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1 Introduction

The fractional quantum Hall effect (FQHE) with filling-factor 1/k (k ∈ Z) appears in 2+1D

condensed matter systems whose low-energy effective degrees of freedom can be described

by the Chern-Simons action

I =
k

4π

∫
Aint ∧ dAint +

1

2π

∫
A ∧ dAint . (1.1)
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Here, A is the electromagnetic gauge field, and Aint is a 2+1D U(1) gauge field that

describes the low-energy internal degrees of freedom of the system. It is related to the

electromagnetic current by j = ∗dAint. Excited states of the system may include quasi-

particle excitations that are charged under the gauge symmetry associated with Aint. Such

quasi-particles with one unit of Aint-charge will have 1/k electromagnetic charge.

The goal of this paper is to construct an integrally charged particle as a bound state of

quasi-particles using a particularly intuitive string-theoretic toy model of the FQHE. Over

the past two decades several realizations of the integer and fractional quantum Hall effects

in string theory have been constructed [1]–[10]. Generally speaking, these constructions

engineer the Chern-Simons action (1.1) as a low-energy effective description of a (d +

2)-dimensional brane compactified on a d-dimensional space, possibly in the presence of

suitable fluxes, to yield the requisite 2 + 1D effective description. In the present paper, we

will begin by constructing an FQHE model by compactifying the 5+1D (2, 0)-theory. Our

system is a special case of a general class of 2 + 1D theories obtained from the (2, 0)-theory

by taking three of the dimensions to be a nontrivial manifold. (We note that a beautiful

framework for understanding such compactifications has been developed in [11]–[14].) We

will focus on a particular aspect of the system which is the dynamics of the quasi-particles

that in the condensed-matter system can arise from impurities. As we will see, the quasi-

particles and their relationship to the integrally charged particles have a simple geometrical

interpretation in terms of the (2, 0) theory, as follows. In our construction, the geometry

of the extra dimensions will have long 1-cycles and short 1-cycles, the short ones being 1/k

the size of the long ones. The quasi-particles will be realized as BPS strings of the (2, 0)

theory wound around short 1-cycles, while the integrally charged particles will be realized

as strings wound around long 1-cycles.

We are especially interested in the limit k � 1, where the filling fraction becomes

extremely small. This is the strong-coupling limit of the condensed-matter system, and as

we will see, our model has a dual description where quasi-particles are elementary and the

integrally charged particles can be described as classical solitons, or rather Q-balls, in terms

of the fundamental quasi-particle fields. We will show that solutions to the equations of

motion describing these solitons correspond to certain singular harmonic maps from AdS3

to AdS2.

The paper is organized as follows. In section 2 we describe the (2, 0) theory setting

for our model. In section 3 we study the quasi-particles, which are BPS strings, and we

calculate their quantum numbers. In section 4 we study the large k limit and write down

the semiclassical action of the system. In section 5 we develop the differential equations

that describe the integrally charged particles as solitons of the fundamental quasi-particle

fields in the large k limit. We show that they can be mapped to the equations describing a

magnetic monopole on a 3D space with metric ds2 = x2
3(dx2

1 + dx2
2 + dx2

3). In section 6 we

analyze the soliton equations in more detail and show the connection to harmonic maps

from AdS3 to AdS2. The equations are not integrable in the standard sense, and we were

unable to solve them in closed form, but we were able to make several additional observa-

tions: (i) we present an expansion up to second order in the inverse of the distance from

the “center” of the solution to the origin; (ii) using a rather complicated transformation

– 2 –
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we can recast the equations in terms of a single “potential” function; and (iii) we plot an

example of a numerical solution. Points (ii)-(iii) are explored in appendices A–B.

2 The (2, 0) theory on (R2 × S1)/Zk

Our starting point is the 5+1D A1 (2, 0)-theory on R2,1×M3, where R2,1 is 2+1D Minkowski

space and M3 ' (R2×S1)/Zk is the flat, noncompact, smooth three-dimensional manifold

defined as the quotient of R2 × S1 by the isometry that acts as a simultaneous rotation of

R2 by an angle 2π/k, and a translation of S1 by 1/k of its circumference. The A1 (2, 0)-

theory is the low-energy limit of either type-IIB on R4/Z2 [15] or of 2 M5-branes [16] (after

decoupling of the center of mass variables). We are interested in the low-energy description

of the Coulomb branch of the theory, and in particular in the low-energy degrees of freedom

that are localized near the origin of R2. The fractional quantum Hall effect, as we shall

see, naturally appears in this context. We will now expand on the details. (See [17] for a

related study of M-theory and type-II string theory in this geometry and [18]–[26] for the

study of effects on other kinds of branes in a similar geometry.)

2.1 The geometry

The space M3 can be constructed as a quotient of R3 as follows. We parameterize R3 by

x3, x4, x5 and set z ≡ x4 + ix5. Then, M3 is defined by the equivalence relation

(x3, z) ∼ (x3 + 2πR, ze−2πi/k) , [defining relation of M3] (2.1)

where R is a constant parameter that sets the scale, and k > 1 is an integer. The Euclidean

metric on M3 is given by

ds2 = dx2
3 + dx2

4 + dx2
5 = dx2

3 + |dz|2 .

For future reference we define the (2k)th root of unity:

ω ≡ eπi/k . (2.2)

We also set

z = reiθ ,

so that (2.1) can be written as

(x3, r, θ) ∼
(
x3 + 2πR, r, θ − 2π

k

)
. (2.3)

The z = 0 locus [i.e., the set of points (x3, 0) with arbitrary x3] forms an S1 of radius R

that we will call the minicircle and denote by S1
m. The space M3 \ S1

m (which is M3 with

the minicircle excluded) is a circle-bundle over a cone (with the origin {0} excluded):

S1 −→ M3 \ S1
m

↓
C/Zk \ {0}

(2.4)
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Figure 1. (a) The geometry of M3 ' (C × S1)/Zk: in the coordinate system (x4 + ix5, x3),

the point (r, 0) is identified with (re−2πi/k, 2πR) and (r, 2πkR); the large dots indicate equivalent

points; (b) The fibration M3 → C/Zk with the generic fiber that is of radius kR.

The cone C/Zk is parameterized by z, subject to the equivalence relation z ∼ ω2z. In polar

coordinates the cone is parameterized by (r, θ) with 0 < r < ∞ and 0 ≤ θ < 2π/k. (θ is

understood to have period 2π/k when describing the cone.) The projection M3 → C/Zk

is given by (x3, z) 7→ z. For a given z 6= 0, the fiber S1 of the fibration (2.4) over z ' ω2z

is given by all points (x3, z) with 0 ≤ x3 < 2πkR. The equivalence (2.1) then implies

(x3 + 2πkR, z) ∼ (x3, z), and so this S1 has radius kR.

In order to preserve half of the 16 supersymmetries we augment (2.1) by an appropriate

R-symmetry twist as follows. Let Spin(5) ' Sp(2) be the R-symmetry of the (2, 0)-theory.

In the M5-brane realization of the (2, 0)-theory [16], Spin(5) is the group of rotations

(acting on spinors) in the five directions transverse to the M5-branes, which we take to be

6, . . . , 10. We now split them into the subsets 6, 7 and 8, 9, 10. This corresponds to the

rotation subgroup [Spin(3)×Spin(2)]/Z2 ⊂ Spin(5). Let γ ∈ Spin(5) correspond to a 2π/k

rotation in the 6, 7 plane. We then augment the r.h.s. of the geometrical identification (2.1)

by an R-symmetry transformation γ. The setting now preserves 8 supersymmetries.

We now go to the Coulomb branch of the (2, 0)-theory by separating the two M5-branes

of section 2.1 in the M-theory direction x10. This breaks Spin(3) to an SO(2) subgroup

(corresponding to rotations in directions 8, 9) which we denote by SO(2)r. On the Coulomb

branch of the (2, 0)-theory there is a BPS string whose tension we denote by Ṽ .

At energies E � 1/kR, sufficiently far away from S1
m, the dynamics of the (2, 0)-

theory on R2,1 ×M3 reduces to SU(2) 4+1D Super-Yang-Mills theory on R2,1 × (C/Zk).
The coupling constant is given by

4π2

g2
ym

=
1

kR
. (2.5)
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All fields are functions of the coordinates (x0, x1, x2, r, θ), but the periodicity θ ∼ θ+ 2π/k

is modified in two ways:

• The shift by 2πR in x3, expressed in (2.3), implies that as we cross the θ = 2π/k ray

a translation by 2πR in x3 is needed in order to patch smoothly with the θ = 0 ray.

Since x3-momentum corresponds to conserved instanton charge in the low-energy

SYM, we find that we have to add to the standard SYM action an additional term

1

16kπ

∫
θ=0

tr(F ∧ F ) , (2.6)

where the integral is performed on the ray at θ = 0.

• the R-symmetry twist γ introduces phases in the relation between values of fields

at θ = 0 and at θ = 2π/k. Of the five (gauge group adjoint-valued) scalar fields

Φ6, . . . ,Φ10 (corresponding to M5-brane fluctuations in directions 6, . . . , 10) the last

three Φ8,Φ9,Φ10 are neutral under γ and hence periodic in θ, while the combination

Z ≡ Φ6 + iΦ7 satisfies

Z

(
x0, x1, x2, r, θ +

2π

k

)
= ω2Ω−1Z(x0, x1, x2, r, θ)Ω . (2.7)

where we have included an arbitrary gauge transformation Ω(x0, x1, x2, r) ∈ SU(2).

The gluinos have similar boundary conditions with appropriate exp(±π/k) phases.

At the origin, z = 0, which is the tip of the cone C/Zk, boundary conditions need to be spec-

ified and additional 2+1D degrees of freedom need to be added. These degrees of freedom

and their interactions with the bulk SYM fields are the main focus of this paper and will be

discussed in section 2.4. But at this point we can make a quick observation. When a BPS

string of the (2, 0)-theory wraps the S1 of (2.4) we get the W -boson of the effective 4+1D

SYM. The circle has radius kR and so the mass of the W -boson is 2πkRṼ . On the other

hand, the BPS string can also wrap the minicircle S1
m whose radius is only R. (A similar

effect has been pointed out in [17] in the context of type-IIA string theory on this same ge-

ometry.) The resulting particle in 2+1D has mass 2πRṼ which is 1/k of the mass of the W -

boson. Its charge is also 1/k of the charge of the W-boson. This is our first hint that we are

dealing with a system that exhibits a fractional quantum Hall effect (FQHE). We will soon

see that indeed a BPS string that wraps S1
m can be identified with a quasiparticle of FQHE.

2.2 Symmetries

Now, let us discuss the symmetries of the theory at a generic point on the Coulomb branch.

The continuous isometries of M3 are generated by translations of x3 and rotations of the

z-plane. We denote the latter by SO(2)z and normalize the respective charge so that the

differential dz has charge +1. The isometry group of M3 also contains a discrete Z2 factor

generated by the orientation-preserving isometry

(x3, z) 7→ (−x3, z).

– 5 –
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This by itself does not preserve our setting because it converts the R-symmetry twist γ

to γ−1. To cure this problem, we introduce an extra reflection x7 → −x7 in the plane on

which γ acts, and finally, in order to preserve parity we also introduce one more reflection

in a transverse direction, say, x10 → −x10. Altogether, we define the discrete symmetry

Z′2 to be generated by

(x0, x1, x2, x3, z, x6, x7, x8, x9, x10) 7→ (x0, x1, x2,−x3, z, x6,−x7, x8, x9,−x10) . [Z′2]

(2.8)

The SO(2) subgroup of the R-symmetry that corresponds to rotations in the 6 − 7 plane

will be referred to as SO(2)γ and normalized so that Φ6 + iΦ7 has charge +1. The SU(2) =

Spin(3) subgroup of the R-symmetry that corresponds to rotations in the 8, 9, 10 directions

will be referred to as SU(2)R. For future reference we also denote the SO(2) subgroup of

rotations in the 8, 9 plane by SO(2)r.

The parity symmetry of M-theory [27], which acts as reflection on an odd number of

dimensions combined with a reversal of the 3-form gauge field (C3 → −C3) can also be

used to construct a symmetry of our background. We define Z′′2 as the discrete symmetry

generated by the reflection that acts as

x10 → −x10, C3 → −C3 . [Z′′2]

This symmetry preserves the M5-brane configuration and the twist. We summarize the

symmetries in the following table:

SO(2)z rotations of the z (x4 − x5) plane;

SO(2)γ rotations of the x6 − x7 plane;

SU(2)R rotations of the x8, x9, x10 plane;

SO(2)r rotations of the x8, x9 plane;

Z′2 reflection in directions x3, x5, x7, x10;

Z′′2 reflection in direction x10 (and C3 → −C3);

We denote the conserved charges associated with SO(2)z, SO(2)γ , and SO(2)r by qz, qγ ,

and qr, respectively. These are the spins in the 4−5, 6−7, and 8−9 planes. The supersym-

metry generators are also charged under these groups, and the background preserves those

supercharges for which qz + qγ = 0. These observations will become useful in section 3,

where we will study the quantum numbers of the quasi-particles.

2.3 Relation to D3-(p, q)5-brane systems

As we have seen in section 2.1, following dimensional reduction on the S1 fiber of (2.4), we

get a low-energy description in terms of 4+1D SYM on the cone C/Zk, interacting with

additional (as yet unknown, but to be described below) degrees of freedom at the tip of

the cone (at x4 = x5 = 0). These additional degrees of freedom are three-dimensional and

can be expressed in terms of SU(2) Chern-Simons theory coupled to the IR limit of a U(1)

gauge theory with two charged hypermultiplets (with N = 4 supersymmetry in 2 + 1D).

– 6 –
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The latter is the self-mirror theory introduced in [28], and named T (SU(2)) by Gaiotto and

Witten [7]. The arguments leading to the identification of the degrees of freedom at the tip

of the cone were presented, in a somewhat different but related context, in [29]. The idea

is to relate the local degrees of freedom of M-theory on the geometry of section 2.1 to those

of a (p, q) 5-brane of type-IIB, as originally done in [17], and then map our two M5-branes

to two D3-branes, to obtain the problem of two D3-branes ending on a (p, q) 5-brane. This

problem was solved in [7] in terms of T (SU(2)) (and see also [30] for previous work on

this subject, and [31] for generalizations with less supersymmetry). The Gaiotto-Witten

solution thus also furnishes the solution to our problem. On the Coulomb branch, the gauge

part of the system reduces to U(1) Chern-Simons theory interacting with T (U(1)), which

reproduces (1.1). Although the details of the argument will not be needed for the rest of

this paper, we will review them below for completeness. More details can be found in [29].

Our geometry in directions 3, . . . , 7 is of the form (S1 × C2)/Zk, and leads to a (1,k)

5-brane according to [17]. This was demonstrated in [17] by replacing C2 with a Taub-NUT

space, whose metric can be written as

ds2 = R̃2

(
1 +

R̃

2r̃

)−1(
dy+sin2

(
θ̃

2

)
dφ̃

)2

+

(
1 +

R̃

2r̃

)
[dr̃2 + r̃2(dθ̃2 +sin2 θ̃ dφ̃2)] , (2.9)

where y is a periodic coordinate with range 0 ≤ y < 2π. We then introduce the S1,

parameterized by x3 as in (2.1). The plane C that appears in (2.1) is now embedded in the

C2 tangent space of the Taub-NUT space at the origin r̃ = 0, and is recovered in the limit

R̃ → ∞. In that limit, and with a change of variables r̃ = r2/R̃, we can identify the C
plane of (2.1) as a plane at constant (θ̃, φ̃) (say θ̃ = π/2 and φ̃ = 0), and the z ≡ x4 + ix5

coordinate of (2.1) is identified with

z = reiy =
√
R̃r̃ eiy.

In this limit (R̃→∞), the x6, x7 plane is identified with a plane transverse to the z-plane,

which we can take to be given by θ̃ = π/2 and φ̃ = π. We now return to the finite R̃

geometry, and impose the Zk equivalence of (2.1) by setting

(x3, y, r̃, θ̃, φ̃) ∼
(
x3 + 2πR, y − 2π

k
, r̃, θ̃, φ̃

)
.

We then wrap two M5-branes on the (θ̃ = π
2 , φ̃ = 0) subspace of this 5-dimensional geom-

etry. In the limit R̃→∞ this reproduces the setting of section 2.1.

The technique that Witten employed in [17] is to convert the Taub-NUT geometry to a

D6-brane by reduction on the y-circle from M-theory to type-IIA, and then apply T-duality

on the x3-circle to get type-IIB with a complex string coupling constant of the form

τIIB =
2πi

gIIB
− 1

k
.

This turns out to be strongly coupled (gIIB →∞) in the limit R̃→∞, but it can, in turn,

be converted to weak coupling with an SL(2,Z) transformation

τIIB → τ ′IIB =
τIIB

kτIIB + 1
=

1

k
+
igIIB

2πk2
→ 1

k
+ i∞ .

– 7 –
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As explained in [17], the combined transformations convert the Taub-NUT geometry to a

5-brane of (p, q)-type (1,k) (where k is the NS5-charge and 1 is the D5-charge). It also

converts the M5-branes to D3-branes. The boundary degrees of freedom where the two

D3-branes end on the (1,k) 5-brane were found in [7] as follows. Let A denote the bound-

ary 2 + 1D value of the SU(2) gauge field of the D3-branes (with the superpartners left

implicit). Using the identity(
1

k

)
=

(
0 1

−1 0

)(
1 (−k)

0 1

)(
0

1

)
,

we see that we can obtain a (1,k) 5-brane from an NS5-brane by applying an SL(2,Z)

transformation that acts as τ → τ−k, followed by another transformation that acts as τ →
−1/τ . Each transformation can be implemented on the boundary conditions. The τ → τ−k

transformation introduces a level-k Chern-Simons theory expressed in terms of an ancillary

SU(2) gauge field that we denote by A′, and the τ → −1/τ (S-duality) transformation

introduces 2+1D degrees of freedom, named T (SU(2)) by Gaoitto and Witten, that couple

to both the A and A′ gauge fields. T (SU(2)) was identified with the Intriligator-Seiberg

theory [28] that is defined as the low-energy limit of N = 4 U(1) gauge theory coupled

to two hypermultiplets. The theory has a classical SU(2) flavor symmetry (which will

ultimately couple to, say, the gauge field A), and it also has a U(1) global symmetry under

which only magnetic operators are charged, and this symmetry is enhanced to SU(2) in the

(strongly coupled) low-energy limit. This SU(2) is then coupled to A′. It is also not hard to

check that A is the r → 0 limit of the 4 + 1D gauge field on the cone. To see this, consider

the T 2 formed by varying (x3, y) for fixed r̃, θ̃, and φ̃. The SL(2,Z) transformation

(
1 0

k 1

)
converts 1-cycle from (0, 0) to (2πR,−2π/k) into the 1-cycle from (0, 0) to (2πkR, 0), and

this is precisely the 1-cycle used in the reduction from the (2, 0)-theory to 4+1D SYM.

2.4 Appearance of the fractional quantum Hall effect

On the Coulomb branch the SU(2) gauge group of 4+1D SYM is broken to U(1). At

energies below the breaking scale, the SU(2) gauge fields A and A′ reduce to U(1) gauge

fields which we denote by A and Aint. The theory T (SU(2)) reduces to T (U(1)) which is

described by the action [7] (1/2π)
∫

A ∧ dAint. The total gauge part of the action at the

tip of the cone is therefore given by (1.1). As we have already seen, the BPS strings that

wrap the minicircle S1
m have fractional charge 1/k under the bulk A, which we have now

identified as the unbroken U(1) gauge field of the bulk 4+1D SYM. If we slowly move such

a string away from the tip, we get a string that, in the (x3, y) coordinates of section 2.3,

wraps the 1-cycle from (0, 0) to (2πR,−2π/k). This implies that it has one unit of charge

under Aint, which lends credence to the proposal of identifying such a string with a quasi-

particle of FQHE. The quasi-particle is confined to R2,1, because everywhere else a wound

string is longer than the BPS bound 2πR.

Following the breaking of SU(2) to U(1), the bulk 4+1D W -boson gets a mass. The W -

boson corresponds to a (2, 0)-string wound around the S1 fiber of (2.4), and the homotopy

– 8 –
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class of the bulk S1 fiber is k times the homotopy class of the minicircle S1
m. It is therefore

clear that, in principle, we should be able to design a process in which a bulk W -boson

reaches the tip of the cone and breaks-up into k strings that wrap the minicircle:

W −→ k quasi-particles. (2.10)

Alternatively, it should be possible to describe the W -boson as a bound state of k quasi-

particles. In sections 4–6, we will show how this works in the limit of large k. Before we

proceed to the analysis, which is the main focus of our paper, let us compute the spin

quantum numbers of the quasi-particles.

3 Quasi-particles

The quasi-particle is obtained by wrapping the (2, 0) BPS string on the minicircle S1
m. Its

quantum numbers can be deduced by quantizing the zero-modes of the low-energy fermions

that live on the BPS string. Let us begin by reviewing the low-energy fermionic degrees

of freedom on a BPS string. We assume that the M5-branes are in directions 0, . . . , 5,

separated in direction 10, and the BPS string is in direction x3. We first ignore the

equivalence (2.1) and the R-symmetry twist. For simplicity we will now refer to rotation

groups as SO(m) instead of Spin(m). Thus, the VEV breaks the R-symmetry to SO(4)R ⊂
SO(5)R, and the presence of the string breaks the Lorentz group down to SO(1, 1) ×
SO(4). We will denote the last factor by SO(4)T , and we will describe representations

of SO(1, 1) × SO(4)T × SO(4)R as (r1, r2, r3, r4)s, where (r1, r2) is a representation of

SO(4)T ∼ SU(2)× SU(2), (r3, r4) is a representation of SO(4)R ∼ SU(2)× SU(2), and s is

an SO(1, 1) charge (spin). The representation of the unbroken supersymmetry charges is

the same as the supersymmetry that is preserved by an M2-brane ending on an M5-brane.

If the M2-brane is in directions 0, 3, 10 and the M5-brane is in directions 0, 1, 2, 3, 4, 5 then

a preserved SUSY parameter ε satisfies

ε = Γ03\ε = Γ012345ε, (3.1)

where we denote \ ≡ 10, to avoid ambiguity. The SUSY parameter therefore transforms as

(2,1,2,1)+1
2
⊕ (1,2,1,2)−1

2
.

On the worldsheet of the BPS string there are 4 scalars XA (A = 1, 2, 4, 5) that corre-

spond to translations of the string in transverse directions. These are in the representation

(2,2,1,1)0. In addition, there are fermions in

(2,1,1,2)+1
2
⊕ (1,2,2,1)−1

2
. (3.2)

Now, consider this theory on R2,1 ×M3 and let the BPS string be at rest at x1 = x2 = 0.

It thus breaks the Lorentz group SO(2, 1) to the rotation group SO(2) in the x1 − x2

plane, which we denote by SO(2)J . The representations appearing in the brackets of (3.2)
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refer to SO(4)T × SO(4)R, but in our setting, according to the discussion above, we have

to reduce SO(4)T → SO(2)J × SO(2)z and SO(4)R → SO(2)γ × SO(2)r. Thus, denoting

representations as

(qJ , qz, qγ , qr)s , (3.3)

we decompose the left-moving spinors of (3.2) as(
+

1

2
,+

1

2
,−1

2
,+

1

2

)
+ 1

2

⊕
(

+
1

2
,+

1

2
,+

1

2
,−1

2

)
+ 1

2

⊕
(
−1

2
,−1

2
,−1

2
,+

1

2

)
+ 1

2

⊕
(
−1

2
,−1

2
,+

1

2
,−1

2

)
+ 1

2

(3.4)

and the right-movers as(
+

1

2
,−1

2
,+

1

2
,+

1

2

)
− 1

2

⊕
(

+
1

2
,−1

2
,−1

2
,−1

2

)
− 1

2

⊕
(
−1

2
,+

1

2
,+

1

2
,+

1

2

)
− 1

2

⊕
(
−1

2
,+

1

2
,−1

2
,−1

2

)
− 1

2

(3.5)

These modes can be described by fermionic fields on the string worldsheet, which are

functions of (x0, x3). To get the quantum numbers of the lowest-energy multiplet we need

to find the zero-modes of these fermionic fields. For that, we need to know the boundary

conditions of these fields in the x3 direction. Due to the rotation by 2π/k in the x4 − x5

and x6 − x7 planes that were introduced in section 2.1, there are nontrivial phases in

the boundary conditions of some of the fields that appear in (3.4)–(3.5). The boundary

conditions on a field ψ(x0, x3) with charges qz and qγ are

ψ(x0, x3 + 2πR) = ω2(qz+qγ)ψ(x0, x3). (3.6)

The only zero modes are therefore of those modes with qz + qγ = 0. These have quantum

numbers(
+

1

2
,+

1

2
,−1

2
,+

1

2

)
+ 1

2

⊕
(
−1

2
,−1

2
,+

1

2
,−1

2

)
+ 1

2

⊕
(

+
1

2
,−1

2
,+

1

2
,+

1

2

)
− 1

2

⊕
(
−1

2
,+

1

2
,−1

2
,−1

2

)
− 1

2

(3.7)

Quantizing these modes gives a multiplet with quantum numbers(
qJ

(0) − 1
2 , qz

(0), qγ
(0), qr

(0) − 1
2

)
,

(
qJ

(0), qz
(0) + 1

2 , qγ
(0) − 1

2 , qr
(0)
)
,(

qJ
(0), qz

(0) − 1
2 , qγ

(0) + 1
2 , qr

(0)
)
,

(
qJ

(0) + 1
2 , qz

(0), qγ
(0), qr

(0) + 1
2

)
,

(3.8)

where the charges qJ
(0), qz

(0), qγ
(0), qr

(0) still need to be determined. To determine them,

consider the discrete symmetry Z′2, defined in section 2.2. It preserves the setting and the

BPS particle but does not commute with all the charges qJ , qz, qγ , qr . It acts on the

charges as follows:

qJ → qJ , qz → −qz , qγ → −qγ , qr → qr . [generator of Z′2]

The constants qJ
(0), qz

(0), qγ
(0), qr

(0) must therefore be chosen so that the charges (3.8) will

be invariant, as a set, under Z′2. In other words, Z′2 is allowed to permute the states in (3.8),
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but must convert an allowed state to an allowed state. This is only possible if both qz
(0) and

qγ
(0) vanish. The BPS states are therefore in a multiplet with quantum numbers given by:(
qJ

(0)−1

2
, 0, 0, qr

(0)−1

2

)
⊕
(
qJ

(0),+
1

2
,−1

2
, qr

(0)

)
⊕
(
qJ

(0),−1

2
,+

1

2
, qr

(0)

)
⊕
(
qJ

(0)+
1

2
, 0, 0, qr

(0)+
1

2

)
.

Note that the setting of (2.3) can be defined for any value of k, not necessarily an integer

(as suggested in [17]). We can then easily determine qJ
(0) and qr

(0) in the limit k → ∞
at which the multiplet must become part of the multiplet of the wrapped string of the

(2, 0)-theory. This determines the charges up to an overall sign (which can be determined

arbitrarily and flipped with a parity transformation). So we pick qJ
(0) = −qr(0) = 1

2 and

find the following multiplet structure:

(0, 0, 0,−1)⊕
(

+
1

2
,+

1

2
,−1

2
,−1

2

)
⊕
(

+
1

2
,−1

2
,+

1

2
,−1

2

)
⊕(1, 0, 0, 0) , (k→∞) (3.9)

This is as far as we can go with an analysis of the quantum mechanics of the zero modes.

We can do better by considering the full 1+1D low-energy effective action on a string

wrapped on the minicircle whose worldsheet is in directions (x0, x3). This is a 1+1D CFT

of 4 free bosons together with 4 free left-moving and 4 free right-moving fermions in the

representations given by (3.4)–(3.5). Half of the fermionic fields have twisted boundary

conditions with nontrivial phases, according to (3.6), and the other half have periodic

boundary conditions, whose zero modes we quantized above. The CFT of the 4 fermionic

fields (2 left-moving and 2 right-moving) whose boundary conditions include nontrivial

phases has a unique ground state, but quantum corrections lead to corrections to the qJ and

qr quantum numbers of this ground state. That, in turn, leads to 1
k corrections to the qJ and

qr charges, as we will now explain.1 We recall from basic 1+1D conformal field theory that

a free complex left-moving fermion satisfying the boundary condition ψ(x0 + x3 + 2πR) =

e2πiνψ(x0 + x3) with 0 < ν < 1, and charged under a global U(1) symmetry such that

ψ has charge q and ψ has charge −q, has a unique ground state with charge ( 1
2 − ν)q.

For a right-moving fermion with boundary condition ψ(x0 − x3 − 2πR) = e2πiνψ(x0 − x3)

the ground state charge is (ν − 1
2)q. For ν = 0 (periodic Ramond-Ramond boundary

conditions) there are two ground states with charge ±1
2q. The charge assignments of the

fermions were calculated in (3.4)–(3.5). We set q = qr or q = qJ and according to (3.6),

we need to set ν = 1
k(qz + qγ). The bosonic fields with twisted boundary conditions have

neither qr nor qJ charge, and so do not contribute to the ground state charge. Combining

the modes in (3.4)–(3.5), we find that the left-moving sector of the CFT has ground states

of qJ charge ±1
4 + 1

2(1
2 −

1
k) and the right-moving sector has ground states of qJ charge

±1
4 −

1
2( 1

k −
1
2). For qr we find that the left-moving sector of the CFT has ground states of

charge ±1
4−

1
2(1

2−
1
k) and the right-moving sector has ground states of charge ±1

4 + 1
2( 1

k−
1
2).

Altogether, we find the quantum-corrected quasi-particle quantum numbers:(
− 1

k
, 0, 0,−1+

1

k

)
⊕
(

+
1

2
− 1

k
,+

1

2
,−1

2
,−1

2
+

1

k

)
⊕
(

+
1

2
− 1

k
,−1

2
,+

1

2
,−1

2
+

1

k

)
⊕
(

1− 1

k
, 0, 0,

1

k

)
,

(3.10)

1The 1/k correction to the spin discussed below was missed in an earlier version of this paper. We

corrected this part of section 3 following a related observation in [32].
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As a corollary, we can immediately restrict the types of processes described in (2.10).

Let us write down the qJ , qz, qγ , and qr quantum numbers of the W -boson supermultiplet.

The bosons (vectors and scalars) are in

(±1, 0, 0, 0)⊕ (0,±1, 0, 0)⊕ (0, 0,±1, 0)⊕ (0, 0, 0,±1) . (3.11)

and the gluinos are in(
± 1

2
,±1

2
,±1

2
,±1

2

)
.

[
even number of

(
− 1

2

)
’s

]
(3.12)

Starting with, say, a W -boson with charges (−1, 0, 0, 0), consider a process such as

W -boson −→ k quasi-particles. (3.13)

By examining qr charge conservation, we see that out of the k quasi-particles either (i)

(k− 1) quasi-particles are of charge (1− 1
k , 0, 0,

1
k), and one is of charge (− 1

k , 0, 0,−1 + 1
k),

or (ii) (k− 2) are of charge (1− 1
k , 0, 0,

1
k), one is of charge (+ 1

2 −
1
k ,+

1
2 ,−

1
2 ,−

1
2 + 1

k), and

one is of charge (+1
2 −

1
k ,−

1
2 ,+

1
2 ,−

1
2 + 1

k). Therefore, examining the qJ charge, we see

that (k − 1) units of orbital angular momentum need to convert into spin. We therefore

expect that if the typical product quasi-particle’s velocity u in the x1 − x2 plane is small,

the amplitude will be suppressed by a factor of uk−1.

The process (3.13) also suggests that the W boson can be viewed as a bound state of

k quasi-particles. This is similar to the well-known result in FQHE theory that in some

contexts the electron can be regarded as a bound state of k fractionally charged edge-states.

The edge-states are the low-energy excitations of the Chern-Simons theory that reside on

the boundary, or on impurities in the bulk. In this analogy, our quasi-particles correspond

to external impurities that couple to the Chern-Simons theory gauge field. The fractional

corrections of 1
k that we found for the spin of the quasi-particles are consistent with the

well-known anyonic properties of quasi-particles of the FQHE.

Our goal is to develop a concrete description of the W -boson as a composite of k

quasi-particles. For this purpose we will first need to switch to a dual formulation of the

low-energy theory whereby the quasi-particles are fundamental.

4 The large k limit

A weakly-coupled dual formulation of our system can be constructed in the limit k→∞.

In FQHE terminology, this is the small filling fraction regime which in ordinary systems

corresponds to very strong interactions. More insight can be gained in this limit by choosing

a different fibration structure for M3 than the one represented in (2.4). While (2.4) is

convenient to work with, because the fibers are of constant size and are geodesics, the

fibration is singular at the origin z = 0 — indeed the tip of the cone is singular, and the

fiber over z = 0 is smaller by a factor of k from the generic one.

Instead, in this section we will represent M3 as a smooth fibration in another way. The

base is the well-known cigar geometry and the fiber corresponds to a loop at constant |z|.
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(See also [33, 34] for other uses of this technique.) We will then reduce the (2, 0)-theory

to 4 + 1D SYM along this fiber. The fiber’s size varies and the base’s geometry is curved,

but nevertheless this representation is very useful, as we shall see momentarily. (See for

example [35, 36] for recent discussions of dimensional reductions of this type.)

4.1 Cigar geometry

To arrive at the alternative fibration we change variables on M3 from (x3, z) to x3 and

z̃ ≡ exp

(
ix3

kR

)
z ≡ reiθ . (4.1)

We then write the metric as

ds2 = dx2
3 + |dz|2 = α̃

(
dx3 −

r2

kRα̃
dθ

)2

+ dr2 + α̃−1r2dθ
2
,

(
α̃ ≡ 1 +

r2

k2R2

)
(4.2)

This metric describes a circle fibration over a cigar-like base with metric

ds2
B = dr2 + α̃−1r2dθ

2
= dr2 +

(
k2R2r2

k2R2 + r2

)
dθ

2
. (4.3)

We denote the cigar space by Υ. Note that the cigar-metric is smooth everywhere and for

r � kR it behaves like a cylinder R+ × S1, where S1 has radius kR. The “global angular

form” of the circle fibration is

χ ≡ dx3 −
r2

kRα̃
dθ ≡ dx3 −Ra , (4.4)

where we have defined the 1-form

a ≡ r2

kR2α̃
dθ =

(
kr2

k2R2 + r2

)
dθ . (4.5)

In this context, a is a U(1) gauge field on the cigar with associated field-strength

da = − 1

R
dχ =

2k3R2r

(k2R2 + r2)2
dr ∧ dθ .

The total magnetic flux of the gauge field a is
∫
B da = 2πk.

An anti-self-dual field H = −∗H on M3 × R2,1 can be reduced along the fibers of the

circle fibration (4.2) to obtain a 4 + 1D gauge field strength f on Υ× R2,1 as follows:

H =

(
dx3 −

r2

kRα̃
dθ

)
∧ f − α̃−

1
2 (∗f). (4.6)

Here ∗f is the 4+1D Hodge dual of the 2-form f on Υ×R2,1. The coupling constant of the

effective 4 + 1D super Yang-Mills theory for f is

g2
ym = (2π)2α̃1/2R = (2π)2

(
1 +

r2

k2R2

) 1
2

R . (4.7)
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r ∼ kR

curvature scale

r ∼ k2R

gym becomes large

-�
g2

ym ∼ R

Figure 2. The cigar geometry with the typical scales indicated. The curvature of the cigar sets

the length scale kR, and the 4 + 1D SYM coupling constant sets the length scale g2
ym.

The coupling constant g2
ym has dimensions of length and can be compared to the length

scale set by the order of magnitude of the curvature of the cigar metric at the origin —

this length-scale is kR. For r ∼ kR we find g2
ym � kR (in the large k limit), and so the

Yang-Mills theory is weakly coupled on length scales of the order of the curvature. The

Yang-Mills theory becomes strongly coupled only when the two scales become comparable,

which happens for r ∼ k2R, and therefore for large k our low-energy semi-classical 4 + 1D

SYM approximation is valid, because the strongly coupled region r � k2R is pushed to

r →∞. The various length scales are depicted in figure 2.

4.2 Equations of motion

The bosonic fields of our maximally supersymmetric 4+1D SYM are the SU(2) gauge field

and 5 adjoint-valued scalars. The scalars correspond to the relative motion in directions

x6, . . . , x10 of the M5-branes (which become D4-branes after dimensional reduction on

direction x3). We will be interested in supersymmetric solutions where only the scalar

corresponding to direction x10 can be nonzero. We will therefore ignore the remaining 4

scalars, as well as the fermions, and we will denote the scalar associated with direction x10

by Φ. The boundary conditions at infinity are

Φ→

(
1
2v 0

0 −1
2v

)
(up to a gauge transformation),

where v ≡ 2πRṼ , and Ṽ is the tension of the BPS string defined in section 2.1.

We convert to polar coordinates in the x1 − x2 plane by

ρ ≡
√
x2

1 + x2
2 , x1 + ix2 = ρeiϕ . (4.8)
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The 4+1D SYM theory is therefore formulated on a space with 4+1D metric

ds2 = −dt2 + dr2 + α̃−1r2dθ
2

+ dρ2 + ρ2dϕ2 .

The action contains three terms,

Ibosonic = IΦ + IYM + Iθ , (4.9)

where IΦ is the action of the scalar field, IYM is the standard Yang-Mills action with

variable coupling constant, and Iθ is the 4+1D θ-term that arises due to the nonzero

connection a [see (4.5)]. We will only consider θ-independent field configurations. For such

configurations the explicit expressions for the terms in the action are

IΦ =
1

8π2R
tr

∫ [
(D0Φ)2 − (DρΦ)2 − 1

ρ2
(DϕΦ)2 − (DrΦ)2

]
rρdrdρdϕdt , (4.10)

IYM =
1

8π2R
tr

∫
1

α̃

(
F 2

0r + F 2
0ρ +

1

ρ2
F 2

0ϕ − F 2
rρ −

1

ρ2
F 2
rϕ −

1

ρ2
F 2
ρϕ

)
rρdrdρdϕdt , (4.11)

Iθ =
1

4π2R
tr

∫
r2

kRα̃

(
F0rFρϕ − F0ρFrϕ + F0ϕFrρ

)
drdρdϕdt , (4.12)

where DµΦ = ∂µΦ + i[Aµ,Φ] is the covariant derivative of an adjoint-valued field. The

equations of motion are

0 = DβFαβ +DrFαr −
1

r
Fαr − iα̃[DαΦ,Φ]−

(
α̃′

α̃

)
Fαr −

α̃

2r

(
r2

kRα̃

)′
εαβγF

βγ , (4.13)

0 = DβFrβ − iα̃[DrΦ,Φ] , (4.14)

0 = DαDαΦ +DrDrΦ +
1

r
DrΦ , (4.15)

where α, β = 0, 1, 2 are lowered and raised with the Minkowski metric ds2 = −dt2 + dx2
1 +

dx2
2 = −dt2 + dρ2 + ρ2dϕ2, the notation (· · · )′ denotes a derivative with respect to r, and

εαβγ is the Levi-Civita tensor.

We note that the term −iα̃[DαΦ,Φ] in (4.13) leads to a quadratic potential in the

r direction for Aα, when Φ gets a nonzero VEV. The ground states of this “harmonic-

oscillator” are the (±1, 0, 0, 0)-charged states in (3.11), which have spin ±1 in the x1 − x2

plane. The next term in (3.11), with charges (0,±1, 0, 0), describes states with x4−x5 spin

and corresponds to the ground states of the (Ar, Aθ) field components. Note that Ar gets

an r-dependent potential by a similar mechanism through (4.14). The Aθ component was

set to zero in our analysis, so its equation of motion does not appear in (4.13)–(4.15). The

remaining terms in (3.11) correspond to excitations of scalar field components that we also

set to zero.

5 Integrally charged particles as bound states of quasi-particles

We now have two alternative descriptions of the low-energy limit in terms of 4+1D SYM.

In the first description, studied in section 2, the 4+1D SYM theory is formulated on a cone,
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Figure 3. In the limit va2 � 1 the soliton is approximately described by the Prasad-Sommerfield

solution (of width 1/va) near r = a and x1 = x2 = 0. Note that directions x1, x2 are not drawn

since they are perpendicular to the r, θ directions.

with extra degrees of freedom at the tip. In the second description, studied in section 4,

the 4+1D SYM theory is formulated on a cigar geometry. The latter description is most

suitable in the large k limit, as we have seen at the end of section 4.1. The quasi-particles

that we studied in section 3 are the fundamental fields of 4+1D SYM in the cigar-setting.

We have seen that k quasi-particles can form a bound state that is free to move into the

bulk of the cone. Let us now identify this state in the cigar-setting.

From the perspective of the (2, 0)-theory, the bound state is a string wrapped on the

fiber of (2.4). Let us consider such a wrapped string at the cone base point given by

coordinates r = a and θ = x1 = x2 = 0, with variable x3. In the cigar variables, this

reduces to a string at fixed r = a and x1 = x2 = 0 but variable θ. Recall that on the

Coulomb branch of SU(2) 4+1D SYM, the monopole is a 1+1D object — a monopole-

string. The bound state of k quasi-particles is therefore associated with a monopole-string

wrapped around the θ-circle of the cigar at r = a, as depicted in figure 3. Thanks to the

θ-term (4.12), the monopole-string gains k units of charge, as required.

In flat space, a monopole-string is described by the Prasad-Sommerfield solution [37].

In our case, the Prasad-Sommerfield solution is a good approximation if the thickness of

the monopole is small compared to the typical scale kR over which the coupling constant

varies, and also small compared to a. In this case, setting w ≡
√

(r − a)2 + ρ2, we find

the gauge invariant magnitude of the scalar field near the core r = a to be given by [37]:

|Φ| ≡
√

2 tr(Φ2) = ṽ coth(ṽw)− 1

w
, (5.1)

where ṽ ≡ (1 + a2

k2R2 )1/2v is the effective VEV of the normalized scalar field α̃1/2Φ at the

core (r = a) of the monopole. The “thickness” of the Prasad-Sommerfield solution is of
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the order of 1/ṽ, and the condition that the monopole should be “thin” becomes a� 1/v.

If this condition is not met, the Prasad-Sommerfield solution does not provide a good

approximation for the particle that corresponds to a (2, 0)-string wrapped on the generic

fiber (of size kR) of (2.4). Nevertheless, this is a BPS state with charge k, which can be

described in the large k limit by a soliton solution to the equations of motion (4.13)–(4.15).

The solution describes a Q-ball, and we expect the position a to be a free parameter. In

the next subsection we present the BPS equations that this soliton satisfies.

5.1 BPS equations

As we will derive in section 5.3, the BPS equations that describe stationary solutions that

preserve the same amount of supersymmetry as a (2, 0)-string wrapped on a fiber of (2.4)

are

DrΦ =
kR

r
F12 = F0r , D1Φ =

kR

r
F2r = F01 , D2Φ = −kR

r
F1r = F02 . (5.2)

Assuming that Ar, A1, A2 are time independent, we find DµΦ = F0µ = −DµA0 (for µ =

1, 2, r), which is solved by Φ = −A0. So the equations are reduced to

DrΦ =
kR

r
F12 , D1Φ =

kR

r
F2r , D2Φ = −kR

r
F1r , Φ = −A0 . (5.3)

These equations imply the equations of motion (4.13)–(4.15). In fact, for a stationary

configuration (all fields are t-independent), using the Bianchi identity for the gauge field,

we can rewrite the action (4.9) as:

IΦ + IYM + Iθ =

1

8π2R
tr

∫ {
[A0,Φ]2 −

[
1

ρ2

(
kRρ

r
Frρ −DϕΦ

)2

+

(
kR

rρ
Frϕ +DρΦ

)2

+

(
kR

rρ
Fρϕ −DrΦ

)2]
+

1

α̃

[
1

ρ2

(
kRρ

r
Frρ − F0ϕ

)2

+

(
kR

rρ
Frϕ + F0ρ

)2

+

(
kR

rρ
Fρϕ − F0r

)2]}
rρdrdρdϕ

+
k

4π2

∫ {
∂ρ tr

[
Frϕ(Φ +A0)

]
+ ∂ϕ tr

[
Fρr(Φ +A0)

]
+ ∂r tr

[
Fϕρ(Φ +A0)

]}
drdρdϕ . (5.4)

The expressions of the form (· · · )2 on the 2nd and 3rd lines of (5.4) are squares of combi-

nations that vanish if (5.3) holds, while the 4th line is a total derivative, so a configuration

that satisfies (5.3) is therefore a saddle point of the action.

The nonzero A0 in the solution (5.3) is consistent with the configuration being a Q-

ball [38]. A0 can be gauged away at the expense of creating time-varying phases for the

other fields, but we will not do so.

We can rewrite the first three equations of (5.3) as the Prasad-Sommerfield [37] equa-

tions

DiΦ̃ = Bi , (5.5)

where

Φ̃ ≡ 1

kR
Φ , Bi ≡

1

2
√
g
gijε

jklFkl , (5.6)
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are defined on a 3D auxiliary space W parameterized by x1, x2, r, with metric gij given by

ds2 = gijdx
idxj = r2(dr2 + dx2

1 + dx2
2) = r2(dr2 + dρ2 + ρ2dϕ2). (5.7)

In section 6.3 we will show that the problem of finding an axisymmetric (ϕ-independent)

BPS soliton can be converted to the problem of finding a harmonic map from the AdS3

space with metric

ds2 =
1

r2
(dr2 + dρ2 + ρ2dϕ2)

to AdS2, with a certain singular behavior along a Dirac-like string at ρ = 0 and 0 < r < a.

5.2 Energy

The energy of a general solution of the equations of motion [not necessarily stationary and

not necessarily obeying (5.3)] is given by

E =
1

8π2R
tr

∫ [
(D0Φ)2 + (DrΦ)2 + (DρΦ)2 +

1

ρ2
(DϕΦ)2

]
rρdrdρdϕ

+
1

8π2R
tr

∫
α̃−1

[
F 2

0r + F 2
0ρ +

1

ρ2
F 2

0ϕ + F 2
rρ +

1

ρ2
F 2
rϕ +

1

ρ2
F 2
ρϕ

]
rρdrdρdϕ . (5.8)

Using the equations of motion (4.13)–(4.15), it is not hard to check that if ΠΦ, ΠAr , ΠAρ ,

and ΠAϕ are the canonical momenta dual to the fields Φ, Ar, Aρ, Aϕ, then the Hamiltonian

is related to E by a total derivative:

H ≡ tr

∫ (
ΠΦ∂0Φ + ΠAr∂0Ar + ΠAρ∂0Aρ + ΠAϕ∂0Aϕ

)
drdρdϕ− IΦ − IYM − Iθ

= E +
1

4π2R
tr

∫ {
∂ρ

[
rρ

α̃
A0

(
F0ρ −

r

ρkR
Frϕ

)]
+ ∂r

[
rρ

α̃
A0

(
F0r +

r

ρkR
Fρϕ

)]
+∂ϕ

[
r

ρα̃
A0

(
F0ϕ +

rρ

kR
Frρ

)]}
drdρdϕ . (5.9)

For a stationary configuration that satisfies the equations of motion and also satisfies

A0 = −Φ, the energy can be written as a sum of squares of the BPS equations plus total

derivatives:

Estat=
1

8π2
tr

∫
1

α̃

[(
Frρ−

r

kRρ
DϕΦ

)2

+
1

ρ2

(
Frϕ+

rρ

kR
DρΦ

)2

+
1

ρ2

(
Fρϕ−

rρ

kR
DrΦ

)2]
rρdrdρdϕ

+
1

4π2R
tr

∫ {
∂ρ

(
rρ

α̃
ΦF0ρ

)
+ ∂r

(
rρ

α̃
ΦF0r

)
+ ∂ϕ

(
r

ρα̃
ΦF0ϕ

)}
drdρdϕ

+
1

4π2kR2
tr

∫ {
∂ρ

(
r2

α̃
ΦFϕr

)
+ ∂r

(
r2

α̃
ΦFρϕ

)
+ ∂ϕ

(
r2

α̃
ΦFrρ

)}
drdρdϕ (5.10)

Equation (5.10) assumes (4.13)–(4.15), but not (5.3) (other than A0 = −Φ). The term on

the r.h.s. of the first line vanishes when the BPS equations (5.3) are satisfied. Substitut-

ing (5.3) into (5.10), we find

EBPS =
1

4π2R
tr

∫ {
∂ρ
(
ΦFϕr

)
+ ∂r

(
ΦFρϕ

)
+ ∂ϕ(ΦFrρ

)}
drdρdϕ , (5.11)
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which depends only on the behavior of the fields at infinity and reduces to the VEV v times

the magnetic charge of the soliton [regarded as a monopole in the metric (5.7)].

We note that (5.3) also lead to another set of 2nd order differential equations:

0 = DnFmn +DrFmr −
1

r
Fαr − i

r2

k2R2
[DmΦ,Φ] , (5.12)

0 = DnFrn − i
r2

k2R2
[DrΦ,Φ] , (5.13)

0 = DnDnΦ +DrDrΦ +
1

r
DrΦ , (5.14)

where m,n = 1, 2. Equations (5.12)–(5.14) are the stationary equations for a Yang-Mills

field A, minimally coupled to an adjoint scalar Φ, on a space with metric (5.7). These

equations presumably have additional solutions that do not solve (4.13)–(4.15).

5.3 Derivation of the BPS equations

In this subsection we explain how (5.2) was derived. (The rest of the paper does not rely on

this subsection, and it may be skipped safely.) We wish to find the equations that describe

the “W-boson” that appeared in (3.13) in terms of the low-energy fields of 4+1D SYM

on Υ × R2,1, where R2,1 corresponds to directions 0, 1, 2, and Υ is the “cigar” defined in

section 4.1. That “W-boson” is not the W-boson of the 4+1D SYM on Υ, but rather the

W-boson of a dual 4+1D SYM on the R2,1 × (C/Zk) background that appeared in (2.4).

But, anyway, to derive the BPS equations it is convenient to start in six dimensions.

Let us first discuss the equations on the Coulomb branch of the (2, 0)-theory. The

contents of the low-energy theory is a free tensor multiplet with 2-form field B (and anti-

self-dual field strength H = dB = −∗H), five scalar fields Φ6, . . . ,Φ10, and chiral fermions

ψ in the spinor representation 4⊗ 4 of SO(5, 1)× SO(5). We assume

Φ6 = Φ7 = Φ8 = Φ9 = 0

and only allow Φ10 ≡ φ to be nonzero. The BPS equations are derived from the SUSY

transformation of the fermions. Let ε be a constant SUSY parameter, which we represent

as a 32-component spinor on which the 10+1D Dirac matrices ΓI (I = 0, . . . , 10) can act.

The BPS conditions on ε are:

• Invariance of ε under simultaneous rotations by 2π/k in the planes 4− 5 and 6− 7;

• Invariance of an M5-brane along directions 0, . . . , 5 under a SUSY transformation of

10+1D SUGRA with parameter ε; and

• Invariance of an M2-brane along directions 0, 3, 10 under a SUSY transformation of

10+1D SUGRA with parameter ε.

Therefore, the equations are (we set 10 ≡ \ in Dirac matrices):

ε = Γ012345ε = Γ03\ε = Γ4567ε . (5.15)
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To get the BPS equations we require that the fermions ψ of the tensor multiplet of the (2, 0)-

theory be invariant under any SUSY transformation with a parameter ε that satisfies (5.15):

0 = δψ ≡ (HµνσΓµνσ − ∂µφΓµ\)ε . (5.16)

There are four linearly independent solutions to (5.15), and substituting these into (5.16)

we find the equations:

H03µ = ∂µφ , H0ij = 0 , (i, j = 1, 2, 4, 5 , µ = 0, . . . , 5) . (5.17)

The other components of H are determined by anti-self-duality H = −∗H.

We now convert the 5+1D BPS equations (5.17) to 4+1D equations on Υ × R2,1

using (4.6) and the change of variables (4.1). To avoid ambiguity, we momentarily denote

by x′3 and θ′ the coordinates before the change of variables, so that the change of variables

is given by

x3 = x′3 , θ = θ′ − x′3
kR

.

We then find:

0 = H03′r − ∂rφ = H03′θ′ − ∂θ′φ = ∂3′φ = ∂0φ , 0 = H03′i− ∂iφ , (i = 1, 2) , (5.18)

and

0 = H012 = H0ir = H0iθ′ = H0iθ = H0rθ′ = H0rθ , (i = 1, 2) .

The dual relations are

0 = H3′rθ′ = H3′iθ′ = H3′ir = H3′12 , (i = 1, 2) ,

which become in (x3, θ) coordinates:

0 = H3rθ = H3iθ = H3ir −
1

kR
Hθir = H312 −

1

kR
Hθ12 , (i = 1, 2) . (5.19)

Next we use the anti-self-duality conditions

H03′r =
1

r
Hθ′12 =

1

r
Hθ12 , H03′1 =

1

r
Hrθ′2 =

1

r
Hrθ2 , H03′2 = −1

r
Hrθ′1 = −1

r
Hrθ1 ,

and the relations (5.19) to write

H03′r =
1

r
Hθ12 =

kR

r
H312 , H03′1 =

1

r
Hrθ2 =

kR

r
H32r , H03′2 = −1

r
Hrθ1 = −kR

r
H31r .

(5.20)

Combining with (5.18), we end up with the BPS equations

∂rφ = H03′r =
kR

r
H312 , ∂1φ = H03′1 =

kR

r
H32r , ∂2φ = H03′2 = −kR

r
H31r ,

(5.21)

and further combining with (4.6) we have

∂rφ =
kR

r
f12 , ∂1φ =

kR

r
f2r , ∂2φ = −kR

r
f1r . (5.22)

Altogether, we have

∂rφ =
kR

r
f12 = f0r , ∂1φ =

kR

r
f2r = f01 , ∂2φ = −kR

r
f1r = f02 . (5.23)

The equations (5.2) are the nonabelian extension of (5.23), and the fact that they imply

the equations of motion (4.13)–(4.15) shows that no additional terms are needed.
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5.4 The moduli space

We are interested in solutions to (5.5) that correspond to a monopole on the space with

metric (5.7) with m units of monopole charge. We focus on m = 1, but the comments we

make in this section apply to any number m of monopole charge. Recall that the moduli

space of m BPS SU(2) monopoles on R3 is hyper-Kähler and can be described as the space

of solutions to Nahm’s equations [39], written in terms of three m × m anti-hermitian

matrices T i which depend on a parmeters s:

dT i

ds
=

1

2
εijk[T

i, T j ] , −1 ≤ s ≤ 1 , i, j, k = 1, 2, 3, T i(s) ∈ u(m) , (5.24)

with prescribed boundary conditions (Nahm poles) at s = ±1, and a reality condition

T (s)∗ = T (−s). It was given a nice string-theoretic interpretation in [40] (using previous

results on the moduli space of instantons [41, 42]), was related to the moduli space of

2+1D gauge theories with 8 supercharges in [43], and was further generalized to singular

monopoles in [44]–[46].

Our setting has only 4 supercharges — 16 are preserved by the (2, 0)-theory, half are

broken by the geometry, and another half is broken by the Q-ball. Our moduli space of

solutions is therefore only Kähler and not hyper-Kähler. We can show this explicitly using

an adaptation of the Hamiltonian (Marsden-Weinsten) reduction technique of [47].

We start with the space of all possible SU(2) gauge field and scalar field configurations

(A1, A2, Ar, Φ̃) on the r ≥ 0 portion of space, subject to the boundary conditions

|Φ̃| → v at x2
1 + x2

2 + r2 →∞. (5.25)

At r = 0 we note that (5.5) implies F12 = 0 [see the left-most equation of (5.3)], and

so A1dx1 + A2dx2 reduces to a flat connection on the r = 0 plane. We can therefore

pick a gauge so that A1 = A2 = 0 at r = 0. We still have the freedom to perform a

gauge transformation with a gauge parameter λ that approaches a constant (independent

of x1, x2) at r = 0 but with a possibly nonconstant ∂rλ. We use this gauge freedom to set

Ar = 0 at r = 0 as well. We therefore require:

A1 = A2 = Ar = 0 at r = 0. (5.26)

We denote the space of (A1, A2, Ar, Φ̃) configurations with the boundary conditions (5.25)–

(5.26) by N . The infinite dimensional space N is Kähler with a complex structure defined

so that A1 + iA2 and Ar + irΦ̃ (evaluated at any point x1, x2, r) are holomorphic, and with

a symplectic Kähler form given by

ω = tr

∫ (
1

r
δA1 ∧ δA2 + δΦ̃ ∧ δAr

)
dx1dx2dr. (5.27)

The associated Kähler metric is

tr

∫ [
1

r
(δA2

1 + δA2
2 + δA2

r) + rδΦ̃2

]
dx1dx2dr. (5.28)
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The combination Ar + irΦ̃ was chosen so that the two middle equations of (5.3) will be

the real and imaginary parts of a holomorphic equation (D1 + iD2)Φ̃ = − i
r (F1r + iF2r).

We are interested in the moduli space Mm of solutions to (5.5) with the boundary

conditions (5.25)–(5.26), modulo gauge transformations with gauge parameter λ that ap-

proaches a constant at r = 0 and at x2
1 + x2

2 + r2 →∞, and such that

vm = tr

∫
√
ggijBiDjΦ̃d

3x = tr

∫ [
F12DrΦ̃ + F2rD1Φ̃− F1rD2Φ̃

]
drdx1dx2 .

We note that the metric (5.28) does not lead to the physical metric on the moduli spaceMm

(that is, the metric determined from the energy of a slowly time-varying configuration that

corresponds to motion onMm), but rather to the metric that would result from the action

of minimally coupled scalar and gauge fields, leading to the equations of motion (5.12)–

(5.14). This metric is more directly related to the derived problem of 3D monopoles on

the space with metric (5.7).

For any Lie-algebra valued gauge parameter λ (that is a constant at r = 0) we define

the “moment-map”:

µλ = tr

∫
λ

(
DrΦ̃−

1

r
F12

)
dx1dx2dr . (5.29)

When µλ is set to the Hamiltonian on the (infinite dimensional) symplectic manifold with

symplectic form ω, the generated flow (“time evolution”) corresponds to gauge transforma-

tions with gauge parameter λ. The moduli spaceMm is then equivalent to the Hamiltonian

reduction of N by these moment-maps (for all allowed λ’s). It is the subset of N for which

µλ = 0 for all admissible λ, modulo the equivalence relations corresponding to the gauge

transformations generated by all the λ’s. Since the gauge transformations preserve the

complex structure (acting in an affine-linear way on the complex variables A1 + iA2 and

Ar + irΦ̃) and the symplectic form, the arguments of [47] show that the resulting (finite

dimensional) moduli space Mm is Kähler.

One can shed more light on the form of the metric (5.28) as follows.2 One can de-

rive (5.5) by reducing toW the instanton equations on R×W that are invariant under trans-

lations in R [whereW was defined as the 3D space with metric (5.7)]. The metric on R×W is

taken to be ds2 = dx2
4+r2(dx2

1+dx2
2+dr2), but since instanton equations are conformally in-

variant, we can replace this metric with the conformally equivalent metric 1
r2
|d(x4+ i

2r
2)|2+

|d(x1+ix2)|2. The latter is clearly a Kähler manifold, as it describes the product of a 2D sur-

face, parameterized by complex coordinate x4 + i
2r

2 and a copy of C, parameterized by x1 +

ix2, and so the instanton moduli space is Kähler. Requiring invariance under translations

in R is a holomorphic constraint, and so the space of R-invariant solutions is also Kähler.

The metric on Mm is induced from the metric (5.28) on N as follows. Let (A, Φ̃) be

a solution of (5.5), and let (δA, δΦ̃) be a deformation to a nearby solution. We need to fix

the right gauge so that (5.28) will be minimal among gauge equivalent deformations. This

is equivalent to the gauge condition

0 = r2[Φ̃, δΦ̃] +D1δA1 +D2δA2 +DrδAr −
1

r
δAr . (5.30)

2The reasoning presented in this paragraph was pointed out to us by Sergey Cherkis.
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Now take a constant r0 � 1/
√
v and consider a portion of the moduli space comprising of

solutions whose bulk of the energy is concentrated in the vicinity of r0, allowing a spread

of O(1/vr0) away from r0. Then (A, r0Φ̃) is an approximate solution of the flat space

monopole equations, and if we approximate the explicit r and 1/r factors in (5.27)–(5.29)

by r0 and 1/r0, we get the corresponding Kähler form, metric, and moment map of [47],

in one of the complex structures of the corresponding hyper-Kähler moduli space. Set

Φ̃0 ≡ r0Φ̃. Then (A1, A2, A3, Φ̃0) approximately solve the BPS problem on R3, which we

will refer to as the “hyper-Kähler problem”. In this context the R3 coordinates are taken

to be x1, x2 and x′3 ≡ r − r0.

Now consider the case m = 1. There are three moduli corresponding to the “position”

of the monopole (a1, a2, a3), with a3 ≡ a− r0. (Note that this “position” is not necessarily

the maximum of energy density for finite a, but it is so in the limit a→∞.) The combina-

tion a1 + ia2 is holomorphic in the complex structure of M1, and the “missing” modulus

θ that combines with a3 to form a holomorphic a3 + iθ can be recovered as follows. First

recall that for the hyper-Kähler problem, if we perform a large gauge transformation with

gauge parameter Λ = exp(iθΦ̃0/r0v), where 0 ≤ θ ≤ π, we obtain a different solution that

still satisfies the correct boundary conditions at infinity of R3. The infinitesimal version

λ = (δθ)Φ̃0/r0v solves the hyper-Kähler gauge condition, which we can recover from (5.30)

by dropping the last term on the r.h.s. , as r0 → ∞. Plugging the corresponding defor-

mations δAi = Diλ, δAr = Drλ and δΦ̃ = 0 into (5.28), we find that the metric on the θ

direction behaves as (δθ)2/r2
0v. In our case, we also expect a modulus that corresponds to

a large gauge transformation, but setting λ to be proportional to Φ̃, say λ = εΦ̃, would not

work, because: (i) Φ̃ does not vanish at r = 0, and (ii) the gauge condition (5.30) requires

0 = −r2[Φ̃, [Φ̃, λ]] +D2
1λ+D2

2λ+D2
rλ−

1

r
Drλ , (5.31)

but λ = εΦ̃ does not satisfy (5.31). The sign of the rightmost term of (5.31) is in conflict

with what the equation of motion (4.15) requires it to be. Instead, we need to look for a

solution to (5.31) with λ = εΨ such that Ψ approaches a constant, say σ3, at r = 0 and

approaches Φ̃/v at infinity. In addition, Ψ should map the boundary of the r ≥ 0 space

(the x1 − x2 plane at r = 0 together with a hemisphere at infinity) to S2 in such a way as

to have winding number m = 1. Gauge transformations by Λ = exp(iθΨ) then correspond

to a circular direction 0 ≤ θ < π in moduli space. The corresponding deformations are

δA1 = δθD1Ψ , δA2 = δθD2Ψ , δAr = δθDrΨ , δΦ̃ = −iδθ[Φ,Ψ] .

The metric on this direction is given by

(δθ)2 tr

∫ {
1

r

[
(D1Ψ)2 + (D2Ψ)2 + (DrΨ)2

]
− r[Φ,Ψ]2

}
dx1dx2dr ,

which can be integrated by parts, using (5.31) (for λ = εΨ), to give a surface integral on

the boundary of the r ≥ 0 space:

(δθ)2

∫
1

r

[
∂1 tr (Ψ2)dx2dr + ∂2 tr (Ψ2)dx1dr + ∂r tr (Ψ2)dx1dx2

]
.
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This integral depends on the subleading terms in the behavior of Ψ2 near the boundary,

which, unfortunately, we do not know.

Now, consider the mode associated with translations. In the hyper-Kähler limit the

associated deformation that satisfies the gauge condition (5.30) is

δA1 = (δa)F31 , δA2 = (δa)F32 , δA3 = 0 , δΦ̃0 = (δa)D3Φ̃0 ,

where we have augmented the translation by δa in the x3 direction by a gauge transforma-

tion with gauge parameter (δa)A3. Plugging into (5.28) we get a metric (δa)2v. Rescaling

by v, so far we have the approximate metric

ds2 ∼ da2 +
dθ2

v2a2
. (5.32)

In general, the modulus a is defined from the boundary conditions of the solution (A, Φ̃).

Like the hyper-Kähler counterpart, for r →∞ the solution to (5.5) reduces, up to a gauge

transformation, to the field of an abelian monopole centered at, say, (0, 0, a). We will

discuss the abelian solution and present its exact form in section 6.2, but for now suffice

it to say that the modulus a can be read off from the asymptotic form. The metric that

we found above in (5.32) would be consistent with a Kähler manifold if 1
2va

2 + iθ is a

holomorphic coordinate. From the discussion above, we find the asymptotic form of the

metric on moduli space as

ds2 ∼ da2
1 + da2

2 + da2 +
dθ2

v2a2
, a→∞.

and the asymptotic Kähler form is

k ∼ da1 ∧ da2 +
da

va
∧ dθ , a→∞.

Beyond these observations, we do not have a simple description of the moduli space M1,

and as we have seen, unlike the moduli space of R3 BPS monopoles, in our case the x3

coordinate of the “center” (corresponding to tr T 3 in Nahm’s equations) does not decouple.

Moreover, the Bogomolnyi equations that describe monopoles on R3 can be obtained as a

limit of (5.5) (see section 6.5 for more details) when r → ∞. Thus, we expect to recover

the moduli space of BPS monopoles with fixed center of mass at the boundary r → ∞ of

the moduli space of (5.5).

6 Analysis of the BPS equations

In this section we will present several observations regarding the solution of the BPS

equations (5.3). It is convenient to regard the BPS equations as Bogomolnyi monopole

equations (5.5) on a curved space with metric (5.7). We are looking for a solution of

unit monopole charge. We also require axial symmetry (i.e., independence of ϕ), since we

can assume that the string of the (2, 0)-theory, which the solution describes, sits at the

origin of the x1 − x2 plane. The fields are therefore functions of two variables, r and ρ,
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only. The Bogomolnyi monopole equations on R3 have the renowned Prasad-Sommerfield

solution [37] for one SU(2) monopole, and the general solution was given by Nahm [39]. It

was given a string-theoretic interpretation in [40]. The extension to hyperbolic space is also

known [48], but we are unaware of an extension of Nahm’s technique to the space given by

the metric (5.7), and standard techniques that exploit the integrability of the R3 problem

do not work in our case. We were unable to find an exact solution, but we can make a few

observations. In section 6.1 we will reduce the number of independent fields from twelve

to two by adapting a method developed in [49, 50] for finding axially symmetric (generally

multi-monopole) solutions of the Bogomolnyi equations on R3. We will then present the

asymptotic form of the solution far away from the origin. In this region the solution reduces

to a U(1) monopole whose fields we write down explicitly. We then show that the solution

can be encoded in a harmonic map from AdS3 to AdS2. We conclude in section 6.5 with

an expansion up to second order in inverse VEV.

6.1 Manton gauge

We adopt an ansatz proposed in [50] for axially symmetric solutions. Adapted from R3 to

our metric (5.7) we look for a solution in the form:

Φ =
1

2
(Φ1σ1 + Φ2σ2) , A = −[(η1σ1 + η2σ2)dϕ+W2σ3dρ+W1σ3dr], (6.1)

where σ1, σ2, σ3 are Pauli matrices, and Φ1, Φ2, η1, η2, W1, W2 are scalar fields. The BPS

equations then reduce to

∂ρΦ1 −W2Φ2 = − 1

rρ
(∂rη1 −W1η2) , (6.2)

∂ρΦ2 +W2Φ1 = − 1

rρ
(∂rη2 +W1η1) , (6.3)

η2Φ1 − η1Φ2 =
ρ

r
(∂ρW1 − ∂rW2) , (6.4)

∂rΦ1 −W1Φ2 =
1

rρ
(∂ρη1 −W2η2) , (6.5)

∂rΦ2 +W1Φ1 =
1

rρ
(∂ρη2 +W2η1) , (6.6)

Next, we adapt to our metric the technique developed in [49], solving (6.2)–(6.4) by setting

Φ1 = −1

r
f−1∂rχ , Φ2 =

1

r
f−1∂rf , η1 = ρf−1∂ρχ , η2 = −ρf−1∂ρf , (6.7)

and

W1 = −f−1∂rχ , W2 = −f−1∂ρχ , (6.8)

where f and χ are as yet undetermined real functions of r and ρ. We plug the ansatz (6.7)–

(6.8) into (6.5)–(6.6) and get:

0 = fχrr + fχρρ − 2frχr − 2fρχρ +
1

ρ
fχρ −

1

r
fχr , (6.9)

0 = f2
r + f2

ρ − χ2
r − χ2

ρ − ffrr − ffρρ +
1

r
ffr −

1

ρ
ffρ , (6.10)

where subscripts (· · · )r and (· · · )ρ denote derivatives with respect to r and ρ, respectively.
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6.2 The abelian solution

We can trivially solve (6.9) by setting χ = 0. The remaining equation (6.10) then states

that log f is a harmonic function on AdS3. Alternatively, the solution describes a U(1)

monopole on the (x1, x2, r) space with metric (5.7). It is easiest to construct the solution

starting from 5+1D. Let us take the center of the monopole to be (0, 0, a), which will then

have to be a singular point for f . In the abelian limit, the fields of the (2, 0) theory that

are relevant to our problem reduce to a free anti-self-dual 3-form field H = −∗H and a

free scalar field φ. We start by solving (5.17) on R5,1, which in particular implies that φ

is harmonic. Consider a solution that describes the H and φ fields that emanate from a

(2, 0)-string centered at (x1, x2, x4, x5) = (0, 0, a cos θ, a sin θ). The scalar field is given by

φ = v +
1

x2
1 + x2

2 + (x4 − a cos θ)2 + (x5 − a sin θ)2
. (6.11)

But the solution that we need must be indepedent of θ, so we “smear” (6.11) to obtain the

requisite field:

φ(x1, x2, r) = v +
1

2π

∫ 2π

0

dθ

ρ2 + (r cos θ − a)2 + r2 sin2 θ
= v +

1√
(ρ2 + r2 + a2)2 − 4a2r2

.

(6.12)

The U(1) gauge field is now easy to calculate from (5.3) and we find

A =

(
ρ2 + a2 − r2

2
√

(ρ2 + r2 + a2)2 − 4a2r2
− 1

)
x2dx1 − x1dx2

ρ2
, (6.13)

where we picked a gauge for which Ar = 0. It is easy to find the associated (f, χ) fields.

We have χ = 0 and

f = exp

∫
φ(r, ρ)rdr = e−

1
2
vr2
(
ρ2 + r2 − a2 +

√
(ρ2 + r2 + a2)2 − 4a2r2

)
. (6.14)

Equation (6.13) exhibits a Dirac string singularity that extends from r = a to r = ∞ at

x1 = x2 = 0. The abelian solution must describe the asymptotic behavior of the nonabelian

solution when either r →∞ or ρ→∞ (or both).

6.3 Relation to harmonic maps from AdS3 to AdS2

The equations (6.9)–(6.10) can be derived from the action

I =

∫
ρ

rf2
(f2
r + f2

ρ + χ2
r + χ2

ρ)drdρ . (6.15)

We can therefore give a simple geometrical meaning to the equations of motion (6.9)–(6.10)

by considering an auxiliary AdS3 space parameterized by (r, ρ, ϕ) with metric

ds2 =
1

r2
(dr2 + dρ2 + ρ2dϕ2)
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and interpreting the functions f(r, ρ) and χ(r, ρ) as describing an axisymmetric map from

AdS3 to the two-dimensional (f, χ) “target-space.” If we further endow this target-space

with the AdS2 metric

ds2 =
1

f2
(df2 + dχ2) , (6.16)

it is easy to see that the equations of motion derived from (6.15) describe harmonic maps

(f, χ) : AdS3 7→ AdS2 . (6.17)

The connection between AdS2 (the “pseudosphere”) and axisymmetric solutions to

monopole equations on R3 was first noted in [49]. The harmonic map (6.17) is required to

have a singularity along a Dirac-like string, as we saw in section 6.2.

To reproduce the abelian solution of section 6.2, we set χ = 0 and find that log f is a

harmonic function on AdS3, as stated at the beginning of section 6.2. To present its Dirac

string more clearly, it is convenient to use instead of the Poincaré coordinates on AdS3, a

coordinate system with the point r = a at the origin. The change from (r, ρ, ϕ) to the new

coordinate system (µ, α, ϕ) is given by:

ρ

r
= sinhµ sinα ,

ρ2 + r2 − a2

2ar
= sinhµ cosα ,

and the coordinates are defined in the range

0 ≤ µ <∞ , 0 ≤ α ≤ π , 0 ≤ ϕ < 2π.

The metric in terms of (µ, α, ϕ) is

ds2 = dµ2 + sinh2 µ(dα2 + sin2 αdϕ2),

and the inverse coordinate transformations are:

r = a
coshµ+ sinhµ cosα

1 + sinh2 µ sin2 α
, ρ = a

coshµ+ sinhµ cosα

1 + sinh2 µ sin2 α
sinhµ sinα .

In (µ, α, ϕ) coordinates we have, up to an unimportant constant,

log f = −1

2
va2

(
coshµ+ sinhµ cosα

1 + sinh2 µ sin2 α

)2

+ log

(
coshµ+ sinhµ cosα

1 + sinh2 µ sin2 α

)
+ log sinhµ+ log(1 + cosα) . (6.18)

The singularity in the last term at α = π represents the Dirac string.

6.4 Comments on (lack of) integrability

The classic Bogomolnyi equations for monopoles on R3 admit the well-known Nahm solu-

tions [39], which also have a nice string-theoretic interpretation [40]. The rich properties

of these solutions essentially stem from an underlying integrable structure. One way to

describe the structure is to map a solution of the Bogomolnyi equations to a holomorphic

vector bundle over minitwistor space [51, 52]. (Minitwistor space is the space of oriented
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straight lines on R3, and it has a complex structure.) The Bogomolnyi equations arise

as the integrability condition for an auxiliary set of differential equations for an auxiliary

2-component field ψ, that require ψ’s gauge-covariant derivative along a line in R3 to be

related to multiplication by the scalar field Φ̃, and also require ψ to be holomorphic in the

directions transverse to the line. This technique can be extended to other metrics, such

as AdS3 (whose corresponding minitwistor space also possesses a complex structure and

is equivalent to CP1 × CP1). But this technique fails for the metric (5.7), whose space of

geodesics is not complex, and the monopole equations (5.5) cannot be expressed as the

integrability condition for an auxiliary system of linear differential equations, at least not

in an obvious way.

Another way to see where integrability fails is to focus on axially-symmetric solutions

as in [49]. Defining the symmetric SL(2,R) matrix

G ≡ 1

f

(
1 −χ
−χ (f2 + χ2)

)
,

the equations of motion (6.9)–(6.10) can then be recast as

0 = ∇α(∇αGG−1) , (6.19)

where the covariant derivatives are with respect to another auxiliary metric,

ds2 = dr2 + dρ2 +

(
ρ2

r2

)
dϕ2 , (6.20)

and G(r, ρ) is, of course, assumed to be independent of ϕ. It is possible [49] to recast axially

symmetric solutions of the Bogomolnyi equations on R3 in the form (6.19) — the metric

in that case would be the Euclidean metric

ds2 = dr2 + dρ2 + ρ2dϕ2 ,

and the connection with the σ-model (6.19) leads to an integrable structure. To describe

the integrable structure we switch to complex coordinates,

ξ ≡ r + iρ , ξ ≡ r − iρ ,

and write (6.19) as the integrability condition for a system of first order linear differential

equations for a two-component field Ψ(ξ, ξ):

Ψξ =
1

1 + γ
GξG−1Ψ , Ψξ =

1

1− γ
GξG

−1Ψ ,

where (· · · )ξ and (· · · )ξ are derivatives with respect to ξ and ξ, and the function γ(ξ, ξ)

has to be suitably chosen (so that the integrability condition (Ψξ)ξ = (Ψξ)ξ will be auto-

matically satisfied). There are, in fact, infinitely many choices for the function γ, but it

has to be a solution of

γξ =
γ

ξ − ξ

(
1 + γ

1− γ

)
, γξ = − γ

ξ − ξ

(
1− γ
1 + γ

)
,
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which are compatible (see [53] for review). This construction is easy to extend to any

metric of the form

ds2 = dr2 + dρ2 + Λ(r, ρ)2dϕ2 ,

as long as Λ(r, ρ) is harmonic (in the metric dr2+dρ2). In our case Λ = ρ/r is not harmonic,

so the standard integrability structure is not present.

One can also attempt to extend the technique of [40], to “probe” the solution with

a string that extends in an extra dimension, say x8. It is not hard to construct BPS

string solutions that preserve some supersymmetry, compatible with that of the M5-branes

and the twist. For example, in the M-theory variables we can take an M2-brane along

a holomorphic curve given by x4 + ix5 = C0e
i

kR
(x3+ix8), where C0 is a constant. This

would translate in type-IIA to a string whose x8 coordinate varies logarithmically with

r. However, this string does not preserve any common SUSY with the soliton. We were

unable to find an exact solution to (5.5), and in fact, the appearance of polylogarithms

in the expansion at large VEV (see section 6.5) suggests that even if a closed form exists,

it is very complicated. We therefore resorted to an asymptotic expansion for large VEV,

described below, and to numerical analysis, which we describe in appendix B.

6.5 Large VEV expansion

In this section we will discuss the asymptotic expansion of the solution to the BPS equa-

tions (5.3) for large VEV v. Since the only dimensionless combination that governs the

behavior of the solution is va2, we can just as well discuss fixed v and large a, which means

that the core of the monopole solution is far from the tip. Let us set3 x3 ≡ r − a and

rescale φ = aΦ/kR, so that equations (5.3) can be rewritten as(
1 +

x3

a

)
Diφ =

1

2
εijkFjk , (6.21)

where in this section i, j, k = 1, 2, 3 refer to x1, x2, x3 with Euclidean metric

ds2 = dx2
1 + dx2

2 + dx2
3 .

In the limit a → ∞, the equations (6.21) reduce to Bogomolnyi’s equations, and the one-

monopole solution is [37]:

A
a (0)
i = εiajxjK(u) , φa (0) = xaH(u) , (6.22)

where

H ≡ 1

u
cothu− 1

u2
, K ≡ 1

u sinhu
− 1

u2
, (6.23)

and here u ≡
√∑3

i=1 x
2
i . We set

b ≡ 1

a
, ~̀≡ (0, 0, b) ,

3We hope that no confusion will arise with the coordinate x3 that was used in section 2.1. That

coordinate plays no role here, and the only coordinates relevant for this section are x1, x2 and r = a + x3.
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so that x3
a = ~̀ · ~x, and (6.21) can be written as:

(1 + ~̀ · ~x)Diφ =
1

2
εijkFjk . (6.24)

We can now expand around the Prasad-Sommerfield solution:

Ai = A
(0)
i + bA

(1)
i + b2A

(2)
i + · · · , φ = φ(0) + bφ(1) + b2φ(2) + · · · ,

where we set the 0th order terms to the Prasad-Sommerfield solution (6.22).

At order O(b) we write all possible terms that are allowed by spherical symmetry and

we keep only the terms that are also invariant under the parity symmetry

φa(~x, ~̀)→ −φa(−~x,−~̀) , Aai (~x,
~̀)→ −Aai (−~x,−~̀) . (6.25)

The general expression is then

bφa(1) = `af1,1(u) + xa(`kxk)f1,2(u) , (6.26)

bA
a(1)
i = xaεijkxj`kf1,3(u) + xiεajkxj`kf1,4(u) + εaij`jf1,5(u) , (6.27)

and we note the identity

x[iεa]jkxj`k =
1

2
εaij`ju

2 − 1

2
(`kxk)εaijxj , (6.28)

which is the reason why we did not include a term of the form (`kxk)εaijxjf1,6 in (6.27).

The coefficients f1,1, . . . , f1,5 are unknown functions of u.

We also have the freedom to apply an infinitesimal O(b) gauge transformation which

takes the form

δφa = εabcλ
bφc , δAai = ∂iλ

a − εabcAbiλc

with

λa = εabcxb`cg1,1(u) .

This gives

δφa = −xa`kxkg1,1H + `au
2g1,1H , (6.29)

δAai = −εiab`bg1,1 +
1

u
xiεabcxb`cg

′
1,1 + xaεibcxb`cg1,1K . (6.30)

Using this gauge transformation we can set one of the parameters in (6.26)–(6.27) to zero.

We choose to set

f1,5 = 0. (6.31)

We end up with the general form of the O(b) correction:

bφa(1) = `af1,1(u) + xa(`kxk)f1,2(u) , (6.32)

bA
a(1)
i = xaεijkxj`kf1,3(u) + xiεajkxj`kf1,4(u) . (6.33)
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Plugging (6.22) and (6.32)–(6.33) into (6.24) and comparing terms of order O(b) we get:

HK − 1

u
H ′ =

1

u
(f ′1,2 + f ′1,3)−Kf1,2 −Kf1,3 + (K −H)f1,4 , (6.34)

0 =
1

u
f ′1,1 + (1 + u2K)f1,3 + u2Hf1,4 , (6.35)

0 = uf ′1,3 +Kf1,1 − f1,2 + 3f1,3 + (1 + u2K)f1,4 (6.36)

−H(1 + u2K) = Kf1,1 + (1 + u2K)f1,2 + f1,4 , (6.37)

These are ordinary inhomogeneous linear differential equations in f1,1, . . . , f1,4. Note that

f1,4 can be eliminated from (6.37), so the general solution is given be an arbitrary solution

of the full equations (6.34)–(6.37) plus a linear combination of three linearly independent

solutions of the homogeneous equations:

0 =
1

u
(f ′1,2 + f ′1,3)−Kf1,2 −Kf1,3 + (K −H)f1,4 , (6.38)

0 =
1

u
f ′1,1 + (1 + u2K)f1,3 + u2Hf1,4 , (6.39)

0 = uf ′1,3 +Kf1,1 − f1,2 + 3f1,3 + (1 + u2K)f1,4 (6.40)

0 = Kf1,1 + (1 + u2K)f1,2 + f1,4 , (6.41)

The general solution to (6.34)–(6.37) that is nonsingular at u = 0 is

f1,1 = − u

2 sinhu
+ c1

(
u cosh2 u

sinh3 u
− coshu

sinh2 u

)
+ c2

(
3u

sinhu
− 3u2 coshu

sinh2 u
+

u3 cosh2 u

sinh3 u

)
, (6.42)

f1,2 =
1

2u2
+

1 − 2 coshu

2u sinhu
+ c1

(
1

u4
− cosh2 u

u sinh3 u
+

coshu− 1

u2 sinh2 u

)
+c2

(
− u cosh2 u

sinh3 u
+

(2 coshu− 3)

u sinhu
+

(3 coshu− 1)

sinh2 u

)
, (6.43)

f1,3 =
1

2u2
− 1

2u
cothu + c1

(
− 1

u4
+

coshu

u sinh3 u

)
+ c2

(
u coshu

sinh3 u
+

coshu

u sinhu
− 2

sinhu

)
, (6.44)

f1,4 = c1

(
− 1

u3 sinhu
− coshu

u2 sinh2 u
+

1 + cosh2 u

u sinh3 u

)
+c2

(
u(1 + cosh2 u)

sinh3 u
+

3

u sinhu
− 5 coshu

sinh2 u

)
,(6.45)

where c1, c2 are undetermined constants. Note that the functions (6.42)–(6.45) have a

regular power series expansion at u = 0 with nonnegative even powers of u only. We note

that there is another homogeneous solution that we discarded because it is singular at u = 0:

f1,1 =c3

(
cosh2 u

sinh3 u

)
, f1,2 =−c3

(
cothu

u4
+

1

u3 sinh2 u
+

cosh2 u

u2 sinh3 u

)
,

f1,3 =c3

(
cothu

u4
+

1

u3 sinh2 u
+

coshu

u2 sinh3 u

)
, f1,4 =c3

(
coshu

u3 sinh2 u
+

1 + cosh2 u

u2 sinh3 u

)
. (6.46)

We are now left with two unknown parameters c1, c2, but one can be a adjusted to zero by

a shift of the center of the zeroth order solution, ~x→ ~x+ c0
~̀, followed by a suitable gauge

transformation to fix back the f1,6 = 0 gauge. This allows us to set c1 = 0. The parameter

c2 is undetermined at this point, since it depends on the proper boundary conditions at

u =∞ and at x3 = −1/b.
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Now we move on to order O(b2). The general ansatz at this order is:

b2φa(2) = `2xaf2,1(u)

+[`a(`kxk)−
1

3
`2xa]f2,3(u) + xa[(`kxk)(`mxm)− 1

3
`2u2]f2,4(u) , (6.47)

bA
a(2)
i = `2εiakxkf2,2(u) + xaεijkxj`k(`mxm)f2,5(u) + xiεajkxj`k(`mxm)f2,6(u)

+εaij [`j(`mxm)− 1

3
`2xj ]f2,7(u) + (`iεajkxj`k −

1

3
`2εajixj)f2,8(u) , (6.48)

where we have separated the different terms according to whether they can be expressed

in terms of the spin-0 combination `2 ≡ `k`k or the spin-2 combination `k`m− 1
3`

2δkm. We

again used the identity (6.28) to eliminate the term εaijxj(~̀ · ~x)2, and we also note the

identity `[iεa]jkxj`k = 1
2εaij`j(`kxk)−

1
2`

2εaijxj , which we used to eliminate a term of the

form `aεijkxj`kf2,9. At order O(b2) the possible gauge parameters are of the form

λa = εabcxb`c(`kxk)g2,1(u) ,

and we use the corresponding gauge transformation to gauge fix f2,8 = 0.

Our parameters f2,1, f2,2 correspond to spin-0 terms, while f2,3, . . . , f2,7 correspond to

spin-2 terms. The spin-2 equations are:

0 =
1

u
f ′2,4 −

1

u
f ′2,5 −Kf2,4 +Kf2,5 + (H −K)f2,6

+
1

u
f ′1,2 −Kf1,2 −Hf1,4 − f1,2f1,4 − f1,3f1,4 , (6.49)

0 =
1

u
f ′2,7 +Hf2,7 +Kf2,3 + (1 + u2K)f2,4 − 2f2,6

+Kf1,1 + f1,2 + u2Kf1,2 − f1,1f1,3 , (6.50)

0 =
1

u
f ′2,3 − (1 + u2K)f2,5 + (1− u2H)f2,6 + (K −H)f2,7

+
1

u
f ′1,1 + u2Hf1,4 + f1,1f1,3 + f1,1f1,4 + u2f1,2f1,4 + u2f1,3f1,4 , (6.51)

0 = uf ′2,5 −
1

u
f ′2,7 −Kf2,3 + 2f2,4 + 4f2,5 + (2 + u2K)f2,6 +Kf2,7

−Kf1,1 + f1,2 + f1,1f1,3 + u2f1,3f1,4 , (6.52)

0 = f2,3 − u2f2,6 − f2,7 − u2f1,1f1,3 − u4f1,3f1,4 . (6.53)

The spin-0 equations are:

0 = f ′2,1 +
1

u
f2,1 +

2

u
(1 + u2K)f2,2 +

1

3
f ′1,1 +

1

3
u2f ′1,2 +

2

3
uf1,2 −

2

3
uf1,1f1,4 , (6.54)

0 = f ′2,2 +

(
2

u
+ uH

)
f2,2 +

1

u
(1 + u2K)f2,1

+
1

3
uKf1,1 +

1

3
u(1 + u2K)f1,2 +

1

2
uf1,1f1,3 −

1

3
u3f1,3f1,4 . (6.55)

We first solve the spin-0 equations. The general solution is given by:

f2,1 =
u2

36 sinh2 u
+

1

6
u cothu+ c4

(
1

sinh2 u
− 1

u
cothu

)
+c5

(
1

u sinh2 u

)
, (6.56)
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f2,2 =
u2 coshu

36 sinh2 u
− u

8 sinhu
+ c4

(
coshu

sinh2 u
− 1

u sinhu

)
+c5

(
coshu

u sinh2 u

)
. (6.57)

Since c5 multiplies an u-odd and singular solution, we set c5 = 0. The unknown c4 needs

to be determined by the boundary conditions at u =∞ and x3 = −a.

Now, we move on to the spin-2 equations. First we look for a solution of the homoge-

neous spin-2 part:

0 =
1

u
f ′2,4 −

1

u
f ′2,5 −Kf2,4 +Kf2,5 + (H −K)f2,6 , (6.58)

0 =
1

u
f ′2,7 +Hf2,7 +Kf2,3 + (1 + u2K)f2,4 − 2f2,6 , (6.59)

0 =
1

u
f ′2,3 − (1 + u2K)f2,5 + (1− u2H)f2,6 + (K −H)f2,7 , (6.60)

0 = uf ′2,5 −
1

u
f ′2,7 −Kf2,3 + 2f2,4 + 4f2,5 + (2 + u2K)f2,6 +Kf2,7 , (6.61)

0 = f2,3 − u2f2,6 − f2,7 . (6.62)

The general solution that is well behaved as u→∞ is:

f
(homog)
2,3 = c6

{
4u

sinhu

}
+ c7

{
4

u4 sinhu

}
, (6.63)

f
(homog)
2,4 = c6

{
6 coshu− 4

u sinhu
− 2

sinh2 u

}
+ c7

{
− 4(coshu+ 1)

u6 sinhu
− 2

u5 sinh2 u

}
, (6.64)

f
(homog)
2,5 = c6

{
− 2 coshu

sinh2 u
− 4 coshu− 6

u sinhu

}
+ c7

{
− 4(coshu+ 1)

u6 sinhu
− 2 coshu

u5 sinh2 u

}
, (6.65)

f
(homog)
2,6 = c6

{
− 2

u sinhu
+

2 coshu

sinh2 u

}
+ c7

{
8

u6 sinhu
+

2 coshu

u5 sinh2 u

}
, (6.66)

f
(homog)
2,7 = c6

{
6u

sinhu
− 2u2 coshu

sinh2 u

}
+ c7

{
− 4

u4 sinhu
− 2 coshu

u3 sinh2 u

}
. (6.67)

Additionally, there are two more linearly independent solutions that grow exponentially as

u→∞. They are given by:

f
(homog)
2,3 = c8

{
− 2 cosh2 u

u2 sinhu
+

6 coshu

u3
− 6 sinhu

u4

}
+c9

{
− 6 coshu

u4
− 2 coshu

u2
+

6 cosh2 u

u3 sinhu

}
, (6.68)

f
(homog)
2,4 = c8

{
6 sinhu

u6
− 3(1 + 2 coshu)

u5
+

2 cosh2 u

u4 sinhu
+

1

u3 sinh2 u

}
+c9

{
6(1+coshu)

u6
− 3(coshu+2 cosh2 u)

u3 sinhu
+

2 coshu

u4
− 3

u4 sinh2 u

}
, (6.69)

f
(homog)
2,5 = c8

{
6 sinhu

u6
− 3(2 + coshu)

u5
+

2 cothu

u4
+

coshu

u3 sinh2 u

}
+c9

{
6 coshu

u6
+

6

u6
− 3 cosh2 u

u5 sinhu
− 6 cothu

u5
+

2

u4
− 3 coshu

u4 sinh2 u

}
, (6.70)
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f
(homog)
2,6 = c8

{
− 12 sinhu

u6
+

9 coshu

u5
− 2 cosh2 u

u4 sinhu
− coshu

u3 sinh2 u

}
+c9

{
− 12 coshu

u6
+

9 cosh2 u

u5 sinhu
+

3 coshu

u4 sinh2 u
− 2 coshu

u4

}
, (6.71)

f
(homog)
2,7 = c8

{
6 sinhu

u4
− 3 coshu

u3
+

coshu

u sinh2 u

}
+c9

{
6 coshu

u4
− 3 cosh2 u

u3 sinhu
− 3 coshu

u2 sinh2 u

}
. (6.72)

Once we have a complete linearly independent set of solutions to the homogeneous prob-

lem, we can find the solution to the inhomogeneous problem by integration. When

we perform the integrals we obtain complicated expressions that contain polylogarithms

Lin(z) ≡
∑∞

k=1
zk

kn . For example, if we set c2 = 0 in (6.42)–(6.45), we get:

f
(inhomog)
2,3 = − 9

2u4 sinhu
Li4(e−2u) +

[
3

u3

(
sinhu− 2

sinhu

)
−

(
3

u4
+

1

u2

)
coshu

]
Li3(e−2u)

−
[

3

u2 sinhu
+

(
6

u3
+

2

u

)
coshu− 6 sinhu

u2

]
Li2(e−2u)

+

[(
6

u2
+ 2

)
coshu− 6

u
sinhu

]
log(1 − e−2u) − 1

sinhu

(
1

2
+

45

2u3
+

2

u
+

59

120
u

)
+

(
u2

8 sinh2 u
+

45

2u4
+

15

2u2
+

2

u
+2+

2

3
u

)
coshu−

(
45

2u3
+

2

u
+2+

2

3
u

)
sinhu , (6.73)

f
(inhomog)
2,4 =

(
9

2u6 sinhu
+

9

2u6
cothu +

9

4u5 sinh2 u

)
Li4(e−2u)

+

[
3

u6
+

(
3

u6
+

1

u4

)
coshu +

15

2u5
cothu +

6

u5 sinhu
+

3

u4 sinh2 u
− 3

u5
sinhu

]
Li3(e−2u)

+

[
6

u5
+

3

2u3 sinh2 u
+

(
6

u5
+

2

u3

)
coshu +

6

u4
cothu +

3

u4 sinhu
− 6

u4
sinhu

]
Li2(E−2u)

+

[
6

u3
sinhu− 3

u3
cothu−

(
6

u4
+

2

u2

)
coshu− 6

u4

]
log(1 − e−2u)

+

(
45

2u5
+

2

u3
+

2

u2
+

2

3u

)
sinhu +

(
45

4u4
+

1

u2
+

1

4u
+

37

120

)
1

sinh2 u
− coshu

8 sinh2 u

+

(
45

2u5
+

2

u3
+

1

2u2
+

59

120u

)
1

sinhu
+

(
45

4u5
+

2

u3
− 1

2u2
+

1

5u

)
cothu

−
(

45

2u6
+

15

2u4
+

2

u3
+

2

u2
+

2

3u

)
coshu− 45

2u6
− 2

u3
+

1

8u2
, (6.74)

f
(inhomog)
2,5 =

(
9

2u6 sinhu
+

9

2u6
cothu +

9 coshu

4u5 sinh2 u

)
Li4(e−2u)

+

(
3

u6
+

1

u4
+

3

u6
coshu− 3

2u5
sinhu +

6

u5
cothu +

15

2u5 sinhu
+

3 coshu

u4 sinh2 u

)
Li3(e−2u)

+

(
6

u5
+

2

u3
+

6

u5
coshu− 3

u4
sinhu +

3

u4
cothu +

6

u4 sinhu
+

3 coshu

2u3 sinh2 u

)
Li2(e−2u)

−
[

6

u4
+

2

u2
+

6

u4
coshu− 3

u3
sinhu +

3

u3 sinhu

]
log(1 − e−2u)

− 45

2u6
− 15

2u4
− 2

u3
− 3

8u2
− 2

3u
−

(
45

2u6
+

2

u3
+

1

u2

)
coshu

+

(
45

4u5
+

2

u3
+

1

u2

)
sinhu +

(
45

2u5
+

2

u3
+

1

2u2
+

13

15u

)
cothu

+

(
45

4u5
+

2

u3
− 1

2u2
− 27

40u

)
1

sinhu
+

(
45

4u4
+

1

u2
+

1

4u
+

37

120

)
coshu

sinh2 u
− 1

8 sinh2 u
, (6.75)
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f
(inhomog)
2,6 = −

(
9

u6 sinhu
+

9 coshu

4u5 sinh2 u

)
Li4(e−2u)

−
[(

6

u6
+

1

u4

)
coshu− 9

2u5
sinhu +

27

2u5 sinhu
+

3 coshu

u4 sinh2 u

]
Li3(e−2u)

−
[(

12

u5
+

2

u3

)
coshu− 9

u4
sinhu +

9

u4 sinhu
+

3 coshu

2u3 sinh2 u

]
Li2(e−2u)

+

[(
12

u4
+

2

u2

)
coshu− 9

u3
sinhu +

3

u3 sinhu

]
log(1 − e−2u)

−
(

45

4u4
+

1

u2
+

1

4u
+

13

30

)
coshu

sinh2 u
+

(
45

u6
+

15

2u4
+

4

u3
+

3

u2
+

2

3u

)
coshu

−
(

135

4u5
+

4

u3
+

3

u2
+

2

3u

)
sinhu−

(
135

4u5
+

4

u3
− 13

30u

)
1

sinhu
, (6.76)

f
(inhomog)
2,7 = f

(inhomog)
2,3 − u2f

(inhomog)
2,6 − u2f1,1f1,3 − u4f1,3f1,4 . (6.77)

We note that the combinations of polylogarithms that appear here are the results of the

integrals∫
u3 cothu du = −3

4
Li4(e−2u)− 3

2
uLi3(e−2u)− 3

2
u2 Li2(e−2u) + u3 log(1− e−2u) +

1

4
u4 ,

and ∫
u2 cothu du = −1

2
Li3(e−2u)− uLi2(e−2u) + u2 log(1− e−2u) +

1

3
u3 .

When we turn on c2 6= 0 we get additional terms, but they can be expressed as rational func-

tions of eu and u and do not cancel the polylogarithms. In any case, this demonstrates that

a simple solution to the BPS equations (5.3), involving only basic functions, does not exist.

7 Discussion

We have studied a 2+1D system constructed from the compactification of the (2, 0)-theory

on (R2 × S1)/Zk. In the large k limit, we have reduced it to 4+1D SYM on the “cigar”

geometry, and we have developed the BPS equations that describe Q-ball solitons. In

terms of the effective FQHE low-energy action, these solitons are bound states of k quasi-

particles (each of 1/k charge). We mapped the BPS equations to the Bogomolnyi equations

DΦ = ∗ F on a manifold with metric

ds2 = x2
3(dx2

1 + dx2
2 + dx2

3), (7.1)

and we described a relation between axisymmetric solutions (in particular, the 1-monopole

solution) and harmonic maps ϕ : AdS3 → AdS2. It would be interesting to explore this

system further. We note that other interesting extensions of the classic Bogomolnyi equa-

tions were discovered in [23], in the context of D3-brane probes of a Melvin space (which is

in fact T-dual to the orbifold background in our work), where the D3-branes are oriented

in such a way that noncommutative geometry with a variable parameter is generated.

Our problem is reminiscent of the problem of monopoles on AdS3 [if x2
3 is replaced

with 1/x2
3 in (7.1)]. The latter is integrable, with known solutions, and in particular the

one-monopole solution is not difficult to construct [54]. Like the case of monopoles on
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AdS3, the monopole solutions on the space (7.1) contain as a limit the classic Prasad-

Sommerfield solutions (by going to the outskirts x3 → ∞). Indeed, in section 6.5 we

outlined an expansion around the Prasad-Sommerfield solution, up to second order in

1/x3, albeit with a few undetermined coefficients.

Monopole equations on a three-dimensional space can be recast as the dimensional re-

duction of instanton equations on a four-dimensional space, which can provide new insights.

For example, instanton equations on Taub-NUT spaces can be reduced to Bogomolnyi’s

equations on R3 (with singularities) [55], which recently led to the discovery of new explicit

solutions [56, 57], using the techniques developed in [58, 59] for solving instanton equations

on Taub-NUT spaces. It might therefore be interesting to explore instanton equations on

circle fibrations over (7.1) and look for their applications in string theory. More recently, a

set of partial differential equations on G2-manifolds was discovered [60], which can be re-

duced in special cases to Bogomolnyi’s equations on R3. It would be interesting to explore

whether the system studied in this paper and the related Bogomolnyi equations on (7.1)

have an interesting 7-dimensional origin.

In this paper we focused on the case of a single monopole, corresponding to a (2, 0)-

string wound once. It would be interesting to generalize the discussion to the case of

multiple (2, 0)-strings, which corresponds to monopole charge higher than 1 in the effective

metric (7.1). Techniques for analyzing the low-energy description of multiple (2, 0)-strings

have recently been developed in [61, 62].
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A Recasting the BPS equations in terms of a single potential

The action (6.15) is invariant under dilatations that act as

f(r, ρ)→ f(λr, λρ) , χ(r, ρ)→ χ(λr, λρ) .

The components of the associated Noether current are given by

Jr =
ρf2
r

2f2
+
ρ2frfρ
rf2

−
ρf2
ρ

2f2
+
ρχ2

r

2f2
+
ρ2χrχρ
rf2

−
ρχ2

ρ

2f2
,

Jρ =
ρ2f2

ρ

2rf2
+
ρfrfρ
f2

− ρ2f2
r

2rf2
+
ρ2χ2

ρ

2rf2
+
ρχrχρ
f2

− ρ2χ2
r

2rf2
.
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The equations of motion (6.9)–(6.10) imply the conservation equation4

(Jr)r + (Jρ)ρ = 0,

which implies that there exists a potential function Φ such that

Jρ = Φr , Jr = −Φρ . (A.1)

To proceed, we think of the functions f and χ as defining a change of coordinates from

(f, χ) to (r, ρ) [similar to (6.17), except with the φ coordinate absent]. In (r, ρ) coordinates,

the AdS2 metric (6.16) becomes:

ds2 = Grrdr
2 + 2Grρdrdρ+ Gρρdρ

2 , (A.2)

where the metric G can be expressed, using (A.1), as:

Grr = − r2

r2 + ρ2

(
Φρρ + Φrr +

1

r
Φr +

1

ρ
Φρ

)
,

Gρρ = − r2

r2 + ρ2

(
Φρρ + Φrr −

1

r
Φr −

1

ρ
Φρ

)
,

Grρ =
r

ρ(r2 + ρ2)
(rΦr − ρΦρ) .

Φ then satisfies a nonlinear differential equation that states that the Ricci scalar of (A.2)

is R = −2. In order to incorporate the Dirac string for r < a, the function Φ must diverge

like log ρ as ρ→ 0 and r < a. Define Z and R by:

Z ≡ 1

2a
(ρ2 + r2 − a2) , R ≡

√
ρ2 + Z2 =

1

2a

√
(ρ2 + r2 − a2)2 + 4a2ρ2 . (A.3)

For large a, the solution to f and χ is given by adapting the Prasad-Sommerfield solution

as given by [49]:

f=
ρ sinh R

R+R cosh R cosh Z−Z sinh Z sinh R
, χ=

Z cosh Z sinh R−R sinh Z cosh R

R+R cosh R cosh Z−Z sinh Z sinh R
,

(A.4)

where we have set the VEV to v = 1, and we have used R as a substitute for the distance

from the core of the monopole. From this we find, in the large a limit,

Φ→ −1

4
ρ2 +

1

2
log ρ− log R + log sinh R . (A.5)

We also note that the abelian solution

f =

(
R− Z

2a

)
e−

1
2
vr2 , χ = 0 ,

4But note that (Jr, Jρ) are not directly related to the stress-energy tensor derived from the original

(“physical”) action in the original fields Ai and Φ. The “physical” conserved currents associated with

dilatations generally vanishes on BPS configurations [63].
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Figure 4. Results of a numerical analysis with parameters b = 2.60 and N = 22. The graphs show

the energy density Θ ≡ U/V (solid line) and the gauge invariant absolute value of the scalar field

|Φ̃| ≡ (Φ̃aΦ̃a)1/2 (dashed line) for VEV v = 1 and soliton center at a = 1. The graphs are on the

axis U = 0 and the horizontal axis is V. The vertical axis refers to Θ, and the asymptotic value of

|Φ̃| is 1. At V = 0 the value of Θ is 1.5× 10−3 and the value of |Φ̃| is 0.76. The value of the excess

energy E for this configuration is less than 2 × 10−5 of EBPS.

can be derived from the potential

Φ =
1

4
v2r2ρ2 +

1

2
v(2aR + r2 − ρ2) + log

[
2aR

(R− Z)(a+ R + Z)

]
.

Finally, we note that a change of variables,

r + iρ = aeξ , r − iρ = aeξ ,

converts the metric (A.2) to the more compact form:

ds2 = −4 cosh2

(
ξ − ξ

2

)
Φξξdξdξ + coth

(
ξ − ξ

2

)
(Φξdξ

2 − Φξdξ
2
) , (A.6)

where Φξ ≡ ∂Φ/∂ξ, Φξ ≡ ∂Φ/∂ξ, and Φξξ ≡ ∂2Φ/∂ξ∂ξ. The equation to solve is again

R = −2, where R is the Ricci scalar calculated from the metric (A.6), and the result is

a rather length nonlinear partial differential equation for the single field Φ, which we will

not present here.

B Numerical results

As a first step towards a numerical analysis of the solution to the BPS equations (5.5) we

find it convenient to recast the equations in a different gauge from the one we used in the

main text. We begin by parameterizing the scalar field components as:

φα = xα(P + T ) , φ3 = S , (B.1)

and the gauge field components as:

Aαβ = x(βεα)γx
γM+

1

2
εαβK , Aαr = −rεαγxγ(P−T ) , A3

β = εβγx
γW , A3

r = 0 . (B.2)
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with α, β, γ = 1, 2, εαβ the anti-symmetric Levi-Civita symbol, and P, S, T , M, K, and

W functions of (r, ρ) only. Next, we fix the gauge by setting M = 0. Defining

U ≡ ρ2 , V ≡ r2,

the BPS equations (5.5) reduce (after rescaling φ by kR) to:

0 = T W − 2
∂T
∂U

, (B.3)

0 = 2U
∂P
∂U

+ UWP + 2P +
∂K
∂V

+
1

2
SK , (B.4)

0 = V(T − P)S +
1

2
KW + 2V

∂P
∂V

+ 2V
∂T
∂V
− ∂K
∂U

, (B.5)

0 =
∂W
∂V
− ∂S
∂U

+
1

2
T K , (B.6)

0 = UV(P2 − T 2) +
1

4
K2 + 2W + 2V

∂S
∂V

+ 2U
∂W
∂U

. (B.7)

Let us also set

Z ≡ 1

2a
(ρ2 + r2 − a2) , R ≡

√
ρ2 + Z2 =

1

2a

√
(ρ2 + r2 − a2)2 + 4a2ρ2 , (B.8)

as in (A.3). The advantage of the ansatz (B.1)–(B.2) is that the abelian solution (6.12)–

(6.13) can be written in the form:

P =
v

2R
− 1

aR2
, S =

vZ

R
− Z

aR2
, T =

v

2R
, K =

a2 + U−V

aR2
, W = − 1

R2
− Z

aR2
.

(B.9)

which has no singularities except at r = a (and in particular no Dirac string).

We now require that at either limit r →∞ or ρ→∞ the full solution should reduce to

the abelian solution. At the tip r = 0 the solution is required to be regular. This allows us

to determine K, T , and W at the tip as follows. Setting V = 0 in (B.3), (B.5), and (B.7),

we get the ordinary differential equations

T W − 2
∂T
∂U

=
1

2
KW − ∂K

∂U
=

1

4
K2 + 2W + 2U

∂W
∂U

= 0 , (V = 0) (B.10)

which we can solve uniquely, given the known boundary conditions at U → ∞. This is

easily done by expressing K and T in terms of the function (1 + UW) and its derivatives,

and changing variables to log U. The result is that unique solution to (B.10) that satisfies

the boundary conditions at U→∞ is

K =
4a

U + a2
, W = − 2

U + a2
, T =

va

U + a2
, (V = 0), (B.11)

which is none other than the abelian solution (B.9) at V = 0.

We cannot determine P and S at V = 0 so easily, and our strategy will be to find an

approximate solution to (B.3)–(B.7) by the variational method, minimizing the energy of

the field configuration within a certain class of trial functions of (U,V). For the energy
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we take the expression for the excess energy above the BPS bound for a stationary con-

figuration of gauge field and minimally coupled adjoint scalar on a manifold given by the

three dimensional metric (5.7), that is,

E ≡ 1

2
tr

∫
√
ggij(DiΦ̃−Bi)(DjΦ̃−Bj)d3x

=
1

2
tr

∫ [
(rDrΦ̃− F12)2 + (rD1Φ̃− F2r)

2 + (rD2Φ̃− Fr1)2
]
ρdρ

(
dr

r

)
, (B.12)

where Bi and Φ̃ were defined in (5.6), and the “tr” is in the fundamental representation.

Note that E is different from the physical energy (5.10). The integrand in (B.12) is α̃/r2

bigger than the integrand in the first term on the r.h.s. of (5.10), but they are both

minimized on the BPS configurations, and (B.12) gives more weight to the vicinity of

r = 0. We can rewrite E in terms of the right-hand-sides of (B.3)–(B.7) as follows. Setting

X1 = T W − 2
∂T
∂U

, (B.13)

X2 = 2U
∂P
∂U

+ UWP + 2P +
∂K
∂V

+
1

2
SK , (B.14)

X3 = V(T − P)S +
1

2
KW + 2V

∂P
∂V

+ 2V
∂T
∂V
− ∂K
∂U

, (B.15)

X4 =
∂W
∂V
− ∂S
∂U

+
1

2
T K , (B.16)

X5 = UV(P2 − T 2) +
1

4
K2 + 2W + 2V

∂S
∂V

+ 2U
∂W
∂U

, (B.17)

we get (B.12) in the form

E =

∫ (
1

8
U2X 2

1 +
1

8
X 2

2 +
X 2

3

16V
+

1

4
UX 2

4 +
X 2

5

16V

)
dUdV . (B.18)

We also note that the BPS bound on energy is given by

EBPS = tr

∫
√
ggij(BjDiΦ̃)d3x

= tr

∫ [
F12DrΦ̃ + F2rD1Φ̃ + Fr1D2Φ̃

]
ρdρdr =

∫
dλ , (B.19)

where the 1-form λ is defined by

λ ≡
[

1

8
UKW(P + T ) +

1

16
K2S +

1

2
WS +

1

2
US ∂W

∂U
− 1

4
U(P + T )

∂K
∂U

]
dU

+

[
1

8
USK(T − P) +

1

4
U(T 2 − P2)(1 + UW)− 1

4
U(P + T )

∂K
∂V

+
1

2
US ∂W

∂V

]
dV .

Requiring the asymptotic behavior for large U and V to be as in (B.9), we find

EBPS = 2v .

We construct our trial functions by modifying the abelian solution (B.9). But first

we need to smooth out the singularity of that solution at V = a2 while preserving the
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asymptotic behavior at large U and V, as well as the behavior (B.11) at V = 0. For this

purpose we define:

R ≡
√

U + V + a2 =
√
r2 + ρ2 + a2 (B.20)

and then define smoothed versions of P, S, T , K, W:

P̃ ≡ av

R2
+

2a(va2 − 2)

R4
− 2a3vU

R6
,

S̃ ≡ v − 2

R2
− 2va2U

R4
,

T̃ ≡ v

(
a

R2
+

2a3

R4
− 2a3U

R6
− 2a5(a2 + U)

R8

)
,

K̃ ≡ 4a

R2
− 8aV

R4
,

W̃ ≡ − 2

R2
− 8a2

R4
+

8a2(a2 + U)

R6
,

so that for V→∞ at fixed U we have

P̃ =
v

2R
− 1

aR2
+O

(
1

V4

)
,

S̃ =
vZ

R
− Z

aR2
+O

(
1

V3

)
,

T̃ =
v

2R
+O

(
1

V4

)
,

K̃ =
a2 + U−V

aR2
+O

(
1

V3

)
,

W̃ = − 1

R2
− Z

aR2
+O

(
1

V4

)
,

and P̃, S̃, T̃ , W̃, K̃ are smooth everywhere. We also define

Rb ≡
√

U + V + b2 =
√
r2 + ρ2 + b2 ,

where b is a parameter to be determined dynamically by the variational principle. We now

pick a sufficiently large integer N (we chose N = 20 below), and construct trial functions

in the form:

P = P̃ +
1

R5+2N
b

n+m≤N∑
n,m≥0

Pm,nUmVn ,

S = S̃ +
1

R4+2N
b

n+m≤N∑
n,m≥0

Sm,nUmVn ,

T = T̃ +
V

R5+2N
b

n+m≤N−1∑
n,m≥0

Tm,nUmVn ,
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K = K̃ +
V

R4+2N
b

n+m≤N−1∑
n,m≥0

Km,nUmVn ,

W = W̃ +
V

R4+2N
b

n+m≤N−1∑
n,m≥0

Wm,nU
mVn ,

where Pm,n, Sm,n, Tm,n, Km,n, Wm,n are constant coefficients to be determined. These ex-

pressions are designed to preserve the boundary condition (B.11), as well as the asymptotic

behavior for large U and V. We then find the coefficients Pm,n, Sm,n, Tm,n, Km,n, Wm,n

that minimize E , using the Newton-Raphson method for given b, and finally we optimize

b. For example, we find for the dimensionless coefficient va2 = 1 and N = 22 that the

optimal b is 2.6a. We define the energy density

U ≡ 1

2
tr
[
(DrΦ̃)2 + (D1Φ̃)2 + (D2Φ̃)2

]
+

1

2
r2 tr

[
F 2

12 + F 2
1r + F 2

2r

]
, (B.21)

for the exact solution we have

U = UBPS ≡ r tr
[
F12DrΦ̃ + F2rD1Φ̃ + Fr1D2Φ̃

]
. (B.22)

The total energy is then

EBPS =
1

4

∫
1

V
UBPSdVdU .

We present in figure 4 our5 numerical results for Θ ≡ U/V as well as for the gauge invariant

absolute value of the scalar field

|Φ̃| ≡ (Φ̃aΦ̃a)1/2 =
√

U(P + T )2 + S2 .

The results are for va2 = 1, and it is interesting to note that for such a relatively small

value of va2, the core of the soliton (where |Φ̃| = 0) is at r ≈ 2.9 (V = 8.46 in the graph

of figure 4), which is far from a = 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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