 + (=3 — 4iw) — 3w + diw + 2) + 2a7m (2] + 3w — 2i)
—a* (257 + j(—2 — 4iw) + 3m® + 2w(w + 1)) + a*m(—2ij + 2w + )

a2 (8ijw + j + 5w? — it — 2) + am(—4w + ) + w(dw + 7))

+ cos® 9((16 (65% + 7(—12 — 14iw) — 6w? + 10iw + 5) + 2a°m(7ij + 6w — 5i)
— a* (65 + j(7 + 4iw) + 6m? + 10w? — 15iw — 15) + 2am(—2ij + 5w — 4i)
+ a2 (25(3 + Biw) — 2u° + Biw + 6) + am(—2w + 1) + 2w(w — i))

43524135 + 5}, (E.7)
cos @ sin® 6
(1+a2)? (1 + a2 cos? )’
sin® 6
(1+a2)? (1 + a2 cos? §)>
+ a2 cos* 0 (3a2(j — iw — 1) + Biam — Biw + 1)], (E.9)

di(0) = —

(E.8)

do(0) = — [3;’ + 1+ cos® 0 (a®(6j — 3iw — 4) + 3iam — iw — 1)
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d3(0) = —

ds(0) =

ds(0) =

The coefficients cg(0) and d4(0) have very lengthy forms. They are written as

and

where

& =

) =

sin 0
(1+a2)? cos 0 (1+a? cos? 0

)3 [cos2 9(a2 (12j2—61'jw+j+iw+3)

+ia(6j—1)m—6ijw — 6j+iw—1) +a* cos® 9<a4 (3j2—6ijw—4j—3w2+5iw+2)

+ a’m(6ij+6w—5i)+a? (—6ijw+4j —3m* — 6w’ +2iw—2) +3am(2w+1)

— 3w(w—|—i)> +a? cos® 9(a4(12j2— 18ijw—17j —6w?+15iw+T7) +3a>m (65 +4w —51)

+ a? (—18ijw—|—2j—6m2—12w2+13iw—|—5)—I—2am(6w+i)—6w2—2iw+8>

+ cos® 9(a4 (1852 +7(—17—18iw) — 3w+ 11liw—1) +a’m(18ij+6w—117)

— a? (25(4+9iw)+3m?+6w® —12iw+10) +am(6w—1i) + (—3w+i)w)
+32+55+1],
V1 + a2 cos 0% sin? 0
(1+a2) (14 a?cos?0)’
cosfsind (cos? 6 (a?(j — iw — 2) + iam — iw) + j — 1)

V1+a? (14 a?cos?0)

1
ce(0) = ég) cos?k
o(6) (a2 + 1)* cos3 6 (1 +a2005292z 0

1
ds(0) = d% cos?
4(6) (14 a2)?cos? 0 (1 + a2 cos? 0)* Z ‘

7 (% +8j +12),
j(a2 (552 — Bijw + 23j — 10iw + 16)

+ia(3f + 10)m — j2 — 3ij(w — 5) — 10iw — 28),

= a* (105° + j%(18 — 13iw) — j (3w? + 19w + 8) — 2 (w? — 2iw + 4))

+ a*m (13i5% + 6jw + 195 + 4w — 4i) — a® <5j3 + 552(9 4 2iw)

(E.10)

(E.11)

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

5 (3m? 4 6w? 4 44) + 2 (m? + 207 = 21w+ 4) ) + am (<2052 + (6w — 173) + 4w)

+ 52(7 + 3iw) + j (=3w? + 19iw + 20) — 2w?,
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&) =

a® (105% + j2(—4 — 22iw) — j (11w? + 14) + i (w® + 8w + 8i))

+ P (22052 + 22jw — i (32 + 8)) + a* (=107 + j2(~42 - 9iw)

5 (~11m? + (=19 + 390)w) + i (3m? + 4) w + 3iw? + 4w? + 8)

—ia’m (857 + 2§(19 + 9iw) + m? + 6w’ — 8iw — 4) + a* (j2(22 + 13iw)

+j (m? = 5w® 4 30iw + 34) + m*(4 + 3iw) + 3iw® + 8w?® — diw + 16)

—am(j(4w — 64) + (8 + Ziw)w) + 3jw? — Yijw — 45 + iw® 4 4w?, (E.18)
a® (55° + j%(—10 — 18iw) — 3jw(5w — 6i) + 3iw® + Tw* + 8)

+ a"m (18i5% + 65 (5w — 3i) + (—14 — 9iw)w) + af (—10j3 + 52(—6 + 4iw)

+j (—=15m? — 19w* + 28iw + 18) -+ m*(7 4 9iw) + 8iw® + 15w — 10iw + 32)
—ia’m (125 + 45 (5 + 4iw) + 3m* + 16w* — 21iw — 12) + a* (j2(24 + 22iw)

5 (3m? + Tw? = 10iw + 8) + m?(6 + 8iw) + 6ies® + Tw? — 12iw + 16)

— Pm(145(w — i) + (4 + 5iw)w) + a2 (j (11w? — 20iw — 6) + m*(—1 — iw)

~30? — 2w — 8) +am(3 + 2iw)w + (—2 — iw)w?, (E.19)
a? <a8 (7° 4+ 7%(=3 = Tiw) + j (—9w* + 10iw + 2) + w (3iw® + 6w — 4i))

+a7m (Tig? + 2j(9w — 5i) — i(—3w + 20)?) + a® (—5j3 +52(9 + 1liw)

— 35 (3m2 + w(w + 4i)) + m2(6 + 9iw) + 6iw® + w? — diw — 8)

—ia’m (8§% — 65 + 3m* + 12w* — iw — 4) + a* (2]‘2(5 + 9iw)

+j (3m® + 21w® — 32iw — 6) 4+ 2i (3m* — 1) w — 17w — 24)

+ a’m (=25 (9w — 5i) + 3iw?® + 14w — 4i) + a® (5j(3w — 21w 4+ m?(—2 — 3iw)

— 6iw® — 13w? — 16) + 3am(1 + 2iw)w + w (—3iw? —w + 2i)> : (E.20)

a? (agw (5% —2jw+ij+iw® +w)+a’m (i +j(dw—1i) + (—2—3iw)w)

+ a8 (—5°+5%(3+6iw) —j (2m* —bw? +12iw+2) +m? (1 +3iw) + (—Tw+6i)w)
— ia®m (25% 4 j(—5—6iw) +m*+9iw+4) +a* (j2(1+7iw)+j (m®+w(16w—91))
—2m’ 4w (—6iw2—13w+4i)) +am (j(—10w+27) +9iw? + 8w —41)

+a? (j (9w? +diw+2) +m?(—1—3iw) +w (—8iw? —w+21))

+ 3iamw(2w+1) +w (—3iw2+4w+4i)>, (E.21)
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&0 = a8 (a2 + 1) w(a4 (152 + j (2w — i) + (=1 — iw)w) + a®m(—2j + 2iw + 1)

+a® (j(2w + 3i) — i (m® + 2w® + 2iw + 2)) + am(—3 + 2iw)

—iw? + 3w + 21'), (E.22)
d¥ = —j(j +2)% (E.23)
dV = j(a2 (=65 + j(—11 + 3iw) + 2iw — 8) — ia(3j + 2)m

+ (5 + 3iw) + 2iw + 8), (E.24)
I = a* (—155° 4+ 52(~3+15iw) 4+ (30> — 5iw+2) —2 (w? —2iw+4))

+ a*m (—15ij2 - 6jw+5ij +4dw—4i) +a (j2(17—|—15iw)—|—j (3m*+6w* —10iw+26)

—9 (m2+2w2—2iw+4)) +am(dw+j(—6w+5i))+j (3w —Biw—4)—2u?,  (E.25)
I = a8 (=204 + 652(3 + Biw) + 2j (60> — 15iw + 5) — iw (w? — 10iw — 4))

+ a®m (=305 — 65 (4w — 5i) + 3iw? + 20w — 47) + a* <6j2(3 + 5iw)

+ 45 (3m® + 6w? — 10iw + 6) + m*(—10 — 3iw) — 3iw® — 20w* — Siw + 16)

+aPm (j(~24w +100) + i (m? + 6w — 20iw + 12)) + 0?25 (6w? — i — 9)

— 3 (m? + ) w — 3iw® — 107 + 16) + Siamw? — iw?, (E.26)
dV = —a? <a6 (155%+5%(—22—30iw) — 25 (9w® —20iw+1) +3iw’ + 16w* — 4iw+8)

+ @ (30052 +4j(9w— 107) —9iw? — 32w+ 41) +a* (2(~ 2 30i)
—2j (9m2+18w2—20iw+2)+m2(16+9iw)+92'w3+30w2+82’w+16)

— a®m (-36w+3im” +18iw* +28w+12i) +a” (j (26—18w?) +m*(—2+9iw)

+ 9iw3+12w2+4iw+16) +am (—9iw? +4w+87) +3iw3—2w2—8iw—|—8> : (E.27)

P = ot (a6 (65 + 35%(3 + 5iw) + 25 (6w? — 10iw — 1) + w (—3iw* — 10w + 47))

+a¥m (~15i52 = 4j(6w — 5i) + 9ies? + 20w — 40) + a* (52(=7 + 15iw)
+ 25 (6m” + w(12w — 5)) + m?*(—10 — 9iw) — Yiw® — 16w* + 8)
+ aPm (=2) (12 + 5i) + 3im? + 18iw? + 12w + 40) + a? (2] (6w + 5w — 7)

+m?(4 — 9iw) — 9iw? — 2w + 4iw + 16) +iam (9w? + 8iw — 8)

— 3iw® 4 4w? + Siw + 8) : (E.28)
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di = —a° (aﬁ (7% + 72(—1 = 8itw) — Bjeo(w — i) + (2 + iw)e?)

+a®m (3142 + (6w — 3i) + (—4 — Biw)w) + a* (j2(3 — 3iw)
— § (3m? + 6w® + 2iw + 2) + m?*(2 + 3iw) + w (3iw® + 2w + 4¢))

— da®m ((=5 + i) + m? + 6w? +4) + a? (j (~3w? — biw +2)

+1i (m? (3w + 2i) + w (3w? + 2iw + 4))) + am(4 — 3iw)w + iw?(w + 2i)> . (E29)

F Explicit form of §5

The QNM condition for the scalar type perturbation of the Myers-Perry black hole is

05 =L—]. (F.1)
This condition can be rewritten as
. F(w)
05 —l+j=0e <=0 F.2
w —t+J = Glw) ; (F.2)
where
G(w) = (1+a?) [a(j — iw)? + 2a*m(w + )
—a® (§(—20 + 2iw + 4) + 2ilw + m? + 2w* — diw — 4)
+ 2am(il + w — 2i) + (£ — iw — 2)2] , (F.3)
and
F(w) = fsw® + faw* + fsw® + fow? + fiw + fo. (F.4)
Each coefficient is
f0s =i (1+a%)°, (F.5)
fo=— (140" (a(5j — 2) + biam + 50 — 6), (F.6)

fs=—i(1+a?)° (a4j(10j —T) + 4iaP (55 — 2)m + a2 (j(20¢ — 21)

— 90 — 10m? + 12) + 2ia(10¢ — 11)m + 106> — 230 + 12), (F.7)
fo=(1+a?)’ <a6j2(10j — 9) + 3ia®5(10j — T)m + a*(35%(10¢ — 9)

— 65 (40 +5m? —5) +2 (£ + 6m? — 4)) — ia*m(j(57 — 60¢) + 27¢

+10m* — 30) + a® (305 (¢ — 1)* — 15(% — 30¢m® + 34( + 30m* — 16)

+ 3ia (106% — 21¢ + 10) m + 10£° — 33¢% + 32( — 8), (F.8)
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fi=i(l+a? (5a8(j —1)5° + 2ia”j*(10j — 9)m + a%; (557 (4¢ — 3)
— 35 (704 10m? — 8) + 4¢ + 21m? — 12) — dia®m(—35*(5( — 4)
+j (120 + 5m? — 12) — £ — 2m® + 3) + a* (35> (10£*> — 17¢ + 8)
+ 5 (=270% + £(56 — 60m?) + 51m? — 24) + 462 + 3¢ (9Im? — 4) + m? (5m? — 24))
— 2ia®m (=65 (50* — 90 + 4) + 150> + 2¢ (5m* — 14) — Im* + 12)
+a? (5 (206° — 570 + 520 — 12) — 116 + ¢* (32 — 30m?) + 3¢ (19m? — 8) — 24m?)
+dia (505 — 1502 + 130 — 3) m + € (563 — 2102 + 280 — 12)), (F.9)

and

fo=— (a2 +iam + 0) (aﬁ(j —1)j2 4 3id%(j — 1)jm
+a* (35%(0 — 1) + j (=40 — 3m® + 6) + 2 (¢ +m? — 2))
—ia®m (j(7 — 60) + 50 +m?* — 6) + a?(j (3¢* — 8¢ + 6) — 3¢
— 30m2 +10£ + 4m? — 8) + 3ia ((2 — 30+ 2) m + (£ — 2)*(L — 1)). (F.10)
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