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1 Introduction

Dirac’s wish to treat the electric and magnetic fields of Maxwell’s equation in a more sym-

metric fashion lead him to propose the existence of magnetic monopoles [1]. These were

found to occur as regular solutions of spontaneously broken Yang-Mills theories coupled to

scalar fields [2, 3]. However, it was Montonen and Olive who proposed that there might

be an electromagnetic duality symmetry [4] which was subsequently found to be present

in the maximally rigid supersymmetric theory. One of the most important discoveries in

supergravity theories was the existence of exceptional symmetries in the maximally super-

gravity theories [5]. The scalar fields in these theories belong to a coset space constructed

from the exceptional symmetry. However, these symmetries generically act on the other

fields in the supergravity theory and when acting on the “spin one” fields they act as a

kind of electro-magnetic duality symmetry [6].

It has been conjectured that the underlying theory of strings and branes possess a

very large Kac-Moody symmetry called E11 [7]. This is encoded in a non-linear realisation

which possesses an infinite number of fields. The fields are ordered by a level and at low

levels the fields in E11 are just those of maximal supergravity theory in the dimension being

considered. However the E11 theory is democratic in that it also contains the dual fields as

well as the traditional fields; for example, in eleven dimensions in addition to the graviton

and three form, it contains the six form and a field with the index structure ha1...a8,b which

was the dual of the gravity [7]. Indeed, it was in this paper that an equation of motion in D
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dimensions of a field with the index structure ha1...aD−3,b and the usual graviton was given

at the linearised level. As this equation was derived form the usual formulation of gravity

it was guaranteed to describe gravity in the correct way including the correct degrees of

freedom. In fact the equation of motion of the dual graviton had been previously given in

five dimensions in reference [8] where it was also pointed out that it had the correct degree

of freedom to be gravity. The form of the dual graviton field had also previously been

suggested in [9]. Finally, in [10] the action and complete set of gauge symmetries for the

dual graviton in arbitrary dimension was constructed along the lines of [7], thereby tying

together the results of [7] and [8].

Although, the fields in the E11 non-linear realisation are listed for low levels, see for

example [11], they are not systematically known at higher levels theory. However, certain

results are known, these include all the p-form fields [12, 13] in the different dimensions,

some of which play a key role in gauged supergravities. Also known are all fields that do

not have blocks of ten and eleven indices in eleven dimensions [14]. These fields have a

particularly simple form, they are just the usual fields of the maximal supergravity theory,

as well as the dual fields just discussed above, as well as an infinite number of fields that

consist of adding blocks of 9 indices to these fields. In eleven dimensions these are the fields

{h[1,1], A[3], A[6], h[8,1], A[9,3], A[9,6], h[9,8,1], A[9,9,3], A[9,9,6], h[9,9,8,1], . . .} (1.1)

where the numbers in square brackets indicate the number of antisymmetrised indices in

each block. It was noted that when decomposed to the little group SO(9) these blocks

of nine indices did not transform and so these fields should be just alternative ways of

describing the degrees of freedom given in terms of the three form and graviton. In the

sector of the graviton, this conjecture was verified in [16] at the action level. As a result

E11 encodes an infinite duality symmetry which should be expressed through an infinite

series of duality relations which determine the dynamics of the particle. The analogous

results for other very extended algebras were given in [15].

In this paper we will show that alternative gauge field representations arise quite

generally for any particle. Indeed, they arise naturally from the irreducible unitary rep-

resentations of the Poincaré group ISO(1, D − 1) that describe any particle moving in

Minkowski space-time. These are constructed following the method of Wigner, which in-

volves the induced representation based on the isotropy, or little, group that preserves the

momentum in a chosen Lorentz frame [17, 18]. In the massless case, this method works

with the gauge field and as a result it has a number of ad hoc steps associated with the

gauge transformation of this field.

However, there is another type of representation of ISO(1, D − 1) also capable of

carrying the massless, irreducible and unitary representations of ISO(1, D− 1), and that is

manifestly Lorentz covariant and also gauge invariant [19–23], see also [24–26]. This works

with the fields strengths and their derivatives rather than the gauge fields. We note also the

anterior and different method [27, 28] where field equations for arbitrary gauge fields are

also formulated in terms of curvature tensors. When viewed in this way we will show that

there is an infinite number of ways of introducing different gauge potentials corresponding

to the particular equations one takes to be Bianchi identities and those one considers to
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be equations of motion. This choice reflects the possibility of the different possible duality

transformations one can carry out on the field strengths and all their space-time derivatives.

In the case of the spin-2 gauge field, this mechanism was explained in reference [16] using

the fields contained in the E11 non-linear realisation [7].

In this paper we will carry out this programme for Maxwell’s theory in D dimensions

and then for the three form in eleven dimensions. As is very well known the latter occurs

in the eleven dimensional supergravity theory [5]. We will find the equations of motion for

the particles when described in terms of any of the possible gauge fields. We will also find

an infinite series of duality relations that encode the dynamics of the particles and involve

all the gauge potentials.

For the first sections of the paper we use familiar conventions for writing indices on

fields, but as the paper progresses, and the number of different types of indices increases,

we use a number of shorthand conventions. We define these as we use them, but for easy

reference we give an appendix where these conventions are listed.

2 Spin one and its gauge fields

In this section we illustrate the ideas of this paper in the context of the simplest model,

that is, the Maxwell theory in D dimensions. We will show that this system possesses an

infinite number of descriptions corresponding to an infinite number of different possible

choices of gauge fields. The states of any particle are the irreducible unitary representation

of the Poincaré group ISO(1, D − 1) in D dimensions. As we mentioned above, these

were first found by Wigner [17] who constructed them as an induced representation of

ISO(1, D − 1) with respect to an isotropy subgroup that preserves a fixed momentum and

it is this formulation that is most widely known. The representations are labelled by the

representations of the isotropy group that they carry. In the massless helicity cases the

isotropy subgroup is SO(D−2) and by spin one we mean it carries the vector representation

of SO(D − 2).

However, for the massless case the Wigner formulation of particle states involves intro-

ducing a gauge field and the procedure has a number of ad hoc steps associated with the

gauge symmetry of this field. There does exist a much less well known, but equivalent for-

mulation of the Wigner unitary irreducible representations, that is manifestly SO(1, D−1)

covariant and, for the massless case, is also manifestly gauge invariant; indeed it involves

field strengths and their derivatives and plays an important role in the formulation of non-

linear higher spin theories, see [22–26] and refs. therein. We will ask what possible gauge

potentials are contained in this representation and in this way we will find an infinite possi-

ble choices of gauge potentials. In this section we take the opportunity to give a hopefully

very readily understandable account of this formulation of the irreducible representations

of ISO(1, D − 1) using only knowledge that every physicists knows.

2.1 The Wigner unitary irreducible representation of spin one

As every theorist knows a spin one particle can be described by a rank two field strength

Fa1a2 subject to the Bianchi identity

∂[a1Fa2a3] = 0 (2.1)
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and the equation of motion

∂aFab = 0 . (2.2)

These imply that

∂a1∂[a1Fa2a3] = 0” and so ∂b∂bFa1a2 = 0 . (2.3)

We will hence forth denote F (0)
a1a2 := Fa1a2 as this will be the first in a series of objects

F (n)
a1a2||b1...bn that we will define. We refer to n as the level.

To show that these do indeed describe a spin one we can choose our Lorentz frame so

that kµ = (k+, 0, 0, . . . , 0) in light-cone coordinates, whereupon equation (2.2) implies that

F
(0)
+a = 0 while equation (2.1) implies that k[−F

(0)
ab] = 0. Consequently, the only non zero

components of the field strength are F (0)
−i, i = 1, . . . , D− 2 subject to equation (2.3) and

these we recognise as the D − 2 degrees of freedom of a “spin 1”.

We are now going to formulate the above conditions in an alternative manner which

will lead to the irreducible unitary representation of ISO(1, D − 1) corresponding to spin

one, but in such a way that it is manifestly SO(1, D−1) covariant and also gauge invariant.

We first observe that the conditions of equation (2.1) and (2.2) on F (0)
a1a2 can be rewritten

by defining

F (1)
a1a2‖b := ∂bF

(0)
a1a2 , (2.4)

whereupon they are equivalent to the conditions

F (1)
[a1a2‖b] = 0 = F (1)

a1b‖
b . (2.5)

In the above and in what follows, we use conventions whereby double bars separate groups

of indices that are subject to GL(D)-irreducibility conditions. Thus we recognise the

Bianchi identity of equations (2.1) as just being the requirement that the tensor F (1)
a1a2‖b

is GL(D) irreducible. This is the same as stating that F (1)
a1a2‖b belongs to the GL(D)

Young tableau

a1 b

a2

. (2.6)

The second condition of equation (2.2) can be stated as that F (1)
a1a2‖b is also a

SO(1, D − 1) irreducible tensor. A Young tableau can be of GL(D) or SO(1, D − 1) type.

The former encodes constraints that involve the antisymmetrisation, or symmetrisation, of

certain groups of indices, such as in the first of the equation in (2.5), however, the latter

tableau also encodes trace conditions, such as in the second equations in (2.5). As a result,

F (1)
a1a2|b belongs to the irreducible representation associated with the SO(1, D−1) Young

tableau given above in (2.6). The conditions encoded in the Young tableau are just those

required to give an irreducible representation of the relevant group. A discussion a Young

tableaux can be found in [29, 30].

We now take another derivative and consider the quantity

F (2)
a1a2‖b1b2 := ∂b2F

(1)
a1a2‖b1 , (2.7)

which satisfies the conditions

F (2)
[a1a2‖b1]b2 = 0 = F (2)

a1b‖
b
b2 , F (2)

a1a2‖[b1b2] = 0 = F (2)
a1a2‖b

b . (2.8)
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The first two conditions are obvious from the definition of equation (2.7) and equation (2.5)

while the last two conditions follow by substituting equation (2.4) into equation (2.7) and

using equation (2.3). By considering ∂b1∂[b1F
(1)

b2b3‖b4], it follows from the constraints of

equations (2.5) and (2.8) that

∂c∂
cF (1)

a1a2‖b = 0 = ∂c∂
cF (2)

a1a2‖b1b2 . (2.9)

The constraints of equation (2.8) are equivalent to demanding that F (2)
a1a2‖b1b2 has the

properties associated with the SO(1, D − 1) Young tableau given by

F (2)
a1a2‖b1b2 ∼ a1 b1 b2

a2

. (2.10)

We now generalise the above to higher levels and define a sequence of objects up to

level n:

{F (p)
a1a2‖b1...bp} , p = 0, 1, . . . n , (2.11)

where we assume that

F (p)
[a1a2‖b1]...bp = 0 = F (p)

a1b‖
b
b2...bp , F (p)

a1a2‖b1...bp−2c
c = 0 , p = 0, 1, . . . n , (2.12)

and

F (p)
a1a2‖b1...bp = F (p)

a1a2‖(b1...bp), p = 0, 1, . . . , n . (2.13)

Proceeding to the next level n+ 1 we define

F (n+1)
a1a2‖b1...bn+1

:= ∂bn+1
F (n)

a1a2‖b1...bn . (2.14)

It is now straightforward to show that F (n+1)
a1a2‖b1...bn+1

obeys equations (2.12) and (2.13)

but with p = n + 1 . Thus by induction we have an infinite set of objects which obey the

constraints of equations (2.12) and (2.13) for all p .

To summarise, one has a description of “spin one” in D dimensions in terms of an

infinite the set of objects

W =



F (n)

a1a2‖b1...bn ∼ a1 b1 . . . bn

a2

, n = 0, 1, . . .



 (2.15)

which are related by equation (2.14) and which are subject to the constraints that are

encoded in the SO(1, D − 1) Young tableau.

The discussion above of all the higher level objects may seem at first sight as a bit

redundant, but it has an important interpretation. The objects of equation (2.15) carry

Wigner’s unitary irreducible representation of ISO(1, D − 1) which corresponds to “spin

one”. Indeed, there exists a map from Wigner’s unitary irreducible representation of

ISO(1, D − 1) for “spin one” where all states are labelled by momentum and polarisa-

tion tensors, to W, where the states are labelled by Lorentz tensors. The action of the

Lorentz generators is as usual while the translations acts as

Pc(F
(n)

a1a2‖b1...bn) = F (n+1)
a1a2‖b1...bnc . (2.16)
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The reader may verify that W does indeed carry a representation of ISO(1, D−1). We note

that this representation is not irreducible, as it contains infinitely many ideals Wn0
, namely

the modules obtained by truncating the level n to any minimum value n0 . As we shall see

below, it is nevertheless possible to reconstruct W from any ideal Wn0
by integration with

suitable boundary conditions imposed, conditions that we shall leave unspecified below for

the sake of simplicity.

As we have mentioned, the advantage of using the above representation W and its

generalisations to particles of other spin, is that it is manifestly Lorentz covariant and in

the massless case also gauge invariant and so it does not require a particular representation

in terms of a gauge potential and its associated gauge transformations. This will prove

key in what follows. The representations W, and its generalisations are equivalent to the

formulation of these representations given by the Wigner method of induced representa-

tions [17, 18].

The discussion above was pedagogical but to some extent a simplified account using

just ideas that are universally known. In fact, the procedure is best understood from

a slightly different and more abstract viewpoint. We should start from the beginning

with the fully indecomposable ISO(1, D − 1) representation of equation (2.15), the fields

of which by definition are subject to the SO(1, D − 1) conditions encoded in the Young

tableaux, and related by the derivative condition of equation (2.14). As should be the

case for this representation, these equations imply the on-shell dynamics. This should

be apparent from the above, for example the constraints on F (1)
a1a2‖b and the fact that

∂bF
(1)

a1a2 = F (1)
a1a2‖b implies the usual Bianchi and equation of motion for a spin one

particle. The above Lorentz-covariant method of describing the particle states is an example

of what is called the unfolded description of field theory dynamics and was initiated by M.

Vasiliev, see [22, 23] and references therein. In particular, the unfolding of the spin-one

field presented in this section was worked out in the second reference of [22, 23].

This is a formulation of the dynamics by a set of first order differential equations; in

this case equations (2.14) for all n together with the constraints just discussed. As we said,

unfolded formulation plays the central role in nonlinear higher spin gravity theories.

The representation W of equation (2.15) contains the field F (0)
a1a2 and all its deriva-

tives and one can think of this as the field and all its derivatives at a given space-time

point. Using Taylor’s theorem, we then know the fields at all space-time points as the

coefficients in the expansion are the just mentioned quantities.

It is clear from the above construction that if we have the representation W up to

level n then we can, by acting with space-time derivatives, construct all the higher level

elements in the representation; indeed this is what we did above. However, it is also possible

to reconstruct W if we have all the elements at, and above, any given level n, which we

denoted Wn above. The reconstruction is possible by using the Poincaré lemma. The fact

that integration is required is to be expected, asW is a fully indecomposable representation.

Let us consider F (p)
a1a2|b1...bp , p ≥ n , which is subject to all the constraints dictated by

its SO(1, D − 1) Young tableau of equation (2.15). These, in particular, imply that

∂[bn+1|F
(n)

a1a2‖b1...|bn] = 0 . (2.17)
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As a result one can deduce, using the usual Poincaré lemma, that there exists an object

F (n−1)
a1a2‖b1...bn−1

such that

F (n)
a1a2‖b1...bn = ∂bnF

(n−1)
a1a2‖b1...bn−1

. (2.18)

From the fact that F (n)
a1a2‖b1...bn satisfies the algebraic constraints associated with its

SO(1, D − 1) Young tableau, it follows that F (n−1)
a1a2‖b1...bn−1

obeys the analogous con-

straints. Proceeding in this way we reconstruct the representation down to level zero.

It is instructive to find the degrees of freedom contained in the higher level elements

of the representation W. Let us consider F
(1)
a1a2‖b

which is subject to the constraints of

equation (2.8) in conjunction with equation (2.7), but not its connection to level zero,

that is, to F
(1)
a1a2‖b

of equation (2.4). These differential constraints imply that F
(1)
a1a2‖b

is

divergenceless and curl-free on its two sets of indices, and as a result F
(1)
a1a2‖b

is harmonic.

One goes to momentum space and takes kµ = (k+, 0, 0, . . . , 0) , as before, and finds that the

last three equations imply that the indices a1, a2 and b cannot take the value +. The curl-

free equations then imply that the only non-zero components are F
(1)
−i‖−, i = 1, . . . , D−2 .

Hence we find it contains the required D − 2 degrees of freedom. A similar analysis at

level n implies that the only non-zero components of F (n)
a1a2‖b1...bn are F

(n)
−i‖−···− . We

note that, in the chosen Lorentz frame, all the non-vanishing components are related by

F
(n)
−i‖−···− = k− . . . k−F

(0)
−i and reproduce all the Taylor coefficients of an on-shell Maxwell

field at any given point, therefore allowing to reconstruct the field in the neighbourhood of

that point.

2.2 Dualities and Gauge potentials

The representation W of ISO(1, D − 1) describes the states of a spin one in a way that is

manifestly gauge invariant, since it is constructed from field strengths and their derivatives.

We now consider what gauge potentials are implied by this representation. We begin at

the lowest level. Every theorist knows that the Bianchi identity of equation (2.1) can be

solved in terms of a gauge potential A
(0)
a as

F (0)
a1a2 = 2 ∂[a1A

(0)
a2] , (2.19)

with the usual gauge symmetry δAa = ∂aΛ.

However, we are free to choose which of the equations in the representation we would

like to solve and we can equally well choose to solve equation (2.2) even though this is

usually thought of as the equation of motion. To achieve this we define

Ga1...aD−2
=

1

2
ǫa1...aD−2

b1b2Fb1b2 , (2.20)

whereupon the equation (2.2) becomes

ǫa1a2b1...bD−2∂a2Gb1...bD−2
= 0 , (2.21)

with the solution

Gb1...bD−2
= ∂[b1A

(0)
b2...bD−2] , (2.22)
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that is, in terms of a gauge field A
(0)
b1...bD−3

with the gauge symmetry

δλA
(0)
b1...bD−3

= ∂[b1λb2...bD−3] . (2.23)

However as we can reconstruct W from Wn by integration, we choose to carry out a

duality at level n rather than those at level zero. Let us first consider level one and define

G(1)
c1...cD−1‖a1a2 := ǫc1...cD−1bF

(1)
a1a2‖

b . (2.24)

It is straightforward to verify, using equation (2.2), that is, the trace constraint F (1)
ab‖

b

= ∂bFab = 0, that

G(1)
[c1...cD−1‖a1]a2 = 0 , (2.25)

Thus, G(1)
c1...cD−1‖a1a2 sits inside the irreducible representation of GL(D) that transforms

according to the following GL(D) Young tableau

G(1)
c1...cD−1‖a1a2 ∼

c1 a1

c2 a2
...

cD−1

. (2.26)

However, it is easy to see that G(1)
c1...cD−2b‖

b
a2 6= 0 and so the constraints on this object

are not those of an SO(1, D− 1) Young tableau, which are single traceless by definition. It

does however satisfy a higher order trace condition, and using the first equation of (2.5),

one finds that

G(1)
a1a2c1...cD−3‖

a1a2 = 0 . (2.27)

We can think of equation (2.27) as the equation of motion and equation (2.25) as the

Bianchi identity for the particle when written in terms of G(1)
c1...cD−1‖a1a2 . Indeed we will

show below that equation (2.27) follows from extremising an action. We note the usual

interchange of equation of motion and Bianchi identity under a duality transformation.

We next consider what derivative constraints G(1)
c1...cD−1‖a1a2 satisfies. Using equa-

tion (2.8) and the definition (2.24) we find that

∂[a1G
(1)

c1...cD−1‖a2a3] = 0 = ∂[c1G
(1)

c2...cD]‖a1a2 , (2.28)

and

∂eG(1)
c1...cD−1‖ea = 0 = ∂dG(1)

dc2...cD−1‖a1a2 . (2.29)

Equations (2.28) can be summarised by defining

G
(2)
c1...cD−1‖a1a2‖b

:= ∂bG
(1)

c1...cD−1‖a2a3 , (2.30)

– 8 –
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and demanding that it belong to the GL(D) Young tableau

c1 a1 b

c2 a2
...

cD−1

. (2.31)

The tensor G
(2)
c1...cD−1‖a1a2‖b

satisfies trace conditions inherited from equation (2.29) and an

obvious second order trace condition inherited from (2.27). Because of the latter condi-

tion, these are not the single-trace conditions associated with an SO(1, D − 1)-irreducible

Young tableau.

Before introducing potentials, we can proceed a but further as we did for Fa1a2 to

construct an infinite dimensional representation based on G
(1)
c1...cD−1‖a1a2

by defining

G
(n+1)
c1...cD−1‖a1a2‖b1...bn+1

:= ∂bn+1
G(n)

c1...cD−1‖a2a3‖b1...bn , (2.32)

and find the constraints that the new objects satisfies. However, we will not pursue this

further in this work.

We now choose to regard equations (2.28) as Bianchi identities and so solve these

instead of the Bianchi identity at level zero. Using the generalised Poincaré lemma spelled

out in section 5 of [31], we find that

G(1)
c1...cD−1‖

a2a3 = ∂[a1∂[c1A
(1)

c2...cD−1]‖
a2] . (2.33)

Thus we find a description in terms of a gauge field Aa1...aD−2‖b which satisfies the GL(D)

irreducibility condition

A
(1)
[a1...aD−2‖b]

= 0 . (2.34)

The expression for the field strength in terms of the gauge field can be written in the form

of a Young tableau as follows

∂c1 ∂a1

c2 a2
...

cD−1

. (2.35)

The fields strength G(1)
c1...cD−1‖a2a3 is invariant under the following gauge transforma-

tions featuring two independent GL(D)-irreducible gauge parameters λ(1)
a1a2...aD−3‖b and

λ(2)
a1a2...aD−2

:

δλA
(1)

a1...aD−2‖b = (D − 2) ∂[a1λ
(1)

a2...aD−2]‖b + ∂bλ
(2)

a1...aD−2
+ (−1)D−1∂[a1λ

(2)
a2...aD−2]b .

(2.36)
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These two transformations can be represented by the tableaux

a1 b

a2

...

∂aD−2

,
a1 ∂b

a2

...

aD−2

. (2.37)

We now turn to the case of dualising the object in the irreducible representation of

SO(1, D− 1) given in equation (2.15) at level n . To this end, we need a more streamlined

index notation. We denote Aa[n] ≡ A[a1...an] ≡ Aa1...an and similarly for all blocks of anti-

symmetric indices. Similarly, for groups of symmetric indices, we use Sa(n) ≡ S(a1...an) ≡

Sa1...an , with strength-one (anti)symmetrisation convention. Using this notation we define

G(n)
c1[D−1]‖...‖cn[D−1]‖a1a2 := ǫc1[D−1]e1 . . . ǫcn[D−1]en F (n)

a1a2‖
e(n) . (2.38)

Using equations (2.12) and (2.13) one can show that G(n)
c1[D−1]‖...‖cn[D−1]‖a1a2 obeys the

following over-antisymmetrisation constraints

G(n)
c1[D−1]|‖...‖c1

D
ci[D−2]‖...‖cn[D−1]‖a1a2 = 0 = G(n)

c1[D−1]‖...‖cj [D−1]‖...‖cn[D−1]‖cj
D
a2

,

i ∈ {2, . . . , n} , j ∈ {1, 2, . . . , n} . (2.39)

As a result, G(n) belongs to the GL(D) Young tableau

c11 . . . cn1 a1

c12 . . . cn2 a2
... . . .

...

c1
D−1

. . . cn
D−1

. (2.40)

It is straightforward to show that although G(n)
c[D−1]‖...‖d[D−1]‖a1a2 does not satisfy

any single trace conditions it does satisfy a double and a (D − 1) -trace condition which

are given by

G(n)
c[D−1]‖...‖d[D−3]a1a2‖

a1a2 = 0 = G(n)
c[D−1]‖...‖

c[D−1]
‖a1a2 . (2.41)

The dynamics of the “spin one” when expressed in terms of the field strength

G(n)
c[D−1]‖...‖d[D−1]‖a1a2 is given by equations (2.39) and (2.41) which replace equa-

tions (2.1) and (2.2) of the usual formulation in terms of the field strength F
(0)
a1a2 . We can

think of equation (2.39) as generalised Bianchi identities at level n−1 and equations (2.41),

which involve traces, as equations of motion.
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Using the equations (2.38) and equation (2.13), we find that the field strength

G(n)
c[D−1]‖...‖d[D−1]‖a1a2 also obeys the curl-free conditions

∂cG
(n)

c[D−1]‖...‖d[D−1]‖a1a2 = 0 = ∂a1G
(n)

c[D−1]‖...‖d[D−1]‖a2a3 , (2.42)

as well as the divergence-free conditions

∂eG(n)
ec[D−2]‖...‖d[D−1]‖a1a2 = 0 = ∂eG(n)

c[D−1]‖...‖d[D−1]‖ea . (2.43)

We note that (2.42) will be the generalised Bianchi identities at the level n while the

equation of motion will not be (2.43) but instead the higher-trace constraints (2.39).

We find the gauge potential at level n by applying the generalised Poincaré lemma [31]

to equation (2.42). The result is

G(n)
c1[D−1]]‖...‖cn[D−1]‖

a1a2 = ∂[a1∂[c1
1
. . . ∂[cn

1
A(n)

c1[D−2]]‖...‖cn[D−2]]‖
a2] , (2.44)

where the gauge potential A(n)
c[D−2]‖...‖d[D−2]‖a is an irreducible tensor of GL(D) and so

obeys the constraints

A(n)
c[D−2]‖...‖[f [D−2]‖a] = 0 = A(n)

[c[D−2]|‖...‖|f1]|f [D−3]‖a . (2.45)

As a result A
(n)
c[D−2]‖...‖f [D−2]‖a belongs to the GL(D) Young tableau

c1 . . . f1 a

c2 . . . f2
... . . .

...

cD−2 . . . fD−2

, (2.46)

The potential has no trace constraint and has gauge symmetries involving two gauge pa-

rameters, Λ
(n,1)
[D−2,...,D−2] and Λ

(n,2)
[D−2,...,D−2,D−3,1].

We note that the field strength G(n)
c[D−1]]‖...‖d[D−1]‖a1a2 involves n + 1 space-time

derivatives, instead of the more familiar two derivatives. The expression of the field

strength G(n)
c[D−1]]‖...‖f [D−1]‖a1a2 in terms of the gauge field A(n)

c[D−2]‖...‖f [D−2]‖a given

in equation (2.44) can be expressed in Young tableau language as

∂c1 . . . ∂f1 ∂a1

c2 . . . f2 a2
... . . .

...

cD−2 . . . fD−2

cD−1 . . . fD−1

. (2.47)

The fields strength G(n)
c[D−1]]‖...‖d[D−1]‖a1a2 when expressed in terms of its gauge po-

tential in equation (2.44) automatically obeys the Bianchi identities of equations (2.39)
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and (2.42). However, it also obeys equation (2.41) which is the equation of motion for

the gauge field, and we stress that it contains n + 1 space-time derivatives. The presence

of higher space-time derivatives is characteristic of the equations of motion of higher spin

fields and indeed of any mixed symmetry fields, when formulated in terms of curvatures.

For a recent discussion and references along those lines, see [32].

Thus we have found that there is an infinite number of ways of representing the particle

states of “spin one” corresponding to the existence of an infinite number of different possible

gauge potentials arising from the infinite number of ways of dualising the field strength

and its descendants that occur in the Lorentz-covariant unfolded module W. We repeat

that the latter module carries the irreducible unitary representation of ISO(1, D − 1) that

describes the states of the “spin one”.

We now turn to a key point of this paper, which is the duality relations between the

first-order derivatives of the potentials. To obtain these, we will first obtain duality relation

between the (n + 1)-derivative field strengths when they are expressed in terms of their

respective gauge potentials. We begin at level zero and in particular equation (2.20) which

now relates the gauge field Aa to the gauge field Aa[D−3]. This duality relation is of a

familiar type in so much as it relates equations of motion to Bianchi identities. However,

once we have substituted in the gauge potentials the Bianchi identities hold automatically

and so the relations imply the equations of motion.

We now consider duality relation at level n = 1, which was given in equation (2.24)

and that can be written as

∂[a1∂[c1A
(1)

c[D−2]]‖a2] = ǫc[D−1]b∂
b∂[a1A

(0)
a2] . (2.48)

We note that the Bianchi identities of equations of (2.1), or equivalently the first equation

in (2.5), and equation (2.25) are automatically satisfied. However as the duality relation

interchange Bianchi identities with equations of motion for the two fields we find that

equation (2.48) automatically imposes the equations of motion of the two fields, namely,

the second equation of (2.5) and equation (2.27), i.e.

∂bFab = 0 (2.49)

and

∂a1∂[a1A
(1)

a2c[D−3]]‖
a2 = 0 . (2.50)

Another, more direct way of getting these two equations directly from (2.48) is to antisym-

metrise all the c indices together with a1 of that equation, which gives (2.49), or to take

its double trace, which gives of (2.50).

We now consider the duality relations at higher levels. We begin with the relation (2.38)

but write it in the form

G(n)
c[D−1]‖...‖b[D−1]‖a1a2 = ǫb[D−1]

fG(n−1)
c[D−1]‖...‖a1a2‖f

= ǫb[D−1]
f∂fG

(n−1)
c[D−1]‖...‖a1a2 , (2.51)

which relates field strengths at adjacent levels. We now examine the effect of imposing

the Bianchi identities and equations of motion on each of these field strengths without
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assuming that they are given in terms of the gauge fields. For indices that are not involved

in the duality, that is do not occur on the epsilon symbol, the constraints on one side of the

equation obviously hold on the other side. As a result we now consider the constraints that

involve indices that occur in the duality. The Bianchi identities of G(n)
c[D−1]‖...‖b[D−1]‖a1a2

of equation (2.39) imply the trace conditions for G(n−1)
c[D−1]‖...‖a1a2‖f , namely

G(n)
c[D−1]‖...‖[b[D−1]‖a1]a2 = 0 ⇐⇒ G(n−1)

c[D−1]‖...‖a1b‖
b = 0 , (2.52)

and

G(n)
[c[D−1]‖...‖b1]b[D−2]‖a1a2 = 0 ⇐⇒ G(n−1)

ec[D−2]‖...‖a1a2‖
e = 0 . (2.53)

Conversely the Bianchi identities of G(n−1)
c[D−1]‖...‖a1a2‖f imply the trace conditions of

G(n)
c[D−1]‖...‖b[D−1]‖a1a2 of equation (2.41), namely

G(n−1)
[c[D−1]|‖...‖a1a2‖|f ] = 0 ⇐⇒ G(n)

c[D−1]‖...‖
c[D−1]

‖a1a2 = 0 , (2.54)

and

G(n−1)
c[D−1]‖...‖[a1a2‖f ] = 0 ⇐⇒ G(n)

c[D−1]‖...‖a1a2b[D−3]‖
a1a2 = 0 . (2.55)

Substituting for the gauge field in the duality relation of equation (2.51) yields

∂[a1∂[c1 . . . ∂[b1A
(n)

b[D−2]]‖...‖c[D−2]]‖
a2] = ǫb[D−1]

f∂f∂
[a1∂[c1 . . . A

(n−1)
...‖c[D−2]]‖

a2] . (2.56)

Once we have substituted the gauge fields in the field strengths, the Bianchi identities,

which occur on the left hand-sides of equations (2.52)–(2.55), are automatically satisfied

and as a result the trace conditions on the dual field strengths are now enforced. In

particular, examining equation (2.54) and (2.55), we now find that their left-hand sides

vanish automatically and so the gauge field A
(n−1)
[D−1]‖...‖a does not appear in this relation.

Consequently, the right-hand side of these relations are enforced and we find that the field

strength G(n)
c[D−1]‖...‖b[D−1]‖a1a2 satisfy the trace conditions, which are the equations of

motion for the gauge field A
(n)
c[D−2]‖...‖b[D−1]‖a.

We note that the field strength is symmetric under the exchanges of its columns of

D − 1 indices and so the trace conditions hold on all these columns and not just for

the the ones displayed above. Hence the duality condition of equation (2.56) implies the

equation of motion for the “spin one” in the formulation with the level n gauge field.

Examining equations (2.52) and (2.53) we find a similar conclusion but now the gauge

field A
(n)
c[D−2]‖...b[D−1]‖a is eliminated and we have the equation of motion for the gauge field

A
(n−1)
c[D−2]‖...b[D−2]‖a field.

Equations (2.56) can be thought of as an infinite set of duality relations for n = 1, 2, . . .,

the first of which is given in equation (2.48). We note that they involve ever increasing

numbers of space-time derivatives as n increases. However, as we now show we can integrate

these equations such that they only involve a single space-time derivative. At the lowest

level we find, integrating equation (2.48), that

∂cA
(1)

c[D−2]‖a = ǫc[D−1]b ∂
bA(0)

a + ∂aΞc[D−1] , (2.57)

– 13 –



J
H
E
P
0
9
(
2
0
1
5
)
1
9
2

where the last term is the general solution of the homogeneous equation. We can rewrite

equation (2.57) as

∂c1A
(1)

c[D−2]‖a = ǫc[D−1]b{∂
bA(0)

a + ∂aΞ
b}, (2.58)

where Ξc[D−1] = ǫc[D−1]bΞ
b. However, since Ξb is arbitrary, we can shift it as Ξb → Ξb−Ab

whereupon our original equation becomes

∂cA
(1)

c[D−2]‖a = ǫc[D−1]
b ∂[bA

(0)
a] + ∂aΞc[D−1] , (2.59)

We observe that the equation is now invariant under the gauge transformations of the

original gauge field A(0)
a. Antisymmetrising on {c1, . . . , cD−1, a} , we find that ∂cΞc[D−1] =

0 and so Ξc[D−1] = ∂cΞc[D−2]. Substituting this back in equation (2.57) it becomes

∂c1A
(1)

c[D−2]‖a = ǫc[D−1]
b 2∂[bA

(0)
a] + ∂a∂cΞc[D−2] . (2.60)

We recognise that the presence of the last term ensures the invariance of (2.60) under the

gauge transformation of the second type in equation (2.37), which acts as a shift symmetry

on Ξc[D−2] . The price for the integration is that the equation is now gauge-invariant only at

the price of an extra field with a shift symmetry. To eliminate the extra field requires that

we differentiate and antisymmetrise with the a index, so recovering the original relation of

equation (2.48).

Integrating at higher levels, in particular equation (2.56), we find that

∂[b1A
(n)

b[D−2]]‖c1[D−2]‖...‖cn−1[D−2]‖a = ǫb[D−1]f ∂fA(n−1)
c1[D−2]‖...‖cn−1[D−2]‖a

+ Y
(
∂aΣb[D−1]|c1[D−2]‖...‖cn−1[D−2]

+ ∂cn−1Ξb[D−1]|c1[D−2]‖...‖cn−1[D−3]‖a

)
,

n = 0, 1, 2, . . . , (2.61)

where Y (·) denotes the projection on the GL(D) Young tableau with index structure

{c1[D − 1]‖ . . . ‖cn−1[D − 1]‖a }. Using arguments similar to those given below equa-

tion (2.57) one can bring the duality relation to a form that is invariant under certain of

the gauge transformations of the field A(n−1)
c1[D−2]‖...‖cn−1[D−2]‖a and it then holds modulo

the remaining gauge transformations of the two fields,

Rather than constructing the infinite set of duality relations beginning with the gauge

field A
(0)
a we can alternatively use the level zero gauge field A

(0)
b1...bD−3

and repeat all the

above steps. Including this step we find a formulation of the “spin one” field in terms of

the following gauge fields

A[1], A[D−3], A[D−2,1], A[D−2,D−3], A[D−2,D−2,1],

A[D−2,D−2,D−3], . . . , A[D−2,...,D−2,1], A[D−2,...,D−2,D−3], . . . (2.62)

where the numbers shown as subscripts between square brackets indicate the number of

indices in each block, that is the length of columns in the corresponding Young tableau.

Thus, in summary we have shown that the spin one can be described by an infinite set

of duality equations which are first order in space-time derivatives but only hold modulo
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certain gauge transformations, One might suspect that these duality relations are invariant

under an infinite duality symmetry, modulo the gauge transformations. Indeed one might

suppose that this can be formulated as a non-linear realisation of an algebra with generators

that carry the same indices that are those carried by the gauge fields but raised.

2.3 Action principle for the dual potential A
(1)
c[D−2]‖a

In this section, we follow the lines sketched in [16] and give the action describing the

dynamics of a Maxwell field in terms of the dual potential A
(1)
c[D−2]‖a introduced above and

sometimes denoted A[D−2,1], for the sake of brevity. The way we recover the dynamics (2.27)

is interestingly subtle. As explained in the context of the Fierz-Pauli theory in [16], the

various dual actions involve more and more off-shell fields and are therefore less and less

economical. The special case of spin-1 is simpler but allows us to see in a very explicit way

the mechanism whereby the extra off-shell fields disappear from the dynamics on shell.

We start, as it should, with the Maxwell action, and integrate by part:

S[A] = −
1

2

∫
dDx ∂aAb(∂

aAb − ∂bAa) = −
1

2

∫
dDx (∂aAb∂

aAb − ∂aA
a∂bA

b) , (2.63)

dropping the boundary term. Introducing the following parent action

S[Y, P ] =

∫
dDx

(
Pa|

b∂cY
ca|

b −
1

2
P a

|bP
b
|a +

1

2
P a

|aP
b
|b

)
(2.64)

that features two fields, Y ca|
b = −Y ac|

b and Pa|
b , we reproduce the original action (2.63)

upon extremising S[Y, P ] with respect to Y :

∂[cPa]|
b = 0 ⇔ Pa|

b = ∂aA
b , (2.65)

and plugging back into (2.64). On the other hand, Pa|
b is an auxiliary field, so that

extremising the action with respect to it enables one to express it in terms of the Y field:

Pb|
a = ∂cY

ca|
b −

1

(D − 1)
δab ∂cY

cd|
d . (2.66)

Plugging that expression for P inside the parent action (2.64) yields the action

S[Y ca|
b] =

∫
dDx

(
1

2
∂cY

ca|
b∂

dYda|
b −

1

2(D − 1)
∂cY

ca|
a∂

bYbd|
d

)
. (2.67)

In order to analyse the gauge invariances of the action, it is sufficient to use only a

decomposition of the various fields under GL(D) and not under O(1, D − 1) . Thus, we

decompose

Y ab|
c = Xab|

c + δ[ac Zb] , Xab|
a ≡ 0 . (2.68)

The invariance of the Maxwell action under the gauge transformation δAa = ∂aλ is inher-

ited by the new action (2.67), whereby the field Z transforms as δZa = ∂aλ , with Xab|
c

staying unchanged, i.e. the action (2.67) can be shown to be invariant under

δλY
ab|

c = δ[ac ∂
b]λ . (2.69)
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On the other hand, from the fact that the field Y ab|
c enters the action (2.67) only through

its divergence ∂cY
ca|

b , the action is manifestly invariant under the following gauge trans-

formation

δΥY
ab|

c = ∂dΥ
dab|

c , Υdab|
c ≡ Υ[dab]|

c . (2.70)

Using the invariant antisymmetric symbol of SL(D) to dualise the first two indices of Y ab|
c,

the decomposition (2.68) is tantamount to the following GL(D)-irreducible decomposition

Ỹa[D−2]|c =Ta[D−2]‖c + Z̃a[D−2]c , Ta[D−2]‖a ≡ 0 , Z̃a[D−2]c ≡ Z̃[a[D−2]c] ,

Ỹa[D−2]‖c :=
1

2
ǫa[D]Y

a[2]|
c , Ta[D−2]‖c :=

1

2
ǫa[D]X

a[2]|
c , Z̃a[D−2]c :=

1

2
ǫcba[D−2]Z

b ,

(2.71)

while the gauge parameter Υ is similarly dualised into

Υ̃a[D−3]|c = λ
(1)
a[D−2]‖c + λ

(2)
a[D−2]c , λ

(1)
a[D−3]‖a ≡ 0 , λ

(2)
a[D−3]c ≡ λ

(2)
[a[D−3]c] . (2.72)

At this stage, without losing any of the tensorial fields involved, we set D = 4 for the

sake of clarity and to further explain the gauge structure of the new action in terms of

the GL(4)-irreducible dual fields T[2,1] and Z[1] . The gauge transformations leaving the

action (2.67) invariant, with D = 4 and keeping the vector field Za instead of its Hodge

dual Z̃a[3] , now read

δTab‖c = 2 ∂[aλ
(1)

b]c − 2 ∂[aλ
(2)

b]c + 2 ∂cλ
(2)

ab , (2.73)

δZa = ∂aλ+ ∂bλ̃(2)
ab , λ̃(2)

ab =
1

2
ǫabcdλ

(2)cd ,

where λ(1)
ab = λ(1)

(ab) and λ(2)
ab = λ(2)

[ab] .

In terms of the fields Xab|
c and Za that we keep for the moment, the equations of

motion derived from (2.67) are

0 = Gac|
b :=

1

2
(∂bFac(Z) + 2 ∂d∂[cXa]d|

b) , Fac(Z) := 2 ∂[aZc] . (2.74)

When the field X is expressed in terms of its dual T , in four dimensions, we have the field

equations

∂bFac(Z) +
1

12

[
ǫaduv∂c F

duv‖
b − ǫcduv∂a F

duv‖
b

]
= 0 , Fabc‖d := 3 ∂[aTbc]‖d , (2.75)

where we note that the curvature Fabc‖d of T is invariant under the λ(1) gauge symmetry.

Dualising on the indices ac gives

2 ∂dF̃
ab(Z)− ∂c F

abc‖
d = 0 , where F̃ ab(Z) :=

1

2
ǫabcdFcd(Z) . (2.76)

Antisymmetrising the left-hand side of the equations of motion (2.75) in its free indices,

one finds

∂a F
abc‖

c = 0 . (2.77)
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In this equation, only the GL(4)-irreducible field T[2,1] appears and all the symmetries

in (2.73) are preserved. The above field equation is nothing but the equation

G
(1)
a1a2c‖

a1a2 = 0 , (2.78)

presented in (2.27), in the case where D = 4 . We note that, using the Hodge decomposition

whereby a differential p-form can be written as the sum of three terms, one d-exact, one

∗d∗-exact and the last one harmonic:

ω[p] = dp[p−1] + ∗ d ∗ q[p+1] + r[p] , {∗d∗, d}r[p] = 0 , (2.79)

the field Za can be set to zero using the λ and λ(2) gauge parameters, while its harmonic

piece can be obtained by integrating equation (2.75), thereby expressing it in terms of the

physical components of T . In the gauge where the closed and co-closed parts of Za vanish,

one cannot use any λ(2) gauge parameters anymore and the remaining action and field

equations are only invariant under the λ(1) gauge symmetry.

3 The three form in eleven dimensions

The eleven dimensional supergravity theory as originally formulated contains the graviton

and the three form as its bosonic sector [33]. How to formulate the eleven dimensional

action with a six form was discussed in reference [34, 35]. The E11 non-linear realisation in

eleven dimensions includes the usual fields for the graviton and three form as well as the

six form and a field which is the dual of the graviton, but in addition it contains an infinite

number of fields with blocks of height nine added, see equation (1.1). Among these fields

are the h[9,9,...,9,8,1] . In this section we will repeat the considerations of the sections two,

but for the three form. We will show how the alternative dual descriptions of the degrees of

freedom usually encoded in the three form arise naturally within the unfolded formulation.

We find the equations of motion of the theory when described by any of these dual gauge

fields and we will find an infinite set of duality relations that are first order in space-time

derivatives and encode the dynamics. As we will discuss in the Conclusions, these relations

should be contained in the non-linear realisation based on E11.

3.1 The unfolded representation of the three-form

In what follows we will construct the unfolded representation of the three-form, that is

both SO(1, 10) and gauge invariant. We recall that this representation is indecomposable,

but can be mapped via harmonic expansion to Wigner’s irreducible unitary representation

of ISO(1, 10) for the three form. It can be found following the unfolding procedure given

in [22, 23], see also [24, 26] and references therein. Unlike in the previous section where

we presented the unfolded formulation of Maxwell’s theory using standard tensor calculus,

in this section we give a more formal and compact account of the unfolded representation

using differential form calculus and stress its conceptual basis.

Wigner’s unitary irreducible representation of the Poincaré group ISO(1, 10) corre-

sponding to the free, dynamical three-form in eleven dimensions can be mapped to an
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unfolded module consisting of an infinite set T of SO(1, 10)-irreducible tensors

T =
{
Fa[4] , Fa[4]‖b , Fa[4]‖b(2) , Fa[4]‖b(3) , . . .

}
, (3.1)

where the notation Fa[4]‖b(n) indicates a tensor that is separately antisymmetric in its

four indices {a1, a2, a3, a4} and totally symmetric in its n indices {b1, b2, . . . , bn} . The

SO(1, 10)-irreducibility of the tensors
{
Fa[4]‖b(n) , n = 0, 1, . . .

}
means that, besides being

Young-projected, the tensors are traceless, viz.

Fa[4]‖ab(n−1) ≡ 0 , ηa1b1Fa[4]‖b(n) ≡ 0 , (3.2)

where we recall our convention that indices at the same position (covariant or contravariant)

and with the same Latin label are implicitly symmetrised, or antisymmetrised, according to

the context. We note that the difference between an GL(11) and an SO(1, 10)-irreducible

tensor is given by the tracelessness property, here the second identity of (3.2).

In terms of Young tableau, the tensor Fa[4]‖b(n) is represented by

a1 b1 . . . bn

a2

a3

a4

. (3.3)

The action of the Poincaré group on the infinite set of tensors in (3.1) is given by

P bFa[4] = Fa[4]‖b , Pb2Fa[4]‖b1 = Fa[4]‖b1b2 , Pb3Fa[4]‖b1b2 = Fa[4]‖b1b2b3 , . . . (3.4)

while the Lorentz generators Mab act diagonally in T by the usual action. Up to this stage,

although we have talked of tensors, we have used no notion of spacetime.

Introducing a spacetime , the action of the translation generators of the Poincaré group

on the representation can be explicitly realised by taking them to be differentiation with

respect to the space-time coordinates, that is, Pa = ∂a, whereupon equations (3.4) take

the form

∂bFa[4] = Fa[4]‖b , (3.5)

∂b2Fa[4]‖b1 = Fa[4]‖b1b2 , (3.6)

∂b3Fa[4]‖b1b2 = Fa[4]‖b1b2b3 , (3.7)

...

The infinite set of differential equations (3.5)–(3.7) can be compactly written upon

introducing Grassmann odd (resp. even) vector oscillators θa (resp. ua) and forming the

master field

F (x; θ, u) =
∞∑

n=0

1

4!n!
Fa[4]‖b(n)(x) θ

a1 . . . θa4 ub1 . . . ubn . (3.8)
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It is also advantageous to write everything in terms of differential forms, by using the total

exterior derivative d = dxµ∂µ , taking the Fa[4]‖b(n) to be zero forms and introducing the

one-form

ha := dxµ δaµ (3.9)

for Minkowski spacetime in Cartesian coordinates. In this setting, the infinite set of differ-

ential equations (3.5)–(3.7) given above can be written in the form

[d− i haρ
T
(Pa)]F (x; θ, u) = 0 , (3.10)

where the translation generators are now represented on the master field as follows:

ρ
T
(Pa) = (−i)

∂

∂ua
. (3.11)

Explicitly, equations (3.62)–(3.7) now read

dFa[4] = hc Fa[4]‖c , (3.12)

dFa[4]‖b = hc Fa[4]‖bc , (3.13)

dFa[4]‖b(2) = hc Fa[4]‖b(2)c . (3.14)

Taking into account the GL(11) irreducibility conditions, given in equation (3.2), of

the tensor on the right-hand side of equation (3.5), one derives the relation

∂aFa[4] = 0 , (3.15)

which is locally solved, as usual, by F[4] = dA[3] , introducing a three-form potential and

its four-form field strength

A[3] =
1

6
ha1 ∧ ha2 ∧ ha3 Aa[3] , Fa[4] :=

1

24
ha1 ∧ . . . ∧ ha4 Fa[4] . (3.16)

We are using the notation that a number in square brackets without being accompanied

by a letter denotes the degree of the form that the field belongs to, that is, A[3] is a form

of degree three. The zero-form tensor Fa[4] are thus the components of the four-form field

strength F[4] = dA[3]. As usual the gauge field A[3] is defined up to the exterior derivative

of a two-form potential, namely

A[3] ∼ A[3] + dΛ[2] . (3.17)

On the other hand, recalling that Fa[4]‖b obeys trace constraints as given in equation (3.2),

one derives the equation

∂aFa[4] = 0 , (3.18)

which together with equation (3.16), is the field equation of a dynamical three-form. We

also not that the other equations (3.13), (3.14) etc. can be solved one after the others. They

express the tensors Fa[4]‖b(n) as the higher gradients of the tensors Fa[4]‖b(m) for m < n and

so in terms of the on-shell dynamical three-form A[3]:

Fa[4]‖b(n) = 4∂b1∂b2 . . . ∂bn∂[a1Aa2a3a4] . (3.19)
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We note that the SO(1, 10) properties of Fa[4]‖b(n) are ensured by the equations of motion

of the three form and the fact that partial derivatives commute.

To summarise, the irreducible unitary representation of equation (3.1) contains com-

ponents that are individually subject to SO(1, D− 1) irreducibility conditions and once we

take the space-time translations to be realised by space-time differentiation these condi-

tions imply the well known equation of motion for a three form. This is a purely algebraic

way of encoding the field equations and Bianchi identities of a dynamical three-form, a

characteristic of unfolded dynamics.

The underlying algebraic structure, captured by (3.12)–(3.14) together with dA[3] =
1
24h

a1 ∧ . . .∧ ha4 Fa[4] and dha = 0 , is known as a free differential algebra and makes sense

on a base manifold of arbitrary dimension. Its initial data is given by the gauge functions

for A[3] and the vielbeins ha together with the infinite set of constants provided by the

zero-forms at a given point p0 of the manifold. In particular, in eleven dimensions, the

infinite set of zero-forms in T at a point p0 with Cartesian coordinates xµ0 , together with

the differential equations (3.10), give the necessary data that enables one to reconstruct

an on-shell, dynamical three-form around that point p0 using the Taylor expansion

Aa[3](x) = Aa[3](x0) +
∞∑

n=1

1

n!
(x− x0)

b1 . . . (x− x0)
bn Fa[3]b‖b(n−1)(x0) . (3.20)

We would like to make some comments on gauge fixing. In the light-cone coordinates

xµ = (x−, x+, xi) we can choose the Lorentz frame in which the momentum is kµ =

(k−, k+ = 0, ki = 0) . Then at the point p0, the components A−jk and A−+j can be

set to zero by fixing the gauge in equation (3.17) using the gauge parameters λij and

λ+i . Furthermore, the components A+ij are gauge-invariant and zero on-shell as the field

equation is given by k−A+ij = 0 . As a result one finds that the three-form potential has

all its components vanishing except for the purely transverse ones, for which

Aijk(x0) =
1

k−
F−ijk(x0) . (3.21)

Consequently, all the derivatives of the three-form, when evaluated in momentum space

and in the chosen Lorentz frame, are therefore given by all the powers of k− times the

Fourier transform of Aijk(x) and they transform in the following representation

− − . . . −

i

j

k

. (3.22)

These coincide with all the non-vanishing on-shell derivatives of the field strength. This

discussion follows the general arguments given in references [19–21] (for related discussions,

see [32]) and it is the equivalent, for the three-form, of the Petrov decomposition of a metric

in Riemannian geometry.
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We next note how the gauge-for-gauge transformations, δλ[2] = dC[1] , act. In our

chosen Lorentz frame the only gauge transformations that have a non-trivial gauge-for-

gauge transformation are λ−i and λ−+ . These are also the only gauge parameters which

we did not use so far. They are subject to transformations that involve the components Ci

and C+ and these can be used to set these gauge parameters to zero, that is set λ−i = 0 =

λ−+ . We note that the component C− can be set to zero by the gauge-for-gauge-for-gauge

parameter.

Another, alternative and Lorentz-covariant way of analysing the physical content of the

equations consists in Taylor expanding the gauge (and higher reducibility) parameters, the

three-form components as well as the field strength, all evaluated on-shell, and comparing

all the coefficients of the various powers of (x − x0) at the point p0 . One sees that the

constants Aabc(x0) can be set to zero by the constants ∂[aλbc](x0) (the latter not being

constrained by the reducibility transformations). Similarly, at first order in the derivatives

of the three-form, the constants ∂(aAb)cd(x0) can be set to zero by the constants ∂a∂[bλcd]+

∂b∂[aλcd] whereas the constants ∂[aAbcd](x0) are identified (up to a constant, irrelevant

factor) with the constants Fabcd(x0) , etc. The outcome of this procedure is that all the

derivatives ∂cn . . . ∂c1Aa[3](x0) of the three-form at the point p0 are set equal to the on-shell

derivatives ∂(cn . . . ∂c2Fc1)a[3](x0) , thereby explaining (3.20). This way of counting physical

degrees of freedom on-shell is the one adopted in unfolded dynamics [22, 23].

It is well known that rather than describe the degrees of freedom by a three form one

can use a 6-form potential and we now explain this from the unfolded viewpoint. We begin

with the relation

F a[7] :=
1

4!
ǫa[7]b[4] Fb[4] , (3.23)

and transfer the properties of the unfolded dynamics of the three form given in equa-

tions (3.5)–(3.7) to corresponding equations for the six form. The first unfolded equa-

tion (3.5) transforms in the [4, 1]-irrep of SO(1, 10) and the resulting divergenceless prop-

erty of Fa[4]‖b implies that F a[7] is d-closed:

0 = ∂aFac[3] ⇔ ∂aF a[7] = 0 , (3.24)

while the GL(11)-irreducibility of Fa[4]‖b, that is the Bianchi identity of Fa[4] , implies that

F a[7] is divergenceless:

∂aFa[4] ≡ 0, ⇔ ∂bF
ba[6] = 0 . (3.25)

By the usual Poincaré lemma, equation (3.24) implies that F a[7] can locally be written as

F a[7] = 7∂aAa[6] . (3.26)

Thus we find the usual exchange the equations of motion with the Bianchi identities in

equations (3.24) and (3.25).

We now define Fa[7]‖b by

Fa[7]‖b := ∂bFa[7] . (3.27)

By virtue of equations (3.24) and (3.25), Fa[7]‖b is an irreducible SO(1, 10) tensor as it is

GL(11)-irreducible (Fa[7]‖a = 0) and traceless (Fa[6]b‖
b = 0). Completing the unfolding of
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the dual linearised 6-form yields the following tower of tensors

T̃ = {Fa[7]‖b(n) , n = 0, 1, . . . , } . (3.28)

The action of the Poincaré generators Pc on the tensors in T̃ is given by

Pc Fa[7]‖b(n) = Fa[7]‖cb(n) = ∂c Fa[7]‖b(n) . (3.29)

It follows from (3.23) and the above conventions for the action of the Poincaré translations

that the tensors in T̃ of equation (3.28) and those in T of equation (3.1) are related by

Fa[7]‖b(n) =
1

4!
ǫa[7]c[4] Fc[4]‖b(n), n = 1, 2, . . . (3.30)

The tensors in T̃ are traceless as result of the relation

F a[6]c‖
cb(n−1) =

1

4!
ǫa[6]cd[4] Fd[4]‖cb(n−1) = 0 , (3.31)

and are GL(11)-irreducible as a consequence of

ǫa[8]d[3]Fa[7]‖ab(n−1) =
1

4!
ǫa[8]d[3]ǫa[7]c[4] F

c[4]‖
ab(b−1) = 7!F d[3]a‖

ab(n−1) = 0 . (3.32)

Hence the tensors T̃ of equation (3.28) belong to the SO(1, 10) Young tableau

a1 b1 . . . bn
...

a6

a7

. (3.33)

We can collect the tensors T̃ into a single object

F (x; θ, u) =
∞∑

n=0

1

7!n!
Fa[7]‖b(n)(x) θ

a1 . . . θa7 ub1 . . . ubn , (3.34)

for which equation (3.29) takes the form

[d− i haρ
T̃
(Pa)]F (x; θ, u) = 0 , where ρ

T̃
(Pa) = (−i)

∂

∂ua
= ρ

T
(Pa) . (3.35)

Although action principles are usually part of the definition of an unfolded system, it

is nevertheless instructive to consider a parent action from which one can find both the

action for the three gauge form and that for the six form gauge field:

S[A[3], F[7]] =

∫ (
dA[3] ∧ F[7] −

1

8
F[7] ∧ ∗F[7]

)
, (3.36)

where F[7] and A[3] are independent fields. Extremising it with respect to A[3] gives dF[7] =

0 and so F[7] = dA[6]; substituting this back in S[A[3], F[7]], gives the standard action
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S[A[6]] ∝
∫
dA[6]∧∗dA[6] . The equation of motion for F7 gives F7 ∝ ∗dA3 and substituting

back we find the standard action for the three form.

Alternatively, one can start from the Palatini formulation for the 3-form,

S[A[3], F
a[4]] =

∫
1

7!
ǫb[4]c[7] hc1 ∧ . . . ∧ hc7

(
dA[3] +

1

8
hc1hc2hc3hc4F

c[4]

)
Fb[4], (3.37)

where F a[4] is a zero-form and is an independent field and we recall that hc is defined in

equation (3.9). Defining

F[7] :=
1

7!
ǫb[4]c[7]Fb[4] hc1 ∧ . . . ∧ hc7 , (3.38)

the Palatini action (3.37) becomes identical to the action (3.36). The latter action will be

used in section 3.3 where we shall generalise the action principle given above for Maxwell

theory to the case of the three form in eleven dimension and in the frame-like formulation.

3.2 Further dualisation of the three form

It is well-known that rather than express the dynamics of the bosonic non-gravitational

degrees of freedom of eleven dimensional supergravity by a three-form gauge field one can

instead use a six-form gauge field A[6] , whose curvature F[7], at the linearised level, is

just the Hodge dual of F[4] . As explained in the introduction, the non-linear realisation

of the Kac-Moody algebra E11 leads not only to the usual fields of eleven dimensional

supergravity as well as a six form and dual graviton field, but also to the infinite set of fields

of equation (1.1) which were proposed to be equivalent ways of describing the dynamics [7].

In this section we will show how the next field on the duality chain of equation (1.1), the

gauge field A[9,3], arises and we give its linearised dynamics. The duality relation involving

the fields in the gravity sector was sketched in reference [16] and some indications that one

might be able to do this for any massless particle were discuss in [36].

As we explained for Maxwell theory in the previous section, one can dualise any of

the curvature tensors that occur in the unfolded formulation. Hence, instead of dualising

the first tensor in the set T in (3.1), one may dualise the second tensor F[4,1] on its second

column:

Gb[10]
‖a[4] = ǫb[10]c Fa[4]‖c , (3.39)

or equivalently

Fa[4]‖b = −
1

10!
ǫbc[10]G

c[10]
‖a[4] . (3.40)

We can now find what the constraints on Fa[4]‖b imply for Gb[10]‖a[4]. Taking the trace

of (3.40) and using the second equation in (3.2) we find that indeed,

Gb[10]‖ba[3] = 0 , (3.41)

while using the first equation in (3.2) and acting with ǫa[4]bd[6] on equation (3.40) we find

the quartic trace constraint

Gb[6]a[4]
‖a[4] ≡ (Tr12)

4G[10,4] = 0 . (3.42)
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The presence of a higher order trace condition is unusual when compared to the standard

formulation of particle dynamics including Fronsdal’s higher-spin dynamics, but is never-

theless known in the context of duality, see section 6 of [31] and in particular equation (6.19)

therein. Equation (3.41) implies that the tensor Ga[10]‖b[4] is an irreducible GL(11) tensor

of type [10, 4] . Of course it cannot be traceless, as requiring this would imply its vanishing,

as is well-known in the representation theory of the orthogonal group, see e.g. the theorem

of section 10–6 in [29], which is equivalent to the special case m = 0 of Proposition 3 in [31]

or Lemma 1 in the more recent paper [37]. We note that, as usual, the Bianchi identities

and field equations get swopped under the dualisation.

We would now like to look at the differential constraints on Gb[10]‖a[4] that arise from

the differential constraints on Fa[4]‖c of equations (3.5)–(3.7). The first of these equations

implies that ∂aFa[4]‖b = 0 which using equation (3.40) in turn implies that

∂aG
b[10]

‖a[4] = 0 . (3.43)

As we did for the Maxwell case we can continue taking more space-time derivatives of the

the field strength Gb[10]‖a[4] to find an infinite set of tensors {Ga[10]‖b[4]‖b(n), n = 0, 1, . . .} .

Using similar arguments we can transfer the properties of Fa[4]‖b(n) to those new tensors

to find that {Ga[10]|b[4]‖b(n), n = 0, 1, . . .} are GL(11)-irreducible and obey the trace con-

straints

(Tr12)
4G[10,4,1,...,1] = 0 , Tr1iG[10,4,1,...,1] = 0 = Tr2iG[10,4,1,...,1] , i ∈ {3, . . . , n} . (3.44)

The notation (Trij)
n used here means that one takes n traces on the columns i and j .

Equation (3.43), combined with the GL(11) irreducibility of Gb[10]
‖a[4] implies, using

the generalised Poincaré lemma [31], That it can locally be written as

Gb[10]
‖a[4] = ∂a∂

bAb[9]
‖a[3] , (3.45)

where the GL(11)-irreducible tensor gauge field Ab[9]‖a[3] is defined up to the gauge trans-

formation

δAa[9]‖b[3] = 9 ∂aΛ
(1)

a[8]‖b[3] + 3

(
∂bΛ

(2)
a[9]‖b[2] +

9

7
∂aΛ

(2)
a[8]b‖b[2]

)
, (3.46)

with the two gauge parameters being GL(11)-irreducible with type Λ(1)
[8,3] and Λ(2)

[9,2] .

We note that there are no algebraic trace constraints on A[9,3], nor on its gauge parameters.

Remembering the expression Fa[4]‖b = ∂b∂aAa[3] , the definition (3.39) of Ga[10]‖b[4] and

the relation (3.45) give us the following duality relation:

∂aAa[9]‖
b[3] = ǫa[10]c ∂cAb[3] + ∂bΞ

a[10]|
b[2] . (3.47)

which is the analog of (2.57). We first note that Ξa[10]|
b[2] decomposes into

Ξa[10]|
b[2] = Ξ(1)a[10]

‖b[2] + ǫa[10]bΞ
(2)

b (3.48)

and that a gauge transformation Ab[3] → Ab[3] + ∂bλb[2] with λb[2] = −xbΞ
(2)

b enables

one to eliminate the Ξ(2) component of Λ . Having done that, the equation (3.47) is now
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understood with a field Ξa[10]‖b[2] obeying Ξa[10]‖ab = 0 . We can now reformulate this

equation in the same manner as we did for equation (2.57). By shifting the arbitrary field

Ξa[10]‖
b[2] in an appropriate way, we can recast the equation in the form

∂aAa[9]‖
b[3] = ǫa[10]b 4∂bAb[3]] + ∂bΞ

a[10]‖
b[2] . (3.49)

Multiplying by ǫa[10]e and tracing on b1 and e, we find that ∂aΞa[10]‖
b[2] = 0 implying that

Ξa[10]‖
b[2] = ∂aΞa[9]‖

b[2]. Using this result equation (3.47) now becomes

∂aAa[9]‖
b[3] = ǫa[10]c 4∂[cAb[3]] + ∂b∂

aΞa[9]‖
b[2] . (3.50)

We recognise the last term as a gauge transformation of the field Aa[9]‖
b[3]. Alternatively,

the above equation can be made fully gauge invariant by giving a shift symmetry to the

field Ξ under Λ(2)
[9,2].

We now give an action principle for the Ab[9]‖a[3] potential that correctly describes the

degrees of freedom of a massless three-form. The procedure was proposed in [16], which

itself was inspired from [6,9]. We start with the three-form and follow the analog of the

procedure for the Maxwell field spelled out in section 2.3. To this end, we take the usual

action S[A[3]] for a three form and integrate by parts, ignoring boundary terms:

−
1

4!

∫
dDx ∂aAa[3]∂

aAa[3] = −
1

3!

∫
dDx

(
∂bAa[3]∂

bAa[3] + 3∂bAba[2]∂cA
ca[2]

)
. (3.51)

We then introduce the following parent action, that features two independent fields, Pb|a[3]

and Y b[2]|a[3]:

S[P, Y ] = −
1

3!

∫
dDx

(
Pb|a[3]∂cY

cb|a[3] + Pb|a[3]P
b|a[3] + 3P b|

ba[2]Pc|
ca[2]

)
. (3.52)

Varying the action S[P, Y ] with respect to the field Y a[2]|b[3] gives the equation ∂b1Pb2|a[3] =

0 which implies that Pb|a[3] = ∂bAa[3]. Substituted inside the action, we reproduce the

action (3.51). On the other hand, as the field Pb|a[3] is auxiliary one can express it in terms

of Y via its equation of motion, namely

2P b|a[3] = −∂cY
cb|a[3] −

3

D − 1
ηba∂cY

cd|
d
a[2] , (3.53)

and substitute for it into the parent action, thereby yielding a daughter action S[Y b[2]|a[3]]

expressed solely in terms of the field Y :

S[Y cb|a[3]] =
1

4!

∫
dDx

(
Pb|a[3]∂cY

cb|a[3] + ∂cY
cb|a[3]∂eYeb|a[3]

−
3(5D2 − 11D + 7)

(D − 1)2
∂cY

cb|
ba[2] ∂

eYed|
da[2]

)
. (3.54)

Setting D = 11 , one can then dualise Y a[2]
|b[3] on its first two indices, and decompose

Ỹa[9]|b[3] =
1

2
ǫa[9]c[2] Y

c[2]
|b[3] = Aa[9]‖b[3] +Ba[9]b‖b[2] + ǫa[9]b[2]Cb , (3.55)
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so as to produce the GL(11)-irreducible field Aa[9]‖b[3] satisfying Aa[9]‖ab[2] ≡ 0 , as well

as Ba[10]‖b[2] (satisfying Ba[10]‖ab ≡ 0 ) and Ca which are analogs of the field Z̃ in equa-

tion (2.71). Because the field Y cb|a[3] enters the action only through its divergence ∂cY
cb|a[3],

the action is invariant under the following gauge transformations

δY b[2]|a[3] = ∂cΥ
c[3]|a[3] , (3.56)

where the gauge parameter Υ is antisymmetric in its two groups of indices. Upon dualising

the parameter Υ , one gets the following GL(11) -irreducible gauge parameters

1

3!
ǫc[3]Υ

c[3]|a[3] −→
{
Λ
(1)
a[8]‖b[3] ,Λ

(2)
a[9]‖b[2] ,Λ

(3)
a[10]‖b ,Λ

(4)
}

. (3.57)

The field Aa[9]‖b[3] will then transform as in (3.46), while the gauge transformation of the

field Ba[10]‖b[2] will involve the gradient of the parameters Λ(2) and Λ(3) . Finally, the vector

field Ca will transform with the gradient of Λ(4) .

We note that the action also possesses the gauge symmetry involving the two-form

gauge parameter λa[2] inherited from the original three-form Aa[3] . This will be discussed

in the next section 3.3, where we use the frame-like formalism that brings in a better insight

into the gauge structure. On-shell, the gauge field Aa[9]‖b[3] will obey the equation (3.42)

discussed above.

3.3 Unfolded description containing the A[9,3] form

In this section we wish to construct the unfolded formulation of the dynamics for the A[9,3]

form, that is a set of first order differential equations that contain the gauge field Aa[9]‖b[3]

and that assumes the form of a free differential algebra. This will contain the manifestly

Lorentz covariant and gauge-invariant infinite-dimensional representation of ISO(1, D− 1)

constructed from the field strength, Ga[10]‖b[4] , and all of its higher on-shell derivatives. It

also contains the gauge field Aa[9]‖b[3] through an appropriate frame-like, or Cartan-like,

connection. In the next subsection 3.4, we will build an action principle for the Aa[9]‖b[3]

potential, but this time facilitated by the use of the frame-like description that we first

derive on-shell in the present subsection.

We first introduce, following [24], the connection-like objects

{e[9]
a[3], ω[3]

a[10] } . (3.58)

The indices in square brackets without a label, i.e. [3] and [9], denote the form degree of the

objects, for example e[9]
a[3] is a nine form that carries three antisymmetrised tangent indices

and so can be written in more usual notation as 1
9! h

b1 ∧ . . . ∧ hb9eb1...b9
a1a2a3 . The field

ω[3]
a[10] is a three form that carries ten antisymmetrised tangent indices. It is important

to note that the objects of equation (3.58) are not subject to any GL(D) irreducibility

conditions. By analogy with the vielbein formulation of general relativity, we may think of

e[9]
a[3] as a generalised vielbein and ω[3]

a[10] as a generalised spin-connection. As the field

e[9]
a[3] is not GL(D) irreducible, only one of its irreducible components can be identified

with the gauge potential Ab[9]‖a[3] that we considered in section 3.2; the precise identification

will be discussed below.
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The differential forms of equation (3.58) are required to satisfy the differential equations

de[9]
a[3] + hb1 ∧ . . . ∧ hb7 ∧ ω[3]

a[3]
b[7] = 0 , (3.59)

dω[3]
a[10] + hc1 ∧ . . . ∧ hc4 Ga[10]‖

c[4] = 0 , (3.60)

where by assumptionGa[10]‖
c[4] is the zero-form that appeared in (3.39). It obeys the GL(D)

irreducibility conditions and the higher-trace constraints of equations (3.41), (3.42). As

discussed (3.43), this zero-form is the first member of an infinite set of zero-forms obeying

the following first-order differential constraints:

dGa[10]‖b[4] + hcG
a[10]‖b[4]‖c = 0 , (3.61)

dGa[10]‖b[4]‖c + hcG
a[10]‖b[4]‖c(2) = 0 , (3.62)

...

dGa[10]‖b[4]‖c(n) + hcG
a[10]‖b[4]‖c(n+1) = 0 , n = 2, 3, . . . . (3.63)

The equations (3.59)–(3.63) together with dha = 0 form a free differential algebra and

provides the unfolded description of the dual A[9,3] metric-like gauge field.

The gauge transformations of the system (3.59)–(3.60) are

δǫe[9]
a[3] = dǫ[8]

a[3] + ha1 ∧ . . . ∧ ha7 ∧ ǫ[2]
a[10] = 0 , (3.64)

δǫω[3]
a[10] = dǫ[2]

a[10] . (3.65)

The algebraic, Stückelberg-like, gauge transformations on e[9]
a[3], that is those contained in

ǫ[2]
a[10] , can be used to gauge away certain components of e[9]

a[3]. The GL(11)-irreducible

decompositions of e[9]
a[3] and ǫ[2]

a[10] are respectively given by

[9]⊗ [3] ∼= [11, 1]⊕ [10, 2]⊕ [9, 3] , (3.66)

and

[10]⊗ [2] ∼= [11, 1]⊕ [10, 2] . (3.67)

Therefore, after using all the algebraic gauge symmetries, the remaining components in

e[9]
a[3] are contained in the GL(11)-irreducible gauge field Aa[9]‖b[3] . Thus we make the

connection with the equations of motion of section 3.2 which involved the GL(D)-irreducible

gauge field Aa[9]‖b[3] . The connection ω[3]
a[10] possesses two GL(11)-irreducible pieces:

[10, 3] ⊕ [11, 2] . However, it is determined from the “zero-torsion” equation (3.59) by the

first derivatives of the components of ǫ[9]
a[3] that can be reduced (or gauge-fixed) to its

Aa[9]‖b[3] part. As a result we find that only the [10, 3] irreducible component of ω[3]
a[10]

remains that we denote by ω̃a[10]‖b[3].

In summary, so far, equations (3.61)–(3.63) constrain a tower of manifestly Lorentz-

covariant and gauge-invariant zero forms {G(n) , n = 0, 1, . . .} such that these can be

expanded in terms of the unitary and irreducible massless representation of ISO(1, D − 1)

that describes the degrees of freedom propagated by the original three form gauge field.
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This is simply a consequence of the fact that the field strength Ga[10]‖b[4] is by assumption

expressed in terms of the field strength Fa[4] via (3.39), so the representation appearing

in (3.61)–(3.63) is equivalent to the representation built on the field strength Fa[4] contained

in equation (3.1). Equations (3.59) and (3.60) glue the zero-form tower to the gauge field

e[9]
a[3] thanks to the introduction of the generalised spin connection ω[3]

a[10] so as to write

the full system as a free differential algebra. We will show later in this section how to

reproduce an equivalent dynamics from an action principle involving the fields in (3.58)

with some additional zero-forms.

In order to make contact with the gauge parameters of the metric-like A[9,3] gauge

fields, we note that, as is typical for p-form systems such as a nine-form and a 3-form,

the gauge transformations admit reducibility transformations. The complete family of

gauge-for-gauge p-form parameters, which are not GL(D) irreducible, is given by:

{ǫ[9−i]
a[3]} , i = 1, 2, . . . , 9 (3.68)

and

{ǫ[3−j]
a[10]} , j = 1, 2, 3 (3.69)

with transformation rules

δǫ
a[3]
[8] = dǫ

a[3]
[7] + ha1 ∧ . . . ∧ ha7 ∧ ǫ

a[10]
[1] , δǫǫ

a[3]
[7] = dǫ

a[3]
[6] + ha1 ∧ . . . ∧ ha7 ∧ ǫ

a[10]
[0] ,

(3.70)

δǫ
a[10]
[2] = dǫ

a[10]
[1] , δǫ

a[10]
[1] = dǫ

a[10]
[0] , δǫ

a[10]
[0] = 0 , (3.71)

and

δǫ
a[3]
[6] = dǫ

a[3]
[5] , δǫ

a[3]
[5] = dǫ

a[3]
[4] , . . . , δǫ

a[3]
[1] = dǫ

a[3]
[0] , δǫ

a[3]
[0] = 0 . (3.72)

The gauge-for-gauge parameter ǫ
a[10]
[1] can be used to gauge away parts of the parameter

ǫ
a[3]
[8] . Both are GL(11) reducible and can be decomposed into the GL(11) representations

as follows

[10]⊗ [1] ∼= [11]⊕ [10, 1], [8]⊗ [3] ∼= [11]⊕ [10, 1]⊕ [9, 2]⊕ [8, 3] (3.73)

As this decomposition makes clear we can gauge away two components leaving the gauge

parameter ǫ
a[3]
[8] to contain only the GL(11)-irreducible representation [9, 2]⊕ [8, 3]. Making

the appropriate GL(11) projection on equation (3.64), we find that the gauge transforma-

tion of the A[9,3] potential takes the form:

δǫAa[9]‖
b[3] = 9 ∂aǫa[8]‖

b[3] + 3

(
∂bǫa[9]‖

b[2] +
9

7
∂bǫa[8]

b‖b
a

)
, (3.74)

thereby making contact with (3.46).

When equations (3.59)–(3.60) are reduced to the remaining GL(11)-irreducible com-

ponents Aa[9]‖b[3] and ω̃a[10]‖b[3] of e[9]
a[3] and ω[3]

a[10], they become

ω̃a[10]‖b[3] = ∂aAa[9]‖b[3] , (3.75)

∂bω̃a[10]‖
b[3] = Ga[10]‖

b[4] . (3.76)
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The expression of the field strength in terms of the gauge field is given by

∂b∂aAa[9]‖
b[3] = Ga[10]‖

b[4] , (3.77)

which agrees with equation (3.45). It is easy to see that it is invariant under the gauge

transformations (3.74).

3.4 First-order frame-like action for the A[9,3] field

We now follow the general procedure explained in [36], whose discussion for the spin-2 case

was already given in [38]. The action, just like the one given at the end of section 3.3, is a

parent action in the sense that it contains both the three form and the A[9,3] gauge field.

The difference between this action and the one presented in section 3.3 is that we will now

use the frame-like vantage point developed above for the gauge field Aa[9]‖b[3] . We start

from the action principle for the three-form, written in the Palatini formulation presented

at the end of section 3.1 and that we repeat here for convenience:

S[A[3], F
a[4]] =

∫

M11

1

7!
ǫb[4]c[7] hc1 ∧ . . . ∧ hc7

(
dA[3] +

1

8
hc1hc2hc3hc4F

c[4]

)
Fb[4], (3.78)

where A[3] and Fa[4] are independent fields. We next introduce the parent action

SP [A[3], Fa[4], t[1]
a[3], e[9]

a[3]] =

∫

M11

[ 1

7!
ǫb[4]c[7] hc1 ∧ . . . ∧ hc7 (3.79)

∧
(
dA[3] +

1

8
hc1hc2hc3hc4F

c[4] + t[1]
c[3]hc1hc2hc3

)
Fb[4] + t[1] a[3] de[9]

a[3]
]
,

that contains the additional independent fields t[1] a[3] and e[9]
a[3]. The field equations

derived from the parent action are given by

dA[3] +
1

4
hc1hc2hc3hc4F

c[4] + t[1]
c[3]hc1hc2hc3 = 0 , (3.80)

d ∗ (ha1 . . . ha4 Fa[4]) = 0 , (3.81)

d t[1]
a[3] = 0 , (3.82)

de
a[3]
[9] +

1

7!
ha1ha2ha3 Fb[4] ǫ

b[4]c[7] hc1 ∧ . . . ∧ hc7 = 0 . (3.83)

The gauge symmetries of the action are

δA[3] = dλ[2] − hc1hc2hc3 ψ[0]
c[3] , (3.84)

δF[0]
a[4] = 0 , (3.85)

δt[1]
a[3] = dψ[0]

a[3] , (3.86)

δe[9]
a[3] = dξ[8]

a[3] . (3.87)

The equation (3.82) results from extremising with respect to e[9]
a[3]. It implies that t

a[3]
[1] =

dCa[3] and substituting this into the action we can absorb Ca[3] into A[3] and the action

becomes that of equation (3.78).
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In order to descend on a different child action, we note that by using the Stückelberg-

like gauge symmetry of A[3] with gauge parameter ψ[0]
a[3] , one can completely gauge A[3]

away, so that it disappears from the action (3.79). One can still perform differential gauge

transformations with the two-form gauge parameter λ[2] , but in order to stay in the gauge

where A[3] is zero, one has to compensate it with a residual transformation with parameter

ψ̄a[3] = ∂[a1λa2a3] .

We are thus left with a child action containing the fields, e[9]
a[3] , Fa[4] and t[1]

a[3] , or

better, containing only e[9]
a[3] and t[1]

a[3] as Fa[4] can be expressed in terms of the totally

antisymmetric part of t[1]
a[3] via (3.79). Note that under δt[1]

a[3] = dψ[0]
c[3] and in the

gauge where A[3] = 0 , we have that ψa[3] = ψ̄a[3] = ∂[a1λa2a3] and therefore δt[b|a1a2a3] =

0 , as it should. The field t[1]
a[3] plays the role of the connection ω[3]

a[10] introduced

in (3.58), upon dualisation of t[1]
a[3] on its form index and exchanging the role of form

and frame indices. The equations of motion (3.82) imply that (i) t[b|a1a2a3] = ∂[bCa1a2a3] ,

thereby re-introducing a three form on-shell, and (ii) the mixed-symmetric part ta1a2a3‖b =

3 ∂b∂[a1λa2a3] . But this is precisely in the form of its residual gauge transformations in the

gauge where A[3] = 0 , so that ta[3]‖b is pure gauge and does not carry any local degree

of freedom.

Let us demonstrate that the above action makes contact with the unfolded formalism

given earlier in this section. Equation (3.83) can be written as

de
a[3]
[9] + hb1 ∧ . . . ∧ hb7 ∧ ω̃[3]

a[3]b[7] = 0 . (3.88)

where

ω̃[3]
a[10] = −

1

7!
ha1ha2ha3Fc[4] ǫ

a[7]c[4] (3.89)

plays the role of the connection appearing in (3.59). More precisely, it is the part of

ωc[3]
a[3]

b[7] that is antisymmetrised in its ten indices that are written as the two index

blocks c[3] and b[7] that appears is (3.59), therefore, we rewrite

ω̃c[3]
a[3]

c[7] =
3!7!

10!
ǫc[7]f F

fa[3] , (3.90)

while performing the antisymmetrisation over the ten indices a[10] on the right-hand side

of (3.89) explicitly gives

ω̃c[3]
a[10] =

4!

10!
ǫa[10]b Fbc[3] . (3.91)

Note that the component of eb[9]|a[3] that transforms in the tensor product [10]⊗ [2] of

GL(11) is pure gauge on-shell, as can be seen by suitably projecting (3.83) and using (3.87).

Thus, it is only the GL(11) -irreducible component Ab[9]‖a[3] of e that is glued to the

zero-forms on-shell. To repeat, the components e[b1...b9|b10]a1a2 are pure gauge on-shell

and can therefore be eliminated in a gauge, leaving only the component Ab[9]‖a[3] with a

differential gauge invariance in terms of the sole GL(11) -irreducible component ξa[8]‖b[3]:

δξAb[9]‖a[3] = ∂b ξb[8]‖a[3] . In this gauge, the field equations (3.83) then reduce to

∂aAa[9]‖
b[3] =

4!7!

10!
ǫa[10]cF

cb[3] . (3.92)
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which we recognise as equation (3.50) in the gauge where Ξa[9]‖
b[2] is set to zero. Upon

acting with ∂b and antisymmetrising over the four b indices, we get

∂b∂aAa[9]‖
b[3] =

4!7!

10!
ǫa[10]c ∂

c∂[b1Ab2b3b4] , (3.93)

which is nothing but the equation (3.39) up to an inessential coefficient.

3.5 Higher dualisations on-shell

In this section we will dualise the higher level components of the representation space T

given in equation (3.1). We consider a generic tensor in the list, say Fa[4]‖b(n) , and dualise

it on all n indices b so as to define

G(n)
c[10]||...||f [10]||a[4] := ǫc[10]b1ǫd[10]b2 . . . ǫf [10]bn Fa[4]||

b(n) . (3.94)

Using the symmetries of Fa[4]‖b(n) we now show that the G(n)
c[10]||...||f [10]||a[4] is GL(11) -

irreducible. Explicitly, we find that

ǫc[10]f1 G(n)
c[10]||...||f [10]||a[4] = (−10!) δf1b1 ǫd[10]b2 . . . ǫf1f [9]bn Fa[4]||

b(n)

= 10! ǫd[10]b2 . . . ǫf [9]b1bn Fa[4]||
b(n) ≡ 0 , (3.95)

and

ǫc[10]a1 G(n)
c[10]||...||f [10]||a[4] = (−10!) δa1b1 ǫd[10]b2 . . . ǫf [10]bn Fa[4]||

b(n)

= (−10!) ǫd[10]b2 . . . ǫf [10]bn Fb1a[3]||
b1b2...b(n) ≡ 0 . (3.96)

We adopt the short-hand notation in which G(n)
c[10]||...||f [10]|‖a[4] is denoted by G

(n)
[10,...,10,4] ,

where the number of columns of height 10 is n. This object satisfies the trace conditions

Tr10ij G
(n)
[10,...,10,4] = 0 , 1 ≤ i < j ≤ n , (3.97)

Tr4i n+1G
(n)
[10,...,10,4] = 0 , 1 ≤ i ≤ n , (3.98)

where we recall that the symbols Trnij means that one takes an n trace between indices in

the i and jth column. To show the first relation we note that

δf1c1 . . . δ
fp
cp G

(n)c[10]||
...||f [10]||a[4] = −p!(11− p)! δ

f [10−p]bn
c[10−p]b1

ǫd[10]b2 . . . Fa[4]||
b(n) , (3.99)

where δ
c[p]
d[p] = δ[c1d1 . . . δ

cp]
dp , so that the expression on the left-hand side vanishes only if

the antisymmetrised product of Kronecker deltas on the right-hand side of the equation

contains δbnbn , namely only when p = 10 .

To show equation (3.98) we note that

G(n) a[p]c[10−p]
||d[10]||...||f [10]||a[4] = ǫa[p]c[10−p]b1ǫd[10]b2 . . . ǫf [10]bn Fa[4]||b1

b2...bn , (3.100)

which only gives zero when p = 4 , i.e. when all the four indices a’s of Fa[4]||b1
b2...bn are an-

tisymmetrised with one of the n indices in the set b(n) . Obviously, the result is unchanged

if one took four traces involving any another of the n columns of length 10 in G
(n)
[10,...,10,4] .
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We now consider the derivatives acting onG(n)
c[10]||...||f [10]||a[4]. In particular we observe

that

∂[a1G
(n) c[10]||d[10]||...||f [10]

||a2...a5] = ǫc[10]b1ǫd[10]b2 . . . ǫf [10]bn ∂[a1Fa2...a5]||
b(n) = 0 , (3.101)

which is a consequence of the differential equations (3.10) obeyed by the hierarchy of tensors

in the set T in (3.1) together with the GL(11)-irreducible symmetry properties (3.3) of these

tensors. Whereupon using the generalised Poincare lemma [31] the GL(11) -irreducible

tensors G
(n)
[10,...,10,4] can be expressed as generalised curvature tensors of GL(11) -irreducible

potentials:

G(n)
c[10]||...||f [10],a[4] = 4(10)n∂c . . . ∂f∂aA

(n)
c[9]||...||f [9]||a[3] , (3.102)

The tensors G(n)(A(n)) are invariant under the following gauge transformations

δλA
(n)
[9,...,9,3] = d{n}λ

(n)
[9,...,9,8,3] + d{n+1}λ

(n+1)
[9,...,9,2] . (3.103)

where

d{n}λ
(n)
[9,...,9,8,3] → 9∂cn

1
Λc1[9]||...||cn−1[9]||cn[8]||a[3] + 9x ∂cn−1

1

Λc1[9]||...||cn−1[8]cn
1
||cn[8]||a[3]

+ . . .+ 9x ∂c1
1
Λc1[8]cn

1
||...||cn−1[9]||cn[8]||a[3] , x = −

9

8
. (3.104)

The first term on the right-hand side of equation (3.87) can be depicted by the Young

tableau

c1 . . . f1 a1

c2 . . . d2 a2

c2 . . . f2 a2
... . . .

...

... . . .
...

c9 . . . c9

(3.105)

Finally, the curvatures G(n), n = 0, 1, . . . are related by

∂gG
(n)

c[10]||...||f [10]||a[4] = −
1

10!
ǫg

b[10]G(n+1)
b[10]||c[10]||...||f [10]||a[4] (3.106)

leading to a corresponding duality relation for the first differentials of the various potentials:

ǫgb[10] ∂
gA(n)

c[9]||...||f [9]||a[3] = 10 ∂bA
(n+1)

b[9]||c[9]||...||f [9]||a[3] + 3∂aΛ
(1)

g[10],c[9]||...||f [9]||a[3]

+ Y (∂fΛ
(2)

g[10],c[9]||...||f [8]||a[3]) (3.107)

where the symbol Y means the projection of the 9n + 3 indices {c[9]|| . . . ||f [9]||a[3]} on

the GL(11) Young tableau with n columns of height 9 and one of height 3 . Drawing

from the experience we gained from the frame-like formulation of the gauge field A[9,3] ,

we expect that the first-order duality relation (3.107) become free of inhomogeneous term

when expressed in terms of the frame-like frame fields and connections.
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4 Discussion

In this paper we have shown how the manifestly Lorentz and gauge covariant formulation

of the irreducible representations of the Poincaré group leads naturally to a description

of the dynamics of the massless point particle in terms of an infinite number of gauge

fields which obey first order duality relations. Gauge fields of this type were automatically

contained within the E11 non-linear realisation which is conjectured to be a symmetry of

the underlying theory of strings and branes. The E11 symmetry acts on the infinite number

of gauge fields rotating them into each other and this part of the symmetry can be thought

of as an extension of what we usually regard as a duality symmetry.

Duality symmetries have played an important part in theoretical physics and one may

hope that the extension of the symmetry given in this paper may prove useful in future

work. Certainly it will act as a very useful guide when formulating the equations of motion

that follow from the E11 non-linear realisation. The precise way the duality relations found

here are realised in the E11 approach will be published in a future paper.

An important aspect of the present paper is that the whole analysis concerns massless

gauge fields freely propagating in Minkowski background. We expect important conceptual

changes as the AdS background is considered instead. Indeed, in AdS gauge fields are

characterised by mass terms that all degenerate to zero in the flat limit. As a matter

of fact, manifest electric-magnetic duality-invariant unfolded equations for massless fields

freely propagating in AdS4 background have been given in [39]. In this formulation, the

rigid group of transformation Sp(8,R) preserves the unfolded equations, since the left-hand

side of the field equations transforms covariantly with respect to this group. As discussed

in [39], the Sp(8,R) covariant formulation experiences a degeneracy when the flat limit is

considered, thereby indicating that electric-magnetic duality acts very differently depending

on the curvature of the background. A very appealing aspect of the unfolded formulation

for massless gauge fields in AdS4 presented in [39] is that a u(1) subalgebra of sp(8,R)

acts on the fields as the electric-magnetic transformation, through an explicit doubling

of the set of fields related by the action of the u(1) symmetry. This feature is linked to

the dimensionality of AdS4 and the use of appropriate spinor variables. It would be very

interesting to investigate whether such a manifest duality symmetry could be extended to

unfolded systems in higher spacetime dimensions.

Finally, it would also be interesting to see if the duality relations found in this paper

could be extended to the Yang-Mills case. A discussion of the usual electro-magnetic

duality transformations in the context of Yang-Mills theory was given in [40].
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A Notation

In this appendix we give some of the notation used in this paper. While these definitions

are given in the text it may not always be easy for the reader to find them and so we

collect them here for easy reference. The first few sections of the paper are written without

using elaborate notation so that the reader can get used to the subject, but as the paper

progresses we need more and more indices and so we introduce a shorthand notation.

We separate blocks of antisymmetrised or symmetrised indices on the fields by putting

a double bar, for example Aa1a2a3‖b1...a9 . We eventually use a shorthand for blocks of

antisymmetric and symmetric indices by denoting Aa[n] ≡ A[a1...an] ≡ Aa1...an for blocks of

antisymmetric indices and Sa(n) ≡ S(a1...an) ≡ Sa1...an for symmetrised indices. We use the

strength-one (anti)symmetrisation convention.

In the early sections of the paper we denote antisymmetrisation in the usual way that

is Fa1a2a3a4 = 4∂[a1Aa2a3a4]. However, once we have more indices to cope with we adopt

the convention that when an index with the same Latin label occurs in the same up, or

down, position in an equation, it is automatically antisymmetrised. For example, when we

write Fa[4] = 4 ∂aAa[3] we automatically mean Fa1a2a3a4 = 4∂[a1Aa2a3a4].

When we are discussing forms we label the degree of the form by a number in square

brackets written as a subscript, for example A[3] =
1
3! dx

a1 ∧ dxa2 ∧ dxa3 Aa1a2a3 .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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