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1 Introduction and summary

Symmetries of dynamical equations have always played very important role in string theory.

Conformal symmetry of the worldsheet led to Polyakov’s reformulation of the theory [1, 2],

making it amenable to quantization, and provided powerful tools for performing calcula-

tions [3, 4]. Study of string dualities [5–8] led to great insights into dynamics of string

theory at strong coupling and to formulation of the gauge/gravity duality [9–11]. More

recently discovery of hidden symmetries of equations for a classical string led to the discov-

ery of integrability [12, 13], which stimulated a great progress in understanding of string

dynamics and gauge/gravity duality (see [14] for the review and list of references). To

gain additional insights into properties of quantum gravity and strong interactions it is

very important to look for new examples of integrable string backgrounds. Since at low

energies strings behave as point-like particles, integrable structures must give rise to hidden

symmetries of supergravity, which will be investigated in this article.

Integrability of classical strings on certain backgrounds is guaranteed by an infinite

number of conserved quantities which can be extracted from reformulating the dynamical

equations as a linear Lax pair [15]. Unfortunately, there is no algorithmic procedure for

constructing such pairs, and they have to be guessed. Interestingly, there exists a procedure
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for demonstrating that a particular background does not have a Lax pair, and it has been

applied in [16–18] to rule out several promising candidates, such as strings on a conifold and

on asymptotically-flat geometry produced by D3 branes. Unfortunately, this procedure for

ruling out integrability is rather complicated, and it has to be applied on a case-by-case

basis, so in [19] we used a different approach based on the study of geodesics. Since at low

energies strings behave as point particles, integrability must survive as a hidden symmetry

of such objects, and this gives a very coarse necessary condition for integrability, which can

be tested for large classes of backgrounds. Interestingly, this condition was sufficient for

ruling out integrability on all known supersymmetric geometries produced by D-branes,

with an exception of AdSp×Sq and a couple of other examples [19]. Of course, to analyze

the integrability of geodesics one has to start with explicit solutions, and the nontrivial

integrable deformations of AdSp×Sq [20–28] had to be constructed using special techniques

rather than obtained as members of known families.1 This article is a continuation of the

program initiated in [19]: it extends the earlier results to geometries without supersymme-

try, and, more importantly, it uncovers the hidden symmetries underlying integrability of

geodesics. In spite of this continuity, this paper does not require familiarity with [19].

Study of geodesics has a long history in general relativity, and the most powerful meth-

ods are based on the analysis of the Hamilton-Jacobi (HJ) equation. It is well-know that

such equation separates if the background contains cyclic (ignorable) directions, but some-

times separation happens even between non-cyclic coordinates. The simplest example of

such ‘accidental separation’ comes from the three-dimensional flat space in spherical coor-

dinates: the polar angle θ separates in the HJ equation, although the metric depends on

this coordinate. In this case the separation can be attributed to the SU(2) symmetries of

the sphere, but similar argument cannot be applied to the Kerr black hole, which has only

U(1)×U(1) isometry, although the θ coordinate still separates. The technical aspects of

this separation will be reviewed in section 2.2, and here we just recall that the separation

is associated with a hidden symmetry encoded in the Killing tensor (KT) [36–38]. The

same tensor also leads to separation of the Klein-Gordon equation even beyond the eikonal

approximation. The Kerr metric also gives rise to separable Dirac equation, this is guar-

anteed by an additional symmetry encoded in the Killing-Yano tensor (KYT) [39]. Over

the last four decades Killing(-Yano) tensors have been found for other geometries both in

general relativity [40–44] and in string theory [45, 46], and in this article we will construct

KYT for a large class geometries in arbitrary numbers of dimensions, which contains most

of the known examples as special cases.

Killing(-Yano) tensors encode all continuous symmetries of solutions in general rela-

tivity, but string theory also has discrete symmetries associated with dualities, which can

be promoted to a continuous group of solution-generating transformations in supergravity.

This leads to a very natural question: what happens with Killing(-Yano) tensors under

action by this group? Answering this question is one of the main goals of this paper. A

slightly different question was answered in the article [47], which identified the subset of

1Analysis of [19] focused only on geometries supported by the Ramond-Ramond fluxes, which allowed

us to analyze very large families. The ‘isolated points’ discussed [20–28] contained mixed fluxes, and they

would have survived the analysis of [19] had it been performed. Integrability of strings on the beta-deformed

backgrounds [20] has been discussed in [29–35].
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duality transformation leaving the Killing-Yano tensor invariant. As we will see, in general

both Killing and Killing-Yano tensors are changed by the dualities, even the equation for

the KYT is modified. However, for the special cases discussed in [47] our results agree with

that paper. In this article we focus on dualities in the NS-NS sector since our preliminary

study of the Ramond-Ramond backgrounds indicates that T duality applied to such ge-

ometries may change the rank of the KYT and even produce Killing-Yano tensors of mixed

rank. A very brief discussion of this point is given in section 4.3.

This paper has the following organization.

In sections 2.1 and 2.3 we review some well-known properties of Killing(-Yano) tensors,

and in section 2.2 we rewrite them in a slightly unusual form which becomes crucial for

the subsequent discussion. Usually one uses the Killing tensor to produce a conserved

quantity which leads to separation of the HJ and Klein-Gordon equations, and only one

such quantity can be constructed from a given Killing tensor. In section 2.2 we argue that

if one looks further and studies the eigenvalues of the Killing tensor, then a single KT can

lead to a family of conserved quantities since the detailed analysis of eigenvalues allows

one to construct a family of Killing tensors from a single representative using an algebraic

procedure (i.e., without solving differential equations). As a bi-product of this analysis

we also demonstrate that separation caused by nontrivial Killing tensors in any number

of dimensions can only happen in (degenerate) ellipsoidal coordinates, this generalizes the

earlier result of [19] to non-supersymmetric geometries. In section 2.3 we also show that the

eigenvectors of the Killing tensors lead to simple expressions for the Killing-Yano tensors

when the latter exist.

After developing this general technology we apply it in section 3 to write the Killing-

Yano and Killing tensors for the Myers-Perry black holes [48] in arbitrary number of di-

mensions with arbitrary number of rotations. In section 5.1 this construction is extended

to charged solutions built from Myers-Perry geometries by application of the solution-

generating dualities, and relatively simple explicit expressions for the Killing(-Yano) tensors

are derived.

The general effects of string dualities on Killing(-Yano) tensors are discussed in

section 4, where it is demonstrated that Killing vectors (KV) and Killing tensors sur-

vive under dualities if certain conditions on the Kalb-Ramond field are satisfied, and the

resulting transformations for the KV and KT are derived.2 For the Killing-Yano tensors

the situation is rather different: while dualities generically destroy the standard KYT, they

preserve the modified version of the KYT equation, which is derived in section 4.3. We

demonstrate that such duality-invariant modification is unique and derive the transforma-

tion laws for the Killing-Yano tensor. Several examples of the modified KY tensors are

discussed in section 5.

While studying massless particles, one encounters Conformal Killing(-Yano) tensors

(CKT and CKYT), and their behavior under string dualities has some unusual aspects.

The conformal objects are discussed throughout the paper along with their standard coun-

terparts. Some technical details are presented in appendices.

2For Killing vectors, a very nice interpretation of the transformation law in terms of the Double Field

Theory [49–53] is discussed in section 4.1, but unfortunately a natural embedding of KT and KYT in this

formalism is still missing.
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2 Killing(-Yano) tensors in higher dimensions

2.1 Killing tensors and Killing-Yano tensors

Symmetries play very important role in physics, and symmetries of geometries are encoded

in Killing vectors and Killing tensors. In this section we will review some well-known

properties of these objects and establish the notation which will be used in the rest of

the paper.

We begin with recalling that the Killing vector (KV) is defined as a vector field V

which leaves the metric invariant. In other words, the Lie derivative of the metric along V

must vanish:

LV gMN = 0 . (2.1)

Relation (2.1) can be rewritten as

LV gMN = V P∂P gMN + ∂MV P gPN + ∂NV P gMP = ∇MVN +∇NVM = 0, (2.2)

and it implies that the metric does not change under an infinitesimal transformation

x′M = xM + ǫV M . (2.3)

Since Killing vectors encode symmetries, they are always associated with conserved quan-

tities. Specifically, the expression

I = VM
dxM

ds
(2.4)

is conserved along any geodesic.

The correspondence between Killing vectors and integrals of motion is not one-to-one:

some conserved quantities are not associated with KV. However, it was shown by Penrose

and Walker [38] that any integral of motion that depends on momentum comes either from

a Killing vector or from a rank-two Killing tensor as

I = KMN
dxM

ds

dxN

ds
, (2.5)

where KMN satisfies a linear equation

∇MKNP +∇NKMP +∇PKMN = 0. (2.6)

To determine whether the integrals of motion survive in quantum theory as well, one

should analyze separability of the Klein-Gordon equation, and as shown in [54], the relevant

conserved quantity must be associated with eigenvalues of the differential operator

K̂ ≡ 1√−g
∂M

[√−gKMN∂N
]

+ k(x) (2.7)

with some function k(x). As demonstrated in [54, 55], operator K̂ commutes with ∇M∇M

if and only if KMN satisfies equation (2.6) and one more condition which will not be

discussed here.
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In general, presence of the Killing tensor does not imply separability of the Dirac

equation, this requires existence of an anti-symmetric Killing-Yano tensor (KYT) YMN

which satisfies the defining equation [39]

∇MYNP +∇NYMP = 0. (2.8)

This equation can be generalized to tensors of arbitrary rank as [56, 57]

∇(MYN)P1...Pk−1
= 0, YP1...Pk

= Y[P1...Pk]. (2.9)

In four dimensions KYT of rank k > 2 can be dualized into vectors and scalars, but in string

theory one encounters interesting solutions of (2.9), which will be discussed throughout

this paper. It is also possible to define Killing tensors of rank k > 2 as solutions of the

equation [38]

∇(M1
KM2...Mk+1) = 0, (2.10)

but such objects will not play any role in our discussion.

Any KYT gives rise to a Killing tensor of rank two via the relation

KMN = YM
A1...Ak−1YNA1...Ak−1

. (2.11)

This equation has a simple interpretation: separability of the Dirac equation implies one

for the Klein-Gordon equation in the same coordinates. In section 2.2 we will present a

detailed analysis of Killing tensors and outline a procedure for “extracting the square root”

from them which allows one to construct the Killing-Yano tensors, if they exist.

So far we discussed the integrals of motion for massive particles, but some additional

symmetries might arise in the massless case. For example, while the metric

ds2 = dr2 + r2dφ2 (2.12)

is not invariant under rescaling of r coordinate, massless particles are not sensitive to such

rescaling, so while

V = r∂r (2.13)

is not a Killing vector, it does lead to conserved quantities for massless particles. Such

conformal Killing vectors (CKV) satisfy equation

∇MVN +∇NVM = vgMN , (2.14)

where v is an arbitrary functions of all coordinates. If v is a constant, then the correspond-

ing CKV is called homothetic [58–60], and such vectors will play an important role in the

analysis presented in section 4.1.3.

The conformal Killing(-Yano) tensors (CKT and CKYT) are defined as solutions of

equations

∇(M1
KM2...Mk+1) = W(M1...Mk−1

gMkMk+1), (2.15)

∇(M1
YM2)...Mk+1

= gM1M2ZM3...Mk+1
+

k+1
∑

i=3

(−1)igMi(M1
ZM2)...Mi−1Mi+1...Mk+1

,

– 5 –
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with coordinate-dependent tensors W and Z. Notice that under rescaling of the metric,

CKV, CKT and CKYT transform in a simple way,3 so they survive S duality and transition

from the string to the Einstein frame. Ordinary Killing vectors have the same feature, as

long as we impose a reasonable restriction on the dilaton:

LV e
2Φ = V M∂Me2Φ = 0. (2.16)

On the other hand, the ordinary KT and KYT are usually destroyed by coordinate-

dependent rescaling of the metric, so they exist only in one frame. Conformal trans-

formations of the KT and KYT are discussed in appendix A.

We will mostly focus on rank-2 KT and CKT, and they can be constructed by squaring

KYT or CKYT:

KMN = YM
A1...Ak−1YNA1...Ak−1

, WM = 2YMA1...Ak−1
ZA1...Ak−1 . (2.17)

For rank-1 and rank-2 (C)KYT this construction is well-known, and direct computation

shows that it works for all k.

Conformal Killing tensors KMN with WM = −∇Mφ have a special property: they can

be extended to the standard KT KMN by

KMN = KMV + φgmn. (2.18)

To see this one can take a covariant derivative of (2.18) and symmetrize the result:

∇(MKNP ) = ∇(MKNP ) +∇(MφgNP ) = 0. (2.19)

This construction will be illustrated in section 2.3 by comparing KT and CKT for rotating

black holes.

2.2 Killing tensors and the Hamilton-Jacobi equation

Solutions of the equation for the KT,

∇PKMN +∇MKNP +∇NKPM = 0 (2.20)

form a linear space, in particular, a ‘trivial subspace’ is spanned by combinations of the

metric and Killing vectors,

Ktriv
MN = e0gMN +

∑

i,j

eijV
(i)
M V

(j)
N , (2.21)

with constant coefficients e0, eij . In this subsection we will establish a one-to-one correspon-

dence between nontrivial Killing tensors and separation of variables in the Hamilton-Jacobi

equation

gMN∂MS∂NS + µ2 = 0. (2.22)

3The relevant transformations are derived in appendix A.
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2.2.1 Killing tensors from the Hamilton-Jacobi equation

There are several notions of separability for equation (2.22), and we focus on the standard

one by assuming that

S = S(x1, . . . xk) + S(xk+1 . . . xn). (2.23)

This assumption can be generalized to R-separability as

S = S(x1, . . . xk) + S(xk+1 . . . xn) + S0(x1 . . . xn), (2.24)

where S0(x1 . . . xn) is a known function of its arguments4 [61]. However, this generalization

will not play any role in our discussion.

Equation (2.22) separates as (2.23) if and only if three conditions are satisfied:

(a) Coordinates xM can be divided into cyclic coordinates z and two other groups, which

will be denoted by x and y. The metric does not depend on coordinates z.

(b) There exists a separation function f , such that

gMN =
1

f

(

XMN + Y MN
)

, ∂xY
MN = ∂yX

MN = 0, XyiM = 0, Y xiM = 0. (2.25)

(c) Function f can be decomposed as

f = fx − fy, ∂yfx = 0, ∂xfy = 0, ∂zfx = ∂zfy = 0. (2.26)

Conditions (a)–(c) allow us to rewrite equation (2.22) as

XMN∂MS∂NS + µ2fx = −Y MN∂MS∂NS + µ2fy, (2.27)

where the left-hand side depends only on x, and the right-hand side depends only on y.

This implies that

I ≡
[

XMN − fxg
MN

]

∂MS∂NS (2.28)

must be an integral of motion, and as such it must be associated with a Killing tensor:

I = KMN∂MS∂NS. (2.29)

We conclude that separation of variables (a)–(c) is associated with Killing tensor

KMN = XMN − fx

f

(

XMN + Y MN
)

= −fyX
MN + fxY

MN

f
. (2.30)

If condition (c) is not satisfied, then equation (2.22) separates only for µ = 0, and the

associated conformal Killing tensor is

KMN = XMN . (2.31)

After reviewing the standard procedure for extracting the Killing tensor from sepa-

ration of variables [36–38], we discuss the inverse problem: recovery of separation from a

given Killing tensor.

4The counterpart of (2.24) for the Schrödinger equation is

Ψ = X(x1 . . . xk)Y (xk+1 . . . xn)Ψ0(x1 . . . xn)

with known function Ψ0. For non-trivial Ψ0 this is known as R-separation [54].

– 7 –
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2.2.2 Separation of variables from Killing tensor

Every Killing tensor gives rise to an integral of motion via (2.29), and such constant must

be associated with separation of variables as in (2.28). While the separation functions

(fx, fy) and the corresponding tensors (XMN , Y MN ) are encoded in the Killing tensor,

extracting them requires further analysis, and as we will demonstrate, this analysis may

lead to an entire family of the Killing tensors which can be constructed algebraically from

one representative. Schematically our results can be represented as

Eigenvalues

of KT
⇒ separation ⇒ m–parameter

family of KTs
⇔ m conserved

charges
(2.32)

To justify the usefulness of eigenvalues we recall equations (2.25) and (2.30):

gMN =
1

f

(

XMN + Y MN
)

, KMN = −fyX
MN + fxY

MN

f
(2.33)

and consider an eigenvalue problem:

KMNZN = ΛgMNZN . (2.34)

Assuming that metric has at least one non-cyclic direction5 x and that there is at least one

component KxN 6= 0, the M = x component of (2.34) becomes

− fy

f
XxNZN = Λ

1

f
XxNZN ⇒ Λ = −fy. (2.35)

In other words, some eigenvalues of the Killing tensor give the separation functions, and

corresponding eigenvectors can be used to recover the relevant tensors (XMN , Y MN ). The

cyclic coordinates complicate this construction, so they should be ignored to recover the

separation function and added back in the end. Specifically, we propose the following

procedure for extracting the separation function from the Killing tensor:

(1) Find the eigenvalues and eigenvectors of the KT:

KMN =
∑

a

Λae
(a)
M e

(a)
N , gMN =

∑

a

e
(a)
M e

(a)
N . (2.36)

Notice that some eigenvalues may vanish of be degenerate.

(2) Build the projectors6

P
(a)
MN = e

(a)
M e

(a)
N .

Projector P will be called cyclic if
∑

N

[P (a)]M
N
∂NΛb = 0 for all (a, b). (2.37)

If all projectors are cyclic, the Killing tensor can be built from Killing vectors and

the metric.
5This assumption is violated only for flat space in Cartesian coordinates.
6To avoid cumbersome formulas, we focus on non-degenerate eigenvalues. In general the left hand side

of (2.37) should refer to an eigenvalue Λ and the right-hand side should contain summation over all a with

Λa = Λ. Since degeneracy clutters notation without introducing new effects, we use (2.37).
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(3) Remove all directions associated with cyclic projectors and construct the reduced met-

ric and Killing tensor:

Kred
MN =

[

∑

a

Λae
(a)
M e

(a)
N

]

red

, gredMN =

[

∑

a

e
(a)
M e

(a)
N

]

red

.

Non-cyclic components of equation (2.20) imply that Kred
MN is a Killing tensor for gredMN .

Nontrivial Kred
MN and gredMN imply that Killing tensor cannot be constructed from the

Killing vectors and the metric.

(4) Separation of variables implies that
∑

M

e
(a)
M dxM =

√
gadx

a, ∂j∂k ln gm = 0 for different (i, j, k). (2.38)

Then analysis of the Killing equations shows that generically the reduced metric and

Killing tensor must have the form

ds2red =
∑

k

gk(dxk)
2, Kred =

∑

k

Λkgk(dxk)
2,

gk = hk(xk)
∏

j 6=k

[xk − xj ], Λj = ∂jΛ, (2.39)

where Λ(x1 . . . xn) is a linear polynomial in every (x1 . . . xn) symmetric under inter-

change of every pair of arguments.

(5) Separation of variables in the reduced metric is accomplished by multiplying the re-

duced HJ equation by

ρk =
∏

j 6=k

[xk − xj ]. (2.40)

Then the reduced HJ equation can be written as

1

hk
(∂kS)

2 =
n−1
∑

p=0

(xk)
pI(k)p (x1 . . . xk−1, xk+1 . . . xn), (2.41)

which implies that all I
(k)
p must be constant.7 This construction separates variable xk,

and other coordinates can be separated in the same fashion

(6) After coordinates (x1 . . . xn) have been constructed, cyclic directions can be added

back, and upon multiplication by (2.40) the complete d-dimensional HJ equation takes

the form (2.41). This follows from the fact that K from (2.36) was a Killing tensor for

the d-dimensional metric.

(7) A given Killing tensor corresponds to a particular function Λ in (2.39), and a family

of Killing tensors for the reduced metric can be constructed by keeping the same

coordinates and introducing an arbitrary polynomial Λ.

7Integrals of motion I
(k)
p are closely related to the separation constants which arise from breaking the

HJ equation into pieces using Stäckel determinant. A detailed discussion of the Stäckel’s method can be

found in chapter 5 of [61].
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Steps (1)–(7) outline our construction, and the details and justification are presented in

the appendix B.1. A different approach to separation functions and Killing tensors was

developed in [62–64], and our results are consistent with theirs.

Expressions (2.39) generalize Jacobi’s ellipsoidal coordinates [65] to curved space, and

we derived them assuming that the dependence on (x1 . . . xn) is generic. Specifically we

assumed that g1 depends on all n coordinates. It is also possible to have some degenerate

cases where some xj does not appears in g1, but such solutions can be obtained by taking

some singular limits of the ellipsoidal coordinates. In the appendix B.2 we review such

singular limits for the ellipsoidal coordinates in flat three-dimensional space.

To summarize, in this subsection we clarified the relation between Killing tensors and

separation of variables. It is well-known that separation of variables leads to a Killing

tensor, which is associated with a conserved quantity [36–38], but in higher dimensions,

where the metric can depend on three or more variables and may admit more than one

nontrivial Killing tensor, the correspondence is more interesting. As illustrated in the

diagram (2.32), a single separation of variables may give rise to a family of Killing tensors,

and the entire family can be constructed from a single member by studying its eigenvalues.

In section 3 our construction will be applied to an important example of the Myers-Perry

black hole, and in section 5.1 it will be extended to the charged version of that solution.

But first we discuss the additional symmetry structures which appear when the geometry

admits a Killing-Yano tensor.

2.3 Killing-Yano tensors of various ranks

While Killing-Yano tensors (KYT) of rank two are well-known from general relativity in

four dimensions, the objects with higher rank are less familiar, so in this subsection we

will present several examples of such Killing-Yano tensors and discuss their relation to

Killing tensors.

Recall that the Killing-Yano tensors are defined as solutions of equation (2.9)

∇(MYN)P1...Pk−1
= 0, YP1...Pk

= Y[P1...Pk]. (2.42)

As reviewed in section 2.1, any Killing-Yano tensor leads to a Killing tensor via (2.11). For

example, any d-dimensional space admits a trivial KYT of rank d, which is defined as a

volume form, and it squares to the metric. Nontrivial KYT may square to the metric as

well, as illustrated by our first example: a space that has a factorized form

ds2 = gmn(x)dx
mdxn + hµν(y)dy

µdyν , (2.43)

where two subspaces have the same dimensionality n. Then volume forms on x and y

spaces give rise to a family of Killing-Yano tensors:

Y = c1Volg + c2Volh ⇒
KMNdXMdXN = (n− 1)!

[

c21gmn(x)dx
mdxn + c22hµν(y)dy

µdyν
]

. (2.44)

It is clear that a non-trivial KY tensor can square to the metric as long as c21 = c22. For

generic values of constants c1 and c2 Killing tensor has two distinct eigenvalues, and each

of them has degeneracy n.
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A large class of geometries admitting Killing-Yano tensors comes from rotating black

holes,8 and in the next section we will construct the KYTs for black holes with arbitrary

number of rotations. Before performing this general analysis we review the situation for the

well-known example of the Kerr black hole [67] and extract important lessons from it. The

non-trivial Killing tensor for the Kerr geometry was constructed by Carter [36, 37], and we

begin with rewriting the metric in convenient frames defined as eigenvectors of that KT:

ds2 = −e2t + e2r + e2θ + e2φ,

et =

√
∆

ρ
(dt− as2θdφ), eφ =

sθ

ρ

[

(r2 + a2)dφ− adt
]

, er =
ρ√
∆
dr, eθ = ρdθ,

∆ = r2 + a2 − 2mr, ρ2 = r2 + a2c2θ, cθ = cos θ, sθ = sin θ. (2.45)

Then expressions for the Killing and Killing-Yano tensors become very compact:

K = r2
[

e2φ + e2θ
]

+ (acθ)
2
[

e2t − e2r
]

, Y = reθ ∧ eφ + (acθ)er ∧ et. (2.46)

We observe that the eigenvalues ofK (r2 and −(acθ)
2) appear in pairs, and Y is constructed

from these eigenvalues and corresponding eigenvectors in a simple way. As we will see

in the next section, this double degeneracy persists in all even dimensions. Notice that

the separating function defined in the previous subsection is equal to the difference of

eigenvalues, and in the present case equation (2.26) becomes

fx = r2, fy = −(acθ)
2, f = r2 + (acθ)

2. (2.47)

In odd dimensions the situation is different,9 and to get some insights, we look at a

rotating black hole in five dimensions [48]. Solving equations for the Killing-Yano tensor,

constructing the corresponding KT, and defining the frames as its eigenvalues, we find

ds2 = −e2t + e2r + e2θ + e2φ + e2ψ,

K = r2
[

e2φ + e2θ
]

+ (acθ)
2
[

e2t − e2r
]

+ [r2 − (acθ)
2]e2ψ, (2.48)

Y = [reθ ∧ eφ + (acθ)er ∧ et] ∧ eψ.

The frames are defined by

et =

√
∆

ρ
(dt− as2θdφ), eφ =

sθ

ρ

[

(r2 + a2)dφ− adt
]

,

er =
ρ√
∆
dr, eθ = ρdθ, eψ = rcθdψ, (2.49)

∆ = r2 + a2 −M, ρ2 = r2 + a2c2θ.

Notice that eigenvalues of K come in two pairs and one special value corresponding to eψ.

In the next section we will demonstrate that this pattern persists in all odd dimensions

8Another interesting class of geometries admitting Killing-Yano tensors comes from putting D-branes

on singular points of Calabi-Yau manifolds. Killing-Yano tensors for Sasaki-Einstein manifolds appearing

in this construction have been recently constructed in [66].
9Since the number of eigenvalues is odd, the double degeneracy is not possible. To avoid unnecessary

complications, we write (2.48) for one rotation, more general case will be discussed in the next section.
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with arbitrary number of rotations. As expected from (2.26), the separating function f is

equal to the difference of two non-cyclic eigenvalues

fx = r2, fy = −(acθ)
2, f = r2 + (acθ)

2, (2.50)

but now the Killing tensor has an additional eigenvector eψ associated with cyclic coordi-

nates, and the corresponding eigenvalue is

Λψ = fx + fy = r2 − (acθ)
2. (2.51)

Analysis of section 2.2 did not put any restrictions on cyclic eigenvectors and eigenvalues.

In addition to the standard KYT, rotating black holes may admit a conformal KYT,

which satisfies equations (2.15) and gives rise to a conformal KT (CKT) via (2.17). In

particular, the CKYT and CKT for the Kerr metric (2.45) are

Y = rer ∧ et − (acθ)eθ ∧ eφ, Z = dt− 2mr

ρ
√
∆
et,

K = r2[e2t − e2r ] + (acθ)
2[e2θ + e2φ], W = −d[r2 − a2c2θ], (2.52)

and for the rotating black hole in five dimensions (2.49) they are given by

Y = rer ∧ et − (acθ)eθ ∧ eφ, Z = dt− M

ρ
√
∆
et,

K = r2[e2t − e2r ] + (acθ)
2[e2θ + e2φ], W = −d[r2 − a2c2θ]. (2.53)

Notice that vectors W appearing in (2.52) and (2.53) are written as gradients of scalar

functions, which means that they give rise to standard Killing tensors via (2.18). Direct

calculations show that application of (2.18) to (2.52) and (2.53) leads to the Killing tensors

given in (2.46) and (2.48). Conformal KYT (2.52) and (2.53) will play an important role

in the general analysis presented in section 4.

3 Example: Killing-Yano tensors for the Myers-Perry black hole

In this section we construct a family of Killing–(Yano) tensors for the Myers-Perry black

hole using the techniques introduced in section 2.2. The cases of odd and even dimen-

sions have to be treated differently, so we begin with MP solution in even dimensions

(d = 2n+ 2) [48, 68]:

ds2 = −dt2 +
mr

FR

(

dt+
n
∑

i=1

aiµ
2
i dφi

)2
+

FRdr2

R−mr
+

n
∑

i=1

(r2 + a2i )
(

dµ2
i + µ2

i dφ
2
i

)

+ r2dα2. (3.1)

Here variables (µi, α) are subject to constraint

α2 +
n
∑

i=1

µ2
i = 1, (3.2)
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and functions F , R are defined by

F = 1−
n
∑

k=1

a2kµ
2
k

r2 + a2k
, R =

n
∏

k=1

(r2 + a2k). (3.3)

To find the KYT for the geometry (3.1) we observe that the square of the KYT gives a

KT with some components along non-cyclic coordinates, so following the general procedure

outlined in section 2.2, we begin with looking at the non-cyclic part of the metric:

ds2NC =
FRdr2

R−mr
+

n
∑

i=1

(r2 + a2i )dµ
2
i + r2

(

d[1−
n
∑

i=1

µ2
i ]
1/2

)2

. (3.4)

As demonstrated in section 2.2.2, in the appropriate frames the Killing tensor and geome-

try (3.4) must have the form10

Kmndx
mdxn =

∑

m

Λm(em)2, ds2NC =
∑

m

(em)2, (3.5)

where

em = hm(xm)





∏

k 6=m

[xm − xk]



 dxm, Λm = ∂mΛ(x0 . . . xn), (3.6)

and Λ is a symmetric polynomial linear in every argument. To determine the new coordi-

nates (x1 . . . xn+1) in terms of (r, µ1 . . . µn) we begin with m = 0 case when metric (3.4)

becomes flat and the relation between (x0 . . . xn+1) and (r, µ1 . . . µn) is given in terms of

well-known ellipsoidal coordinates [61]:

x0 = r2, (aiµi)
2 =

1

c2i

n
∏

k=1

(a2i + xk), c2i =
∏

k 6=i

(a2i − a2k). (3.7)

Note that here the variables are arranged in the following order

r2 > 0 > x1 > −a21 > x2 > −a22 > · · · > xn > −a2n. (3.8)

It turns out that mass does not spoil this relation, and in terms of (x0 . . . xn) metric (3.4)

takes the form (3.5)–(3.6):

er =
dr√

R−mr

√

∏

k

(r2 − xk), exi =
1

2
dxi

√

√

√

√

(r2 − xi)

−xiHi

∏

k 6=i

(xi − xk). (3.9)

From now on Latin indices take values (1 . . . n), and we also define convenient quantities

di, Hi and rewrite FR in terms of the new coordinates:

di =
∏

k 6=i

(xi − xk), Hi =
∏

k

(xi + a2k), FR =
∏

k

(r2 − xk). (3.10)

10In this section we have to distinguish between ea = eaMdxM and ea = eMa ∂M , so the frame indices are

written in the appropriate places. In the rest of the paper we abuse notation and write ea = eaMdxM to

simplify formulas.
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So far we have ignored the cyclic coordinates since components of the Killing tensor in

these directions contain an ambiguity of adding an arbitrary combination of Killing vectors:

KMN → KMN +
∑

a,b

cabV
M
a V N

b , V0 = ∂t, Vi = ∂φi
. (3.11)

Once the proper non-cyclic coordinates (x0 . . . xn) are found, we can determine the remain-

ing components of the Killing tensor by studying the separation of variables associated with

it. Specifically, we look at the Hamilton-Jacobi equation associated with (3.1) and write it

in coordinates (x0 . . . xn):

∑

i

4Hi(−xi)

(r2 − xi)di
(∂iS)

2 +
R−mr

FR
(∂rS)

2 + gab∂aS∂bS = −µ2. (3.12)

To separate r coordinate, we have to multiply the last relation by

ρr = RF =
∏

k

(r2 − xk) (3.13)

and introduce integrals of motion Ik as coefficients in front of various powers of r. Then

we will find

(R−mr)(∂rS)
2 =

n
∑

k=0

Ikr
2k. (3.14)

Notice that one Killing tensor leads to several integrals of motion, while the standard

prescription [36–38] allows us to construct only one:

I = KMN∂MS∂NS. (3.15)

The ‘extra’ conserved quantities came as the result of our analysis of eigenvalues: the

coordinates (r2, x1 . . . xn) define a family of the Killing tensors parameterized by the poly-

nomial Λ, and the coordinates can be extracted from any special solution. Then starting

with any member of the family and analyzing its eigenvalues, we can recover other Killing

tensors by changing coefficients in Λ, as summarized by (2.32).

Extraction of the explicit expressions for Ik is straightforward, but we will be interested

in a different aspect of (3.14). To extend the relations (3.5) beyond non-cyclic variables, we

should identify the relevant cyclic frames, in particular, they should form pairs with er and

exi
.11 To extract the partner of er, we set (r2 − xi) → 0 in (3.14),12 then the right-hand

side coming from (3.12) contains only one frame:

et ∝ ∂t −
∑

i

ai

r2 + a2i
∂φi

. (3.16)

Raising the index and normalizing this frame, we find

et =

√

R−mr

FR

[

dt+
∑

i

Gi

aic
2
i

dφi

]

, Gi ≡
∏

k

(xk + a2i ) . (3.17)

11This follows from the existence of the Killing-Yano tensor, as discussed below.
12This is a very formal manipulation: although we set (r2−xi) → 0 for all i, we assume that xi−xj 6= 0.

The goal of this operation is to remove all x-dependent terms from (3.14). We also recall that (3.14) comes

from multiplying (3.12) by (3.13).
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To extract the remaining frames, we write a counterpart of (3.14) by multiplying (3.12) by

ρi = (r2 − xi)
∏

k 6=i

(xi − xk) = (r2 − xi)di. (3.18)

This gives
∑

i

4Hixi(∂iS)
2 =

n
∑

k=0

I
(i)
k (xi)

2k.

As before, we formally replace (r2 − xi) and (xj − xi) by zero to extract

ei ∝ ∂t −
∑

k

ak

a2k + xi
∂φi

⇒ ei =

√

Hi

di(r2 − xi)

[

dt+
∑

k

Gk(r
2 + a2k)

akc
2
k(xi + a2k)

dφk

]

. (3.19)

For future reference we summarize the frames and notation associated with Myers-Perry

black hole in even dimensions13

et =

√

R−mr

FR

[

dt+
∑

k

Gk

akc
2
k

dφk

]

, er =

√

FR

R−mr
dr,

ei =

√

Hi

di(r2 − xi)

[

dt+
∑

k

Gk(r
2 + a2k)

akc
2
k(xi + a2k)

dφk

]

, exi =

√

−(r2 − xi)di
4xiHi

dxi

et = −
√

R2

FR(R−mr)

[

∂t −
∑

k

ak

r2 + a2k
∂φk

]

, er =

√

R−mr

FR
∂r,

ei = −
√

Hi

di(r2 − xi)

[

∂t −
∑

k

ak

xi + a2k
∂φk

]

, exi
=

√

− 4xiHi

di(r2 − xi)
∂xi

(3.20)

di =
∏

k 6=i

(xi − xk), Hi =
∏

k

(xi + a2k), Gi =
∏

k

(xk + a2i ),

R =
∏

k

(r2 + a2k), FR =
∏

k

(r2 − xk), c2i =
∏

k 6=i

(a2i − a2k).

In terms of frames (3.20) the metric and the Killing tensor become

ds2 = −(et)2 + (er)2 +
∑

k

[

(exk)2 + (ek)2
]

,

KMNdxMdxN = Λr

[

−(et)2 + (er)2
]

+
∑

k

Λk

[

(exk)2 + (ek)2
]

. (3.21)

Here Λr and Λk are symmetric polynomials, as guaranteed by the general construction of

section 2.2. The most general KT is obtained by adding Killing vectors (see (3.11)) and

the metric to the last expression, and this leads to modification of eigenvalues. We are

primarily interested in KT that comes from squaring a Killing-Yano tensor, this requires a

double degeneracy in the eigenvalues, so (3.21) is the most natural choice.

13See (3.3), (3.7), (3.9), (3.10), (3.17), (3.19).
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The simplest KYT is the volume form,

Y (2n) = et ∧ er ∧
∏

k

[

exk ∧ ek
]

, (3.22)

and its square gives a trivial KT with Λr = Λk = 1 in (3.21). Experience with KYT for the

Kerr metric suggests that there is also a KYT of rank 2(n−1) and it should have the form

Y (2n−2) = λr

∏

k

[

exk ∧ ek
]

+ et ∧ er





∑

i

λi

∏

k 6=i

[

exk ∧ ek
]



 . (3.23)

In the four-dimensional Kerr metric we had

λr =
√
r2, λ1 =

√
−x1, Λr = x1, Λ1 = r2, (3.24)

and generalization to higher dimensions is straightforward:14

λr =
√
r2, λk = −

√
−xk, Λr =

∑

k

xk, Λi = r2 +
∑

k 6=i

xk. (3.25)

Direct calculation shows that (3.23) with (3.25) solves the equation for the KYT. A clear

pattern appears:

To construct a KYT of rank 2(n−k) one should start with (3.22) and symmet-

rically remove k pairs using the rule

et ∧ er →
√
r2, exi ∧ ei → −

√
−xi. (3.26)

Then the square of this KYT is the KT (3.21) with

Λr = ∂x0Λ, Λi = ∂iΛ, Λ = x0x1 . . . xk + perm, x0 = r2. (3.27)

For example, for k = 2 this procedure gives

Y (2n−4) = λr

∑

j

λj

∏

k 6=j

[

exk ∧ ek
]

+ et ∧ er





∑

j<m

λjλm ∧
∏

k 6=j,m

[

exk ∧ ek
]



 , (3.28)

λr =
√
r2, λk = −

√
−xk, Λr =

∑

k<m

xkxm, Λi = r2
∑

k

xk +
∑

j<k

xjxk.

Rather than proving the procedure (3.26) we connect it to a very nice discussion of [69–80],

where it was shown that a family of KYT can be constructed starting from

h =
∑

i

aiµidµi ∧
[

aidt+ (r2 + a2i )dφi

]

+ rdr ∧
[

dt+
∑

i

aiµ
2
i dφi

]

(3.29)

by applying an operation

Y 2(n−k) = ⋆
[

∧hk
]

. (3.30)

14The sign difference between (3.24) and (3.25) is explained by different conventions for Kerr BH (where

we use
√
a2 = a) and Myers-Perry BH (where

√

a2
k = ak) and the relation a1 = −a.
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While our equations (3.26), (3.27) give simpler expressions for the KYT and KT due to

the use of convenient frames, they reduce to the construction (3.29)–(3.30) once (3.29) is

rewritten in the frames (3.20):

h = rer ∧ et +
∑

i

√
−xie

xi ∧ ei. (3.31)

Construction (3.30)–(3.31) is proven in appendix C, and here we just outline the steps:

1. Expression (3.31) gives a conformal Killing-Yano tensor (CKYT) for the Myers-Perry

black hole, and the two-form h is closed.

2. The product Y = [∧hk] has the same properties as h (i.e., it is a closed CKYT).

3. A Hodge dual of any closed CKYT is a KYT.

Justifications of these statements are scattered throughout the literature [69–73, 77, 81, 82],

and appendix C provides streamlined derivations. Construction (3.30)–(3.31) of the KYT

will be extended to a charged black hole in section 5.1.

We conclude this section by a brief discussion of the Myers-Perry black hole in odd

dimensions. Instead of starting with (3.1) one should begin with

ds2 = −dt2 +
mr2

FR

(

dt+
n
∑

i=1

aiµ
2
i dφi

)2
+

FRdr2

R−mr2
+

n
∑

i=1

(r2 + a2i )
(

dµ2
i + µ2

i dφ
2
i

)

, (3.32)

then repetition of the previous analysis leads to the counterpart of (3.20):

et =

√

R−mr2

FR

[

dt+
∑

k

akGk

c2k
dφk

]

, er =

√

FR

R−mr2
dr,

ei =

√

− Hi

xidi(r2 − xi)

[

dt+
∑

k

Gkak(r
2 + a2k)

c2k(xi + a2k)
dφk

]

, exi =

√

di(r2 − xi)

4Hi
dxi,

et = −
√

R2

FR(R−mr2)

[

∂t −
∑

k

ak

r2 + a2k
∂φk

]

, er =

√

R−mr2

FR
∂r, (3.33)

ei = −
√

− Hi

xidi(r2 − xi)

[

∂t −
∑

k

ak

xi + a2k
∂φk

]

, exi
=

√

4Hi

di(r2 − xi)
∂xi

,

and to one more frame that was not present in the even-dimensional case:

eψ =

√

∏

a2i
r2

∏

xk

[

dt+
∑

k

Gk(r
2 + a2k)

c2kak
dφk

]

, eψ = −
√

∏

a2i
r2

∏

xk

[

∂t −
∑

k

1

ak
∂φk

]

. (3.34)

Notice that one of the relations (3.7) between Myers-Perry and ellipsoidal coordinates is

modified:15

µ2
i =

1

c2i

n−1
∏

k=1

(a2i + xk). (3.35)

15Notice that in contrast to the even-dimensional case, where µi were not constrained, now there is a

relation
∑

µ2
i = 1, and, as a consequence, there only n− 1 coordinates xi.
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This leads to a new expression for

FR = r2
∏

k

(r2 − xk) (3.36)

and we still have the remaining relations

di =
∏

k 6=i

(xi − xk), Hi =
n
∏

k

(xi + a2k), Gi =
n−1
∏

k

(xk + a2i ),

R =

n
∏

k

(r2 + a2k), c2i =
∏

k 6=i

(a2i − a2k). (3.37)

Note a very special form of the relative coefficients in frames ea: they depend only on r in

et, only on xi in ei, and they are constant in eψ.

The Killing-Yano tensors are still given by construction (3.30) with

h = rer ∧ et +
∑

i

√
−xie

xi ∧ ei. (3.38)

The separation factors are

ρr = r2
n−1
∏

j

(r2 − xj), ρi = xi(r
2 − xi)

∏

k 6=i

[xi − xk]. (3.39)

This reduces to (3.13), (3.18) if we introduce xn ≡ 0.

4 Killing(-Yano) tensors and string dualities

In this section we will analyze transformations of various tensors under string dualities.

Specifically, we will focus on T dualities along U(1) isometries and assume that Killing–

(Yano) tensors do not depend on coordinates parameterizing the isometries. We will also

consider larger classes of U duality transformations. Our results are summarized below:

• Generically, the Killing vectors depending on the direction of T duality are destroyed

(as we will show in section 4.1.2), and Killing vectors with trivial dependence on the

duality direction survive the duality, as long as original fluxes respect the symmetry

associated with Killing vectors (see section 4.1.1).

• Conformal Killing vectors are destroyed by the T duality with an exception of the

homothetic CKV. The latter acquire nontrivial dependence upon the duality direction

in the dual geometry (see section 4.1.3).

• KT equation remains the same, but there are constraints on the B field and the

dilaton (4.67), (4.51), (see section 4.2).

• Extension of T duality to the CKT is possible only for special solutions, and some

examples are presented in appendix D.5.
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• KYT equation is modified by terms containing the Kalb-Ramond field (4.72), and

there is an additional constraint (4.73) (or, more generally, (4.77)) on this field (see

section 4.3).

• Extension of T duality to CKYT is possible only for special solutions.

We will now discuss all theses properties in detail.

4.1 Killing vectors and T duality

In this subsection we will analyze the transformations of the Killing vectors under combi-

nations of T dualities and reparametrizations. The most natural formalism for such study

is provided by the Double Field Theory (DFT) [49–53], which is reviewed in appendix H,

and a very simple interpretation of our results in terms of this approach is presented in the

end of section 4.1.1.

We will begin with a pure metric

ds2 = eC [dz +Aidx
i]2 + ĝijdx

idxj , BMN = 0 (4.1)

that admits two Killing vectors, Z = ∂z and V = V M∂M , and study the transformation

of vector V under T duality along z direction. We will look at three situations and the

results are summarized as follows:

(a) The z-independent vectors V (i.e., vectors commuting with Z) have counterparts after

T duality, and the transformation law is derived in section 4.1.1.

(b) The z-dependent vectors V (i.e., vectors with [V, Z] 6= 0) may be destroyed by the

duality transformation, and in general the numbers of such vectors before and after T

duality do not match. Some examples are discussed in section 4.1.2.

(c) Conformal Killing Vectors of the original geometry are destroyed by T duality unless

one introduces z-dependence in the dual frame. This construction is discussed in

section 4.1.3.

In case (a) we will find an additional constraint on the Kalb-Ramond field after duality:

HMNPV
P = ∇MWN −∇NWM , with arbitrary WN , (4.2)

and we will demonstrate that any geometry that has a Killing vector V satisfying (4.2)

can be dualized in a direction commuting with V without destroying the Killing vector.

We will also show that condition (4.2) arises naturally from the equation for a Killing

vector in DFT.

4.1.1 Killing vectors commuting with T duality direction

Let us first assume that geometry (4.1) solves Einstein’s equations without B field, and

that it admits a Killing vector V :

∇MVN +∇NVM = 0 (4.3)
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which commutes with Z = ∂z. In appendix D.2 we perform dimensional reduction of this

equation in geometry (4.1) before and after T duality in z direction. Using tildes to denote

the quantities after T duality, we find various components of (4.3) and its dual counterpart:

∇MVN +∇MVN = 0 ∇M ṼN +∇N ṼM = 0

zz : ∂rCV r = 0 ∂rCṼ r = 0

mz : FmrV
r = ∂m(e−CVz) ∂m(eC Ṽz) = 0

mn : ∇̂mV n + ∇̂nV m = 0 ∇̂mṼ n + ∇̂nṼ m = 0

(4.4)

Here ∇̂ denotes the covariant derivative corresponding to metric ĝij .

Comparison of two columns on (4.4) leads to the transformation law

Ṽ r = V r, Ṽ z ≡ eC Ṽz = const. (4.5)

Relation (4.5) ensures that the Killing equations after T duality are satisfied, but the (mz)

component of the original equation imposes a constraint on the new B field:

B̃mz = Am ⇒ H̃zmpV
p = ∂m(e−CVz). (4.6)

Notice that this is the only relation in the dual frame that contains the original Vz.

The implications of the constraint (4.6) are analyzed in appendix D.3, where it is

shown that a pair of relations

∇MVN +∇MVN = 0,

HMNPV
P = ∇MWN −∇NWM (4.7)

is preserved by T duality as long as one imposes the the transformation

Ṽ a = V a, W̃z = −e−CVz, Ṽz = −e−CWz,

W̃n = Wn − Ãne
−CVz −AnWz + ∂nf, (4.8)

with arbitrary function f . Although we motivated (4.7) by starting with a pure metric,

the map (4.8) leaves (4.7) invariant for arbitrary configurations of the B field before and

after the duality.

The system (4.7) is the unique extension of the equation for Killing vector consistent

with T duality, and in appendix H we show that (4.7) can be written as a single equation for

a Killing vector on an extended space used in the Double Field Theory (DFT). Specifically,

if the metric and the B field are combined in a single matrix (H.1)16

HIJ =

(

gij −gikBkj

Bikg
kj gij −Bikg

klBlj

)

, (4.9)

16In equations (4.9)–(4.10) and in appendix H we deviate from the notation used throughout this paper

and denote the spacetime indices by lower-case letters, while reserving the capital ones to label the “double

space”. This notation is standard in the DFT literature.
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then equations (4.7) appear as different components of a single equation for ξP :

LξHMN ≡ ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP = 0 . (4.10)

Here ξI = (λ̃i, λ
i) is the generalized gauge parameter, where λ̃i corresponds to the gauge

transformation of the Kalb-Ramond field Bij and λi generates diffeomorphisms. Equa-

tion (4.10), which involves the generalized Lie derivative in double space Lξ, implies that

the system (4.7) is covariant under combinations of diffeomorphisms and T-dualities.

4.1.2 Killing vectors with z dependence

In the previous subsection we assumed that components of the Killing vector V did not

depend on the direction of T duality17 and demonstrated that components of the Killing

vector transform in a simple way (4.8). Here we will use several examples to argue that

situation for the z-dependent Killing vectors is rather different: even the number of such

vectors can be changed by application of T duality.

We begin with the simplest example of a pure metric

ds2 = f(dz2 + dy2) + gmndx
mdxn (4.11)

which admits a Killing vector corresponding to rotations in the (y, z) plane:

V = y∂z − z∂y. (4.12)

Performing the T duality along z direction and solving equations for the Killing vector in

the dual configuration,

ds2 =
dz2

f
+ fdy2 + gmndx

mdxn, (4.13)

we find that there are only two KVs with nontrivial (y, z) components:

V = c1∂y + c2∂z (4.14)

unless f = const, where there is also a counterpart of (4.12):

V = f2y∂z − z∂y. (4.15)

We conclude that the z-dependent Killing vector (4.12) disappears unless f is equal to

constant.

The same phenomenon can be seen in a more interesting geometry produced by smeared

fundamental strings [83–85]:

ds2 = H−1(dz2 − dt2) + dr2 + r2dΩ2
p +

7−p
∑

k=1

dxkdxk,

B = (H−1 − 1)dt ∧ dz, e2Φ = H−1, H = 1 +
Q

rp−1
. (4.16)

17In covariant form this condition is written as [Z, V ] = 0.
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The most general Killing vector with (z, t) components has the form

V = c1∂t + c2∂z + c3(t∂z + z∂t). (4.17)

T duality along z direction leads to a metric produced by a plane wave, which has only

two independent Killing vectors with components in (t, z) directions:

V = c1∂t + c2∂z. (4.18)

Once again, z-dependent Killing vector disappears after T duality. In section 4.3 we will

encounter a similar situation with Killing-Yano tensors (KYT): at first sight they seem to

be destroyed by T duality. To cure this problem we will modify the equation for KYT by

adding an extra term containing the Kalb-Ramond field. This solution would not work in

the present case: since the geometry dual to (4.16) does not contain matter fields, the orig-

inal equation (4.3) is the unique relation consistent with invariance under diffeomorphisms.

To summarize, we conclude that z-dependent Killing vectors can appear and disappear

under T dualities, so they don’t have well-defined transformation properties. We expect

the situation to be at least as bad for the Killing(-Yano) tensors, so in sections 4.2 and 4.3

we will focus only on z-independent objects. However, z-dependence can lead to very

interesting effects for conformal Killing vectors, which will be discussed now.

4.1.3 Conformal Killing Vectors and T duality

Conformal Killing vectors (CKV) do not leave the metric invariant, but rather they lead

to rescalings by a conformal factor. Such vectors satisfy differential equation

∇MVN +∇NVM = gMNv, (4.19)

with some function v. Dimensional reduction of this equation gives the counterpart

of (4.4):18

∇MVN +∇NVM = gMNv ∇̃M ṼN + ∇̃N ṼM = g̃MN ṽ

zz 1
2∂re

CVr = eCv 1
2∂re

−C Ṽr = e−C ṽ

mz FmrVr = ∂m(e−CVz) ∂m(eC Ṽz) = 0

mn ∇̃mVn + ∇̃nVm = gmnv ∇̂mṼn + ∇̂nṼm = gmnṽ

(4.20)

Imposing the relation Vn = Ṽn, we conclude that v = ṽ, then (zz) components lead to

contradiction unless C is a constant or v is equal to zero. To cure this problem, we allow

z dependence in the conformal Killing tensor after duality and replace (4.20) by19

∇MVN +∇NVM = gMNv ∇̃M ṼN + ∇̃N ṼM = g̃MN ṽ

zz 1
2∂re

CVr = eCv ∂zṼz +
1
2∂re

−C Ṽr = e−C ṽ

mz FmrVr = ∂m(e−CVz) ∂m(eC Ṽz) + ∂zṼm = 0

mn ∇̂mVn + ∇̂nVm = gmnv ∇̂mṼn + ∇̂nṼm = gmnṽ

(4.21)

18Recall that we are starting with a pure metric, so there are no gzm components after duality. Reduc-

tions (4.20) and (4.21) follow directly from appendix D.2.
19Notice that introduction of z dependence after duality puts the initial and final system on a different

footing. Similar situation is encountered in the non-Abelian T duality [86–91], but there an analog of

z-dependence is introduced for the dynamical fields, while here we are looking at the Killing vectors.
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Once again setting

Ṽn = Vn, ṽ = v, (4.22)

we find a system of equations for Ṽz:

Vr∂rC = 2v, ∂zṼz = 2ṽ, ∂mṼz = 0 (4.23)

since the original CKV V does not depend of z. Integrability conditions for the last two

equations imply that ṽ must be constant, so the CKV V must be homothetic. A simple

example of a homothetic KV comes from rescaling of the flat space by a constant factor:

ds2 = ηMNdxMdxN , VMdxM = ηMNxNdxM , v = 1. (4.24)

To summarize, for every homothetic CKV we find the complete set of transformations,

Ṽm = Vm, ṽ = v = const, Ṽz = 2zv + const (4.25)

that produces a CKV after T duality. Non-homothetic conformal Killing Vectors are de-

stroyed by T duality.

4.2 Killing tensors in the NS sector

In this subsection we study the behavior of Killing tensors (KT) under O(d, d) transforma-

tions, which include boosts, T dualities and rotations, and then extend the construction to

the full NS sector by incorporating transformations involving S dualities.

As discussed in section 2.2 equation (2.20) has reducible solution spanned by combi-

nations of the metric and Killing vectors,

Ktriv
MN = e0gMN +

∑

ij

eijV
(i)
M V

(j)
N , (4.26)

with constant coefficients e0, eij . In section 4.1 we showed that Killing vectors are pre-

served by the O(d, d) transformations if conditions (4.7) are satisfied. This implies that

the expression (4.26) for the “trivial Killing tensor” holds for the entire O(d, d) orbit.

Here we will focus on non-trivial Killing tensors, which can be either destroyed or modi-

fied by T duality, and we identify a subset of O(d, d) transformations which do not lead

to destruction of a nontrivial KT. The non-trivial Killing tensors can be found either by

solving equation (2.20) or by separating the Hamilton-Jacobi equation [36, 37], and the

second approach is more convenient for the study of T duality. The relationship between

Killing tensors and separation of the massive Hamilton-Jacobi equation has been reviewed

in section 2.2, and in this subsection these results will be extended to charged solutions.

An alternative approach based on dimensional reduction of KT equation is discussed in

appendix D.4.

In subsection 4.2.1 we focus on the O(d, d) orbit which generates fundamental strings

from pure metric, and in subsection 4.2.3 these results are extended to general F1-NS5

solutions. As we will see, existence of KT imposes certain restrictions on the Kalb-Ramond

field, and they are discussed in subsection 4.2.4. Finally in subsection 4.2.2 we use an

alternative method (dimensional reduction) to derive the covariant form of the constraint

on the B field.
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4.2.1 Killing tensors and O(d, d) transformations

We begin with a pure metric that solves source-free Einstein equations in D dimensions,

admits a Killing tensor, and has d cyclic directions φa. Such geometry can be written in a

reduced form:

ds2 = Gab(dφ
a + V a

mdxm)(dφb + V b
ndx

n) + hmndx
mdxn. (4.27)

This metric has an obvious GL(d) symmetry that rotates cyclic directions into each other,

but in supergravity this symmetry is enhanced to O(d, d), which acts on the metric and on

the Kalb-Ramond B field [92–97]. This symmetry is extended further to O(D,D) via the

Double Field Theory (DFT) formalism [49–53], which is reviewed in appendix H.

Specifically, a 2D × 2D matrix written in D ×D blocks

M =

[

G−1 −G−1B

BG−1 G−BG−1G

]

(4.28)

is transformed under a global O(D,D) as

M → ΩMΩT , (4.29)

where

ΩηΩT = η, η =

[

0 1

1 0

]

. (4.30)

Here η is a metric for a group O(D,D).

Since we are starting with a pure metric, the initial matrix M is given by20

M =











gab qam 0 0

qma hmn 0 0

0 0 Gab Gam

0 0 Gma Gmn











. (4.31)

Parameterizing the O(d, d) rotations by d× d matrices A,C,D,E as

Ω =











A 0 E 0

0 ID−d 0 0

C 0 D 0

0 0 0 ID−d











,

[

AT CT

ET DT

][

0 Id

Id 0

][

A E

C D

]

=

[

0 Id

Id 0

]

(4.32)

we find the transformed metric with upper indices

ΩMΩT =







AgAT + EGET Aq

qAT h
•

• •






. (4.33)

20Note that gab, qam and hmn are the components of D ×D matrix G−1.
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Here and below G denotes a d × d matrix with components Gab. The survival of the

Killing tensor under transformation with arbitrary A and B implies that the following four

quantities must separate:

fgab, fqam, fhmn, fGab. (4.34)

The first three conditions are satisfied before the O(d, d) transformation since metric (4.27)

had a Killing tensor. Separation in the dual frame requires fGab to separate with the same

function f . Combining this with results of section 2.2 we arrive at the following conclusion:

(1) Every KT is associated with a unique function f , which can be determined from the

HJ equation or from eigenvalues, and with corresponding variables (x, y).

(2) T dualities and rotations in a sector spanned by cyclic coordinates φa do not spoil

separation of variables for a given KT if and only if

∂x∂y[fGab] = 0. (4.35)

So far we have separated coordinates into cyclic and non-cyclic, but equation (4.35) sug-

gests a more refined distinction: among cyclic coordinates φa we identify the subsector

where (4.35) holds and call the corresponding cyclic directions translational, and the re-

maining directions will be called rotational.21 A simple example demonstrates the origin

of these names: in the metric

ds2 = dr2 + r2dθ2 + r2 sin2 θ(dφ1)2 + (dφ2)2 (4.36)

coordinate φ2 would be called translational and coordinate φ1 would be called rotational

since in this case x = r, y = θ, and f = r2. For many aspects of our discussion rotational

coordinates appear on the same footing as non-cyclic ones.

Once we have demonstrated that the Killing tensor is not destroyed by the O(d, d)

transformations as long as expressions (4.34) separate, we can ask about transformation

laws for this tensor. Recall that Killing vectors with upper components were unaffected

by the O(d, d) transformations, but Killing tensor has a more interesting behavior. The

third expression in (4.34) indicates that the separation function cannot be affected by the

O(d, d) transformations since hmn is invariant under them. This implies simple relations

for the Killing tensors before and after T duality:22

KMN = XMN − fxg
MN , K̃MN = X̃MN − fxg̃

MN . (4.37)

We use tildes to denote the expressions after T duality. As discussed in section 2.2, sepa-

ration in the original metric implies that

gMN =
1

f

[

XMN + Y MN
]

,

21Strictly speaking one should define coordinates are rotational and translational with respect to a par-

ticular Killing tensor: the same cyclic coordinate might by translational for one KT and rotational for

another. Since we are dealing with one tensor at a time referring to a direction as simply translational

should not cause confusions.
22For simplicity we are focusing on Killing tensor which separates two non-cyclic coordinates x and y.

Generalization to ore coordinates is straightforward, but the notation becomes cumbersome.
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and the last condition in (4.34) leads to an additional relation

Gab =
1

f

[

X̂ab + Ŷab

]

, (4.38)

where X, X̂ are functions of x and Y, Ŷ are functions of y. Then transformation (4.33),

g̃ab =
[

AgAT + EGET
]ab

, g̃am = Aabg
bm, g̃mn = gmn

gives

X̃ab =
[

AXAT + EX̂ET
]ab

, X̃am = AabX
bm, X̃mn = Xmn. (4.39)

Along with (4.37) this completely determines the transformation of the Killing tensor under

the action of O(d, d).

To summarize, we have demonstrated that transformation (4.33) preserve the Killing

tensor as long as all directions φa in (4.27) are chosen to be translational, and all cyclic

rotational directions are absorbed in hmn. Notice, however, that some components on

the Killing tensor are modified according to (4.37), (4.39). Transformations (4.33) allow

one to generate a large class of charged solutions of supergravity starting from a simple

neutral “seed”, and this technique has been used to generate large classes of charged black

holes in [98–109]. One can also start with a “seed” which already contains a nontrivial

Kalb-Ramond field, and the generalization of our analysis is straightforward.

Suppose that metric (4.27) is supported by the B field and the dilaton which are

invariant under translations in φ directions:

∂φae2Φ = 0, LφaB = 0. (4.40)

Then application of the rotation (4.29) with Ω given by (4.32) to the initial moduli matrix23

M =











gab qam −QaMBMb −QaMBMm

qnb hnm −QnMBMb −QnMBMm

BaMQMb BaMQMm Gab −BaMQMNBNb Gam −BaMQMNBNm

BnMQMb BnMQMm Gnb −BnMQMNBNb Gnm −BnMhMNBNm











(4.41)

gives24

ΩMΩT =







AgAT −AQBET + EBQAT + E(G−BQB)ET Aq + EBQ

hAT −QBET h
•

• •






.

The new metric admits a Killing tensor if and only if the following combinations of the

original quantities separate:

fgab, fBaMgMb, fBaMgMm, f(gab −BaMgMNBNb), fgam, fgmn. (4.42)

23Note that Q is the full inverse metric, for example QaMBMb = gasBcb + qasBsb.
24Recall that indices of rotational matrices appearing in (4.32) go only over specific subsets Aas, Eam,

Cma, Dmn, so for example (AQ)a
M = AabQ

bM .
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In spite of the appearances, conditions (4.42) are invariant under gauge transformations

of the B field. We will demonstrate this for the most interesting case where BaM has

both legs in the cyclic directions (one of them translational and the other one is either

translational or rotational). Indeed, separability of the second and third expressions in

coordinates (x, y) implies that

∂x∂y(fg
NMBMb) = 0, (4.43)

next recalling that that ∂x∂y(fg
NM ) = 0, the last condition can be rewritten in the gauge-

invariant form:

∂y(fg
NM )HxMb + ∂x(fg

NM )HyMb + fgNM∂xHyMb = 0. (4.44)

Similarly, separability of the fourth expression in (4.42) can be rewritten as

∂x∂y(fgab)− fgMNHyaMHxNb − fgMNHxaMHyNb = 0. (4.45)

By construction, constraints on the B field for any point on an O(d, d) trajectory passing

through a pure metric are just separability conditions for the initial metric (4.34).

4.2.2 Conditions on the B field from dimensional reduction

So far we have been studying transformation of Killing tensors under O(d, d) rotations using

separation of HJ equation. Now we will use an alternative approach based on dimensional

reduction to derive the unique covariant form of the constraint on the B field, and the

result is given by (4.51).

Let us start with a standard Killing tensor equation

∇MKNP +∇NKMP +∇PKMN = 0, (4.46)

and perform dimensional reduction of the metric along z direction:

ds2 = eC [dz +Aidx
i]2 + ĝijdx

idxj . (4.47)

The details of such reduction are given in appendix D.4, in particular mnp components of

the Killing tensor equation (4.46)

∇̂mKnp + ∇̂nKmp + ∇̂pKmn = 0 (4.48)

transform under T duality into

∇̂mK̃np + ∇̂nK̃mp + ∇̂pK̃mn = 0. (4.49)

We conclude that the KT equation is not modified by the B field, in contrast to Killing-Yano

tensor case, which will be discussed in section 4.3. Next we look at the mnz components

ĝma
[

∇̂a(e
−CKn

z) + FbaK
nb
]

+ (m ↔ n) = 0. (4.50)
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Pure metric F1 NS5 F1-NS5

Figure 1. Pictorial representation of the duality chain (4.54). Applying O(d, d) transformations

(the left solid circle) to a pure metric, one produces solutions of the ‘F1 type’, then the ‘bridge’

(dashed line) discussed in section 4.2.3 connects the F1 geometry with a pure NS5. Additional

O(d, d) transformations, represented by the solid circle on the right, produce the general F1-NS5

solution.

Under T duality along z direction Fmn transforms intoHmnz (H = dB), so we conclude that

T dual counterpart of (4.50) should give an equation involving the B field. As demonstrated

in appendix D.4, the only covariant form of such equation is

H̃AMP K̃N
A + H̃ANP K̃M

A = eC/2∇̃M [e−C/2W̃NP ] + eC/2∇̃N [e−C/2W̃MP ]. (4.51)

Recall that we had a similar expression as a constraint on the B field for a Killing

vector (4.7).

Notice that the equation (4.50) has an interesting interpretation in terms of Lie deriva-

tives. As shown in appendix D.4 for the KT constructed from squaring a Killing vector as

Kmn = V mV n, equation (4.50) reduces to a combination of Lie derivatives of Am (recall

that Fmn = ∂mAn − ∂nAm) along the Killing vector V m

lhs = V nLV A
m + V mLV A

n. (4.52)

To summarize we have used dimensional reduction to demonstrate that requirement

of covariance of Killing tensor under T duality leads to the unique constraint on the B

field (4.51) similar to the equation on the B field satisfied by Killing vectors. We will

now discuss the behavior of Killing tensors under the U-duality group that extends O(d, d)

transformations, and demonstrate that covariance under such dualities leads to additional

constraints on the Kalb-Ramond field.
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4.2.3 Extension beyond O(d, d)

In this article we are studying the symmetries of the NS sector of string theory,25 and so far

we have only discussed the geometries related to pure metric by O(d, d) transformations.

Inclusion of S duality allows one to produce more general NS-NS backgrounds, and in this

subsection our construction is extended to such geometries.

In the context of black hole physics O(d, d) transformation are often used to generate

solutions with electric B field,26 so we will call them ‘F1 geometries’, even if they do not

describe fundamental strings. To generate NS5 branes from black holes one has to use a

specific combination of T and S dualities, and we will denote the resulting geometry by

‘NS5’, even though it can contain more general fluxes. This chain of dualities is shown

in figure 1.

To generate the ‘NS5 geometry’ we begin with a ten-dimensional metric reduced on

T p × T 4:

ds2P = Hαβ [dy
α + Y α][dyβ + Y β ] +Gab(dz

a +Aa)(dzb +Ab) + hmndx
mdxn . (4.53)

To generate a magnetic NS flux, we perform the following dualities [112, 113]:27

P
Ty−→ F

S−→ D1
Tz−→ D5

S−→ NS5. (4.54)

Notice that various labels just indicate the type of flux (i.e., F1 is an electric B-field, D5

is a magnetic C(2) and so on) rather than presence of branes.

T dualities along y directions produces F1 solution, and subsequent S duality gives

ds2D1 =
√
detH

[

H̃αβdyαdyβ +Gab(dz
a +Aa)(dzb +Ab) + hmndx

mdxn
]

,

e2Φ = detH, C(2) = dyα ∧ Y α, H̃αβ = [H−1]αβ .

The outcome of four T dualities along z directions depends on the presence of za in Y α.

If Y α has no legs along z directions, then T dualities produce a six-form, which can be

dualized back to C(2). Any leg pointing in z direction leads to C(4), and this RR flux can’t

be removed by S duality. Thus to end up with NS system we require Y to point only in

the non-compact directions. Then T dualities along z directions give

ds2D5 =
√
detH

[

H̃αβdyαdyβ + hmndx
mdxn

]

+
1√

detH
G̃abdzadzb,

e2Φ =
1

detHdetG
, C(2) = dyα ∧ Y α ∧

∏

(dza +Aa), B = dza ∧Aa,

25Solutions for the Ramond-Ramond fluxes are also interesting, but our construction of the modified

Killing-Yano tensors discussed in section 4.3 needs further generalization to include such geometries.
26The most notable exceptions from this rule are gravity duals of non-commutative field theories [110,

111], beta-deformation of pure geometry [20], and generation of NS5-brane from KK monopole. From our

perspective, all these operations give the solution of type ‘F1’.
27A detailed discussion of this duality map will be presented in the next section, where a more involved

chain (5.2) will be used to add charges to various black holes.
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where G̃ is the inverse matrix of G. To avoid the RR fields after S duality, we must require

Aa = 0, this leads to the final result:

ds2NS5 =
√
detG

[

detHH̃αβdyαdyβ + detHhmndx
mdxn + G̃abdzadzb

]

,

e2Φ = detHdetG, B = dyα ∧ Y α ∧
∏

(dza +Aa). (4.55)

Separation of the Hamilton-Jacobi equation in the geometry (4.53) implies (among

other things) the separation of

fhmn∂mS∂nS, fHαβ , (4.56)

and for the geometry (4.55) we need

f̃

detH
√
det G

hmn∂mS∂nS,
f̃

detH
√
det G

H̃αβ ,
f̃√

det G
G̃ab (4.57)

to separate for some function f̃ . Setting

f̃ = fdetH
√
det G (4.58)

we must require

∂x∂y[fh
mn∂mS∂nS] = 0, ∂x∂y[fH̃

αβ ] = 0, ∂x∂yf̃ = 0, ∂x∂y[fdetHG̃ab] = 0. (4.59)

The first condition is automatic, the second one is similar to the requirement for T duality

(recall that H̃ = H−1), and the last two relations are new. As before, the old and the new

Killing tensors are expressed as (4.37)

KMN = XMN − fxg
MN , K̃MN = X̃MN − f̃xg̃

MN , (4.60)

although now tildes refer to the NS5 system. Repeating the steps which led to (4.39),

we find

X̃αβ =
[

fHαβ
]

x
, X̃ab =

[

fdetHG̃ab
]

x
, X̃mn = Xmn, f̃x = [fdetH

√
det G]x. (4.61)

Equations (4.58), (4.60), (4.61) give the Killing tensor K̃ in terms of the the original metric,

in particular, we observe that the expression for K̃ in terms ofK is rather complicated. This

reinforces the principle introduced in section 2.2: to study the Killing tensors and their

transformations under dualities, it is convenient to begin with finding the eigenvectors

and eigenvalues of the tensors since the map (4.61) between X and X̃ is relatively simple.

Several explicit examples of Killing tensors for F1-NS5 systems are presented in appendix G.

4.2.4 Conditions on the B field from separation of variables

Equation (4.59) gives the separability condition for the NS5 metric, and now we present

the constraints on the B field. In section 4.2.1 such restrictions were found by requir-

ing separability of the metrics on any O(d, d) orbit which starts from a pure metric, and

– 30 –



J
H
E
P
0
9
(
2
0
1
5
)
1
8
2

now we impose the same requirement on the O(d, d) orbit staring from an NS5 solution.28

We will find that separability of F1-NS5-P geometries is guaranteed by (4.59) and con-

straints (4.65), (4.67), (4.68) on the Kalb-Ramond field of the original F1 system.

We start with constraints (4.44) and (4.45) derived for the F1 orbit

∂y(fg
mM )HxMb + ∂x(fg

mM )HyMb + fgmM∂xHyMb = 0,

∂x∂y(fgab)− fgMNHyaMHxNb − fgMNHxaMHyNb = 0, (4.62)

and require them to hold for NS5 solutions as well. Then using the relation between metrics

for F1 and NS5 (4.55),

gNS5
MN = FgF1

MN , fNS5 = FfF1, F ≡
√
detG detH = e−2ΦF1 (4.63)

and electric-magnetic duality transformation, we can rewrite (4.62) in terms of the metric

and the B field for F1. The detailed calculations presented in the appendix E give

∂x∂y[gabfF ] +
f

F
gab

[

∂x lnF∂y lnF +
1

2
HxMNHy

MN

]

= 0 (4.64)

and

∂y(fg
mM )HxMb + ∂x(fg

mM )HyMb + fgmM∂xHyMb = 0, (4.65)

∂y(fg
mM )H̃xMb + ∂x(fg

mM )H̃yMb +
1

F
fgmM∂x(FH̃yMb) = 0,

where H̃ = ⋆6H
(F1) is the Hodge dual dual of H(F1) with respect to the metric hmn.

Interestingly, in all examples we have considered, two terms in equation (4.64) vanish

separately, and perhaps such ‘coincidence’ is guaranteed by equations of motion of super-

gravity for the NS5 brane, but we have not investigated this further. Vanishing of the first

term in equation (4.64) implies separation of a very interesting duality-invariant quantity

g
(F1)
ab f (F1)e−2ΦF1 = g

(NS5)
ab f (NS5)e−2ΦNS5 . (4.66)

Then vanishing of the second term in (4.64) implies a relation in the F1 frame:

∂xΦ∂yΦ+
1

8
HxMNHy

MN = 0. (4.67)

To summarize, the separability of the F1-NS5-P geometries obtained form the F1

system is guaranteed by equation (4.59), conditions (4.65), (4.67) on the B field of the

original F1 system, and

∂x∂y[gabfe
−2Φ] = 0. (4.68)

28The first orbit generates fundamental strings and momentum, and the second one generates F1-NS5-P

system.
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4.3 T duality and the modified Killing-Yano equation

In this subsection we investigate the behavior of (conformal) Killing-Yano tensors under

T dualities. We will show that generically T duality destroys Killing-Yano tensors, but

there is a unique modification of the KYT equation which is invariant under T duality. For

the geometries without Kalb-Ramond field, this modified Killing-Yano (mKY) equation

reduces to the standard one (2.9), but in general it also contains contributions from the B

field. To motivate the mKYT equation, we apply T duality to a pure metric. This leads

to the unique modification of KYT equation in the dual frame, and we will demonstrate

that such modification remains invariant under any combination of diffeomorphisms and

T dualities.

Let us start with a standard equation for the Killing-Yano tensor (2.8)

∇MYNP +∇NYMP = 0 (4.69)

and perform a dimensional reduction of the metric along z direction:

ds2 = eC [dz +Aidx
i]2 + ĝijdx

idxj . (4.70)

In the first step of our analysis we also assume that geometry (4.70) has a trivial Kalb-

Ramond field. The details of the reduction are given in appendix D.2, in particular, the

(mnp) component of the KY equation can be read off from (D.10) by setting L = Y :

∇mY np +
1

2
FmpY n

z + (m ↔ n) = 0, (4.71)

where F = dA is the field strength associated with graviphoton. We will now look for the

modification of the KYT equation in the dual frame that satisfies five requirements:

(1) The equation should be linear in the dual Killing-Yano tensor Ỹ .

(2) Its (mnp) component must reproduce (4.71) and other components must be consistent

with dimensional reduction of (4.69).

(3) The equation must be invariant under gauge transformations of the B field.

(4) The new terms to be at most linear in B field since equations (4.71) are linear in Fab.

This implies that the modified KY equation should be linear in HMNP .

(5) The square of the modified KYT should give a Killing tensor in the dual frame.

As demonstrated in the in appendix D.6, there exists a unique modification of equa-

tion (4.69) which satisfies all these requirements, and it reads29

∇̃M ỸNP + ∇̃N ỸMP +
1

2
H̃MPAg̃

ABỸNB +
1

2
H̃NPAg̃

ABỸMB = 0. (4.72)

Moreover, the Kalb-Ramond field in the dual frame satisfies a constraint

H̃Q[MN Ỹ
Q

P ] + ∂[PC ỸMN ] = −∂[P W̃MN ] (4.73)

29The only alternative corresponds to changing the sign of H in (4.72) and sign of Ỹ n
z in (4.74).
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with some antisymmetric tensor W̃MN . Under the T duality the components of the mKYT

transform as

Ỹ mn = Y mn, Ỹ n
z = e−CY n

z. (4.74)

The counterpart of the constraint (4.73) in the original metric (4.70) is

dC ∧ dY = 0. (4.75)

Notice that (4.72) can be interpreted as a standard KYT equation with connection modified

by torsion [114]

ΓP
MN → ΓP

MN − 1

2
HP

MN . (4.76)

In appendix I we discuss transformation of Kähler structure under T duality and demon-

strate that a counterpart of the transformation (4.74) maps the Kähler form into complex

structure satisfying the Strominger’s system for manifolds with torsion [114].

Although equation (4.72) was derived by applying T duality to a pure metric, the result

is invariant under any combination of T dualities and diffeomorphisms. In appendix D.6

we demonstrate that T duality maps any solution YMN of (4.72) in an arbitrary geom-

etry (4.70) supported by the B field into a solution ỸMN of the same equation in the

dual frame. The transformation (4.74) between tensors can be viewed as an extension of

Buscher’s rules to Killing-Yano tensors. The constraint (4.73) is generalized as

gms∂sCŶ n
z − gns∂sCŶ m

z + gnsGsrY
rm − gmsGsrY

rn = 0, (4.77)

Gmn ≡ eC/2Fmn − e−C/2F̃mn, Ŷz
s ≡ e−C/2Yz

s ,

where Fmn and F̃mn are graviphotons in the original and dual frames. Notice that Ŷz
s

remains invariant under T duality, and Gmn changes sign.

To summarize, we have demonstrated that the requirement of covariance under T

duality leads to the unique equation (4.72) for the KYT, and the original equation (4.69) is

transformed into the system (4.72)–(4.73). In other words, unlike the KV and KT equations

which are unaffected by the Kalb-Ramond field, the equation for the Killing-Yano tensor is

modified, which is not very surprising since fermions interact with the B field. In all three

cases (KV, KT, mKYT) the Kalb-Ramond field satisfies additional constraints in the dual

frame (see (4.7), (4.51), (4.73)).

Although Ramond-Ramond fluxes appeared in the intermediate stages of the duality

chain (4.54), neither the initial nor the final point contained such fields. Unfortunately an

extension of our analysis to Ramond-Ramond backgrounds leads to certain complications,

which we now discuss. Starting with a pure metric and performing a T duality, we find

the new mKYT from (4.74):

Ỹ mn = Y mn, Ỹ n
z = e−CY n

z. (4.78)

Since the mKYT equation is written in the string frame, S duality induces a conformal

rescaling of such metric, so generically the modified Killing-Yano tensor is destroyed by

such operation. To save it we have two option for the equation after the duality:
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(a) Postulate that in the presence of the Ramond-Ramond fluxes, the covariant derivatives

appearing in the mKYT should be computed using g′MN = e−ΦgMN rather that gMN ,

and H3 should be replaced by F3. While consistent with S duality, this prescription

does not reduce to the standard KYT in the NS-NS backgrounds with non-trivial

dilaton, so it should be abandoned.

(b) Postulate that the modified KYT equation survives S duality only if the constraint

gAB∂BΦYAM = 0 (4.79)

is satisfied. Then the discussion presented in the appendix A.2 implies that the mKYT

transforms according to (A.8)

Y ′
NP = e−3Φ/2ỸNP , (4.80)

where ỸNP satisfies equation (4.72) before S duality, and Φ is the dilaton for the NS

system.

Although option (b) is not ruled out, the constraint (4.79) is rather restrictive. Moreover,

even assuming that this constraint is satisfied, and equation (4.72) does hold for the type

IIB theory with replacement H3 → F3, an additional T duality to type IIA supergravity

leads to rather unusual structures. By applying the dimensional reduction and T duality

to Ramond-Ramond background, we found that the KY equation in the dual frame mixes

tensors of different ranks. For example, starting with mKYT YMN one produces an equa-

tion that mixes Y
(1)
M and Y

(3)
MNP . This is not surprising since something similar happens for

components of F3, but KYT become rather complicated. While it would be very interesting

to study the properties of such objects with mixed ranks and perhaps embed them in the

democratic formalism [115, 116], this direction will not be pursued here.

Finally we comment on behavior of conformal Killing(-Yano) tensors. As demonstrated

in section 4.1.3, T duality introduces z-dependence in conformal Killing vectors, so such

dependence should be allowed in CKT as well. Dimensional reduction for a relatively simple

case Am = 0 is performed in appendix D.5, where we demonstrate that generically CKTs

are destroyed by T duality. However, the CKT does survive the duality if two additional

conditions (D.46) and (D.47) are satisfied. The same conclusion holds for a conformal

mKYT: it survives T duality only in very special cases.

5 Examples of the modified KYT for F1-NS5 system

In this section we present several examples of the modified Killing-Yano tensors intro-

duced in section 4.3. As we saw in section 3, the ordinary Killing-Yano tensors exist for

a large class of black holes described by the Myers-Perry solutions, and these geometries

automatically solve our modified equation since they do not have a Kalb-Ramond field.

However, string theory provides a very nice generating technique that allows one to start

with a known solution of general relativity and construct black holes with various charges

by applying string dualities [98–109, 117]. In this article we are focusing only on the
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NS-NS sector of string theory, so we will use the special cases of the general techniques

introduced in [98–109, 117] to produce black holes with fundamental string and NS5-brane

charges.30 For such special cases, it is convenient to specify the duality transformations

more explicitly.

We will start with a rotating black hole in d < 10 dimensions and boost it in one

of the 10 − d direction. Then application of T duality along that direction produces a

non-extremal fundamental string. To arrive at an NS5-brane (and more generally at a

combination of strings and NS5-branes), one has to apply a more sophisticated procedure

introduced in [112, 113]:

1. Start with a rotating Myers-Perry black hole with mass m in d < 6 dimensions, perform

a trivial embedding into the ten-dimensional type IIA supergravity, and identify a five-

dimensional torus T 4 × S1 orthogonal to the black hole.

2. Perform a boost by α along S1 direction31 and T-dualize along S1. This produces a

black fundamental string wrapping one of the compact directions.

3. Perform an S duality followed by four T dualities along T 4 and another S duality. The

resulting metric describes a non-extremal rotating NS5 brane.

4. Perform another boost by β in the S1 direction followed by T duality. This gives a

non-extremal F1-NS5 system with mass m and charges

Q1 = m sinh2 β, Q5 = m sinh2 α. (5.1)

For future reference we summarize the duality chain using a simple diagram:

BH → Pα → F1α → D1α → D5α → NS5α →
(

NS5α
Pβ

)

→
(

NS5α
F1β

)

. (5.2)

In this section we use y to denote the S1 direction. Notice that if we are adding only

the F1 charge, the duality chain stops after the first two steps, and four-dimensional torus

is not needed. Thus such charge can be added to the Myers-Perry black hole in d <

10 dimensions,32 and we derive the explicit expression for the corresponding mKYT in

section 5.1. On the other hand, addition of the NS5 charge needs T 4×S1, so it only works

for black holes with d < 6. Since we are interested in asymptotically-flat geometries, the

BTZ black hole [118, 119] will not appear in the discussion, so d can take only two values

(d = 4, 5). These cases are discussed in sections 5.2 and 5.3. Our results are summarized

in table 1.
30The geometries containing D-branes are also interesting, but the full theory of modified Yano-Killing

tensors for such solutions has not been developed yet. In particular, as we mentioned in section 4.3, some D-

brane backgrounds would contain Yano-Killing tensors of mixed ranks, and we hope to return to a detailed

study of such objects in the future.
31Following [112, 113], we will call the corresponding coordinate y and parameterize the boost by α,

where tanhα ≡ v/c.
32This construction also works for the embedding of the d-dimensional Myers-Perry black hole to the

bosonic string as long as d < 26.
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4D 5D

extremal non-extremal extremal non-extremal

F1 M M M M

NS5 M – M M

F1-NS5(Q1 = Q5) – – C,M M

F1-NS5(Q1 6= Q5) – – M M

Table 1. Summary of the results for the F1-NS5 system constructed from four– and five-dimensional

black holes using the procedure (5.2). Here M denotes the modified KYT and C correspond to the

conformal KYT.

5.1 Charged Myers-Perry black hole

In our first example we add charges to the Myers-Perry black hole discussed in section 3

by applying the duality chain (5.2) and discuss the modified Killing-Yano tensor for the

resulting solution. The transition from F1 to NS5 in (5.2) involves the electric-magnetic

duality, which depends on the dimension of the black hole, so it is convenient to study

individual black holes separately, and we will do that in sections 5.2, 5.3. In this section

we will focus the first two algebraic steps in the duality chain (5.2) to generate a rotating

black hole with F1 charge.

As demonstrated in appendix F, the charged Myers-Perry black hole admits a family

of modified Killing-Yano tensors, which generalizes (3.20)–(3.31): the tensors are still given

by (3.30), (3.31)33

Y (2n−2p) = ⋆ [∧hp] , h = rer ∧ et +
∑

k

√
−xke

xk ∧ ek , (5.3)

but the frames are modified

er =

√

FR

R−mr
dr, exi =

√

−(r2 − xi)di
4xiHi

dxi,

et =
1

h1

√

R−mr

FR

[

chαdt+ shαdy +
∑

k

Gk

akc
2
k

dφk

]

,

ey =
1

h1

[

shαdt+ chαdy −
mr shα
FR

dt− mr shα chα
FR

∑

k

dφk

akc
2
k

]

, (5.4)

ei =
1

h1

√

Hi

di(r2 − xi)

[

chαdt+ shαdy +
∑

k

Gk(r
2 + a2k)

c2kak(xi + a2k)

{

1 +
mr sh2α(r

2 − xi)

FR(r2 + a2k)

}

dφi

]

.

The expressions for ci, di, Hi, Gi, (FR) are still given by (3.20), and

h1 = 1 +
m sh2α
FR

. (5.5)

33In this subsection we have to distinguish between ea = eaMdxM and ea = eMa ∂M , so the frame indices

are written in the appropriate places. In the rest of the paper we abuse notation and write ea = eaMdxM to

simplify formulas.
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Expressions for the inverse frames exhibit a clear separation between non-cyclic coordi-

nates (r, xi):

er =

√

R−mr

FR
∂r, exi

=

√

− 4xiHi

di(r2 − xi)
∂xi

, ey = chα∂y − shα∂t,

et = −
√

R2

FR(R−mr)

[

chα∂t −
shα
R

(R−mr)∂y −
∑

k

ak

r2 + a2k
∂φk

]

, (5.6)

ei = −
√

Hi

di(r2 − xi)

[

chα∂t − shα∂y −
∑

k

ak

xi + a2k
∂φk

]

.

For the odd dimensions we find

er =

√

FR

R−mr2
dr, exi =

√

di(r2 − xi)

4Hi
dxi,

et =
1

h1

√

R−mr2

FR

[

chαdt+ shαdy +
∑

k

akGk

c2k
dφk

]

,

ey =
1

h1

[

shαdt+ chαdy −
m shα
FR

dt− m shα chα
FR

∑

k

akdφk

c2k

]

, (5.7)

ei =
1

h1

√

− Hi

xidi(r2−xi)

[

chαdt+ shαdy +
∑

k

Gkak(r
2+a2k)

c2k(xi+a2k)

{

1 +
m sh2α(r

2−xi)

FR(r2+a2k)

}

dφk

]

,

eψ =
1

h1

√

∏

a2i
r2

∏

xk

[

chαdt+ shαdy +
∑ Gk(r

2 + a2k)

c2kak

{

1− a2km sh2α
FR(r2 + a2k)

}

dφk

]

,

and

er =

√

R−mr2

FR
∂r, exi

=

√

4Hi

di(r2 − xi)
∂xi

, ey = chα∂y − shα∂t,

et = −
√

R2

FR(R−mr2)

[

chα∂t −
shα
R

(R−mr2)∂y −
∑

k

ak

r2 + a2k
∂φk

]

, (5.8)

ei = −
√

− Hi

xidi(r2 − xi)

[

chα∂t − shα∂y −
∑

k

ak

xi + a2k
∂φk

]

,

eψ = −
√

∏

a2i
r2

∏

xk

[

chα∂t − shα∂y −
∑

k

1

ak
∂φk

]

.

The expressions for ci, di, Hi, Gi, (FR) are still given by (3.36), (3.37), and h1 is given

by (5.5).

5.2 F1-NS5 system from the Kerr black hole.

Application of the duality chain (5.2) to the Kerr black hole (2.45) gives a rotating F1-

NS5 system, and the complete solution is presented in appendix G.1 (see equation (G.1)).
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Explicit calculations show that the modified Killing-Yano equation (4.72) does not have

nontrivial solutions,34 so in this subsection we will focus on two special cases when the

mKYT exists: the non-extremal fundamental string and the extremal NS5 brane. In the

first case the existence of solution is guaranteed by the general construction presented in

section 4.3 as long as condition (4.75) is satisfied, and in the second case the mKYT comes

from solving the Killing equations.

Application of the first two steps in the duality sequence (5.2) to Kerr geometry (2.45)

leads to the system which we called F1α, and the corresponding geometry describes a

non-extremal fundamental string with charge Q1 = 2m sh2α:

ds2 =
dy2

hα
+

ρ2

∆
dr2 + ρ2dθ2 −

[

∆

ρ2
+

4(mr shα)
2

ρ4h

]

( chαdt− as2θdφ)
2

+
s2θ
ρ2

[

(r2 + a2)dφ− a chαdt
]2

+ ( shαdt)
2 (5.9)

B2 =
2mr shα
ρ2h

[

chαdt− as2θdφ
]

∧ dy, e2Φ =
1

hα
.

Here we defined

ρ2 = r2 + a2c2θ, ∆ = r2 + a2 − 2mr, hα = 1 +
2mr sh2α

ρ2
.

Transformation (4.74) leads to the modified Killing-Yano tensor for (5.9)

Y =
1

hα

{

rsθdθ ∧
[

(r2 + a2)dφ− a chαdt
]

+ acθdr ∧
[

chαdt− as2θdφ
]}

+
shα
hα

(acθdr − arsθdθ) ∧ dy +
hα − 1

hα
r3sθdθ ∧ dφ. (5.10)

To compare it with (2.46), we construct the Killing tensor KMN = −YMAY
A
N , define the

frames as eigenvectors of this tensor, and rewrite the answer in terms of them:

ds2 = −e2t + e2y + e2r + e2θ + e2φ,

Y = reθ ∧ eφ + acθer ∧ et, K = r2[e2θ + e2φ] + (acθ)
2[e2t − e2r ]

et =

√
∆

ρhα

(

shαdy + chαdt− as2θdφ
)

, er =
ρ√
∆
dr, eθ = ρdθ, (5.11)

ey =
1

hα

[

chαdy + shα

(

1− 2mr

ρ2

)

dt+
amrs2θ sh2α

ρ2
dφ

]

,

eφ =
sθ

ρhα

(

−a shαdy − a chαdt+ (r2 + a2 + 2mr sh2α)dφ
)

.

Notice that eigenvalues of the Killing tensor and mKYT do not depend on the boost

parameter α.

The duality sequence (5.2) involves D-branes supported by Ramond-Ramond flux, and

the analysis presented in section 4.3 does not apply to T duality performed in such sys-

tems. It would be interesting to generalize our discussion of mKYT to the geometries with

34As shown in table 1, extremal F1-NS5 and non-extremal NS5 also don’t admit mKYT.
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Ramond-Ramond fields, but such analysis goes beyond the scope of this article. Instead

we applied the duality chain (5.2) to the Kerr black hole and solved the mKYT equations

for the resulting F1-NS5 geometry. We found that the mKYT does not exist in the system

involving NS5 branes unless one takes an extremal limit and sets the F1 charge to zero:

m → 0, Q1 → 0, fixed Q5 = 2m sinh2 α. (5.12)

The resulting geometry,

ds2 = −dt2 + h

[

ρ2

r2 + a2
dr2 + ρ2dθ2 + (r2 + a2)s2θdφ

2 + dy2
]

,

B2 =
Q5(r

2 + a2)cθ
ρ2

dφ ∧ dy, e2Φ = h, h = 1 +
Q5r

r2 + a2
, (5.13)

admits the unique mKYT

Y = hdy ∧ (rsθdθ − cθdr) + hdφ ∧ [rs2θdr + (r2 + a2)sθcθdθ]

= hd

[

rcθdy −
1

2
(r2 + a2)s2θdφ

]

(5.14)

which was found by the direct calculation. Introducing convenient frames, we can rewrite

this KYT and its square as

Y = er ∧ ey − eθ ∧ eφ, K ≡ −YMAY
A
NdxMdxN = e2r + e2y + e2θ + e2φ,

et = dt, er =

√

ρ2 +Qr

r2 + a2
dr, eθ =

√

ρ2 +Qr, (5.15)

ey =
1

ρ2

√

(r2 + a2)(ρ2 +Qr)
[

cos θdy + r sin2 θdφ
]

,

eφ =
sin θ

ρ2

√

(ρ2 +Qr)
[

rdy − (r2 + a2) cos θdφ
]

.

Notice that square of the KYT gives the spacial part of the metric, which can be viewed as

a linear combination of two ‘trivial’ Killing tensors: one coming form the metric and one

built from the square of the Killing vector ∂t.

An additional T duality along y direction in (5.13) produces a metric of the extremal

KK monopole, and application of (4.74) to (5.14) gives the standard KYT for the monopole:

Y = dr ∧ [(Q+ r sin2 θ)dφ+ cos θdy] + dθ ∧ [cos θ sin θ(a2 + r2)dφ− r sin θdy]. (5.16)

In the frames we find

Y = er ∧ ey − eθ ∧ eφ, K = e2r + e2y + e2θ + e2φ,

et = dt, er =

√

ρ2 +Qr

r2 + a2
dr, eθ =

√

ρ2 +Qr,

ey =

√

r2 + a2

ρ2 +Qr

[

cos θdy + (Q+ r sin2 θ)dφ
]

, (5.17)

eφ =
sin θ

√

ρ2 +Qr

[

rdy − cos θ(r2 + a2)dφ
]

.

Once again, the KYT squares to a ‘trivial” Killing tensor.
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5.3 F1-NS5 system from the five-dimensional black hole

Application of the duality chain (5.2) to the five-dimensional black hole gives another

example of the rotating F1-NS5 system, the complete geometry was found in [117, 120],

and it is given by equation (G.7). This subsection discusses the modified Killing-Yano

tensor for this solution.

Recalling that even the neutral five-dimensional black hole had the KYT of rank three

rather than two (see section 2.3), we should look at the obvious extension of (4.72) to such

objects:35

∇MYNPQ +∇NYMPQ +
1

2
HMPAg

ABYNBQ +
1

2
HMQAg

ABYNPB

+
1

2
HNPAg

ABYMBQ +
1

2
HNQAg

ABYMPB = 0. (5.18)

The general construction of section 4.3 guarantees existence of the mKYT for α = 0 (as

long as constraint (4.75) is satisfied), but the generation of the NS5 branes goes through

Ramond-Ramond fluxes, which can potentially destroy the modified KYT. Remarkably,

the tensor survives, and solution of (5.18) for the geometry (G.7) is

Z−1Y = −ad[r2 cos2 θ]dtdψ − aµAµBd[(r
2 + a2 −M) sin2 θ]dφdy (5.19)

+ aµAd[(r
2 + a2 −M) sin2 θ]dtdφ− aµBd[r

2 cos2 θ]dydψ + σd[sin2 θ]dφdψ

with

Z =
r2 +A2 + a2c2θ
r2 +B2 + a2c2θ

, σ =
(a2 −M)A2B2 − [a2 +A2 +B2]Mr2 −Mr4√

A2 +M
√
B2 +M

,

µA =
A√

M +A2
, µB =

B√
M +B2

, sθ = sin θ, cθ = cos θ, (5.20)

A =
√
M sinhα, B =

√
M sinhβ.

Although expression (5.19) is already relatively simple, we also rewrite it in frames to

connect to the general analysis presented in section 2.3. Constructing the Killing tensor

KMN = −YMAY
A
N and defining the frames as its eigenvectors, we find

ds2 = −e2t + e2y + e2r + e2θ + e2φ + e2ψ,

Y =

(

a

√

2A2 + 2Mc2θ er ∧ et +
√

2M(A2 + r2)− 2a2A2eθ ∧ eφ

)

∧ eψ,

K = −1

2
YMAY

A
N = [M(A2 + r2)− a2A2][e2θ + e2φ] + a2(A2 +Mc2θ)[e

2
t − e2r ]

+ [a2(A2 +Mc2θ)− (M(A2 + r2)− a2A2)]e2ψ, (5.21)

35The discussion presented in appendix D.6 trivially extends to KY tensors of arbitrary rank.
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where the frames are given by

et =
r

ρ2H1

√

M∆ρ2H5

M(A2 + r2)− a2A2

[

chβdt+ shβdy − a( shαc
2
θdψ − chαs

2
θdφ)

]

,

ey =
1

2ρ2H1

[

2 shβ
(

ρ2 −M
)

dt+ 2ρ2 chβdy + aM sh2β( shαc
2
θdψ − chαs

2
θdφ)

]

,

er =

√

A2 + ρ2

∆
dr, eθ =

√

A2 + ρ2dθ, (5.22)

eφ =
sθcθ

ρH1

√

MH5

A2 +Mc2θ

[

a chβdt+ a shβdy + (B2 + r2)( shαdψ + chαdφ) + a2 chαdφ

]

,

eψ =
1

ρ2H1

√

A2 +Mc2θ

√

M(A2 + r2)− a2A2

[

[r2 + (a2 −M)c2θ]

(

1

2
aM sh2α( chβdt+ shβdy) +Ma2 shαs

2
θdφ

)

+
[

M(r2 +A2)(r2 +B2) +MA2c2θr
2 −A2B2a2

]

( shαs
2
θdφ− chαc

2
θdψ)

]

.

For α = 0 we find

et =
1

ρ2H1

√

∆ρ2
[

chβdt+ shβdy + as2θdφ
]

,

ey =
1

2ρ2H1

[

2 shβ
(

ρ2 −M
)

dt+ 2ρ2 chβdy − aM sh2βs
2
θdφ

]

,

er =

√

ρ2

∆
dr, eθ =

√

ρ2dθ, eψ = r cos θdψ, (5.23)

eφ =
sθ

ρH1

(

a chβdt+ a shβdy + (a2 +M sh2β + r2)dφ

)

.

This is the special case of (5.7) for n = 1 and one rotation parameter. Finally we give the

expression for the mKYT (5.21) in the extremal limit (M = 0 with fixed A,B):

Z−1Y = −1

2
d
[

(dt+ dy)
{

(r2c2θ)dψ − (r2 + a2)s2θdφ
}

+ABa cos2 θdφdψ
]

. (5.24)

5.4 Conformal Killing-Yano tensors

We conclude this section with discussing the CKYT for rotating F1-NS5 systems. Explicit

calculations show that the geometry obtained by application of (5.2) to the Kerr solu-

tion (2.45) does not have CKYT. On the other hand F1-NS5 system constructed from the

five-dimensional black hole (2.49) does admit a CKYT if and only if Q1 = Q5. In this case
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the metric has the form

ds2 = −e2t + e2φ + e2y + e2ψ + e2r + e2θ,

et =

√
∆

ρ
(dt− as2θdφ), eφ =

sθ

ρ

[

(r2 + a2 +Q)dφ− adt
]

, (5.25)

er =
ρ√
∆
dr, eθ = ρdθ, eψ =

cθ

ρ
[(Q+ r2)dψ − ady], ey =

r

ρ
[dy + ac2θdψ],

∆ = r2 + a2 −M, ρ2 = r2 + a2c2θ +Q,

and the corresponding CKYT and CKT are given by

Y = ρ(er ∧ et ∧ ey + eθ ∧ eφ ∧ eψ), Z =
1

ρ2
(acθeψ − rey) ∧ (

√
∆et + asθeφ),

K = ρ2[e2t − e2r − e2y + e2θ + e2ψ + e2φ], W = −d[r2 − a2c2θ]. (5.26)

Since W is a total derivative, the general prescription (2.18) can be used to construct a

standard Killing tensor

K = −[2(acθ)
2 +Q][−e2t + e2r + e2y] + [2r2 +Q][e2θ + e2ψ + e2φ]. (5.27)

Conformal Killing tensors for four– and five-dimensional black holes discussed in this section

were constructed in [121, 122] via separation of variables.

6 Discussion

In this article we analyzed hidden symmetries of stringy geometries and their behavior

under string dualities. In particular, we demonstrated that in the presence of the Kalb-

Ramond field the equation for the Killing-Yano tensor is modified as (4.72), and this is

the unique modification consistent with string dualities. The transformations laws for the

Killing vectors, tensors, and Killing-Yano tensors are given by (4.8), (4.37)–(4.39), (4.74).

We have also demonstrated that nontrivial Killing tensors in arbitrary number of di-

mensions are always associated with ellipsoidal coordinates, and we used this observa-

tion to construct the (modified) Killing(-Yano) tensors for the Myers-Perry black hole

((3.20), (3.30), (3.31)), its charged version (5.3)–(5.4), and for several examples of F1-NS5

geometries ((5.15), (5.19)–(5.21)).

This work has several implications. First and foremost, the modified equation for the

Killing-Yano tensor (4.72) provides a new powerful tool for studying symmetries of stringy

geometries, which can extend the successful applications of the standard Killing-Yano ten-

sors to physics of black holes [121–127]. Also, the understanding of hidden symmetries

developed in this article can be used to extend the ‘no-go theorems’ for integrability [19]

to backgrounds without supersymmetry. Finally, the explicit Killing-Yano tensors for the

Myers-Perry black hole and its charged version constructed in sections 3 and 5.1 generalize

most of the previously known examples and provide the largest known class of KYT.
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A Conformal transformations of Killing tensors

In this appendix we analyze the behavior of Killing vectors and tensors under conformal

rescaling of the metric. In the context of string theory such rescalings appear when one goes

from the string to the Einstein frame or when one compares the string frames before and

after S duality. In this appendix we will find the restrictions on the dilaton which guarantee

that Killing vectors and tensors survive after S duality. We study general conformal Killing

vectors and tensors, and reduction to the standard objects is obtained by setting the

conformal factors to zero.

A.1 Killing vectors

We begin with considering an equation for the conformal Killing vector (CKV):

∇MVN +∇NVM = 2gMNv (A.1)

and writing its counterpart in the rescaled metric:

g′MN = eCgMN : ∇′
MV ′

N +∇′
NV ′

M = 2g′MNv′. (A.2)

Recalling the transformation of the connections,

(ΓM
NP )

′ = ΓM
NP +

1

2

[

δMP ∂NC + δMN ∂PC − gNP g
MA∂AC

]

, (A.3)

we can rewrite the equation for V ′ in terms of the original covariant derivatives:

∇M (e−CV ′
N ) +∇N (e−CV ′

M ) = 2gMN

(

v′ +
1

2
V ′A∂Ae

−C

)

. (A.4)

Comparing this to (A.1), we find the transformation law for the CKV:

V ′
M = eCVM ⇒ V ′M = g′MNV ′

N = V M ,

v′ = v − 1

2
V A∂Ae

−C . (A.5)

This implies that CKV always survives the conformal rescaling, but the KV (which must

have v = 0) disappears unless

V A∂Ae
−C = 0. (A.6)

In the context of S duality and transition between string and Einstein frames, the last

condition implies that Lie derivatives of the dilaton along the Killing vector must vanish,

which is a very natural requirement.
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A.2 Killing(-Yano) tensors

Next we look at transformation properties of the conformal Killing-Yano tensor, which

satisfies equation

∇MYNP +∇NYMP = 2gMNWP − gMPWN − gNPWM . (A.7)

Using (A.3) we can rewrite the left hand side of (A.7) in the rescaled frame as

∇′
MY ′

NP +∇′
NY ′

MP = ∇MY ′
NP − 1

2

[

∂MCY ′
NP + ∂NCY ′

MP − gMNgAB∂BCY ′
AP

]

− 1

2

[

∂MCY ′
NP + ∂PCY ′

NM − gMP g
AB∂BCY ′

NA

]

+ (M ↔ N)

= ∇MY ′
NP − 3

2
∂MCY ′

NP +
1

2
gMNgAB∂BCY ′

AP +
1

2
gMP g

AB∂BCY ′
NA + (M ↔ N)

and the full equation becomes

e3C/2∇M (e−3C/2Y ′
NP ) + e3C/2∇N (e−3/2CY ′

MP )

= 2gMN

(

W ′
P e

C − 1

2
gAB∂BCY ′

AP

)

−
[

gMP

(

W ′
NeC − 1

2
gAB∂BCY ′

AN

)

+ (M ↔ N)

]

.

To recover the original equation (A.7), we must set

Y ′
NP = e3C/2YNP , W ′

M = eC/2

(

WM +
1

2
gAB∂BCYAM

)

. (A.8)

The conformal Killing-Yano tensors of higher rank can be analyzed in a similar fashion,

and for the rank k tensor we find

Y ′
M1...Mk

= e(k+1)C/2YM1...Mk
, (A.9)

W ′
M2...Mk

= e(k−1)C/2WM2...Mk
+

e(3k−5)C/2

2
gAB∂BCYAM2...Mk

The same calculations show that for Killing tensors we have

K ′
MN = e2CKMN , W ′

M = eC(WM + gAB∂BCKAM ). (A.10)

Equations (A.9) and (A.10) summarize the behavior of Killing(-Yano) tensors under con-

formal rescalings.

B Killing tensors and ellipsoidal coordinates

In this appendix we will justify the procedure for extracting separation of variables from

a nontrivial Killing tensor and review an example of ellipsoidal coordinates and their

degeneration.
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B.1 Ellipsoidal coordinates from Killing tensors

As discussed in section 2.2, existence of a non-trivial Killing tensor leads to separation of

variables, and in this appendix we will provide some details of the procedure for extracting

the relevant coordinates and the separation function.

We will focus on studying the reduced metric (2.39), and to simplify the notation we

will drop the subscript red. Assuming that non-cyclic coordinates separate, we find

ds2 =
∑

gkdx
2
k, K =

∑

Λkgkdx
2
k (B.1)

where gk and Λk are functions of all coordinates. Equations for the Killing tensor give

∂iΛi = 0, ∂j ln gi = ∂j ln(Λi − Λj), j 6= i (B.2)

and there are no summations in these relations. We will now make an additional assumption

of separability:

∂j∂k ln gm = 0 for different (i, j, k), (B.3)

and determine the form of gk and Λk. The procedure involves several steps:

1. Equation (B.3) leads to factorization of g1

g1 =
∏

f1j(x1, xj), ∂j ln f1j(x1, xj) = ∂j ln(Λ1 − Λj) (B.4)

which implies factorization of

Λ1 − Λ2 = f12(x1, x2)g12(x1, x3 . . . ). (B.5)

The same expression can also be obtained by starting with g2, but this leads to a different

factorization:

Λ1 − Λ2 = f21(x2, x1)g21(x2, x3 . . . ). (B.6)

Applying ∂1∂3 to the logs of (B.5), (B.6), we conclude that x1 dependence factorizes in

g12. Absorbing the x1-dependent factor in f12(x1, x2), we find

Λ1 − Λ2 = f12(x1, x2)g12(x3 . . . ).

The left-hand side of the last relation is killed by ∂1∂2 (recall the first relation in (B.2)), so

f12(x1, x2) = f
(1)
12 (x1)− f

(2)
12 (x2). (B.7)

Repeating the same steps for x3, . . . , xn, we conclude that

g1 = h1(x1)
∏

j

[

f
(1)
1j (x1)− f

(j)
1j (xj)

]

,

Λ1 − Λj =
[

f
(1)
1j (x1)− f

(j)
1j (xj)

]

g1j(x3 . . . xn), ∂jg1j = 0. (B.8)

Since coordinate x1 is not special, the last equation can be generalized:

Λk − Λj =
[

f
(k)
kj (xk)− f

(j)
kj (xj)

]

gkj(x1 . . . xn), ∂jgkj = ∂kgkj = 0. (B.9)
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2. Assuming that f
(j)
1j (xj) are nontrivial functions of their arguments,36 we can define new

coordinates by setting

x̃j ≡ f
(j)
1j (xj), j > 1, (B.10)

and dropping the tildes. We still have the freedom of making a linear transformation of

xk, which will be fixed later. Taking a second derivative of (B.8) with respect to xj ,

∂2
jΛ1 = ∂2

jΛj + ∂2
j

( [

f
(1)
1j (x1)− xj

]

g1j(x2 . . . xn)
)

= 0,

we conclude that Λ1 is a linear polynomial in every coordinate (x2, . . . xn). Furthermore,

since ∂2Λ2 = 0 we find

Λ2 = Λ1 − [f
(1)
12 (x1)− x2]g12(x3, . . . , xn) = Λ1 + [f

(1)
12 (x1)− x2]∂2Λ1

and similarly

Λj = Λ1 + [f
(1)
1j (x1)− xj ]∂jΛ1. (B.11)

3. Next we look at

Λ2 − Λ3 =
(

f
(1)
12 (x1)− x2

)

∂2Λ1 −
(

f
(1)
13 (x1)− x3

)

∂3Λ1

=
[

f
(1)
12 ∂2Λ1−f

(1)
13 ∂3Λ1

]

0
+ x3

[

f
(1)
12 ∂2∂3Λ1+∂3Λ1

]

0
−x2

[

f
(1)
13 ∂2∂3Λ1+∂2Λ1

]

0
.

Expressions in the square brackets are evaluated at x2 = x3 = 0. Equation (B.9) implies

that (x2, x3) dependence in the last equation must factorize, and this is possible only if

f
(1)
13 (x1) = c32f

(1)
12 (x1) + d32,

[

f
(1)
12 ∂2Λ1 − f

(1)
13 ∂3Λ1

]

0
= e32 (B.12)

with constant (c32, d32, e32). Similar arguments demonstrate that all f1j(x1) are linear

polynomials in f
(1)
12 (x1), so by re-defining this coordinate,

x1 → f
(1)
12 (x1),

we conclude that all f1j(x1) are linear functions of their arguments. For example,

f
(1)
13 (x1)− x3 = c32x1 + d32 − x3,

so by making a linear transformation of x3, we can simplify the last expression:

f
(1)
13 (x1)− x3 → c32(x1 − x3).

Repeating this for (x4 . . . xn), we find

g1 = h1(x1)
∏

j

[x1 − xj ], Λj = Λ1 + [x1 − xj ]∂jΛ1. (B.13)

36This assumption of generality eventually leads to ellipsoidal coordinates for curved spaces. Relaxing

this assumption, one arrives at degenerate cases, and some examples are presented in appendix B.2. We

conjecture that any degenerate case can be obtained by a singular limit of ellipsoidal coordinates, but we

will not prove this statement. The proof for flat three dimensional space is implicitly contained in [61].
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4. We will now demonstrate that polynomial Λ1(x2, . . . , xn) must be symmetric under

interchange of any pair of its arguments. Without the loss of generality, we focus on x2

and x3 and write Λ1 as

Λ1 = P1x2x3 + P2x2 + P3x3 + P4, (B.14)

where Pk are polynomials in (x4 . . . xn). The second equation in (B.12) gives

e32 = x1[∂2Λ1 − ∂3Λ1]0 = x1[P2 − P3]. (B.15)

Consistency of this relation requires P2 = P3, i.e., symmetry of Λ1 under the interchange

of x2 and x3.

5. Once we established that Λ1(x2 . . . xn) is symmetric, it is convenient to introduce a

“generating” linear polynomial Λ(x1 . . . xn) symmetric in its arguments and define

Λ1 = ∂1Λ. (B.16)

Then the second relation in (B.13) implies

Λj = ∂1Λ + (x1 − xj)∂1∂jΛ = ∂1Λ|xj=0 + x1∂1∂jΛ = ∂jΛ|x1=0 + x1∂1∂jΛ = ∂jΛ.

To summarize, we have demonstrated that in the generic case existence of the Killing

tensor in the non-cyclic part of the metric (B.1) implies that

gk = h1(xk)
∏

j 6=k

[xk − xj ], Λj = ∂jΛ, (B.17)

where Λ(x1 . . . xn) is a linear polynomial in every (x1 . . . xn) symmetric under interchange of

every pair of arguments. This completes the justification of (2.39)–(2.41), which summarize

the extraction of the separable coordinates from a Killing tensor.

B.2 Ellipsoidal coordinates in flat space

In section 2.2 we demonstrated that separation of non-cyclic coordinates generically leads to

ellipsoidal coordinates. Our derivation was based on the assumption of generality: we pos-

tulated that metric components have non-trivial dependence on all non-cyclic coordinates.

If this assumption is dropped, one recovers degenerate cases of ellipsoidal coordinates, and

in this appendix we will illustrate this using a well-known example of flat three-dimensional

space. Degeneration in higher dimensions is very similar, but its detailed discussion is be-

yond the scope of this article.

Consider a flat three-dimensional space with a metric

ds2 = dr21 + dr22 + dr23. (B.18)

The ellipsoidal coordinates (x0, x1, x2) are defined as three solutions of a cubic equation

for x [65]:
r21

x− a
+

r22
x− b

+
r23

x− c
= 1 . (B.19)
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Without the loss of generality we assume that non-degenerate coordinates have a > b > c

and the roots are arranged in the following order:

x0 > a > x1 > b > x2 > c. (B.20)

Cartesian coordinates (r1, r2, r3) can be expressed in terms of (x0, x1, x2) as

r1 =

[

(x0 − a)(x1 − a)(x2 − a)

(a− b)(a− c)

]1/2

, r2 =

[

(x0 − b)(x1 − b)(x2 − b)

(b− a)(b− c)

]1/2

, (B.21)

r3 =

[

(x0 − c)(x1 − c)(x2 − c)

(c− a)(c− b)

]1/2

.

This transformation turns the metric (B.18) into

ds2 =
(x0 − x1)(x0 − x2)dx

2
0

4(x0 − a)(x0 − b)(x0 − c)
+

(x1 − x0)(x1 − x2)dx
2
1

4(x1 − a)(x1 − b)(x1 − c)

+
(x2 − x0)(x2 − x1)dx

2
2

4(x2 − a)(x2 − b)(x2 − c)
. (B.22)

Shifting six quantities (xi, a, b, c) by c, one usually sets c = 0, and we will follow this

convention.37

The degenerate cases of the ellipsoidal coordinates are discussed in great detail in [61],38

and we will focus only on oblate spheroidal and spherical coordinates. Oblate spheroidal

coordinates are obtained from (B.21) by writing

x0 = a+ ξ0, x1 = a− aξ1, x2 = bξ2 (B.23)

and sending b to zero. Then metric (B.22) becomes

ds2 =
(ξ0 + aξ1)dξ

2
0

4ξ0(ξ0 + a)
+

(ξ0 + aξ1)dξ
2
1

4ξ1(1− ξ1)
+ (ξ0 + a)(1− ξ1)

dξ22
4ξ2(1− ξ2)

. (B.24)

This expression has a very simple interpretation: ξ2 gives rise to a new cyclic coordinate ζ

(ξ2 = cos2 ζ), while (ξ0, ξ1) form two-dimensional elliptic coordinates. This is in a perfect

agreement with general analysis of non-cyclic directions presented in section 2.2.

As a next example we consider spherical coordinates, which can be obtained by writing

b = a− ǫ, x0 = ξ0, x1 = a− ǫξ1, x2 = aξ2, (B.25)

sending ǫ to zero, and setting a = 0 in the resulting expression. This gives

ds2 =
dξ20
4ξ0

+
ξ0(1− ξ2)dξ

2
1

4ξ1(1− ξ1)
+

ξ0dξ
2
2

4(1− ξ2)ξ2
= dr2 + r2 sin2 θdφ2 + dθ2. (B.26)

We see that although ξ2 (which is related to the polar angle θ) remains a non-cyclic coor-

dinate, it does not appear in g11, so spherical coordinates violate one of the assumptions

made in section 2.2. Nevertheless such parameterization can be obtained as a degenerate

case of ellipsoidal coordinates, and we conjecture that any separable frame in the non-

cyclic coordinates can be obtained as a similar singular limit from the systems derived in

section 2.2.2. The proof of this conjecture is beyond the scope of this paper.

37In section 3 we use a different convention: a = 0, b = −a2
1, c = −a2

2.
38There are ten of them: rectangular, oblate/prolate spheroidal, circular/elliptic/parabolic cylinder,

spherical, conical, paraboloidal, and parabolic.
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C Principal CKYT for the Myers-Perry black hole

In section 3 we found a family of the Killing-Yano tensors (3.30) for the Myers-Perry black

hole, and the construction was based on three statements:

1. The anti-symmetric tensor h defined by (3.29) is a Conformal Killing-Yano tensor and

the form (3.29) is closed. Such tensors are called Principal Conformal Killing-Yano

tensors (PCKYT) [69–73].

2. A wedge product of two PCKY tensors is again a PCKYT, so the expression ∧hn is

a PCKYT for any value of n.

3. If Y is a PCKYT then Y = ⋆Y is a Killing-Yano tensor.

The proofs of these statements are scattered throughout the literature [69–73, 77, 81, 82],

and the goal of this appendix is to present a simpler derivation of properties 1-3. We will

begin with properties 2 and 3 since they are not specific to the Myers-Perry black hole.

We begin with writing the condition dY = 0 for a Principal Conformal Killing-Yano

tensor Y of rank p:

∇aYbcd... −∇bYacd... −∇cYbad... + · · · = 0. (C.1)

There are p terms in this equation. Using the defining relation (2.15) for the CKYT,

∇bYacd... = −∇aYbcd... + 2gabZcd... − [gcaZbd... + gcbZad...] + . . . , (C.2)

equation (C.1) can be rewritten as

∇aYbcd... =
p+ 1

p
[gabZcd... − gacZbd... + . . . ] = (p+ 1)ga[bZcd... ]. (C.3)

The PCKYT is defined as an object satisfying relations (C.1), (C.2), but one can use the

equivalent set of defining relation (C.1) and (C.3) instead. In particular, we observe that

any Killing-Yano tensor which is also closed must be covariantly constant. Such objects

are closely related to complex structures on Kähler manifolds, which are discussed in the

appendix I.

To prove property 2, we observe that a product of two PCKYT, Y(p) ∧ Y(q) is closed,

and it satisfies equation (C.3) with

Z(p+q) =
1

p+ q + 2

[

(p+ 1)Z(p) ∧ Y(q) + (−1)p+q(q + 1)Z(q) ∧ Y(p)
]

. (C.4)

To prove property 3, we consider

∇m

[

εa1...aq
b1...bpYb1...bp

]

= εa1...aq
b1...bp(p+ 1)gm[b1Zb2...bp] = (p+ 1)εa1...aqm

b2...bpZb2...bp .

(C.5)

Symmetrization over (m, a1) gives zero, so Ya1...aq ≡ εa1...aq
b1...bpYb1...bp is a Killing-Yano

tensor. This completes the proof of properties 2 and 3 which hold for all spaces admitting

PCKYT.
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Next we focus on the Myers-Perry black hole and demonstrate that the closed form

h =
1

2

∑

aidµ
2
i ∧

[

aidt+ (r2 + a2i )dφi

]

+
1

2
dr2 ∧

[

dt+ aiµ
2
i dφi

]

=
1

2
d
[

r2 +
∑

a2iµ
2
i

]

∧ dt+
1

2

∑

d[ai(r
2 + a2i )µ

2
i ] ∧ dφi (C.6)

is a Conformal Killing-Yano tensor. The proof will go in two steps: first we will verify

the CKYT equation for m = 0, and then we will show that m dependence does not affect

the result.

For m = 0 the geometry (3.32) is flat, and it is convenient to rewrite it in the Cartesian

coordinates. In odd dimensions such coordinates are defined by

Xk + iYk =
√

r2 + a2kµke
iφk , ds2 = −dt2 +

∑

[(dXk)
2 + (dYk)

2], (C.7)

and the two-form h becomes

h =
1

2
d
[

∑

(X2
k + Y 2

k )
]

∧ dt+
∑

akdXk ∧ dYk . (C.8)

This gives interesting relations for the derivatives of hMN ,

∇MhNP +∇NhMP = 0, if (MNP ) 6= t,

∇MhNt +∇NhMt = 2[δMN − δMtδNt], (C.9)

∇MhtP +∇thMP = −[δMP − δMtδPt],

which can be summarized as an equation for the CKYT (2.15):

∇MhNP +∇NhMP = 2gMNZP − gMPZN − gNPZM , ZM∂M = ∂t. (C.10)

The argument for even dimensions works in a similar way. This concludes the first part of

the proof (h is a CKYT for the flat space), and now we will demonstrate that (C.10) holds

for m 6= 0 as well.

While it is possible to verify (C.10) using the explicit form of the Christoffel’s sym-

bols,39 this calculation is tedious and not very instructive since it does not take advantage

of the high degree of symmetry of the Myers-Perry solution. We will use an alternative

method based on spin connections, which gives the answer in an easier and more transpar-

ent way. First we rewrite (C.10) in terms of frame indices:

∇ahbc +∇bhac = 2ηabZc − ηacZb − ηbcZa (C.11)

h = rer̂ ∧ et̂ +
∑

i

√
−xie

x̂i ∧ eî, Za = eat .

To derive the desired result we should analyze the m-dependence of

Tabc ≡ ∇ahbc +∇bhac . (C.12)

39Such ‘brute force’ calculation is performed in the appendix B.3 of [77].
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Covariant derivatives of the objects with frame indices are evaluated using the standard

relations

∇aV
b = eMa ∂MV b + ωa,

b
cV

c , ∇aWb = eMa ∂MWb − ωa,
c
bWc , (C.13)

and the spin connection ωa,
b
e is related to the anholonomy coefficients Γa,be by

ωc,ab =
1

2
[Γc,ab + Γb,ac − Γa,bc] , dea =

1

2
Γa

,bce
b ∧ ec . (C.14)

In particular, the explicit expressions for et̂ in (3.20) and (3.33) imply that

Γt̂
,βr̂ = 0. (C.15)

Here and below the greek letters denote the frame indices excluding (r̂, t̂). Although it is

not obvious from eî and eφ̂i , the anholonomy coefficients Γα,t̂γ vanish as well. To see this,

we use an alternative expression for Γ:

Γa,bc = (dea)µνe
µ
b e

ν
c = (∂µeaν − ∂νeaµ)e

µ
b e

ν
c = −e

µ
b eaν∂µe

ν
c + eµc eaν∂µe

ν
b , (C.16)

which gives for (3.20) and (3.33):

Γα,t̂γ = eµγeαν∂µe
ν
t̂
= −1

2
eµγeανe

ν
t̂
∂µ lnF = −1

2
eµγηαt̂ ∂µ lnF = 0. (C.17)

Next we use the frames (3.20) and (3.33) to compute the anholonomy Γa,bc coefficients

and spin connections ωa,bc in terms of their counterparts Γ̃a,bc and ω̃a,bc for m = 0. The

simplicity of the m dependence in the frames combined with relations Γα,t̂γ = Γt̂
,βr̂ = 0

allows us to write the answers without doing complicated calculations which are normally

associated with evaluation of the spin connection. Introducing convenient notation

S =







√

R−mr
R , even d

√

R−mr2

R , odd d
, (C.18)

we can summarize the anholonomy coefficients as

Γα
,βγ = Γ̃α

,βγ , Γα
,βr̂ = SΓ̃α

,βr̂, Γr̂
,βr̂ = Γ̃r̂

,βr̂,

Γα
,βt̂ = 0, Γt̂

,βt̂ = Γ̃t̂
,βt, Γt̂

,βγ = SΓ̃t̂
,βγ (C.19)

Γt̂
,βr̂ = 0, Γα

,t̂r̂ = Γ̃α
,t̂r̂, Γt̂

,t̂r̂ = SΓ̃t̂
,t̂r̂ −

1

F
∂rS, Γr̂

r̂t̂
= 0,

and the spin connections as

ωα,βγ = ω̃α,βγ , ωr̂,αβ = Sω̃r̂,αβ , ωα,r̂β = Sω̃α,r̂β , ωr̂,r̂β = ω̃r̂,r̂β ,

ωt̂,t̂α = ω̃t̂,t̂α, ωt̂,αβ = Sω̃t̂,αβ , ωα,βt̂ = Sω̃α,βt̂, (C.20)

ωα,r̂t̂ = ω̃α,r̂t̂, ωr̂,αt̂ = ω̃r̂,αt̂, ωt̂,αr̂ = ω̃t̂,αr̂, ωr̂,r̂t̂ = 0, ωt̂,t̂r̂ = Γt̂,t̂r̂.

Substituting the expressions (C.14) into (C.12) and introducing ∂̂a ≡ eMa ∂M , we find

Tabc = ∂̂ahbc + ∂̂bhac + [ωa,be + ωb,ae]h
e
c + ωa,cehb

e + ωb,ceha
e

= ∂̂ahbc + ∂̂bhac + (Γa,be + Γb,ae)h
e
c + ωa,cehb

e + ωb,ceha
e (C.21)
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and the explicit expressions (C.19), (C.20) give

Tαβγ = T̃αβγ , Tαm̂n̂ = T̃αm̂n̂, Tm̂n̂α = T̃m̂n̂α, Tm̂βγ = ST̃m̂βγ , Tαβm̂ = ST̃αβm̂, (C.22)

where (m̂, n̂) take values t̂ or r̂. The remaining components are

Tr̂r̂r̂ = 0, Tt̂t̂t̂ = 0, Tr̂t̂t̂ = 0, Tt̂r̂t̂ = 0,

Tr̂r̂t̂ = 2∂̂r̂hr̂t̂ + 2Γr̂,r̂r̂h
r̂
t̂ + 2ωr̂,t̂t̂hr̂

t̂ = 2∂̂r̂hr̂t̂ = ST̃r̂r̂t̂, (C.23)

Tt̂r̂r̂ = ∂̂r̂ht̂r̂ + Γt̂,r̂t̂h
t̂
r̂ + 2ωt̂,r̂t̂hr̂

t̂ = ∂̂r̂ht̂r̂ = ST̃t̂r̂r̂ .

Recalling that

Zα = eαt = Z̃α, Zt̂ = et̂t = SZ̃t̂, Zr̂ = 0, (C.24)

we conclude that equation (C.11),

Tabc = 2ηabZc − ηacZb − ηbcZa, (C.25)

is equivalent to

T̃abc = 2ηabZ̃c − ηacZ̃b − ηbcZ̃a, (C.26)

which has been verified earlier. This completes the proof of the relation (C.10) for the

Myers-Perry black hole and verification of statements 1-3 made in the beginning of this

appendix.

D Dimensional reduction and T duality

This appendix discusses dimensional reduction of equations for Killing vectors, Killing–

(Yano) tensors and their conformal counterparts. Section D.1 sets up the conventions,

section D.2 discusses dimensional reduction of arbitrary tensors, and these results are

applied to Killing vectors in section D.3, to symmetric Killing tensors in section D.4,

and to Killing-Yano tensors in section D.6. Conformal Killing tensors are discussed in

section D.5, conformal Killing vectors are analyzed in section 4.1.3 and some comments

about conformal Killing-Yano tensors are made in the end of section 4.3.

We demonstrate that equations for the KV and KT are consistent with T duality, but

equation for the KYT should be modified, and we find the unique modification. Also we

find that consistency between continuous symmetries and T duality leads to constraints

on the Kalb-Ramond field if one is present, and such constraints suggest an interesting

generalization of a standard Lie derivative along vector field to the derivative along Killing

tensors. This construction is discussed in section D.4.1.

D.1 Conventions

We begin with setting up the conventions. Consider a geometry which admits a Killing

vector ∂z and write the metric and the Kalb-Ramond field in the form

ds2 = eC [dz +Amdxm]2 + ĝmndx
mdxn,

B = Ãndx
n ∧

[

dz +
1

2
Amdxm

]

+
1

2
B̂mndx

m ∧ dxm. (D.1)
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Here (m,n) run over all coordinates excluding z, and an unusual notation for B field will

be justified below. Ramond-Ramond fields may also be present, but they will not affect

our discussion. For future reference we also write the metric and its inverse in matrix form:

gMN =

(

eC eCAi

eCAj eCAiAj + ĝij

)

, gMN =

(

e−C +AiA
i −Ai

−Aj ĝij

)

. (D.2)

Since z is a cyclic coordinate in (D.1), it is possible to perform T duality along this direction

using the Buscher’s rules

g̃zz =
1

gzz
, e2Φ̃ =

e2Φ

gzz
, g̃mz =

Bmz

gzz
, B̃mz =

gmz

gzz
, (D.3)

g̃mn = gmn − GmzGnz −BmzBnz

gzz
, B̃mn = Bmn − Bmzgnz − gmzBnz

gzz
.

Application of this procedure to (D.1) gives

ds̃2 = e−C(dz+Ãmdxm)2+ ĝmndx
mdxn, B̃ = Andx

n∧
[

dz+
1

2
Ãmdxm

]

+
1

2
B̂mndx

m∧dxm.

(D.4)

Notice that Am and Ãm are interchanged by T duality making the notation (D.1) very

natural.

In this paper we use the following conventions:

• capital letters run through all the coordinates, {M,N, . . .} = {1, . . . , d};

• lower case letters run through all the coordinates except z, {m,n, . . .} = {1, . . . , d−1};

• objects after T duality are marked with tilde, e.g. Ṽi, K̃mn;

• objects not affected by T duality are marked by hat, e.g. ĝij , ∇̂m.

D.2 Dimensional reduction and covariant derivatives

In this appendix we will express covariant derivatives in the geometry (D.1) in terms of

derivatives on the base dŝ2 assuming that all objects are z-independent.

We begin with analyzing covariant derivatives of a vector:

WMN = ∇MVN . (D.5)

The connections corresponding to the metric (D.1) are:

Γz
zz =

1

2
Aa∂ae

C , Γm
zz = −1

2
ĝma∂ae

C , Γz
mz =

1

2

[

∂mC −AaeCFma − 2AaA[a∂m]e
C
]

,

Γm
nz =

1

2
ĝma(eCFna −An∂ae

C), Γz
mn = −AaΓ̂

a
mn +

1

2
e−C(∂mgnz + ∂ngmz)

Γs
mn = Γ̂s

mn − 1

2
As(∂mgnz + ∂ngmz). (D.6)

Indices of the gauge field Ai are raised using ĝij , and Γ̂s
mn denotes Christoffel symbols on

the base.
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Explicit calculations give various components of W :

Wzz =
1

2
V a∂ae

C ,

Wz
n =

1

2
ĝnbeCFabV

a − 1

2
ĝnaVz∂aC, (D.7)

Wn
z = ĝna∂aVz −

1

2
ĝnaVz∂aC − 1

2
ĝnbeCFbaV

a,

Wmn = ∇̂mV n +
1

2
ĝmaĝnbFabVz.

All components of WMN can be obtained by taking linear combinations of the expressions

written above, for example,

Wzm = gmaWz
a + gmzWz

z = gmaWz
a +

gmz

gzz
[Wzz − gazWz

a] = AmWzz + ĝmaWz
a

= −1

2
Vz∂mC − 1

2
eCFmaV

a +
1

2
AmV a∂ae

C . (D.8)

The relation (D.7), (D.8) are used in section 4.1. While discussing conformal Killing vectors

in section 4.1.3 we also need generalization of (D.7) to derivatives of a z-dependent vector:

Wzz = ∂zVz +
1

2
V a∂ae

C ,

Wm
z +Wz

m = ĝma
[

∂aVz − ∂aCVz − eCFabV
b + ĝab∂zV

b −Aa∂zVz

]

, (D.9)

Wmn +Wnm = ∇̂mV n + ∇̂nV m −Am∂zV
n −An∂zV

m.

Once the action of covariant derivatives on various types of indices is specified, their

application to a tensor of rank 2 becomes straightforward:

∇zLzz =
1

2
[La

z + Lz
a]∂ae

C ,

∇zLz
n =

1

2
Lan∂ae

C +
1

2
ĝnbeCFabLz

a − 1

2
ĝnaLzz∂aC,

∇zL
mn =

1

2
[ĝmbLan + ĝnbLma]eCFab −

1

2
[ĝmaLz

n + ĝnaLm
z]∂aC,

∇nLzz = ĝna∂aLzz − ĝnaLzz∂aC − 1

2
ĝnbeCFba[L

a
z + Lz

a], (D.10)

∇mLz
n = ∇̂mLz

n − 1

2
ĝmaLz

n∂aC − 1

2
ĝmbeCFbaL

an +
1

2
ĝmaĝnbFabLzz,

∇mLnp = ∇̂mLnp +
1

2
ĝmaĝnbFabLz

p +
1

2
ĝmaĝpbFabL

n
z.

These formulas are used in section 4 to study the reduction of Killing–(Yano) tensors.

D.3 Dimensional reduction for Killing vectors

In this subsection we will consider the behavior of Killing vectors under T duality. We will

start with an object which satisfies the Killing equation

∇MVN +∇NVM = 0, (D.11)
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in the geometry (D.1) supported by the NS-NS fields. T duality along z direction gives the

geometry (D.4) which has the same form with replacements

C → −C, A ↔ Ã, e2φ → e2φ−C , fixed ĝmn, B̂mn . (D.12)

If present, Ramond-Ramond fields would also transform under such duality, but such fields

will not affect our analysis.

Let us assume that before T duality geometry (D.1) admitted a Killing vector that

satisfied equation

ZMN = 0, ZMN ≡ ∇MVN +∇NVM . (D.13)

As demonstrated in section D.2, equation (D.13) can be written as a system40

Zzz = V a∂ae
C = 0,

Zmn = ∇̂mV n + ∇̂nV m = 0, (D.14)

Zz
m = ĝma∂a(e

−CVz)− ĝmbFbaV
a = 0.

T duality (D.12) leaves the first two equations invariant as long as we make identification

Ṽ a = V a, (D.15)

and it maps the last equation (D.14) into a restriction on the B field:

ĝma∂aW̃z + ĝmbH̃bazV
a = 0, W̃z ≡ −e−CVz. (D.16)

Similarly, before the T duality we must have

ĝma∂aWz + ĝmbHbazV
a = 0, Wz ≡ −eC Ṽz. (D.17)

The last equation is a (mz) component of a covariant relation:

HMNSV
S = ∇MWN −∇NWM , (D.18)

as now we will discuss its origin and implications coming from the remaining components.

To give a geometrical interpretation of (D.18) we look at a Lie derivative of the B field

along the Killing vector V :

LV BMN = V A∇ABMN +BAN∇MV A +BMA∇NV A

= V AHMNA −∇M (V ABAN ) +∇N (V ABAM )

and recall that if V A is a Killing vector, then this derivative must be a pure gauge, i.e.,

LV BMN = ∇MW ′
N −∇NW ′

M (D.19)

for some vector W ′
M . Combining the last two relations, we find

V AHMNA = ∇M (W ′
N + V ABAN )−∇N (W ′

M + V ABAM ),

40This follows from (D.7) by noticing that ZMN = WMN +WNM .
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which coincides with (D.18) if we define

WN = W ′
N + V ABAN . (D.20)

At this point we have demonstrated that condition (D.18) comes from requiring that the

Lie derivative of the B field is a pure gauge, and we found the T duality map for various

components of V and W :

Ṽ a = V a, W̃z = −e−CVz, Ṽz = −e−CWz. (D.21)

To complete the proof that the system
{

∇MVN +∇NVM = 0

HMNSV
S = ∇MWN −∇NWM

(D.22)

remains invariant, we have to analyze the (mn) components of the last equation and find

the map between Wm and W̃m.

Let us start with a B field that satisfies the constraint (D.18) in the original frame. In

particular this implies

∇mWn −∇nWm = HmnaV
a +HmnzV

z =

[

dB̂ +
1

2
d(Ã ∧A)

]

mna

V a + F̃mnV
z. (D.23)

Assuming that the counterpart of this relation after T duality is also satisfied, we can

subtract it from the last relation to find

∇m(Wn−W̃n)−∇n(Wm−W̃m)=[d(Ã ∧A)]mnaV
a + F̃mnV

z − FmnṼ
z (D.24)

= F̃mn[e
−CVz−AaV

a]−Fmn[e
C Ṽz−ÃaV

a]+[d(Ã∧A)]mnaV
a

= F̃mne
−CVz−Fmne

C Ṽz−[F̃maAn−FmaÃn−(m ↔ n)]V a.

Using the last equation in (D.14) and its counterpart after T duality, we can simplify the

last bracket:

∇m(Wn − W̃n)−∇n(Wm − W̃m)

= F̃mne
−CVz − Fmne

C Ṽz − [∂m(eC Ṽz)An − ∂m(e−CVz)Ãn − (m ↔ n)]

= ∂m[Ãne
−CVz −Ane

C Ṽz]− ∂n[Ãme−CVz −AmeC Ṽz]. (D.25)

We conclude that the system (D.22) remains invariant under T duality if the standard

rules (D.12) are supplemented by

Ṽ a = V a, W̃z = −e−CVz, Ṽz = −e−CWz,

W̃n = Wn − Ãne
−CVz −AnWz + ∂nf, (D.26)

where f is an arbitrary function. The last line can also be written as

W̃n = Wn + ĝna∂af, (D.27)

and the transformation law can be made symmetric between V and W by setting f = 0.
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D.4 Dimensional reduction of the Killing tensor equation

Next we look at the equation for the Killing tensor:

MMNP = 0, MMNP ≡ ∇MKNP +∇NKMP +∇PKMN , KMN = KNM . (D.28)

Assuming that geometry (D.1) does not have a B field and that all components of KMN

are z-independent, we can use (D.10) to perform dimensional reduction along z direction:

Mzzz = Ka
z∂ae

C ,

Mzz
p = Kan∂ae

C + 2ĝpbeCFabKz
a − 2ĝpaKzz∂aC + ĝpa∂aKzz, (D.29)

Mmn
z = ∇̂mKz

n + ∇̂nKz
m + [ĝmbKan + ĝnbKma]eCFab − [ĝmaKz

n + ĝnaKz
m]∂aC,

Mmnp = ∇̂mKnp + ∇̂nKmp + ∇̂pKmn,

and match equations for the Killing tensor before and after the duality:

zzz K t
z ∂te

C = 0 K̃z
t∂te

−C = 0

zzp 2ĝpaFbaK
b

z e−C = ∂ae
−CKap − ĝpa∂a(e

−2CKzz) ∂ae
CK̃ap − ĝpa∂a(e

2CK̃zz) = 0

mnz ĝma
[

∇̂a(e
−CKn

z) + FbaK
nb
]

+ (m ↔ n) = 0 ∇̂m(eCK̃n
z) + (m ↔ n) = 0

mnp ∇̂mKnp + ∇̂nKmp + ∇̂pKmn = 0 ∇̂mK̃np + ∇̂nK̃mp + ∇̂pK̃mn = 0

From mnp components we obtain

K̃mn = Kmn. (D.30)

Next we rewrite the (mnz) components before T duality using the relation H̃mnz = Fmn:

gma
[

H̃abzK
nb − ∇̂a(e

−CKn
z)
]

+ (m ↔ n) = 0. (D.31)

Using the general reduction (D.10) after duality, we find

∇̃mLz
n = ∇̂mLz

n +
1

2
gmaLz

n∂aC ⇒ ∇̂mLz
n = eC/2∇̃m[e−C/2Lz

n],

and applying this relation to Lz
n = e−C/2Kn

z, we find a constraint on the Kalb-Ramond

field after duality.41

g̃maH̃abzK̃
nb + g̃naH̃abzK̃

mb = eC/2∇̃m[e−C/2Kn
z] + eC/2∇̃n[e−C/2Km

z] . (D.32)

The only covariant extension of this equation for the B-field is42

H̃AMP K̃N
A + H̃ANP K̃M

A = eC/2∇̃M [e−C/2W̃NP ] + eC/2∇̃N [e−C/2W̃MP ] . (D.33)

41Recall that K̃mn = Kmn, so we can write the left hand side of (D.32) in terms of dual variables.
42As a consistency check, we note that the trivial Killing tensor K̃MN = gMN does not give any restriction

on the B field.
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Equation (D.32) recovers the (mnz) component of this constraint, but other components

require additional analysis. Here we just mention that the constraint (D.33) admits a

special solution

K̃n
z = 0, Wn

z = −e−CKn
z, Wzz = 0, Wmn = 0,

FpaKn
a − FnaKp

a + 2FnpK̃z
z = ∇̃n(−e−CKzp)− ∇̃p(−e−CKzn),

∂ae
CgpbK

ab − ∂p(e
2CK̃zz) = 0.

(D.34)

To summarize, we found that T duality maps equations for KT to a combination of the

same equation and a constraint on the B field:

∇(MKNP ) = 0 ⇐⇒
{

∇(MK̃NP ) = 0,

HAP (MK̃N)
A + eC/2∇(M [e−C/2WN)P ] = 0.

(D.35)

D.4.1 Lie derivative along KT

Note that the third equation in (D.29) has an interesting interpretation in terms of Lie

derivatives. To see this, we rewrite the Mmn
z as

0 = ĝma
[

∇̂a(e
−CKn

z) + (∇̂bAa − ∇̂aAb)K
nb
]

+ (m ↔ n) (D.36)

= gma
[

∇̃a(e
−CKn

z −AbK
nb) + ∇̂bAaK

nb +Ab∇̂aK
nb
]

+ (m ↔ n)

=
[

∇̂m(e−CKn
z −AbK

nb) + (m ↔ n)
]

+ ∇̂bA
mKnb + ∇̂bA

nKmb −Ab∇̂bKmn.

At the final step we used the equation for the Killing tensor. The last equation implies an

interesting relation for the Killing tensor

∇aA
mKna +∇aA

nKma −Aa∇aKmn = ∇mWn +∇nWm, (D.37)

which generalizes the expression (D.19) involving the Lie derivative of the B field along a

Killing vector. Specifically, rewriting (D.37) as

Aa∇aKmn −K a
m∇aAn −K a

n ∇aAm = −∇mWn −∇nWm (D.38)

we are tempted to interpret the left-hand side of the last equation as a “Lie derivative of Am

along a Killing tensor”. Although the analogy with the usual Lie derivative has limitations

(for example, the rank of the l.h.s. is higher than the rank of Am), equation (D.38) does

reduce to the combination of Lie derivative if Killing tensor has a form Kmn = λmλn:

lhs = λnλa∇aA
m +∇aA

nλmλa −Ar∇a(λmλn)

= λn [λa∇aA
m −Aa∇aλm] + λm [λa∇aA

n −Aa∇aλn]

= λn [λa∇aA
m +Aa∇mλa] + λm [λa∇aA

n +Aa∇nλ
a] (D.39)

= λnLλA
m + λmLλA

n.

It would be interesting to investigate the relation between (D.38) and Lie derivatives

further.
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D.5 Extension to CKT

In this appendix our results are extended to the conformal Killing tensor assuming that

the original geometry has vanishing B field and that there is no mixture between z and

other coordinates. Starting with equation for the CKT,

3∇(MKNP ) = gMNWP + gMPWN + gNPWM , (D.40)

and performing reduction with Am = 0, we find

zzz : ∂zKzz +Kz
m∂meC = eCWz

mnz :
[

∇̃mKn
z −Kn

z∇nC
]

+ (m ↔ n) + ∂zKmn = Wzg
mn

zzp : Kap∂ae
C − 2Kzz∇pC +∇pKzz + 2∂zKz

p = eCW p (D.41)

mnp : ∇mKnp +∇nKmp +∇nKmp = Wmgnp +Wngmp +W pgnm .

Motivated by the discussion of the CKV in subsection 4.1.3 we allowed the components of

CKT to depend on the z coordinate. We will assume that ∂z = 0 before T duality, but the

z-dependence appears afterward.

To satisfy the (mnp) equations before and after duality, we require

W̃ p = W p, K̃mn = Kmn. (D.42)

Comparing (mnz) equations before and after duality, and taking into account that

∂zKmn = 0, we set

W̃z = e−2CWz + 2ve−C , K̃n
z = e−2CKn

z + e−CVn, (D.43)

where Vn is a CKV with conformal factor v. Then (zzz) equation after T duality gives

∂zK̃zz = 2e−3CWz + e−2C(Va∂aC + 2v),

K̃zz = z
[

2e−3CWz + e−2C(Va∂aC + 2v)
]

+Nzz, (D.44)

where Nzz is z-independent “integration constant”.

Comparing the (zzp) equations before and after duality,

e−C∇p(e2CK̃zz) + eC∇p(e−2CKzz) + 2eC∂zK̃ p
z = 2W p,

e−C∇p(e2CK̃zz)− eC∇p(e−2CKzz) + 2eC∂zK̃ p
z = 2Kap∂aC, (D.45)

and assuming that ∂zVn = 0 (and thus ∂zK̃ p
z = 0), we conclude that z-dependence disap-

pears from the last two equations if

∂p
[

2e−CWz + (Va∂aC + 2v)
]

= 0,

∂p

[

2W̃ z + (Va∂aC − 2v)
]

= 0. (D.46)

The last equation is a counterpart of the homothety condition for the CKV. The remaining

equations are (D.45):

e−C∇p(e2CNzz) + eC∇p(e−2CKzz) = 2W p,

e−C∇p(e2CNzz)− eC∇p(e−2CKzz) = 2Kap∂aC. (D.47)

To summarize, we have to satisfy two constraints (D.46) and (D.47) on constraints on W p

and Ktp∂tC, then all equations can be solved.
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D.6 mKTY equation and the constraint on the B field

This subsection is dedicated to the derivation of our main result: invariance of the modified

Killing-Yano (mKYT) equation (4.72),

∇MYNP +
1

2
HMPAg

ABYNB + (M ↔ N) = 0, (D.48)

under the T-duality transformations . Starting with a geometry (D.1) that admits a mod-

ified Killing-Yano tensor (mKYT) satisfying (D.48), we will show that the system (D.4)

related to (D.1) by T duality admits a mKYT ỸMN with components

Ỹ mn = Y mn, Ỹz
s = e−CYz

s. (D.49)

To demonstrate the invariance of the mKYT equation, we perform a dimensional

reduction of

TMNP ≡ ∇MYNP +
1

2
HMPAg

ABYNB + (M ↔ N) . (D.50)

As discussed in section D.2, it is sufficient to look only at components with covariant indices

z and contravariant indices (m,n . . . ), and since tensor TMNP is symmetric in the first two

indices, we have to analyze five types of components:43

Tzz
p, Tm

zz, Tmn
z, Tz

mp, Tmnp, (D.51)

and demonstrate that they are invariant under the T duality (D.3).

1. (zzp) component. The first component in (D.51) is

Tzz
p = 2∇zYz

p +Hz
p
AYz

A = ∂ae
CY ap + gpaeCFbaYz

b +Hzsag
spYz

a (D.52)

= ∂ae
CY ap + gpaeCFbaYz

b + F̃abg
apYz

b.

Here we used expression (D.10) for the covariant derivative ∇zLz
p of an arbitrary rank-2

tensor. Rewriting the last equation as

e−CTzz
p = ∂aCY ap + gpaFbaYz

b − gape−C F̃baYz
b, (D.53)

we observe that is it invariant under the T duality transformation (D.3) if we require that

Y mn → Y mn, Yz
m → eCYz

m. (D.54)

To keep track of the last rescaling in the remaining equations, we introduce

Ŷz
m ≡ e−C/2Yz

m (D.55)

that remains invariant under T duality. Then equation (D.53) becomes more symmetric:

Tzz
p = ∂aCY ap + gpaFbae

C/2Ŷz
b − gape−C/2F̃baŶz

b (D.56)

and invariance of equation Tzz
p = 0 under T duality becomes explicit.

43Notice that Tzzz = 0.
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2. (mzz) component. The second component in (D.51),

Tm
zz = ∇zY

m
z +

1

2
Hm

zAY
A
z = −1

2
Tzz

m, (D.57)

is also invariant under T duality.

3. (mnz) component. The third component of (D.51) is

Tmn
z = ∇mY n

z +
1

2
Hm

zAY
An + (m ↔ n)

= ∇̂mY n
z −

1

2
gma∂aCY n

z −
1

2
gmaeCFarY

nr +
1

2
gmaHazbY

nb + (m ↔ n) .

Here we used (D.10) to express ∇mY n
z in terms of the covariant derivative ∇̂mY n

z in the

reduced metric ĝmn. Rewriting the last equation in terms of the field strengths (Fij , F̃ij),

Tmn
z = ∇̂mY n

z −
1

2
gma∂aCY n

z −
1

2
gma

[

eCFar + F̃ab

]

Y nb + (m ↔ n), (D.58)

and expressing the result in terms of Ŷ defined by (D.55), we find

Tmn
z = ∇̂m[Ŷ n

z]−
1

2
gma

[

eC/2Fab + e−C/2F̃ab

]

Y nb + (m ↔ n). (D.59)

Clearly this expression is invariant under T duality.

4. (zmp) component. To simplify the fourth component of (D.51) we again use (D.10):

Tz
mp = ∇mYz

p +∇zY
mp +

1

2
HmpAYAz +

1

2
Hz

pAY m
A

= ∇̂mYz
p − 1

2
gma∂aCYz

p − 1

2
gmaeCFabY

bp

− 1

2
gma∂aCYz

p +
1

2
gmaeCFbaY

bp − 1

2
gpa∂aCY m

z +
1

2
gpaeCFbaY

mb

+
1

2
Hmp

aY
a
z +

1

2
Hmp

zY
z
z +

1

2
Hz

p
aY

ma .

Using expressions

Hmp
sY

s
z = gmagpb [Habs −AaHzbs −AbHazs]Y

s
z = gmagpb

[

Habs −AaF̃bs −AbF̃sa

]

Y s
z ,

Hmp
zY

z
z = gmagpbF̃ab

1

gzz
[Yzz − gzsY

s
z] = −gmagpbAsF̃abY

s
z ,

Hz
p
sY

ms = gpaF̃asY
ms ,

we find

Tz
mp = ∇̂mYz

p − gms∂sCYz
p + gmseCFsrY

pr − 1

2
gps∂sCY m

z +
1

2
gpseCFrsY

mr

+
1

2
gmagpb

[

H −A ∧ F̃
]

abs
Y s

z +
1

2
gpaF̃asY

ms . (D.60)
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Recalling the expression for H in terms of duality-invariant B̂ (see (D.1), (D.4)),

H = dB̂ +
1

2
(Ã ∧A), (D.61)

we observe that

Ĥ ≡ H −A ∧ F̃ = dB̂ − 1

2
[A ∧ F̃ + Ã ∧ F ] (D.62)

is invariant under T duality. To demonstrate the invariance of (D.60), we rewrite that

expression as

Tz
mp = ∇̂mŶz

p +
1

2
gms(eC/2Fsr + e−C/2F̃sr)Y

pr +
1

2
gmagpbĤabsŶ

s
z

+
1

2

[

gms∂sCŶ p
z − gps∂sCŶ m

z + gpsGsrY
rm − gmsGsrY

rp
]

(D.63)

Gsr ≡ eC/2Fsr − e−C/2F̃sr.

The first line of this equation is invariant under T-duality, while the second line changes

sign. Thus to make Tz
mp invariant, we must impose a constraint on Fmn and F̃mn:

S̃mp ≡
[

gms∂sCŶ p
z − gps∂sCŶ m

z + gpsGsrY
rm − gmsGsrY

rp
]

= 0, (D.64)

Gsr ≡ eC/2Fsr − e−C/2F̃sr .

The physical meaning of this constraint is discussed in section 4.3.

5. (mnp) component. The final component of (D.51) gives44

Tmnp = ∇̂mY np +
1

2
FmpY n

z +
1

2
Hmp

AY
nA + (m ↔ n). (D.65)

Simplifying the term that involves flux

Hmp
DY nD = gmAgpBHABDY nD

= gmzgpbHzbcY
nc + gmagpzHazcY

nc + gmagpbHabzY
nz + gmagpbHabcY

nc

= −AmgpbF̃bcY
nc+gmaApF̃acY

nc+gmagpbF̃ab(e
−CY n

z−AcY
nc)+gmagpbHabcY

nc

= gmagpbe−C F̃abY
n
z + gmagpbY nc(Habc −AaF̃bc +AbF̃ac −AcF̃ab)

= gmagpbe−C F̃abY
n
z + gmagpbY nc(H −A ∧ F̃ )abc (D.66)

and recalling expression (D.62) for the duality-invariant Ĥ, we find

Hmp
AY

nA = gmagpbe−C F̃abY
n
z + gmagpbY ncĤabc . (D.67)

Then equation (D.65) becomes

Tmnp = ∇̃mY np +
1

2
gmagpb

[

[Fab + e−C F̃ab]Y
n
z + Y ncĤabc

]

+ (m ↔ n), (D.68)

and rewriting it in terms of Ŷ

Tmnp = ∇̃mY np +
1

2
gmagpb

[

[eC/2Fab + e−C/2F̃ab]Ŷ
n
z + Y ncĤabc

]

+ (m ↔ n) (D.69)

make the invariance under T duality explicit.

44We used (D.10) to express ∇mY np in terms of ∇̂mY np.
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The constraint (D.64) treat z direction in a special way, but it would be nice to write it in

a covariant form. This can be accomplished in an important special case when Fmn = 0,

which implies the T-dual configuration has no B field. Then (D.64) reduces to

Hnazg
abYbp +Hzpag

abYnb + [∂nCY̌zp − ∂pCY̌zn] = 0. (D.70)

The unique covariant form of this relation is

HAMP ỸN
A −HANP ỸM

A −HAMN ỸP
A − (∂MCỸNP − ∂NCỸMP − ∂PCỸNM )

= ∂MWNP − ∂NWMP − ∂PWNM ,
(D.71)

where W is auxiliary field introduced to satisfy the mnp components of the last equation,

which would be too restrictive otherwise.

To summarize, we have demonstrated that all independent components of TMNP given

by (D.51) can be written in a way that makes invariance under T duality (D.3) very explicit

(see (D.56), (D.57), (D.59), (D.63), (D.69)), as long as constraint (D.64) is satisfied.

D.6.1 KT from mKYT

Finally we show that the modified Killing-Yano equation reduces to a standard Killing

tensor equation. To do so we begin with the modified equation for KYT

∇MYNP +∇NYMP +
1

2
HMPAYN

A +
1

2
HNPAYM

A = 0 (D.72)

and construct various combinations:

YB
P

[

∇MYNP +∇NYMP +
1

2
HMPAYN

A +
1

2
HNPAYM

A

]

= 0,

YN
P

[

∇MYBP +∇BYMP +
1

2
HMPAYB

A +
1

2
HBPAYM

A

]

= 0,

YM
P

[

∇BYNP +∇NYBP +
1

2
HBPAYN

A +
1

2
HNPAYB

A

]

= 0.

Adding these equations, we find the standard Killing tensor equation

∇MKBN +∇NKMB +∇BKMN +
1

2

[

HMPA(YN
AYB

P + YN
PYB

A) + perm
]

= 0,

∇MKBN +∇NKMB +∇BKMN = 0. (D.73)

Here

KMN ≡ YM
AYNA. (D.74)

To summarize, we demonstrated that the standard relation “KT=KYT2” persists for the

modified Killing-Yano tensors as well.
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E The restrictions on the B field from the F1 → NS5 duality chain

In section 4.2.1 we derived the restrictions on the metric and the B-field (4.42) by requiring

separability of the Hamilton-Jacobi equation along all O(d, d) orbits which start with a

pure metric. In this section we will extend those results to O(d, d) orbits starting with NS5

solutions (thus generating the entire F1-NS5-P family) and show that separability leads to

additional constraints (4.65), (4.67), (4.68) on the B field.

We start with conditions on the B field (4.44) and (4.45)

∂x∂y(fgab)− fgMNHyaMHxNb − fgMNHxaMHyNb = 0, (E.1)

∂y(fg
mM )HxMb + ∂x(fg

mM )HyMb + fgmM∂xHyMb = 0.

Next we consider the first equation and require this constraint to hold on the entire O(d, d)

orbit containing NS5 brane. Comparing (E.1) for F1 orbit with its counterpart for NS5,

we find

∂x∂y(fgab)− fHyaMHx
M

b − fHxaMHy
M

b = 0, (E.2)

∂y∂x[F
2fgab]− fF

(

H
(NS5)
yaM H(NS5)

x
M

b +H
(NS5)
xaM H(NS5)

y
M

b

)

= 0.

Here we used the transformation law for the metric and defined a convenient function F

gNS5
MN = FgF1

MN , fNS5 = FfF1, F ≡
√
detG detH. (E.3)

Expressions without superscript in (E.2) refer to the fundamental string. The field

strengths of the Kalb-Ramond fields for NS5 and F1 systems are related by the electric-

magnetic duality

H
(NS5)
yaM =

1

7!
e2ΦNS5eyaM

xNPz1z2z3z4G
(NS5)
xNPz1z2z3z4

=
1

7!
e2ΦNS5eyaM

xNPz1z2z3z4H
(F1)
xNP . (E.4)

In particular, the product of the field strengths is

H
(NS5)
yaM H(NS5)

x
M

b =
e4ΦNS5

(3!)2
eyaM

xNP ex
M

b
y
A
BHxNPHy

A
B =

e4ΦNS5

(2!)2
eaM

NP eMbA
BHxNPHy

A
B

= e4ΦNS5

[

−HxbMHy
M

a −
1

2
HxMNHy

MNg
(NS5)
ab

]

g(NS5)

. (E.5)

In the last line all indices are contracted with g
(NS5)
MN . In terms of the F1 metric we find

H
(NS5)
yaM H(NS5)

x
M

b = F

[

−HxbMHy
M

a −
1

2
HxMNHy

MNgab

]

. (E.6)

We can now rewrite the conditions (E.2) in terms of the F1 fields:

∂x∂y(fgab)− fHyaMHx
M

b − fHxaMHy
M

b = 0, (E.7)

∂x∂y

[

fgabF
2
]

+ fF 2(HyaMHx
M

b + (x → y) +HxMNHy
MNgab) = 0.
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Subtracting the first equation from the second one we get the relation

∂x∂y

[

fgabF
2
]

+ F 2(∂x∂y[fgab] + fHxMNHy
MNgab) = 0,

which can be rewritten as

∂x∂y[gabfF ] +
f

F
gab

[

∂x lnF∂y lnF +
1

2
HxMNHy

MN

]

= 0. (E.8)

Remarkably in all our examples the two terms entering this expression vanish separately,

so we conjecture that this will always happen for the systems obtained from fundamental

stings via the duality chain, although we will not attempt to prove this fact. Recalling that

F = e−2ΦF1 , we conclude that vanishing of the first term in (E.8) implies separation of the

duality-invariant expression

g
(F1)
ab f (F1)e−2ΦF1 = g

(NS5)
ab f (NS5)e−2ΦNS5 . (E.9)

In other words vanishing of the first term in (E.8) can be written as

∂x∂y
[

gabfe
−2Φ

]

= 0 (E.10)

in every frame containing only NS-NS fields. Vanishing of the second term in (E.8) gives

the relation in the F1 frame

∂xΦ∂yΦ+
1

8
HxMNHy

MN = 0. (E.11)

Now we consider the the second condition in (E.1)

∂y(fg
mM )HxMb + ∂x(fg

mM )HyMb + fgmM∂xHyMb = 0. (E.12)

Writing it for F1 and for NS5, and using (E.3) we get

∂y(fg
mM )HxMb + ∂x(fg

mM )HyMb + fgmM∂xHyMb = 0, (E.13)

∂y(fg
mM )H̃xMb + ∂x(fg

mM )H̃yMb +
f

F
gmM∂x(FH̃yMb) = 0.

Here H̃ = ⋆6H
(F1) is six-dimensional Hodge dual of the field strength for F1. Note that

the first equation (and its dual counterpart) can be written in two different ways (using

∂xHyMb = ∂yHxMb). The difference gives equation of motion for the B field

gmM
[

∂x(e
2ΦNS5H̃yMb)− ∂y(e

2ΦNS5H̃xMb)
]

= 0, e2ΦNS5 = detH
√
detG. (E.14)

To summarize we have found two additional constrains (E.8), (E.13) on the B field

that guarantee separability of F1-NS5. Remarkably in the studied examples the first con-

dition decouples into two very simple equations - separation condition (E.10) and the field

equation (E.11).
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F Modified KY tensor for the charged Myers-Perry black hole

In section 5.1 we presented the modified Killing-Yano tensor for the charged counterpart of

the Myers-Perry black hole. In this appendix we will outline the derivation of (5.3)–(5.4).

We begin with the original Myers-Perry metric and its Killing-Yano tensor written in

terms of frames (3.20) and apply the first two steps in the duality chain (5.2). The boost

leads to replacements

dt → chαdt+ shαdy

dy → chαdy + shαdt
,

∂t → chα∂t − shα∂y
∂y → chα∂y − shα∂t

(F.1)

in the frames (3.20), but it does not modify the expressions (3.30), (3.31). T duality along

y direction leaves the contravariant components gmn = ĝmn and Y mn invariant, so it is

reasonable to assume that neither expressions (3.30), (3.31) nor components of eA which

don’t involve y are modified. In other words, we will assume that after T duality the frames

have the form

er =

√

R−mr

FR
∂r, exi

=

√

− 4xiHi

di(r2 − xi)
∂xi

, ey = Cy chα∂y − shα∂t,

et =

√

R2

FR(R−mr)

[

chα∂t − Ct shα∂y −
∑

k

ak

r2 + a2k
∂φk

]

, (F.2)

ei =

√

Hi

di(r2 − xi)

[

chα∂t − Ci shα∂y −
∑

k

ak

xi + a2k
∂φk

]

with some functions (Cy, Ct, Ci). This assumption will be justified by the explicit cal-

culation that recovers transformation rules (D.1), (D.4) and (D.49) and determines the

functions (Cy, Ct, Ci).

We begin with recovering the relation g̃ym = 0, which must hold after T duality.

Equations (F.2) give

g̃ym∂m = −Cy chα shα∂t +
R2

FR(R−mr)
Ct shα

[

chα∂t −
∑

k

ak

r2 + a2k
∂φk

]

−
∑

i

[

(−xi)Hi

di(r2 − xi)
Ci shα

[

chα∂t −
∑

k

ak

xi + a2k
∂φk

]]

= 0. (F.3)

Coefficients in front of ∂t and all ∂φk
must vanish, so we find n equations for (n+1) variables

(Cy, Ct, Ci), which are completely determined up to one overall factor. Thus it is sufficient

to guess the solution and check the result. To determine the coefficients (Cy, Ct, Ci) we

set m = 0 in the boosted frames before T duality, which can be extracted from (F.2) by

setting Cy = Ct = Ci = 1. This gives the off-diagonal components before T duality

gyp∂p|m=0 = − chα shα∂t +
R

F
shα

[

chα∂t −
∑

k

ak

r2 + a2k
∂φk

]

−
∑

i

[

(−xi)Hi

di(r2 − xi)
shα

[

chα∂t −
∑

k

ak

xi + a2k
∂φk

]]

= 0. (F.4)
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The last expression must vanish since for m = 0 time and y coordinate enter the Myers-

Perry metric (3.1) only through the boost-invariant combination −dt2 + dy2. Comparison

of (F.3) with (F.4) gives the unique expressions for the unknown functions in terms of Cy:

Ci = Cy, Ct =
R−mr

R
Cy. (F.5)

To determine the last remaining coefficient we compute g̃yy:

g̃yy = C2
y

[

ch2α− (R−mr)

FR
sh2α+

∑

i

[

(−xi)Hi

di(r2 − xi)
sh2α

]

]

= C2
y

[

1 +
mr

FR
sh2α

]

. (F.6)

To simplify this expression we again used the trick of setting m to zero. For the boosted

version of (3.1) we find

gyy = 1 +
mr

FR
sh2α. (F.7)

Matching this with g̃yy, we conclude that Cy = 1.

To summarize, we have demonstrated that the frames (F.2) with

Ci = Cy = 1, Ct =
R−mr

R
(F.8)

reproduce the metric after T duality and expression (5.3) recovers the correct components

Y mn, it only remains to check that the correct transformation of Yz
s is also recovered.

According to our conjecture (5.3), the mKYT in the original and T dual frames are

given by

Y (p) =
∑

Aa1,...ape
a1 ∧ · · · ∧ eap , Ỹ (p) =

∑

Aa1,...ap ẽ
a1 ∧ · · · ∧ ẽap (F.9)

with the same coefficients Aa1,...ap . The original frames ea are given by (F.2) with

Ci = Cy = Ct = 1, and the dual frames ẽa have different values of coefficients (F.8).

Observing that

ẽay =
1

h1
eay, ẽma = ema , (F.10)

we find the perfect agreement with transformation (4.74),

Ỹ m1...mp = Y m1...mp , Ỹz
m2...mp = e−CYz

m2...mp , (F.11)

since

eC ≡ gyy = 1 +
mr

FR
sh2α = h1. (F.12)

This concludes the derivation of the Killing-Yano tensors (5.3), (5.4), (5.6) for the charged

Myers-Perry black holes in even dimensions. The arguments for the odd dimensions are

identical, and the answer is given by (5.7), (5.8).

G Killing tensors for the F1-NS5 system

In this appendix we will present some technical details of calculations leading to the Killing

tensors for the examples discussed in section 5.
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G.1 F1-NS5 from the four-dimensional Kerr metric

Starting with Kerr metric (2.45) and using the duality chain (5.2), we generate the F1-NS5

solution

ds2 =
1

hβ
dy2 +

4ma shβ shα cos θ

ρ2hβ
dzdy −

(

1−
2mr ch2β
ρ2hβ

)

dt2 − 4mra chα chβ sin
2 θ

ρ2hβ
dtdφ

+

[

(r2 + a2)hα +
2mra2 sin2 θ

ρ2
− (2mar chα shβ sin θ)

2

ρ4hβ

]

sin2 θdφ2 (G.1)

+
hαρ

2

∆
dr2 + hαρ

2dθ2 +

[

1 +
2m sh2α(2m sh2β + r)

ρ2hβ

]

dz2,

B2 =
mr sh2β
hβρ2

dy ∧ dt− 2amr chα shβ sin
2 θ

hβρ2
dy ∧ dφ+

2am cos θ chβ shα
hβρ2

dt ∧ dz

−
m cos θ sh2α(a

2 + 2mr sh2β + r2)

hβρ2
dφ ∧ dz,

e2Φ =
hα

hβ
,

∆ = r2 + a2 − 2mr, ρ2 = r2 + a2 cos2 θ, hα = 1 +
2mr sh2α

ρ2
, hβ = 1 +

2mr sh2β
ρ2

.

The charges associated with NS5 branes and fundamental strings are defined by

Q5 = 2A2 = 2m sinh2 α, Q1 = 2B2 = 2m sinh2 β . (G.2)

The nontrivial Killing tensor for (G.1) can be extracted either from solving a system of

differential equations (2.6) or by separating variables in the massive Hamilton-Jacobi equa-

tion. The second approach is easier and more instructive, so we begin with equation

gMN ∂S

∂xM
∂S

∂xN
+ µ2 = 0, (G.3)

multiply it by ρ2hα, and rewrite the result as a system of two differential equations

Λ = (2A2 + r)(2B2 + r)(∂yS)
2 −

[

(r2 + 2A2r + a2)(r2 + 2B2r + a2)

∆
− a2

2

]

(∂tS)
2

− 4ar
√

(A2 +m)(B2 +m)

∆
∂tS∂φS − a2

∆
(∂φS)

2 +∆(∂rS)
2 + r2(∂zS)

2

+ µ2(2B2r + r2), (G.4)

Λ = −a2c2θ(∂yS)
2 + 4aABcθ∂zS∂yS +

a2c2θ

2
(∂tS)

2 − 1

s2θ
(∂φS)

2 − (∂θS)
2

− a2c2θ(∂zS)
2 − µ2a2c2θ.

In general Λ can depend on all coordinates, but for separable solutions,

S = −Et+ Jφ+ pzz + pyy + Sr(r) + Sθ(θ) (G.5)
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this function must be constant. This constant gives rise to a Killing tensor

KMN∂M∂N = −a2c2θ∂
2
y + 4aABcθ∂z∂y +

a2c2θ

2
∂2
t −

1

s2θ
∂2
φ − ∂2

θ − a2c2θ∂
2
z + a2c2θg

MN∂M∂N .

(G.6)

Here we removed µ2 from (G.4) using the relation

gMN∂MS∂NS + µ2 = 0.

This Killing tensor (G.6) is used in section 5.2. Note that even though we found KT, the

square root of (G.6) does not solve either standard or modified KYT equation for arbitrary

charges. The special cases for which modified KYT exists are discussed in subsection 5.2.

G.2 F1-NS5 from the five-dimensional black hole

The chain of dualities (5.2) can also be applied to a five-dimensional black hole, but fortu-

nately this procedure has been performed in [120].45 Here we will focus on solution with

one rotation which can be obtained by setting δp = 0, a1 = 0, a2 = a in equation (3.6)

of [120] and performing an S duality. The result reads

ds2 = −
(

1− M

f

)

dt2

H1
+

dy2

H1
+ fH5

(

dr2

r2 + a2 −M
+ dθ2

)

+

[

r2H5 +
a2K1K5 cos

2 θ

H1

]

cos2 θdψ2 +

[

(r2 + a2)H5 −
a2K1K5 sin

2 θ

H1

]

sin2 θdφ2

+
M

fH1
a2 sin4 θdφ2 +

2 cos2 θ

fH1
aABdydψ+

2 sin2 θ

fH1
a
√

A2+M
√

B2+Mdtdφ+
4

∑

i=1

dz2i

B2 =
cos2 θ

fH1
aA

√

B2 +Mdt ∧ dψ +
sin2 θ

fH1
aB

√

A2 +Mdy ∧ dφ

− B
√
B2 +M

fH1
dt ∧ dy − A

√
A2 +M

fH1

(

r2 + a2 +B2
)

cos2 θdψ ∧ dφ,

e2Φ =
H5

H1
,

f = r2 + a2 cos2 θ, K1 =
B2

f
, K5 =

A2

f
, Hi ≡ 1 +Ki, i = 1, 5. (G.7)

Multiplying the Hamilton-Jacobi equation (G.3) for the metric (G.7) by fH5 and separating

variables, we find

−
(

A2 +B2 +M + r2 +
(A2 +M)(B2 +M)

a2 −M + r2

)

(∂tS)
2 +

2a
√
A2 +M

√
B2 +M

a2 −M + r2
∂tS∂φS

+
(A2 + r2)(B2 + r2)

r2
(∂yS)

2 − 2aAB

r2
∂yS∂ψS + (a2 −M + r2)(∂rS)

2 (G.8)

+
a2

r2
(∂ψS)

2 − a2

a2 −M + r2
(∂φS)

2 + (A2 + r2)µ2 =

a2 cos2 θ(∂tS)
2 − a2 cos2 θ(∂yS)

2 − (∂θS)
2 − 1

cos2 θ
(∂ψS)

2 − 1

sin2 θ
(∂φS)

2 − a2 cos2 θµ2.

45The metric has been constructed earlier in [117] using different methods, and in the full solution (G.7)

for the extremal case was found in [112].
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This equation clearly separates in θ, r and gives rise to the Killing tensor

KMN∂M∂N = a2 cos2 θ∂2
t − a2 cos2 θ∂2

y − ∂2
θ −

1

cos2 θ
∂2
ψ − 1

sin2 θ
∂2
φ

+ a2 cos2 θgMN∂MS∂NS. (G.9)

In contrast to the F1-NS5 system constructed from the four-dimensional Kerr solution

(there was no mKYT) the square root of (G.9) give rises to a rank-3 modified Killing-Yano

tensor discussed in subsection 5.3.

G.3 F1-NS5 from the Plebanski-Demianski solutions

Our final example is F1-NS5 constructed from the Plebanski-Demianski metric [128]:

ds2 =
p2 + q2

X
dp2 +

p2 + q2

Y
dq2 +

X

p2 + q2
(dτ + q2dσ)2 − Y

p2 + q2
(dτ − p2dσ)2,

X = γ − g2 − ǫp2 − λp4 + 2lp, Y = γ + e2 + ǫq2 − λq4 − 2mq. (G.10)

Here λ is a cosmological constant, e and g are electric and magnetic charges (we will set

these quantities to zero). The remaining constants (γ,m, l, ǫ) effectively comprise 3 real

continuous parameters and one discrete parameter, since one can always rescale coordinates

to set ε to one of three values (+1,−1, 0). The remaining continuous parameters (γ,m, l)

are related to the angular momentum, mass, and the NUT charge. The Kerr solution (2.45)

is recovered by setting

γ = a2, ǫ = 1− λa2, p = a cos θ, q = r, τ = t− a

1 + λa2
φ, σ = − 1

a(1 + λa2)
φ.

In string theory applications one usually sets e = g = 0, and since asymptotic flatness is a

crucial part of our solution generating technique, we set λ = 0 as well. Applying the chain

of dualities (5.2) to such truncated version of (G.10) we get an F1-NS5 solution

ds2 =
fα

X
dp2 +

fα

Y
dq2 +

X − Y

fβ
dτ2 + 2

q2X + p2Y

fβ
chα chβdτdσ

−
[

p4Y − q4X

p2 + q2
ch2α +XY sh2α +

(q2X + p2Y )2 ch2α sh
2
β

fβ(p2 + q2)

]

dσ2

+
p2 + q2

fβ
dy2 +

4(mp− lq) shα shβ
fβ

dydz +

[

fα

p2 + q2
+

4(mp− lq)2 sh2α sh
2
β

fβ(p2 + q2)

]

dz2,

B =

[

p2 + q2 +X − Y

fβ
chβ shβdτ +

q2X + p2Y

fβ
chα shβdσ

]

∧ dy

+

[

2(lq −mp)

fβ
chβ shαdτ (G.11)

−
fβpq(lp+mq) + (lq −mp)(q2X + p2Y ) sh2β

fβ(p2 + q2)
sh2αdσ

]

∧ dz,

fα = (p2 + q2)

[

1 +
X − Y + p2 + q2

p2 + q2
sh2α

]

.
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Writing the HJ equation for the metric (G.11) and multiplying it by fα, we extract the

Killing tensor from separation of variables as in the previous subsections

KMN∂M∂N = −p̄αp̄β∂
2
y + 4mp shα shβ∂y∂z − p2∂2

z −X∂2
p −

1

X
∂2
φ − 2p2

X
chα chβ∂τ∂φ

−
[

p2 sh2β +
p4 ch2β
X

+
p4 ch2β sh

2
α

X
+ p sh2α(p+ (2l + 2p− ǫp) sh2β)

]

∂2
τ ,

+ pp̄αg
MN∂M∂N , (G.12)

where we defined

p̄α = p ch2α + (2l − ǫp) sh2α. (G.13)

Note that setting the NUT charge to zero and choosing ǫ = 1 gives

p̄|l=0,ǫ=1 = p. (G.14)

This example shows that the NUT charge does not spoil separability and consistent with

results from appendix G.1.

H Double Field Theory

In this appendix we review the Double Field Theory (DFT) [49–53] and use rewrite the

action of T duality on Killing vectors in a more symmetric form.

Double Field Theory is an elegant way of incorporating T duality as a symmetry of field

theory. This is accomplished by extending the standard D coordinates xm into a larder

2D-dimensional space xM = (x̃m, xm). In this appendix we deviate from the notation

used throughout this paper and denote the spacetime indices by lower-case letters, while

reserving the capital ones to label the “double space” spanning over regular and barred

indices N = (n, n̄). This notation is standard in the DFT literature. The theory is

formulated with full duality group O(D,D).

Recall that the T duality group is associated to string compactifications on Tn

is O(n, n), so we see that DFT gives a geometric interpretation to the T duality

transformation.

The next step in constructing DFT is defining the fields. One is looking for O(D,D)

invariant tensors. It turns out that the metric gmn and the Bmn field can be unified into

such kind of tensor called the generalized metric [92–97]

HMN =

(

gmn −gmkBkn

Bmkg
kn gmn −Bmkg

klBln

)

. (H.1)

Note that the generalized metric does not play the same role as the regular metric in

general relativity: the indices are raised and lowered with the constant O(D,D) invariant

metric ηMN rather than HMN , where

ηMN =

(

0 δmn

δm
n 0

)

. (H.2)
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To define diffeomorphisms in DFT theory one needs to introduce the generalized Lie deriva-

tive [129–131] of the generalized metric

LξHMN = ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP , (H.3)

where ξI = (λ̃i, λ
i), ξI = (λi, λ̃i) is the generalized gauge parameter. Here λ̃i corresponds to

the gauge transformation of the Kalb-Ramond field Bij and λi is a usual diffeomorphism.

Transformation (H.3) differs from the standard diffeomorphisms in 2D dimensions

since the following condition must be preserved

HMAη
ABHBN = ηMN . (H.4)

To demonstrate that (H.3) accomplishes this task, one begins with observing that

LξηMN = (∂MξP − ∂P ξM )ηPN + (∂NξP − ∂P ξN )ηMP = 0. (H.5)

Then

Lξ(HMAη
ABHBN )

=
[

ξP∂PHMA + (∂MξP − ∂P ξM )HPA + (∂Aξ
P − ∂P ξA)HMP

]

ηABHBN + (M ↔ N)

=
[

(∂MξP − ∂P ξM )ηPN + (∂Aξ
P − ∂P ξA)HMP η

ABHBN

]

+ (M ↔ N)

= (∂AξQ − ∂QξA)η
PQηAB(HMPHBN +HNPHBM ) = 0 . (H.6)

This leads to the conclusion that the condition (H.4) is preserved by the modified diffeo-

morphism (H.3).

H.1 Killing vectors in DFT

To incorporate Killing vectors in the DFT framework, we recall that in the Riemannian

geometry the Lie derivative of the metric gmn along a Killing vector λ vanishes

Lλgmn = ∇mλn +∇nλn = 0. (H.7)

So to define the “double Killing vector” ξM = (λ̃m, λm) we require vanishing of the gener-

alized Lie derivative (H.3)

LξHMN = ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP = 0. (H.8)

Next we will demonstrate that this equation incorporates both gauge transformation of B

field and usual diffeomorphism of the metric.46

Let us begin with m̄n̄ components of equation (H.8)47 with HMN from (H.1)

LξHm̄n̄ = ξP∂PHm̄n̄ + ∂m̄ξPHPn̄ − ∂P ξm̄HPn̄ + ∂n̄ξ
PHm̄P − ∂P ξn̄Hm̄P

= ξp∂pHm̄n̄ − ∂pξm̄Hp
n̄ − ∂pξn̄Hm̄

p = ξp∂pg
mn − ∂pξm̄gpn − ∂pξn̄g

mp

= λp∂pg
mn − ∂pλ

mgpn − ∂pλ
ngmp = Lξ(g

mn) = 0. (H.9)

46Appearance of both ingredients in the generalized Lie derivative has been discussed in [129–131].
47In the following calculations we use the strong constraint ∂̃ = 0 [132].
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This recovers the standard equation (H.7) for the Killing vector. For the m̄n components

of equation (H.8) we find

LξHm̄n = ξp∂pHm̄n − ∂pξm̄Hp
n + ∂nξ

PHm̄P − ∂pξnHm̄
p

= λp∂p(−gmkBkn)− ∂pλ
m(−gpkBkn) + ∂nλ

p(−gmkBkp) + ∂nλ̃pg
mp − ∂pλ̃ng

mp

= λp∂pBn
m − ∂pλ

mBn
p + ∂nλ

pBp
m + (∂nλ̃p − ∂pλ̃n)g

mp = 0. (H.10)

The first two terms give the regular Lie derivative of Bn
m along the Killing vector λm,

but this derivative does bot have to vanish since the Kalb-Ramond is defined only up to

a gauge transformation. Equation (H.10) states that the Lie derivative of B must be a

pure gauge (with gauge parameter λ̃m), which means that all physical effects from the

Kalb-Ramond field are invariant under the diffeomorphisms generated by λm. The mn

components of (H.3) give nothing new due to the constraint (H.4).

We conclude that the Lie derivative (H.3) can be used to formulate generalized Killing

equation

ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP = 0, (H.11)

whose components give equation (H.9) for the regular Killing vector and relation (H.10)

for the Lie derivative of the B field.

For future reference we rewrite equations (H.9) and (H.10) in terms of the covariant

derivatives. For the first equation the transition is standard:

LξHm̄n̄ = 0 ⇒ ∇mλn +∇nλm = 0, (H.12)

and equation (H.4),

LξHm̄n = 0 ⇒ λp∂pBn
m − ∂pλ

mBn
p + ∂nλ

pBp
m + (∂nλ̃p − ∂pλ̃n)g

mp = 0, (H.13)

requires additional work. Straightforward transformations lead to

λp∇pBn
m −∇pλ

mBn
p +∇nλ

pBp
m +∇mλ̃n −∇nλ̃

m = 0, (H.14)

and using the Killing equation (H.12) the last relation can be rewritten in terms of the

gauge-invariant field strength H = dB:

Hmnpλ
p = ∇mλ̃′

n −∇nλ̃
′
m , (H.15)

where we defined

λ̃′
m = λ̃m + λpbm

p . (H.16)

Notice that under the O(D,D) transformations act as a rotation between λ̃m and λm, and

λ̃′
m transforms in a more complicated way.
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I Complex structures

Killing-Yano tensors are closely related to Kähler forms on complex manifolds, and in this

appendix we will apply the reduction used for the KYT to arrive at the modified Kähler

condition on manifolds with torsion to recover the well-known results [114, 133–136]. We

begin with an arbitrary anti-symmetric tensor J and define

TPMN = ∇PJMN . (I.1)

The Killing-Yano equation for J can be written as

T(PM)N = 0, (I.2)

and the Kähler condition, dJ = 0, is

T[PMN ] = 0. (I.3)

Combination of the Kähler condition with integrability of the complex structure is equiv-

alent to a simple constraint [137]

TPMN = 0, (I.4)

and we will now analyze its transformation under T duality.

Starting with a pure metric (D.1) with B = 0 and performing the dimensional reduction

of (I.1) using (D.10), we find

Tzz
n =

1

2
Jan∂ae

C +
1

2
ĝnbeCFabJz

a,

Tz
mn =

1

2
[ĝmbJan − ĝnbJam]eCFab −

1

2
[ĝmaJz

n − ĝnaJz
m]∂aC (I.5)

T p
z
n = ∇̂pJz

n − 1

2
gpaJz

n∂aC − 1

2
gpbeCFbaJ

an

T pmn = ∇̂pJmn +
1

2
gpagmbFabJz

n − 1

2
gpagnbFabJz

m.

Introducing rescaled quantities

J̃ m
z = e−CJ m

z , J̃mn = Jmn, (I.6)

we can rewrite these relations as

Tzz
n =

1

2
J̃an∂ae

C +
1

2
ĝnbe2CH̃abzJ̃z

a,

Tz
mn =

1

2
[ĝmbJan − ĝnbJam]eCH̃abz + eC

1

2
[ĝmaJ̃z

n − ĝnaJ̃z
m]∂aC̃,

T p
z
n = eC∇̂pJ̃z

n − 1

2
eCgpaJz

n∂aC̃ − 1

2
gpbeCH̃bazJ

an, (I.7)

T pmn = ∇̂pJmn +
eC

2
gpagmbH̃abzJz

n − eC

2
gpagnbH̃abzJz

m,

where tildes refer to expressions after the T duality. If we define a tensor

T̃PMN ≡ ∇P J̃MN +
1

2
H̃PNAg̃

ABJ̃MB − 1

2
H̃PMAg̃

ABJ̃NB (I.8)
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after duality, then

T̃zz
n = −e−2CTzz

n, T̃z
mn = −e−CTz

mn, T̃ p
z
n = e−CT p

z
n, T̃mnp = Tmnp. (I.9)

In particular we observe that the Kähler condition (I.4) is preserved by the T duality, as

long as one uses the modified expression (I.8) for T̃PMN in the presence of the B field.

Expression (I.8) can be interpreted as a covariant derivative on a manifold with torsion,

and equation T̃PMN = 0 coincides with well-known requirement of supersymmetry for

geometries supported by the Kalb-Ramond field [114].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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