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Abstract: We show that M-theory admits a class of supersymmetric eight-dimensional

compactification background solutions, equipped with an internal complex pure spinor,

more general than the Calabi-Yau one. Building-up on this result, we obtain a a particular

class of supersymmetric M-theory eight-dimensional non-geometric compactification back-

grounds with external three-dimensional Minkowski space-time, proving that the global

space of the non-geometric compactification is again a differentiable manifold, although

with very different geometric and topological properties respect to the corresponding stan-

dard M-theory compactification background: it is a compact complex manifold admitting

a Kähler covering with deck transformations acting by holomorphic homotheties with re-

spect to the Kähler metric. We show that this class of non-geometric compactifications

evade the Maldacena-Nuñez no-go theorem by means of a mechanism originally developed

by Mario Garćıa-Fernández and the author for Heterotic Supergravity, and thus do not

require lP -corrections to allow for a nontrivial warp factor or four-form flux. We obtain

an explicit compactification background on a complex Hopf four-fold that solves all the

equations of motion of the theory, including the warp factor equation of motion. We also

show that this class of non-geometric compactifications are equipped with a holomorphic

principal torus fibration over a projective Kähler base as well as a codimension-one fo-

liation with nearly-parallel G2-leaves, making thus contact with the work of M. Babalic

and C. Lazaroiu on the foliation structure of the most general M-theory supersymmetric

compactifications.
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1 Introduction and summary of results

Supersymmetry has been linked in many different and profound ways to geometry since

its discovery in the seventies, see for example [1–5] for more information and further refer-

ences. In particular, supersymmetric solutions to Supergravity theories are closely linked

to spinorial geometry, since they consist of manifolds equipped with spinors constant re-

spect to a particular connection, whose specific form depends on the Supergravity theory

under consideration [6, 7]. The global existence of spinors and the other Supergravity fields

usually constrains the global geometry of the manifold. However, the final resolution of the

Supergravity equations of motion usually resorts to the use of adapted coordinates to the

problem at a local patch of the manifold. Once we have solved the Supergravity equations

of motion, a really hard problem by itself, we have to face another difficulty: in order to

fully understand the solution, we need to extract as much information as possible about

the global geometry of the manifold just from the existence of some explicit tensors and

spinors, which we only know at a local patch. In other words, we want to know which

manifolds are compatible with a particular set of tensors and spinors whose form is only

known locally.

In fact, this is not a new problem in Theoretical Physics or Differential Geometry. It

was already encountered soon after the discovery of General Relativity. Solving General

Relativity’s equations of motion1 usually means solving the metric at a local patch of a

1In contrast with what it is usually implied in the mathematical literature, General Relativity’s equations

are in general not just the requirement of Ricci-flatness of the Levi-Civita connection.
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manifold which is not known a priori. In order to find which would be the physically

meaningful manifold compatible with a locally defined metric, physicists back then created

a procedure, by now textbook material [8], to obtain the maximally analytic extension of a

given local patch endowed with a locally defined metric. In doing so for a simple solution,

namely the Schwarzschild black-hole, one can find for example that the corresponding man-

ifold can indeed be covered by a single system of coordinates and it is thus homeomorphic

to an open set in R
4. This procedure has been carried out in other popular solutions of

General Relativity, for example the Reissner-Nordström and the Kerr black holes, which

are relatively simple solutions compared to the kind of solutions that one obtains in Su-

pergravity, where finding the maximally analytic extension associated to a local solution is

more difficult due to their complexity.

Still, for supersymmetric solutions of Supergravity some information about the global

geometry of the manifold can be obtained simply from the analysis of the existence of

constant spinors: for example it may be possible to show that the manifold is equipped

with various geometric structures, like Killing vectors or complex, Kähler, Hyperkähler,

Quaternionic... appropriately defined structures. This already constrains the problem to

a relatively specific class of manifolds. However, in performing such analysis sometimes

there are involved various kinds of subtle choices, which, if modified, would yield a different

global solution, a different manifold which however is locally indistinguishable from the

unmodified one, since they exactly carry the same structure at the local level.

The first thing we are going to do in this note is to precisely modify one condition that

had been implicitly assumed so far in String-Theory warped compactifications [9]: we are

going to consider that the warp-factor is not a globally defined function on the compact

manifold, but only, given a good open covering, locally defined on each open set. In order to

do this consistently we will keep in mind that the physical fields of the theory must remain

as well-defined tensors on the manifold, as it is required from physical considerations. The

warp factor will turn out to be globally described as a section of an appropriate line bundle.

We are going to apply the previous modification to M-theory compactifications to

three-dimensional Minkowski space-time preserving N = 2 supersymmetries. M-theory

compactifications to three dimensions preserving different amounts of supersymmetry have

been extensively studied in the literature [10–17]. In references [16, 17] a very rigorous

and complete study of the geometry of the internal eight-dimensional manifold has been

carried out using the theory of codimension-one foliations, which turns out to be the right

mathematical tool to characterize it, as suggested in [18].

Coming back to the case of compactifications to three-dimensional Minkowski space-

time preservingN = 2 supersymmetries, the analysis of the seminal reference [10] concludes

that, among other things, the internal eight-dimensional manifold is a Calabi-Yau four-

fold, although the physical metric is not the Ricci-flat metric but conformally related to it.

This class of M-theory compactifications is very important for F-theory [19] applications,

since compactifications of F-theory are in fact defined through them by assuming that the

internal manifold is an elliptically fibered Calabi-Yau manifold, see [20] for a review and

further references.

By assuming that the warp factor is not a global function, we will be able to generalize

the result of reference [10]: we will find that the internal manifold must be a locally con-
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formally Kähler manifold [21–23] locally equipped with a preferred Calabi-Yau structure.

Evidently, standard Calabi-Yau manifolds are a particular case inside this class. Let us say

that this note is of course not the first attempt to obtain admissible F-theory backgrounds

beyond the Calabi-Yau result; see references [24, 25] for applications of Spin(7)-manifolds

to F-theory compactifications.

It turns out that the solution that is obtained by assuming that the warp factor is not

globally defined belongs to a simple class of non-geometric compactification backgrounds,

and this is the approach that we will use in section 4. By non-geometric solution we mean

here a global solution obtained by patching up local solutions to the equations of motion

by means of local diffeomorphisms, gauge transformations, and global symmetries of the

equations of motion, namely U-dualities. Notice that the term non-geometric is somewhat

misleading since, although there is no guarantee that the global of a non-geometric solution

is a smooth differentiable manifold, it will be for sure a well-defined mathematical object,

with well-defined topological an geometric properties. We will use anyway the term non-

geometric since it is widely used in the literature.

Non-geometric compactification backgrounds have been intensively studied in the lit-

erature from different points of view, see for example [26–29] for more details and further

references. References [30, 31] consider compactifications that are non-geometric from the

Heterotic point of view and that become geometric compactifications via duality with F-

theory. References [32–35] contain a very interesting approach, named thereG-theory, along

the main idea of this work: among other things, they provide a very detailed construction

of non-perturbative vacua by gluing local solutions to the equations of motion using differ-

ent types of U-dualities. When performing such a non-trivial global patching, it is usually

very difficult to obtain precise results about the topological and geometric properties of

the global space of the compactification. This is partly due to the fact that the symmetries

of the local equations of motion involved in the global patching can be relatively involved.

That is why here we will consider the arguably simplest non-geometric global patching of

local solutions to the equations of motion of eleven-dimensional Supergravity on a warped

compactification background to three-dimensional Minkowski space-time. In exchange, we

will be able to fully characterize the topology and the geometry of the global space.

More precisely, we will consider local solutions to the eleven-dimensional Supergravity

equations of motion and we will globally patch them using local diffeomorphisms, gauge

transformations and the trombone symmetry of the warp factor, which simply consists on

rescalings of the warp factor by a real constant. Therefore, the global symmetry of the equa-

tions of motion that we will use to patch the local solutions is the simplest one. The idea

is to consider the simplest non-geometric scenario in order to be able to fully characterize

topologically as well as geometrically the global space of the compactification, something of

utmost importance in order to understand the moduli space of a non-geometric compact-

ification space. Hence, we hope this compactification background will hep to understand

the nature of non-geometric compactification spaces, starting from the simplest case. In

fact, we will be able to show that the global space of the compactification is a differen-

tiable manifold, but with topological and geometric properties drastically different from

the corresponding standard geometric compactification backgrounds.

– 3 –
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Let us be more precise. In this letter we will prove, among other things, that:

• The non-geometric compactification space M is a particular class of compact complex

manifolds admitting a Kähler covering with deck transformations acting by holomor-

phic homotheties with respect to the Kähler metric. In other words, M is a particular

type of locally conformally Kähler manifold. Therefore, M admits a Käler covering

M̃ with Kähler form ω̃, fitting in the following short sequence:

Γ → M̃ → M . (1.1)

The non-geometric warp factor is encoded in the geometry of M in an elegant way.

Given a 2d-dimensional locally conformally Kähler manifold (M,ω, θ) with Kähler

form ω and closed Lee-form θ, let L the trivializable flat line bundle associated to the

representation A → | det A|
1

d , A ∈ Gl(2d,R), with a flat connection ∇θ ≡ d+ θ. The

line bundle L is usually called the weight bundle of M and its holonomy coincides

with the character χ : π1(M) → R
+. The image of χ is called the monodromy group

of M . The warp factor is given by a flat connection of L which, after choosing a

trivialization, is given by a closed one-form on M . If M is simply-connected its

holonomy is trivial and then M becomes a Kähler manifold and the compactification

becomes geometric.

• The non-geometry of the solution is then associated to the space being non-simply-

connected. If we take M to be simply connected, then M becomes a Kähler manifold

and we obtain a standard geometric solution.

• We obtain an explicit solution, preserving locally N = 2 supersymmetry, on a com-

plex Hopf four-fold that solves all the local equations of motion of the theory, includ-

ing the equation of motion for the wrap factor. We explicitly write the local metric,

flux and warp factor.

• The previous solution evades the Maldacena-Nuñez theorem by means of a mecha-

nism originally developed by Mario Garćıa-Fernández and the author for Heterotic

Supergravity, and thus there are non-geometric solutions with non-zero warp factor

and flux without the need of higher derivative corrections.

• The explicit solution on the complex Hopf four-fold is equipped with a holomorphic

elliptic fibration over a Kähler base. This points out to a possible application of this

backgrounds to F-theory compactifications.

• The explicit solution on the complex Hopf four-fold admits a codimension-one folia-

tion equipped with a nearly-parallel G2 structure on the leaves. Then, the solution,

even non-geometric, preserves the structure of the most general geometric compacti-

fication background of eleven-dimensional Supergravity on an eight-manifold, studied

in references [16, 17, 36, 37].
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In addition, the moduli space of locally conformally Kähler manifolds is usually very re-

stricted, so compactification on this backgrounds may partially evade the moduli stabiliza-

tion problem, present in many String Theory compactifications.

To summarize, we think this kind of non-geometric backgrounds is simple enough to

be manageable, in particular it is possible to study their global topological and geomet-

ric properties, yet it is an honest non-trivial non-geometric compactification background.

Therefore it might be a good starting point to a systematic rigorous study of non-geometric

Supergravity backgrounds. This letter is a first small step in that direction.

The consequences of compactifying M-theory on a locally conformally Kähler mani-

fold instead of a Calabi-Yau four-fold are manifold since the former is not Ricci-flat in a

compatible way and has different topology than the latter. This deserves further study. In

particular we think that it would be interesting to obtain, if possible, the effective action

of a M-theory compactification on a non-Calabi-Yau locally conformally Kähler manifold.

The plan of this paper goes as follows. In section 2 we review, following [10], the anal-

ysis of M-theory compactifications to three-dimensional Minkowski space-time preserving

N = 2 supersymmetries, pointing out in a precise way the well-known issue of imposing at

the same time the classical Killing spinor equations and the lP -corrected equations of mo-

tion, an issue that is not present in the non-geometric setting since the Maldacena-Nuñez

no-go theorem does no hold and thus there is no need of considering lP -corrections in order

to have non-trivial solutions. In section 3 we modify the procedure explained in section 2 by

considering a warp-factor which is not a globally defined function on the internal manifold.

In section 4 we reinterpret the previous construction as a non-geometric compactification

background. In section 5 we construct the non-geometric compactification and we obtain

an explicit solution to all the equations of motion, studying some of its properties. In

particular, we show that it is equipped with a holomorphic torus fibration over a projective

Kähler base and with a codimension-one foliation with nearly-parallel G2-leaves.

2 M-theory compactifications on eight-manifolds

In this note we are interested in a particular class of non-geometric M-theory compacti-

fication backgrounds to N = 2 three-dimensional Minkowski space-time. These type of

non-geometric compactifications will be introduced in section 4. In this section we will

consider standard M-theory supersymmetric solutions, in order to motivate how the non-

geometric version of these solutions may be useful in evading some of the issues present

in the standard M-theory supersymmetric compactification case, such as the Maldacena-

Nuñez no-go theorem [38]. The effective, low-energy, description of M-theory [39] is believed

to be given by eleven-dimensional N = 1 Supergravity [40], which we will formulate on

an eleven-dimensional, oriented, spinnable, differentiable manifold2 M . We will denote by

S → M the corresponding spinor bundle, which is a bundle of Cl(1, 10) Clifford modules.

2By differentiable manifold we mean a Hausdorff, second-countable, topological space equipped with a

differentiable structure.
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At each point p ∈ M we thus have that Sp is a thirty two real, symplectic, Cl(1, 10) Clifford

module,3 with symplectic form ω.

The field content of eleven-dimensional Supergravity is given by a Lorentzian metric

g, a closed four-form G ∈ Ω4
cl (M) and a Majorana gravitino Ψ ∈ Γ

(

S ⊗ Λ1 (M)
)

. We will

focus only on bosonic solutions (M, g,G) of the theory, so we will truncate the gravitino.

The classical bosonic equations of motion are given by:

E0 = Ric−
1

2
G ◦ G+

1

6
g |G|2 = 0 , F0 = d ∗ G+ G ∧ G = 0 , (2.1)

where

(G ◦ G)(v, v) = |ιvG|
2 , v ∈ X(M) , (2.2)

is a symmetric (2, 0) tensor. Eleven-dimensional Supergravity supersymmetric bosonic

solutions, and in particular supersymmetric compactification backgrounds, are defined as

being solutions of eleven-dimensional Supergravity admitting at least one real spinor ǫ ∈

Γ(S) such that:

Dǫ = 0 , (2.3)

where D is the Supergravity connection acting on the bundle of Clifford-modules S. It is

given by:

Dvǫ ≡ ∇vǫ+
1

6
ιvG · ǫ+

1

12
v♭ ∧ G · ǫ . (2.4)

Here ∇ is the spin connection induced from the Levi-Civita connection on the tangent

bundle and · denotes the Clifford action of forms on sections of S.

A supersymmetric configuration (M, g,G), namely a manifold admitting a D-constant

spinor, does not necessarily solves the eleven-dimensional Supergravity equations of motion,

but it is in some sense not far from being a solution, since the integrability condition of (2.3)

can be written in terms of the equations of motion of the theory. The integrability condition

of (2.3) can be found to be:

ιv E · ǫ−
1

6 · 3!
v♭ ∧ (∗F ) · ǫ+

1

3!
ιv(∗F ) · ǫ = 0 , (2.5)

where E0 denotes the Einstein equation and F0 denotes the Maxwell equation of eleven-

dimensional Supergravity, see (2.1). Supersymmetric solutions of eleven-dimensional Su-

pergravity can be divided in two classes, the time-like class and the null class, see refer-

ences [41, 42], where the classification of supersymmetric solutions of eleven-dimensional

Supergravity was obtained. The time-like class is given by the supersymmetric solutions

that satisfy:

g(ξ♭, ξ♭) > 0 , ξ(v) = ω(ǫ, v · ǫ) , (2.6)

where ξ is the one-form associated to ǫ. Null supersymmetric solutions on the other hand,

are those that satisfy g(v, v) = 0. For time-like configurations, it can be shown that if

the Maxwell equation is satisfied, then the Einstein equations follow from the integrability

3There are two Cl(1, 10) Clifford modules, which can be distinguished by the action of the volume form

of Cl(1, 10).
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condition of the Killing spinor equation (2.3), see reference [41]. In other words, the

Einstein equations follow from supersymmetry and the Maxwell equations. Hence, as it is

well known in the literature, supersymmetry is closely related to the equations of motion

but it does no always imply them. Supersymmetric compactification backgrounds are

indeed time-like supersymmetric solutions of eleven-dimensional Supergravity.

Compactification backgrounds of eleven-dimensional Supergravity are subject to the

Maldacena-Nuñez no-go theorem [38], which we state here for completeness, applied to

eleven-dimensional Supergravity.

Theorem 2.1. Every warped compactification of eleven-dimensional Supergravity on a

closed manifold necessarily has constant warp factor and zero four-form flux G.

Therefore it would seem that if we want to define F-theory compactifications through

eleven-dimensional Supergravity compactifications on an eight-dimensional manifold we

will end-up having only the trivial flux-less solution. The standard way to evade the

Maldacena-Nuñez theorem is to include in the theory higher-derivative corrections and/or

negative-tension objects. Since it is not clear whether negative-tension objects exist in

M-theory, the strategy of reference [10] was to include the particular higher-derivative

correction to eleven-dimensional Supergravity which was known at the time and which

gives a negative contribution to the energy-momentum tensor of the theory. This correction

was computed for the first time in the one obtained in reference [44]. By means of M/F-

Theory duality, higher-derivative corrections to M-theory and negative-tension objects in

String Theory are dual manifestations of the same phenomena [43].4 The only dimension-

full parameter in eleven-dimensional Supergravity is the Planck-length lP and the higher-

derivative corrections of M-theory arise in an expansion in powers of this constant over

the relevant length-scale of the the problem under consideration. For example, the higher-

derivative term considered in [10] is a l6P -correction. For simplicity from now on we will

refer to the higher-derivative corrections of M-theory as lP -corrections.

The correction to the Killing spinor equation (2.3) corresponding to the correction

considered in [10] is not known, so the analysis performed in [10] uses the classical Killing

spinor equations and at the same time imposes lP -corrected equations of motion. This

immediately runs into a possible inconsistency, since classical supersymmetry is consistent

with the classical equations of motion through the integrability condition of the Killing

spinor equation, so imposing lP -corrected equations of motion on a classical supersymmetric

configuration leads to extra constraints that make the problem over determined. The

possible inconsistency can be computed explicitly. Let E and F denote the lP -corrected

Einstein and Maxwell equations of motion. They can be written as:

E = E0 + E1 , F = F0 + F1 , (2.7)

where E1 and F1 denote the corresponding corrections to the classical equations of motion

E0 and F0, and which include the appropriate lP factors. Now, in order to study the

consistency of imposing the lP -corrected equations of motion E and F as well as classical

4We thank JHEP’s referee for explaining this point.
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supersymmetry, we only have to assume that we indeed have a solution of lP -corrected

equations of motion and compute what is the extra-constraint that appears when imposing

the integrability condition of the classical Killing spinor equation. The result is, for every

v ∈ X(M), given by:

ιv E1 · ǫ−
1

6 · 3!
v♭ ∧ (∗F1) · ǫ+

1

3!
ιv(∗F1) · ǫ = 0 . (2.8)

Therefore, if we want a solution of the classical Killing spinor equation to be a solution of

the lP -corrected equations of motion, the constraint (2.8) must be necessarily satisfied.

The outcome of the analysis of reference [10] is that classical supersymmetry imposes

the manifold to be a Calabi-Yau four-fold, although the physical metric does not correspond

to the Ricci-flat Calabi-Yau metric. Strictly speaking then, if we want to have a solution

of the lP -corrected equations of motion, not every such Calabi-Yau is an admissible com-

pactification background: only those satisfying equation (2.8), if any, should be considered

as honest solutions of the equations of motion. Let us be more explicit for the case of [10].

In reference [10] the equations of motion of classical eleven-dimensional Supergravity were

modified by the only known lP -correction at the time, obtained in reference [44], and which

only affects the equation of motion for G. Hence, E1 = 0 and F1 is given by:

F1 = βX8 = β
(

p21 − p2
)

, (2.9)

where p1 and p2 are respectively the first and second Pontryagin classes of M , and β is an

appropriate constant. Plugging equation (2.9) into equation (2.8) we obtain the explicit

constraint that the Calabi-Yau four-folds coming out of the supersymmetry analysis of [10]

have to satisfy in order to be an honest solution of the corrected equations of motion:
(

−v♭ ∧ (∗X8) + 6 ιv(∗X8)
)

· ǫ = 0 . (2.10)

Hence, and again strictly speaking, equation (2.10) constrains the class of admissible F-

theory compactification manifolds. Admissible in the sense of honestly solving the equa-

tions of motion of lP -corrected eleven-dimensional Supergravity and at the same time sat-

isfying the classical Killing spinor equation of eleven-dimensional Supergravity. Of course,

this problem is well-known to experts on the field, but unfortunately, as long as the eleven-

dimensional Supergravity lP -corrected Killing spinor equation is not known, it seems not

possible to solve it in a completely rigorous way. Important steps in this direction have

been made in references [45–47], where a thoroughly and consistent analysis of M-theory

compactifications in the presence of lP -corrections has been made, and even an educated

guess for the lP -corrected Killing spinor equation has been proposed. Remarkably enough,

the integrability condition of the lP -corrected proposal for the Killing spinor equation is

compatible with the lP -corrected equations of motion, which definitely suggests that if the

educated guess is not already the correct lP -corrected Killing spinor equation, it cannot

be far from being it. One of the main conclusions of [46] is that even when one consis-

tently takes into account lP -corrections, the internal manifold of the compactification is

still topologically a Calabi-Yau four-fold. This strongly suggests that the conclusion of

reference [10] is solid after properly taking into account lP -corrections.

– 8 –
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A possible, temporary, solution to the problem of imposing classical supersymmetry

and lP -corrected equations of motion, would be to consider only the elliptically fibered

Calabi-Yau four-folds, if any, that satisfy the constraint (2.8). This way we would be sure

that we are dealing with honest solutions to lP -corrected eleven-dimensional Supergravity

and at the same time it would single out a preferred class of eliptically fibered Calabi-Yau

manifolds.

In this letter we are going to propose a simple class of twisted compactifications that

directly evades the Maldacena-Nuñez theorem at the classical level and admits an inter-

pretation as non-geometric compactification backgrounds. Therefore, no lP -corrections are

needed to obtain non-trivial solutions, and thus no inconsistency arises, since there exist

closed manifolds with non-trivial flux and warp factor that solve the equations of motion of

the theory at the classical level. We don’t want to imply with this that lP -corrections are

not relevant: they certainly are of utmost importance in order to understand String/M-

theory backgrounds. However, we think that it may be a good idea to understand first

non-geometric backgrounds without corrections, namely the zero-order solution, before

considering lP -corrections to non-geometric backgrounds. The non-geometric solutions

presented in this letter thus constitute the zero order non-geometric solution, which hap-

pens to be non-trivial, in the sense that it allows for non-trivial flux and warp-facor, in

contrast to what happens in the geometric case. Let us stress though that ideally the

ultimate goal would be to include and understand lP -corrections for geometric as well as

for non-geometric compactification backgrounds.

2.1 N = 2 compactifications

In this section we briefly review the standard analysis, following the seminal reference [10],

of supersymmetric M-theory compactifications to three-dimensional Minkowski space-time

preserving N = 2 supersymmetry. We will consider the space-time to be an eleven-

dimensional oriented spin manifold M . The supersymmetry condition corresponds to the

vanishing of the Rarita-Schwinger supersymmetry transformation:

δǫΨ = Dǫ = 0 , (2.11)

where ǫ ∈ Γ(S) is the spinor generating the supersymmetry transformation and D : Γ(S) →

Γ(T ∗M ⊗ S) is the eleven-dimensional Supergravity Clifford-valued connection given in

terms of g and G. For M-theory compactifications we consider the space-time to be

a topologically trivial product of three-dimensional Minkowski space R1,2 and an eight-

dimensional Riemannian, compact, spin manifold M8

M = R1,2 ×M8 . (2.12)

The metric and the four-form are taken to be given by

g = ∆2 δ1,2 + g

G = Vol ∧ ξ +G , (2.13)

– 9 –
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where ∆ ∈ C∞(M8) is a function, δ1,2 and Vol are the Minkowski metric and the volume

form in R1,2, g is the Riemannian metric in M8, and G ∈ Ω4(M8) is a closed four-form in

the internal space. Finally, the supersymmetry spinor is decomposed as

ǫ = χ1 ⊗ η1 + χ2 ⊗ η2 , χ1, χ2 ∈ Γ(S1,2) , η1, η2 ∈ Γ(S8) , (2.14)

where S1,2 is the rank-two real spinor bundle over R1,2 and S8 is the real, positive-

chirality, rank-eight spinor bundle over M8. We can form a complex pure spinor η as

η = η1 + iη2 ∈ Γ(SC
8 ), where SC

8 is the complex, positive-chirality, spin bundle over M8.

Imposing the previous structure on M , together with supersymmetry condition (2.11), im-

poses restrictions on the flux G and constrains (M8, g) at the topological as well as the

differentiable level [10]:

• M8 is equipped with a SU(4)-structure induced by η1 and η2, which we assume

everywhere independent and non-vanishing. The topological obstruction for the exis-

tence of nowhere vanishing real spinor, or in other words, the existence of a Spin(7)-

structure is given by

p21 − 4p2 + 8χ(M8) = 0 , (2.15)

where p21 and p2 are the integrated P 2
1 and P2 Poyntriagin classes, and χ(M8) is the

Euler characteristic of M8.

• M8 is equipped with a globally defined almost complex structure J , a real non-

degenerate (1,1)-form ω = g ·J and a (4,0)-form Ω constructed as bilinears of η. The

quadruplet

{g, J, ω,Ω} (2.16)

makes M8 into an almost hermitean manifold with topologically trivial canonical

bundle.

• Let us make the following conformal transformation

g̃ = ∆g , η̃ = ∆−
1

2 η , (2.17)

which implies

J̃ = J , ω̃ = ∆ω , Ω̃ = ∆2Ω . (2.18)

The usefulness of this conformal transformation comes from the fact that the trans-

formed spinors are constant with respect to the transformed connection, namely

∇̃η̃ = 0 , (2.19)

where ∇̃ is the Levi-Civita connection associated to g̃. Equation (2.19) automatically

implies that M8 has SU(4)-holonomy and thus M8 is a Calabi-Yau four-fold. In

particular we have

∇̃J̃ = 0 , ∇̃ω̃ = 0 , ∇̃Ω̃ = 0 . (2.20)

We can also see that M8 is a Calabi-Yau four-fold as follows, which might be more

natural from the algebraic-geometry point of view:
(

g̃, ω̃, J̃
)

is the compatible triplet
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of a complex structure J̃ , a symplectic structure ω̃ and a Riemannian metric g̃ making

M8 into a Kähler manifold. Since Ω̃ is an holomorphic (4,0)-form, the canonical

bundle is holomorphically trivial, which together with the Kähler property of M8,

implies that it is a Calabi-Yau four-fold.

• The one-form ξ is given by de derivative of the warp factor ∆ as follows

ξ = d
(

∆3
)

, (2.21)

and the four-form G is subject to the constraint

ιvG · η = 0 , v ∈ X(M8) . (2.22)

Once we know that M8 is a Calabi-Yau four-fold, equation (2.22) can be solved by

taking G to be (2, 2) and primitive.

From the previous analysis we conclude that if we take M8 to be a Calabi-Yau manifold,

G ∈ H(2,2)(M8) and primitive and ξ as in equation (2.21), we solve the supersymmetry

conditions (2.11) and we obtain a supersymmetric compactification background of eleven-

dimensional Supergravity to three-dimensional Minkowski space. Note that the physical

metric g is conformally related to the Ricci-flat metric g̃, and by Yau’s theorem we know

that this is the unique Ricci-flat metric in its Kähler class, and thus it is, strictly speaking,

the Calabi-Yau metric of M8.

3 Global patching of the local supersymmetry conditions

In this section we are going to slightly generalize the set-up reviewed 2 by considering

a situation where the conformal transformation (2.17) cannot be performed globally, but

only locally. We will be still satisfying the eleven-dimensional Supergravity supersymmetry

conditions, which are local, but globally we will be able to construct a manifold that is not

necessarily a Calabi-Yau four-fold but of a more general type.

As we did in section 2, we will consider the space-time to be a topologically trivial

product of three-dimensional Minkowski space R1,2 and an eight-dimensional Riemannian,

compact spin manifold M8

M = R1,2 ×M8 . (3.1)

The supersymmetry spinor is also decomposed exactly as it was done in section 2, namely

ǫ = χ1 ⊗ η1 + χ2 ⊗ η2 , χ1, χ2 ∈ Γ(S1,2) , η1, η2 ∈ Γ(S8) , (3.2)

Hence, as it happened in section 2, M8 is equipped with two everywhere independent and

non-vanishing Majorana-Weyl spinors, which implies again that the structure group of M8

can be reduced to SU(4). Therefore M8 still has to satisfy the obstruction (2.15).

Let {Ua}a∈I be a good open covering of M8 and let us equip every open set Ua with a

function ∆a ∈ C∞(Ma) and a closed one form ξa ∈ Ω1(Ua), so we can consider the triplet
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{Ua,∆a, ξa}a∈I on M8. We will assume that the Lorentzian metric g and the four-form G

can be written, for every open set Ua ⊂ M , as follows:

g|Ua
= ∆2

a δ1,2 + g|Ua
,

G|Ua
= Vol ∧ ξa +G|Ua

, (3.3)

where g is a Riemannian metric in M8 and G is a closed four-form in M8. In order to

keep a clean exposition, we are not explicitly writing the atlas that we are using for R1,2,

which, for each Ua consists of an open set which we take to be the whole R1,2 and its

corresponding coordinate system φa. More precisely, the atlas that we are considering for

the topologically trivial product M = R1,2 ×M8 is the following:

A = {Va × Ua, φa × ψa}a∈I , (3.4)

where Va = R1,2 for every a ∈ I, φa are the coordinates in Va and ψa are the correspond-

ing local coordinates in Ua. The atlas A is obviously not the simplest atlas for M , but

anyway it is an admissible atlas which gives M the structure of a differentiable product

manifold. We will see in a moment that the consistency of the procedure requires very

specific changes of coordinates φa ◦ φ
−1
b : R3 → R

3, Ua ∩ Ub 6= ∅. The one-form ξ is given

again by equation (2.21), only this time the result is valid locally in Ua:

ξa = d
(

∆3
a

)

. (3.5)

Now, in order for the physical fields (g,G) to be well defined, they must be tensors on M .

This is equivalent to, given any another open set Ub such that Ua ∩ Ub 6= ∅, the following

condition in Ua ∩ Ub:

∆2
a δ1,2 + g|Ua∩Ub

= ∆2
b δ1,2 + g|Ua∩Ub

,

Vol ∧ ξa +G|Ua∩Ub
= Vol ∧ ξb +G|Ua∩Ub

. (3.6)

Equation (3.6) is equivalent to:

∆2
a δ1,2 = ∆2

b δ1,2 ,

Vol ∧ ξa = Vol ∧ ξb . (3.7)

in Ua∩Ub, up to of course a change of coordinates, which in turn is reflected as a symmetry

of the equations of motion. Therefore, we must define the difference between ∆a and ∆b

in Ua ∩ Ub to be such that it can be absorbed by means of a coordinate transformation in

R1,2. The only possibility is:

∆a = λab∆b , (3.8)

in Ua ∩ Ub, where λab : Ua ∩ Ub → R is a constant function. Indeed, the multiplicative

factor (3.8) can be absorbed by means of the following change of coordinates in R1,2:

φa ◦ φ
−1
b : R3 → R

3 ,

x 7→ λ−1
ab x , (3.9)
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which is of course a diffeomorphism. It can be easily seen that

λba = λ−1
ab , λabλbcλca = 1 , (3.10)

where the second equation holds in Ua ∩ Ub ∩ Uc 6= ∅. Therefore, the following data

{M8, Ua, λab,R} , (3.11)

defines a flat line bundle L → M8 over M8 with connection that descends to a well defined

closed one form ϕ in M8, namely [ϕ] ∈ H1(M8). Using L we can write the families {∆a}a∈I
and {ξa}a∈I as

∆ ∈ C∞(M,L) ≃ Γ(L) , ξ ∈ Ω1(M,L3) , (3.12)

or in other words, in terms of a section of the line bundle L and a one-form taking values

in L3.

3.1 The global geometry of M8

As it happened in section 2, M8 is equipped with a globally defined almost complex struc-

ture J , a real non-degenerate (1,1)-form ω = g · J and a (4,0)-form Ω, where J and Ω are

constructed as a bilinears from η. The quadruplet

{g, J, ω,Ω} (3.13)

makes M8 into an almost hermitean manifold with topologically trivial canonical bundle.

The crucial difference from the situation that we encountered in section 2 is that

the conformal transformation (2.17) cannot be performed globally. Therefore, we cannot

perform the conformal transformation that transforms the quadruplet {g, J, ω,Ω} into a

Calabi-Yau structure in M8, which thus cannot be taken to be a Calabi-Yau four-fold;

in particular, the supersymmetry complex spinor is not constant respect to any Levi-

Civita connection associated to a metric in the conformal class of the physical metric. We

can however perform the conformal transformation locally on ever open set Ua, and thus

we define

g̃a = ∆ag|Ua
, η̃a = ∆

−
1

2
a η|Ua

, (3.14)

where now g̃a and η̃a are locally defined on Ua. The local conformal transformation (3.14)

implies, again locally in Ua, that

J̃a = J |Ua
, ω̃a = ∆aω|Ua

, Ω̃a = ∆2
aΩ|Ua

. (3.15)

Notice that J is invariant and thus its conformal transformed is a well defined tensor on

M8. An alternative characterization of these locally defined objects is through globally

defined tensors taking values on the corresponding powers of the flat line bundle L, namely

g̃ ∈ Γ(S2T ∗, L) , η̃ ∈ Γ(SC
8 , L

1

2 ) , ω̃ ∈ Ω2(M8, L) , Ω̃ ∈ Ω4(M8, L
2) . (3.16)

Once we go to the locally transformed spinor and metric, we have that

∇̃aη̃a = 0 , (3.17)
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where ∇̃a is the Levi-Civita connection associated to g̃a in Ua. Equation (3.17) automati-

cally implies, again locally, in Ua, that

∇̃aJ̃a = 0 , ∇̃aω̃a = 0 , ∇̃aΩ̃a = 0 . (3.18)

Hence, we can think of
{

g̃, ω̃a, J̃a, Ω̃a

}

, as a sort of preferred local Calabi-Yau structure in

Ua, which however does not extend globally to M8. We can withal obtain globally defined

differential conditions in M8 which, as we will see later, implies that the geometry of M8

belongs to a particular class of locally conformally Kähler manifolds. Notice that J̃ is a

well-defined almost-complex structure; nonetheless it is not covariantly constant since the

Levi-Civita connection in (3.18) is only defined locally in Ua, as g̃a is only locally defined

in Ua. In spite of this, we can prove the following:

Proposition 3.1. M8 is an Hermitian manifold with Hermitian structure (g, J).

Proof. LetN denote the Nijenhuis tensor associated to J . Then, on every open set Ua ⊂ M8

we can locally write N as follows

N |Ua
(u, v) = (∇̃a

uJ)(Jv)− (∇̃a
vJ)(Ju) + (∇̃a

JuJ)(v)− (∇̃a
JvJ)(u) , u, v ∈ X(M8) , (3.19)

and thus N |Ua
= 0 since J is covariantly constant respect to the locally defined Levi-Civita

connection ∇̃a. Since this can be performed in every open set of the covering {Ua}a∈I of

M , we conclude that N = 0 and hence J is a complex structure. Since the metric g is

compatible with J , (M8, g, J) is an Hermitian manifold.

Hence, we conclude that M8 is a complex Hermitian manifold. There is another global

condition that we can extract from (3.18) and which will further restrict the global geometry

of M8. Equation (3.18) implies that on every open set Ua we can find a function, namely

∆a, such that

d(∆aω)|Ua
= 0 . (3.20)

The key point now is that the de-Rahm differential does not depend on the locally-defined

Levi-Civita connection ∇̃a and therefore we can actually extend equation (3.20) to an

equivalent, well-defined, global condition in M8. Equation (3.20) is equivalent to

dω|Ua
+ d log ∆a ∧ ω|Ua

= 0 . (3.21)

Given another open set Ub such that Ua ∩ Ub 6= ∅ we have that log∆a = log∆b + log λab

at the intersection and therefore d log∆a = d log∆b. Hence, there is a well-defined closed

one-form ϕ ∈ Ω1(M8) such that

dω = ϕ ∧ ω , (3.22)

which is defined, in every open set Ua, as

ϕ|Ua
= d log∆a . (3.23)

Therefore ω is a locally conformal symplectic structure [48] on M8 and thus we have proven

the following result:
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Theorem 3.2. Let M8 be a compact, SU(4)-structure locally conformally Kähler manifold

with locally conformally Ricci-flat Kähler metric and locally conformally parallel (4, 0)-

form. Then, M8 is an admissible supersymmetric internal space for a supersymmetric

compactification of eleven-dimensional Supergravity to three-dimensional Minkowski space-

time preserving N = 2 supersymmetry.

The closed one-form [ϕ] ∈ H1(M8), which is usually called the Lee-form, is precisely

a flat connection in L → M8. Alternatively, one can define the ϕ-twisted differential

dϕ = d − ϕ whose corresponding cohomology H∗
ϕ(M8) is isomorphic to H∗(M8,Fϕ), the

cohomology ofM8 with values in the sheaf of local dϕ-closed functions. Very good references

to learn about locally conformally Kähler geometry are the book [49] and the review [50].

3.2 Solving the G-form flux

In order to fully satisfy supersymmetry, we have to impose on the four-formG the constraint

ιvG · η = 0 , v ∈ X(M8) . (3.24)

In the Calabi-Yau case, this constraint was solved by taking G to be (2, 2) and primitive.

In our case M8 is not a Calabi-Yau manifold but it is a Hermitian manifold and hence it

is equipped with a complex structure J and a compatible metric g. This turns out to be

enough, as we will see now, to conclude that indeed the same conditions, namely G to be

(2, 2) and primitive, solve equation (3.24) in our case.

First of all, since we will use this fact later, notice that taking into account that η has

positive chirality then equation (3.24) implies that G is self-dual in M8. Using the Clifford

algebra Cl(8,R) relations together with the expresion of g as bilinear of η, it can be shown

that [10]:

Γāη = Γaη = 0 , (3.25)

where {Γa} , a = 1, . . . 8 are the gamma matrices generating Cl(8,R) and the bar denotes

an antiholomorphic index. Then, equation (3.24) is equivalent to

Gmāb̄c̄Γ
āb̄c̄η + 3Gmāb̄c̄Γ

āb̄cη = 0 . (3.26)

The vanishing of the first term in equation (3.26) is equivalent to

Gmāb̄c̄η = 0 , (3.27)

which implies

G4,0 = G3,1 = G1,3 = G0,4 = 0 . (3.28)

The vanishing of the second term in equation (3.26) is equivalent to

Gab̄cd̄g
cd̄ = 0 . (3.29)

Taking now into account that G is self-dual, we can rewrite equation (3.29) as

G ∧ J = 0 , (3.30)

and hence we finally conclude that G is primitive and G ∈ H(2,2)(M8).
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3.3 The tadpole-cancellation condition

In order to allow for a non-zero G-flux in M8, we have to consider lP -corrections to eleven-

dimensional Supergravity, due to the well-known no-go theorem of reference [38]. We will

perform the calculation in this section in order to illustrate that although {ξa}a∈I is not a

well-defined one-form inM8, due to the fact that G is an honest tensor inM , the calculation

can be carried out, and since M8 is topologically Spin(7), we obtain the same result as in

the standard case. The relevant correction for our purposes is given by [44]

δS = −TM2

∫

M

C3 ∧X8 , (3.31)

where G4 = dC3 and X8 is an eight-form given by

X8 =
1

(2π)4

(

1

192
trR4 −

1

768

(

trR2
)2
)

. (3.32)

The corrected equation of motion for the four-form G adapted to the compactification

background and written on M8 reads

3

2
d ∗ ϕ = −

1

2
G ∧G+ βX8 , (3.33)

where X8 can be rewritten in terms of the first and second Pontryagin forms of the internal

manifold [51]

X8 =
1

192

(

P 2
1 − 4P2

)

, (3.34)

and β is an appropriate constant that we will not need explicitly. Notice that ϕ is a one-

form locally given by the derivative of the corresponding local warp factor but it cannot

be written globally as the derivative of a function, yet it is a well defined closed one-form

in M8. Asuming that M8 is closed, we integrate equation (3.33) to obtain

1

2β

∫

M8

G ∧G =

∫

M8

X8 . (3.35)

Using now that M8 has a SU(4)-structure and in particular it satisfies equation (2.15), we

obtain
1

2β

∫

M8

G ∧G =
χ(M8)

24
, (3.36)

a result that was to be expected since it only depends on M8 being equipped with a

Spin(7)-structure.

4 A class of non-geometric M-theory compactification backgrounds

In section 3 we have proposed a twist in the standard gluing of the local equations of motion

of eleven-dimensional Supergravity on eight-manifolds, by means of the use of a particular

atlas on the space-time manifold. In this section we are going to adopt a different point of

view, proposing a slightly modified construction, which highlights the interpretation of such

twisted supersymmetric compactification backgrounds as non-geometric compactification
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backgrounds. As a result, we will obtain that the total space of the non-geometric solution

is still a manifold, although necessarily non-simply-connected, and that the Supergravity

fields become tensors taking values on a particular line bundle.

Remark 4.1. The idea is to consider the local analysis of reference [10] and patch it

globally in a non-trivial way by using not only local diffeomorphisms but also the trombone

symmetry of the warp factor. We will see that when performing this non-trivial patching

the global space is still a manifold, but with very different geometric properties and topology

from the standard solution of reference [10].

The starting point is the standard one for compactification spaces. We will assume

that the space-time manifold M can be written as a topologically trivial direct product

M = R1,2 ×M8 , (4.1)

where R1,2 is three-dimensional Minkowski space-time andM8 is an eight-dimensional, Rie-

mannian, compact, oriented, spinnable manifold. According to the product structure (4.1)

of the space-time manifold M, the tangent bundle splits as follows5

TM = R1,2 ⊕ TM8 . (4.2)

Let U = {Ua}a∈I be a good open covering of M8. Then:

V = R1,2 × U = {Va = R1,2 × Ua}a∈I , (4.3)

is a good open covering of M . We define in M a family g = {ga}a∈I of local the Lorentzian

metrics, where ga is a locally defined metric on R1,2 × Ua, given by:

ga = ∆2
aη1,2 × g8|Ua

, (4.4)

where g8 is a Riemannian metric on M8 and ∆a ∈ C∞ (Ua). Similarly, we define in M a

family G = {Ga}a∈I of local closed four-forms, where Ga is a locally defined closed four-form

on R1,2 × Ua, given by:

Ga = Vol1,2 ∧ ξa +G|Ua
, ξa ∈ Ω1 (Ua) , G ∈ Ω4

cl (M8) , (4.5)

where Vol is the standard volume form of Minkowski space. The idea now is to impose, for

every a ∈ I, that each (ga,Ga) solves the local equations of motion of eleven-dimensional

Supergravity. Then, we will patch this solutions globally by using not only local diffeomor-

phisms but also a particular global symmetry of the equations of motion. As we will see

in a moment, the global geometry of M will depend on the specific patching used for the

family of local solutions. More precisely, for each a ∈ I of the good open cover U = {Ua}a∈I
of M8, let us denote by:

Sola = (g8|Ua
, G|Ua

,∆a, ξa) , ∆a ∈ C∞(Ua), ξa ∈ Ω1
cl(Ua) , (4.6)

5We omit the pull-backs of the canonical projections.
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a local solution to the equations of motion of the theory, in the compactification background

explained above. Notice that, in contrast to ∆a and ξa, which are defined only locally, g8|Ua

and G|Ua
are just the restriction of the globally defined tensors g8 and G to Ua, so they are

well-defined globally. Now, a standard compactification would construct a global solution

to the equations of motion by patching globally the family of local solutions {Sola}a∈I using

just local diffeomorphisms. This way we would obtain a globally well-defined metric g and

four-form G on M . On the contrary, a non-geometric compactification is characterized by

patching-up local solutions by using not only local diffeomorphisms but also symmetries of

the equations of motion.

What we did in section 3 was to patch up the global solution using local diffeomor-

phisms and also a particular symmetry of the equations of motion: the trombone symmetry

of the warp factor, consisting on rescalings of the warp factor by a constant. In section 3 we

used a very particular atlas in order to obtain that the Supergravity fields are tensors. We

will drop here that condition and we will adopt the natural point of view of a non-geometric

compactification: the global Supergravity fields obtained by the non-trivial patching of the

local solutions may not be tensors but objects of a more general type. In our case we will

obtain that the Supergravity fields are tensors valued on a particular line bundle L.

Hence, the kind of compactification backgrounds described in section 3 can be inter-

preted as being non-geometric, although of a simple type, namely the symmetry used to

patch-up the solution globally is a simple rescaling of the warp factor. Remarkably enough,

the global space of the compactification is still a manifold, something that is not guaran-

teed for more general non-geometric compactifications. Let us do then the global patching

explicitly. Given the good open cover U , for each Ua ∈ U we have a locally defined warp

factor ∆a ∈ C∞(Ua). As we have said, two local warp factors ∆a and ∆b, a, b ∈ I are

related by a rescaling of the warp factor on the non-empty intersection Ua ∩ Ub 6= {∅} of

Ua and Ub. Then we have:

∆a = βab∆b , βab ∈ R
∗ , (4.7)

which as we have said is a symmetry of the equations of motion, as it is required to obtain

a global solution. Equation (4.7) implies that:

αab = β−1
ba , βabβbcβca = 1 , (4.8)

where the last equation holds on the triple non-empty triple intersection Ua∩Ub∩Uc 6= {∅}.

Hence:

L = ({Ua} , βab,R) , (4.9)

defines a real line bundle L over M . The warp factor it is thus globally given by a section

∆ ∈ Γ(L). Although ∆ is not a globally defined function on M8, it does define a globally

defined closed one form ϕ ∈ Ω1(M8), given on every open set Ua ∈ U by:

ϕ|Ua
= d log ∆a . (4.10)

Hence, we have obtained what is the global structure of the warp factor: after trivializing

L, it is it is given as closed one-form by a connection on L.
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We have to patch-up now the local solutions {Sola}a∈I of the the theory. We are not

interested in patching up the most general local compactification background, but only

the N = 2 supersymmetric compactification backgrounds of reference [10]. Therefore, each

solution Sola, a ∈ I, will be a local solution of the type presented in [10], namely conformal

to a Calabi-Yau four-fold. Therefore, from reference [10] we obtain that:

Sola = (g8|Ua
, G|Ua

,∆a, ξa) , ∆a ∈ C∞(Ua), ξa ∈ Ω1
cl(Ua) , (4.11)

is equipped with a local SU(4)-structure (Ja, ωa,Ωa) satisfying:

∇aJa = 0 , ∇aωa = 0 , ∇aΩa = 0 , (4.12)

where Ja is a local complex structure, ωa is a local symplectic structure, Ωa is a local (4, 0)-

form and ∇a is the locally-defined Levi-Civita connection associated to ga = ∆ag8|Ua
. In

other words, (Ja, ωa,Ωa) is a local integrable SU(4)-structure. In addition:

ξa = d(∆3
a) , d ∗ d log∆a +G|Ua

∧G|Ua
= 0 , ωa ∧G|Ua

= 0 , G ∈ Ω2,2(Ua) , (4.13)

where G|Ua
is (2, 2) with respect to Ja.

Remark 4.2. As we explained in section (2), supersymmetric compactification backgrounds

are time-like supersymmetric solutions, it is enough to satisfy the Maxwell equations for G

in order to satisfy all the equations of motion.

Using now that the global patching is performed by means of only local diffeomorphisms

and the trombone symmetry, together with the results of reference [10], we obtain that, for

each a ∈ I, the local SU(4)-structure (Ja, ωa,Ωa) can be written as:

g8 a = ∆ag8|Ua
, Ja = J |Ua

, ωa = ∆aω|Ua
, Ωa = ∆2

aΩ|Ua
. (4.14)

where (g8, J, ω,Ω) is a global SU(4)-structure on M8, namely J is an almost-complex struc-

ture, ω is the fundamental two-form and Ω is the (4, 0). In order to fully characterize the

non-geometric compactification background, we have to obtain the geometry of M8 from

the local supersymmetry conditions (4.12), (4.13) and (4.14).

Proposition 4.3. Equations (4.12), (4.13) and (4.14) are equivalent to (M8, J, g8) being

an Hermitian manifold with integrable almost-complex structure J which is equipped with

a SU(4)-structure (J, ω,Ω) such that:

dω = ϕ ∧ ω , ∇aΩa = 0 . (4.15)

and in addition

ξa = d(∆3
a) , d ∗ dϕ+G ∧G = 0 , ω ∧G = 0 , G ∈ Ω2,2(M8) , (4.16)

Therefore, M8 is a locally conformally Kähler manifold with Lee form ϕ and and locally

conformally parallel (4, 0)-form Ω.
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Proof. From (4.14) we see that the local complex structures {Ja}a∈I patch up to a well-

defined almost-complex structure J in M8. Writing the Nijenhuis tensor of J as:

N |Ua
(u, v) = (∇̃a

uJ)(Jv)− (∇̃a
vJ)(Ju) + (∇̃a

JuJ)(v)− (∇̃a
JvJ)(u) , u, v ∈ X(M8) , (4.17)

we obtain that N |Ua
= 0 for every Ua ∈ U , and thus J is integrable and (M8, g8, J) is a

Hermitian manifold. In addition, G is globally (2, 2) in M8. Since ωa is, for each a ∈ I, a

rescaling of ω|Ua
we obtain that ωa ∧G|Ua

= 0 and G ∈ Ω2,2(Ua) are equivalent to:

ω ∧G = 0 , G ∈ Ω2,2(M8) . (4.18)

Using now that ϕ|Ua
= d log∆a, we obtain that the global form of the equation of motion

for the warp factor is:

d ∗ ϕ+G ∧G = 0 . (4.19)

Since Ja is a complex structure, we obtain that the condition ∇aωa is equivalent to dωa = 0,

which in turn is equivalent to:

dω = ϕ ∧ ω . (4.20)

Using now proposition 4.3, we have then proven the following theorem:

Theorem 4.4. Let M8 be an eight-dimensional compact manifold equipped with a SU(4)-

structure (J, ω,Ω) such that J is integrable, ω is a locally conformally Kähler structure with

Lee-form ϕ and Ω is locally conformally parallel. Then, (M8, J, ω,Ω) is a non-geometric

admissible M-theory compactification background to three-dimensional Minkowski space-

time provided that there exists a closed four-form G ∈ Ω4(M8) such that:

ω ∧G = 0 , G ∈ Ω2,2(M8) , (4.21)

and a solution to the equation of motion:

d ∗ ϕ+G ∧G = 0 . (4.22)

of the warp factor exists.

The non-geometric background that we have obtained is very different from the stan-

dard Calabi-Yau compactification background, as a result of the non-trivial global patching.

The topology of both manifolds is completely different. Hence, we should expect the effec-

tive theories of the compactifications to be completely different too. In the next section we

will indeed provide an explicit example that solves the equations of motion for ξ and G,

giving thus a counterexample to the Maldacena-Nuñez no-go theorem. The Sueprgravity

fields are no longer global tensors, but tensors taking values on the line bundle L. In fact,

we have:

g ∈ Γ(S2T ∗M8, L) , ξ ∈ Ω1(M8, L) . (4.23)

To summarize, we have found a simple class of non-geometric M-theory backgrounds in

which the total space is again a manifold and which:
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• Need an underlying non-simply connected topological manifold.

• Evade the Maldacena-Nuñez no-go theorem.

These are properties that are expected to be present in non-geometric backgrounds. It is

because of the second feature that we will be able to construct an explicit eight-dimensional

non-geometric background which evades the Maldacena-Nuñez no-go theorem and thus

evades any possible inconsistency coming from introducing lP -corrections in the equations

of motion but not in the classical Killing spinor equations.

5 Locally conformally Kähler manifolds

We have obtained that the supersymmetric conditions on an eleven-dimensional Supergrav-

ity compactification to three-dimensional Minkowski space-time, locally preserving N = 2

Supersymmetry, allow for locally Ricci-flat, SU(4)-structure, locally-conformal Kähler man-

ifolds as internal spaces. It is first convenient to introduce the following definition:

Definition 5.1. A n-complex dimensional locally conformal Calabi-Yau manifold is SU(n)-

structure locally-conformal Kähler manifold with locally Ricci-flat Hermitian metric and

locally conformally parallel (n, 0)-form.

Hence, the kind of SU(4)-structure locally-conformal Kähler manifolds that we have

obtained as admissible M-theory compactification backgrounds are precisely locally con-

formal Calabi-Yau manifolds, which motivates the definition. These are not necessarily

Calabi-Yau four-folds (which would be a special subclass) and thus it is worth characteriz-

ing their geometry. First of all let us summarize the main properties of a generic compact

locally conformal Calabi-Yau manifolds:

1. M is a compact Hermitian manifold. In other words, it is a complex manifold with

a Riemannian metric g compatible with the complex structure J of the manifold.

2. M is equipped with non-degenerate two-form ω constructed fromJ and g, which is

not closed but satisfies

dω = ϕ ∧ ω . (5.1)

Then M is a particular case of almost-Kähler manifold.

3. Although ω is not closed, locally one can always transform it such that the locally

transformed two-form is closed. Therefore M is a particular case of locally confor-

mally symplectic manifold [48].

4. The Riemannian metric g is not Ricci-flat. Despite of this, locally one can find a

Ricci-flat metric locally conformal to g.

5. There is a globally defined complex spinor which is not constant respect to the Levi-

Civita connection associated to g. However, we can make a conformal transformation

on the spinor such that it becomes locally constant respect to the Levi-Civita con-

nection associated to the locally transformed metric.
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6. M is equipped with a SU(n)-structure, or in other words, it has zero first Chern class

in Z. However, the canonical bundle is not holomorphically trivial, as the (n, 0)-

form that topologically trivializes it is not holomorphic, but only locally conformally

parallel.

7. M is not projective, in contrast to the Calabi-Yau case. This seemingly technical

detail is important, since for example, algebraic-geometry tools are very much used

in order to study F-theory on elliptically-fibered Calabi-Yau four-folds.

There are in the literature several definitions of Calabi-Yau manifolds, not always equiva-

lent. For definiteness, and in order to compare compact Calabi-Yau manifolds with compact

locally conformal Calabi-Yau manifolds, we will use the following two equivalent definitions

• A compact Calabi-Yau manifold is a compact manifold of real dimension 2n with

holonomy contained in SU(n).

• A compact Calabi-Yau manifold is a compact Kähler manifold with holomorphically

trivial canonical bundle.

From the previous definitions we see that a locally conformal Calabi-Yau manifold fails to

be Calabi-Yau by only two conditions, namely they are not Kähler and they do not have

an holomorphic (n, 0)-form, although they are equipped with a (n, 0)-form topologically

trivializing the canonical bundle. The deviation from Calabi-Yau can be measured by ϕ,

namely, M is Calabi-Yau if and only if [ϕ] is the zero class in de Rahm cohomology. Hence,

we have obtained the following result:

Corollary 5.2. A simply-connected locally conformal Calabi-Yau manifolds is a Calabi-

Yau manifold.

Contrary to what happens with compact locally irreducible Calabi-Yau manifolds,

compact locally conformally Calabi-Yau manifolds can have continuous isometries. Let us

consider the case of a generic locally conformally Kähler manifold M : it is equipped with

two canonical vector fields v and u given by

g(w, u) = ϕ(Jw) , g(w, v) = ϕ(Jw) , ∀w ∈ X(M) . (5.2)

Then, the following result holds [52]:

Proposition 5.3. The canonical vector field u is a Killing vector field on M if and only

if is an infinitesimal automorphism of J , and in this case on has [u, v] = 0.

Therefore we see that if u is a Killing vector field, then u and v commute and thus they

are the infinitesimal generators of a R × R-action on M . This is a nice starting point to

end-up having a torus action and therefore a principal torus bundle on M , as explained in

proposition 6.4 of [18], where the necessary and sufficient conditions for u and v to define

a principal torus bundle where obtained.
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Now that we know that locally conformal Calabi-Yau manifolds are not necessarily

Calabi-Yau, an explicit example of a non-Calabi-Yau locally conformal Calabi-Yau man-

ifold is in order. A general a locally conformally Kähler manifold M can be written has

follows [52]:

M = M̃/G , (5.3)

where M̃ is a simply connected Kähler manifold, and G is a covering transformation group

whose elements are conformal for the respective Kähler metric on M̃ . This restricts the

class of manifolds we can consider, but it is not enough to specify a manageable class.

Fortunately, it turns out that there is a class of locally conformally Kähler manifolds that

has been completely characterized, namely those whose local Kähler metric is flat, thanks

to the following proposition [52]:

Theorem 5.4. Let M be a compact locally conformally Kähler-flat manifold of complex

dimension n. Then the universal covering space of M is C
n\ {0}, and up to a global

conformal change of the metric, M is a generalized Hopf manifold with the canonical metric.

Every such manifold M has the same Betti numbers as the Hopf manifold Hn of the same

complex dimension n.

A generalized Hopf manifold is a locally conformally Kähler manifold such that its

Lee-form is a parallel form. Among the generalized Hopf manifolds are of course the

classical Hopf manifolds. Four-dimensional complex Hopf manifolds are equipped with a

SU(4)-structure and in fact it is an example of a non-trivial compact locally conformal

Calabi-Yau manifold. In particular the metric of a Hopf manifold is not only locally Ricci-

flat but locally flat.

Let us explore then the geometry of compact complex Hopf manifolds, since they

provide us with a non-trivial example of locally conformal Calabi-Yau manifolds.

5.1 An explicit solution on a complex Hopf manifold

A complex Hopf manifold CHm
α of complex dimension m is the quotient of Cm\ {0} by

the free action of the infinite cyclic group Sα generated by z → αz, where α ∈ C
∗ and

0 < |α| < 1. In other words, it is Cm\ {0} quotiented by the free action of Z, where Z, with

generator α acting by holomorphic contractions. The group Sα acts freely on C
m\ {0} as

a properly discontinuous group of complex analytic transformations of Cm\ {0}. Hence,

the quotient space:

CHm
α = (Cm\ {0}) /Sα , (5.4)

is a complex m-fold. It can be shown that complex m-dimensional Hopf manifolds CHm
α

are diffeomorphic to S1 × S2m−1. As a result:

b1 (CHm
α ) = b2m−1 (CHm

α ) = 1 , (5.5)

namely the first betti number is odd and hence CHm
λ does not admit a Kähler metric.

Notice the standard Kähler structure on C
m\ {0} does not descend to CHm

α since it is not
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Sα. It admits however locally conformally Kähler structure. To prove this, let us take

C
m\ {0} equipped with the following metric and (1,1)-form:

g0 =
dzt ⊗ dz̄

z̄tz
, ω0 = i

dzt ∧ dz̄

z̄tz
. (5.6)

The (1,1)-form ω0 is not closed but it satisfies:

dω0 = ϕ0 ∧ ω0 , (5.7)

where:

ϕ0 =
ztdz̄ + z̄tdz

z̄tz
, (5.8)

Since g0, ω0 and ϕ0 are invariant under Sα transformations, they descend to a well defined

metric g and (1,1)-form ω in CHm
α , with corresponding Lee-form ϕ. In C

m\ {0} we have

that ϕ0 is exact, since ϕ0 = d log ztz̄. This should be expected, as (g0, ω0) is globally

conformal to the standard Kähler structure on C
m\ {0}. However, ϕ is not exact in CHm

α ,

since there log ztz̄ is not well-defined there. Let (Ua, za) be a coordinate chart in CHm
α .

The non-geometric solution. Let us take now m = 4, and α = ᾱ. Then CH4
α is

an eight-dimensional manifold of the type just described. In particular, it is equipped

with a locally conformally Kähler structure (g, ω) induced by the quotient of the (g0, ω0)

given in equation (5.6). When α is real we can define in addition another globally defined

(4,0)-form, induced by the following form on C
m\ {0}:

Ω0 =
dz1 ∧ dz2 ∧ dz3 ∧ dz4

|z|4
. (5.9)

Now, since α is real, Ω0 isSα invariant and therefore it induces a globally defined (4,0)-form

Ω on CH4
α satisfying:

∇aΩa = 0 , (5.10)

and in particular:

dΩ = 2ϕ ∧ Ω . (5.11)

Therefore (g, ω,Ω) is precisely a locally conformally Calabi-Yau structure on CH4
α, which

is what was required by supersymmetry, see theorem 4.4. Therefore, in order to obtain a

full non-geometric solution, we just have to solve the equation of motion for G = {Ga}a∈I .

Notice that, as we explained in section 4, local supersymmetry imposes:

ξa = d(∆3
a) , (5.12)

and that the only equation of motion that remains to be solved is the equation of motion

for the warp factor, namely

d ∗ ϕ+G ∧G = 0 . (5.13)

In order to solve it, we are going to take G = 0. Notice that this does not trivialize the flux

G since there is still a part with one leg on M8. Taking G = 0 we obtain that the equation

of motion for the warp factor reduces to:

d ∗ ϕ = 0 . (5.14)
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Since ϕ is already closed, this means that ϕ must be harmonic, in order to solve equa-

tion (5.14). It turns out that ϕ is indeed harmonic; which, since it is already closed, is the

same as requiring g8 to be the Gauduchon metric. Therefore:

Sol =
(

CH4
α, g8, ω,Ω, ϕ

)

, (5.15)

is a compact non-geometric solution of eleven-dimensional Supergravity with non-trivial

flux and warp-factor. From a different point of view, one can see that Sol is locally

conformal to flat space equipped with the standard Calabi-Yau structure and therefore

it trivially solves the supersymmetry equations. Globally however the geometry is very

different and that in turn allows for the existence of a non-trivial flux and warp factor. We

could say then that the non-trivial warp-factor and flux are supported by the non-geometry

of the solution.

Remark 5.5. In the standard compactification scenario, where instead of ϕ we have the

derivative of the warp factor, say df , where now f is a globally defined function on M8, the

equation of motion of the warp factor becomes, after setting G equals to zero:

∆ f = 0 . (5.16)

Since M8 is closed then f must be constant. In our non-geometric case however, we get

a harmonic one-form ϕ, so as long as the first betti number of M8 is bigger or equal than

one, we are guaranteed to have at least one non-trivial solution.

For completeness, let us write locally the warp factor and flux in local coordinates: let

(Ua, za) be a local chart of CH4
α. Then we have that:

ϕ|Ua
= d

(

log ztaz̄a + c′a
)

, c′a ∈ R , (5.17)

and thus the warp factor of eleven-dimensional Supergravity compactified on CH4
λ is, at

every coordinate chart (Ua, za), given by:

∆a = caz
t
az̄a , ca ∈ R

∗ . (5.18)

Therefore, locally the four-form flux is given by:

G|Ua
= Vol1,2 ∧ d(caz

t
az̄a)

3 . (5.19)

Remark 5.6. In section 3, a very particular atlas was used in order to make {Ga}a∈I a

globally defined tensor on M . However, from the point of view of a non-geometric com-

pactification, we do not need to perform such an artificial construction. For non-geometric

compactifications the global objects that locally correspond to the fields of the theory are not

expected to be standard tensors. In this case G can be understood as a four-form taking

values on a real line bundle L:

G = Vol ∧ ξ , ξ ∈ Ω1(M8;L
3) . (5.20)

The real line bundle L twists G from being a standard four-form and this is the result of

the non-trivial global patching of the solution.
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The solution Sol =
(

CH4
α, g8, ω,Ω, ϕ

)

that we have obtained, although the simplest of

its kind, has very interesting properties, some of them shared also by more general locally

conformally Kähler manifolds. In particular, it is equipped with a holomorphic torus

fibration and a transversely orientable, codimension one, real foliation with a G2-structure

on the leaves. Therefore, Sol has the geometric properties found in [16, 17] for the most

general N = 1 supersymmetric compactification of eleven-dimensional Supergravity to

three-dimensional Minkowski space-time. This will be the subject of the next section.

5.2 Foliations and principal torus fibrations on Vaisman manifolds

Let (M,ω) be a Vaisman manifold, namely (M,ω) is a locally conformally Kähler manifold

with a parallel Lee-form θ. Since θ is parallel, if it is non-zero at one point, it is non-zero at

every point. Notice that the Hopf manifold that we found in section 5.1 to satisfy the local

equations of motion of eleven-dimensional Supergravity is a particular example of Hopf

manifold. A Vaisman manifold (M,ω) is equipped with four canonical foliations, which

are defined on (M,ω) by means of the Lee-form θ and the complex structure J of M as

follows [49, 53]:

• (M,ω) is equipped with a completely integrable and regular codimension-one distri-

bution F ⊂ TM , given by θ = 0. We will denote by F the corresponding foliation,

which is totally geodesic.

• (M,ω) is equipped with a completely integrable and regular dimension one distribu-

tion D ⊂ TM given by the vector field v = θ♯. We will denote by D the corresponding

foliation, which is a geodesic foliation.

• (M,ω) is equipped with a completely integrable and regular dimension one distri-

bution D⊥ ⊂ TM given by the vector field w = J · v. We will denote by D⊥ the

corresponding foliation. Notice that the distribution D⊥ is perpendicular to D, and

hence the symbol used.

• (M,ω) is equipped with a completely integrable and regular dimension two distribu-

tion T = D⊥ ⊕ D ⊂ TM . We will denote by T the corresponding foliation. The

foliation T is a complex analytic foliation whose leaves are parallelizable complex

analytic manifolds of complex dimension one. The leaves are totally geodesic, locally

Euclidean submanifolds of M and the foliation is Riemannian.

If the foliation T is regular, as it happens for the solution Sol =
(

CH4
α, g8, ω,Ω, ϕ

)

that we

found in section 5.1, then the following result holds [49, 53].

Theorem 5.7. If the foliation T on a compact Vaisman manifold (M,ω) is regular then:

• The leaves are totally geodesic flat torii.

• The leaf space M = M/F is a compact Kähler manifold.

• The projection π is a locally trivial fibre bundle.
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Therefore, compact Vaisman manifolds with regular foliation T are equipped with a

non-trivial torus principal bundle over a Kähler manifold, in the line of the suggestion

made in [18]. This is interesting, because for F-theory applications one needs the eight-

dimensional compactification manifold to admit a elliptic fibration, which must be singular

to be non-trivial since the compactification space is an irreducible Calabi-Yau four-fold,

over a Kähler base. In our case the fibration can be non-trivial yet non-singular, and

that is indeed the case of the solution of section 5.1. The interpretation, if any, of such

non-singular and non-trivial fibrations in the context of F-theory remains unclear. This

of course does not mean that there are no locally conformally Kähler four-folds admitting

singular elliptic fibrations; this is currently an open problem.

On the other hand, a compact Vaisman manifold admits a topological Spin(7)-

structure, and in particular it is spin, as a consequence of having all the Chern numbers

equal to zero. This Spin(7)-structure induces a G2-structure on the leafs of the canonical fo-

liation F . If we restrict to the class of Hopf manifolds inside the class of Vaisman manifolds,

then we have a very explicit result about the G2-structure present in the leaves. Notice

that the solution of section 5.1 is a Hopf manifold, so the following result applies [49, 53].

Proposition 5.8. Let (M,ω) be a compact 2m-dimensional Hopf manifold. Then, F is a

totally geodesic foliation of (2m−1)-dimensional spheres defined through the diffeomorphism

M ≃ S1 × S2m−1.

Let us apply proposition 5.8 to the m = 8 case. Then the foliation F is by seven-

dimensional spheres S7. But a seven-dimensional sphere S7 is equipped with a nearly

parallel G2-structure φ ∈

Omega3(S7), which satisfies:

dφ = τ0 ∗ φ , d ∗ φ = 0 , dτ0 = 0 . (5.21)

Let denote by τ0 ∈ Ω0(S7), τ1 ∈ Ω1(S7), τ2 ∈ Ω2
14(S

7) and τ2 ∈ Ω3
27(S

7) the torsion classes

of the G2 structure φ. Then, the G2-structure φ satisfies τ2 = 0 and it is therefore a par-

ticular case of the general characterization found in references [16, 17, 36, 37] for the most

general eleven-dimensional Supergravity supersymmetric compactification background to

three-dimensions. It is rewarding to see that although we are considering non-geometric

compactification backgrounds, the foliation structure of the most general geometric su-

persymmetric compactification background is preserved, which also indirectly shows that

compactifying in this class of non-geometric compactification background should be possi-

ble in principle.
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