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1 Introduction

The AdS/CFT correspondence [1–4] has become a prevalent new theoretical tool for un-

derstanding strongly-coupled, non-gravitational physics. Its influence has extended beyond

the realm of strict high energy physics, like understanding the quark-gluon plasma [5, 6],

into condensed matter systems. Of interest are strongly-coupled charged fermionic sys-

tems, where it is hoped the low-energy physics can be studied via the correspondence (see

refs. [7–10]). In particular, progress has been made in understanding Fermi Liquids (FL),

non-Fermi Liquids (NFL) and Fractionalized Fermi Liquids (FL*), phases of compressible

metallic states of quantum matter [11, 12].1

These different phases with finite charge density can be characterized in terms of their

violation/agreement with the Luttinger relation, which relates the total charge density Q

to the volumes enclosed by the Fermi surfaces at zero temperature. Compressible states of

matter with finite charge density dual to charged black holes [15–18] violate the Luttinger

relation. However, holographic duals to metallic states, such as the electron star solutions

of refs. [19–21], do satisfy the Luttinger relation [22, 23]. The essential idea [12] is that

when the field theory charge density Q is dual to gauge-invariant fermions — “mesinos”

1See refs. [13, 14] for explanations of FL, NFL and FL* phases, where we have used their abbreviations

for the names of the phases.
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— in the gravity bulk, their Fermi surfaces do satisfy the Luttinger relation and are said

to have visible Fermi surfaces. When the charge density is instead sourced by a charged

horizon, then the Fermi surfaces are said to be hidden, leading to a violation of the Luttinger

relation and thus describe “fractionalized” charged degrees of freedom. In the case when

there are both gauge-invariant fermions and a charged horizon in the bulk, like the solutions

in ref. [24], then the phase is considered to be “partially fractionalized.”

Among the interesting questions posed about NFL and FL* phases is the issue of how

to characterize the presence of Fermi surfaces when the conventional methods from field

theory are not easily applicable. It was shown in ref. [11] that such phases in the field

theory have a logarithmic violation of the area law for the entanglement entropy, and this

sets a strict criterion for gravitational models to be considered dual to such phases. The

prescription of Ryu and Takayanagi [25] for the calculation of the holographic entanglement

entropy allows us to directly address this question.

Results of holographic computations suggest that the mesonic phases are dual to FLs,

whereas the fractionalized phases are dual to NFLs and partially fractionalized to FL*s [24].

In particular, it was found in refs. [11, 12] that the hidden, gauge-charged Fermi surfaces in

the bulk do lead to a logarithmic violation of the area law when the metric is of hyperscaling-

violating form with particular values of the dynamical critical exponent and the hyperscal-

ing violating exponent. In the case of the electron star, the logarithmic violation depends

only on the charge sourced by the horizon and not that coming from the star itself [12].

Here we extend existing work in the literature by computing the entanglement entropy

of solutions to a (3 + 1)-dimensional Einstein-Maxwell-Dilaton (EMD) theory in the bulk

that are not of hyperscaling-violating type and additionally have an external, constant

background magnetic field turned on, including the magnetic electron star solutions found

in ref. [26].

Magnetic fields are also important probes of the physics of transport (especially for

(2 + 1)-dimensional systems, to which our gravity solutions are dual), and our work is

intended to be part of a program of trying to understand, using such external fields, possible

new ways to classify characteristic behaviours in the phases we capture. In this paper we

will focus on studies of the behaviour of the entanglement entropy in the presence of the

magnetic field. Since, as stated above (see also further discussion below) our geometries

are not of hyperscaling-violating type, we do not expect the characteristic logarithmic

violations of the area law, and so we seek to explore and exhibit the entanglement entropy’s

behavior in the various regimes to which we have access.

Our work studies gravitational backgrounds not previously studied in the literature;

in the notation of ref. [12], their α and β, which determine the dilaton’s potential and

coupling to the Maxwell sector, in our cases are equal: α = β. In terms of the dynamical

critical exponent z, this corresponds to z → ∞ and a hyperscaling violating exponent

θ = 2. These values are incompatible with the form of the hyperscaling-violating metric,

and in particular do not satisfy the requirements of ref. [12] that β ≤ 1
3α and θ = 1.

In ref. [27], the authors consider an EMD theory using a potential for the dilaton of

the form V (Φ) = −|V0|exp (2δΦ) and coupling to the Maxwell sector Z(Φ) = exp (2αΦ).

They study the entanglement entropy of purely electric, purely magnetic (argued for via
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electromagnetic duality), and dyonic solutions of this system, adding the magnetic field as

a small perturbation, B � µ2, in their dyonic system. (Here, µ is the chemical potential.)

In their notation, our solutions correspond to the choice α = δ, which is a case they do not

consider in their work.2 In particular, they start with a hyperscaling-violating metric for the

purely electric solution parameterized by their (α, δ), but in the case α = δ, the dynamical

exponent and the hyperscaling violating exponent both diverge, positively and negatively,

respectively. Thus, our EMD solutions lie along a line in their phase diagram for which they

do not explore the entanglement entropy. In addition, our dyonic solutions have Q = B.

We present our work as follows. In section 2 we begin with a review of the holographic

entanglement entropy, but present the detailed derivations of the formulae we display in the

appendix. In section 3 we present our gravity backgrounds, although for more information

on their derivation and the magnetic electron star solutions we refer to ref. [26]. Section 4

shows the results for the strip and disk (see section 2 for a definition of these) entanglement

entropy for the purely electric dilaton black holes, and section 5 for the purely magnetic

dilaton black holes. Section 6 studies the behavior of the strip entanglement entropy under

electromagnetic duality for the purely electric and purely magnetic dilaton black holes. In

particular, it is shown how the entanglement entropy is invariant as long as one is careful

to take into consideration the relative positions of the physical horizons. The entanglement

entropy for the strip and disk for the dilaton-dyon black hole is presented in section 7, and

then in section 8 we consider the mesonic phase of the magnetic electron star solutions of

ref. [26]. We end in section 9 with our conclusions and a discussion of future work.3

2 Review of the holographic entanglement entropy

The holographic entanglement entropy of Ryu and Takayanagi [25] computes the entropy

of entanglement SA between two subsystems A and B = Ā (the complement of A). The

prescription involves finding the minimal area surface that extends into the AdS grav-

itational bulk, whose boundary at conformal infinity is that of subsystem A. That is,

if γA is the minimal surface in the (d + 2)-dimensional bulk such that ∂γA = A at the

(d+ 1)-dimensional UV boundary, then

SA =
Area(γA)

4G
(d+2)
N

, (2.1)

where the surface γA has co-dimension 2 and G
(d+2)
N is Newton’s constant in (d + 2)-

dimensions. To compute the area, ones takes the bulk metric Gµν and integrates its pull-

2In ref. [28], the authors consider a fermionic two-point function for α = δ and find that it exhibits

non-Fermi liquid behavior.
3While this work was in preparation, two papers appeared on the arXiv, refs. [29, 30] that construct

magnetic electron stars that are different from the ones presented in ref. [26]. In this new work, there

is no dilaton present in the theory and their horizons have finite temperature. They do not consider the

entanglement entropy of their solutions, but it would be interesting to compute the entanglement entropy

for their solutions and compare them to the results in this paper.
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back Hµν onto γA for a constant time slice t = t0:

Area(γA) =

∫
γA

ddx
√
H . (2.2)

Here x represents the coordinates on γA, which are generally given as the embedding of

the surface, and H is the determinant of Hµν .

The above prescription was described for (d + 2)-dimensional AdS spacetime, but it

applies more generally. In particular, there may be a non-zero and dynamical dilaton Φ

in the higher ten-dimensional string theory. When this is the case, eq. (2.2) still holds so

long as the metric is written in Einstein frame [31].

In what follows, we will work with a four-dimensional bulk (so that d = 2 in eq. (2.1)

and hence will drop any sub- or superscripts denoting the dimension) with Newton’s con-

stant in eq. (2.1) given by dimensional reduction in the usual way, and the regions we

consider in the boundary are that of the strip and the disk as seen in figure 1; we shall

denote their entanglement entropies as SS and SD, respectively. In particular, we will be

interested in the finite part of the entanglement entropy, sS and sD, defined by

4GNSS = 2L2L

(
sS +

1

ε

)
, (2.3)

4GNSD = 2πL2

(
sD +

`

ε

)
. (2.4)

Here L denotes the strip geometry’s “infinite” side length, L is the AdS length scale, ε is

a chosen UV cutoff, and ` is the radius of the disk. The added term on the right hand side

of eqs. (2.3) and (2.4) removes the leading divergence of the entanglement entropy, and we

note that these expressions have been defined for dimensionless coordinates so that L , ε,

`, and the sS/D are all dimensionless.

For reference, we now present generic formulae for the finite entanglement entropy for

the strip and the disk for a form of the bulk metric that all of our geometries will have:

ds2 = −gtt(z)dt2 + gzz(z)dz2 + gxx(z)d~x2 , (2.5)

where we have taken the UV to be at z = 0 and the horizon to be at some z = zH that we

rescale to be at z = 1. Writing the R2 part of the metric as dx2 +dy2 and having the finite

length of the strip run from −`/2 ≤ x ≤ `/2, the minimal surface will be symmetric about

y = 0. We denote the z value of the turning point of the surface as zT . Let the surface

have coordinates (x, y), the same as the R2 coordinates, with embedding z = z(x).

In the appendix we derive the formulae for the entanglement entropy for the strip and

the disk geometries. We note that in the case of the strip, the second order problem of

finding the minimal surface z(x) can be reduced to a first order problem via an integral

of motion (see the appendix for details), which allows the integrals to be written in the

form shown below; in addition, it grants more control on the numerics of our work in the
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(a) Strip. (b) Disk.

Figure 1. A schematic representation of the two regions, A (with complement B), on the bound-

ary (with coordinates {x, y}) whose holographic entanglement entropy we consider, where the holo-

graphic direction is z. The minimal surfaces hang down into the bulk. (a) The strip, whose finite

entanglement entropy we denote sS , with finite width `. (b) The disk, whose finite entanglement

entropy we denote sD, with radius `.

following sections. For the strip, the result is4

4GNSS = 2L

∫ zT

ε
dz

gxx(z)2√
gxx(z)
gzz(z) (gxx(z)2 − gxx(zT )2)

, (2.6)

where we have introduced the UV cutoff ε in the lower limit of the integral. The length of

the strip, ` = 2
∫ `/2

0 dx, as a function of the turning point is given by

`

2
=

∫ zT

0
dz

gxx(zT )√
gxx(z)
gzz(z) (gxx(z)2 − gxx(zT )2)

. (2.7)

In the case of the disk geometry, the full second order problem must be solved, so the

formula for the entanglement entropy is simply given by the pull-back

4GNSD = 2π

∫ `

0
dr rgxx(z(r))

√
1 +

gzz(z(r))

gxx(z(r))

(
dz

dr

)2

, (2.8)

where 0 ≤ r ≤ ` is the radial variable for polar coordinates of the R2, i.e., ds2
R2 = dr2+r2dθ2.

In this case, we must explicitly solve for the minimal surface z(r) and then input that into

eq. (2.8) to find the entanglement entropy. Because of this more numerically intensive

approach, we will observe some increased numerical variance for the disk results relative

to the strip in the sections that follow.

4Note that here we have not yet subtracted the leading AdS divergence nor pulled out a factor of the

AdS radius L, so that these are not quite the expressions for sS and sD.
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3 Gravity backgrounds

Our main goal will be to study the entanglement entropy for the magnetic electron star

solution found in ref. [26], but to understand that result in a larger context, we will consider

other related backgrounds as well. Here we present the common aspects of these solutions,

giving the precise forms of the metrics below when we compute their entanglement entropy.

We will begin by considering zero temperature black hole solutions of a four-

dimensional Einstein-Maxwell-Dilaton system with action

SEMD =

∫
d4x
√
−G

[
1

2κ2
(R− 2∂µΦ∂µΦ− V (Φ))− Z(Φ)

4e2
FµνF

µν

]
. (3.1)

Here κ2 = 8πGN is the gravitational coupling and e is the Maxwell coupling. We take the

potential for the dilaton and its coupling to the Maxwell field to be

V (Φ) = − 6

L2
cosh

(
2Φ/
√

3
)
, Z(Φ) = e2Φ/

√
3 . (3.2)

We will consider solutions that have either just electric or just magnetic charge, as

well as solutions with both. Our ansatz for the metric and Maxwell fields with a constant

magnetic field B turned on is

ds2 =
L2

z2

(
−F (z)dt2 +G(z)dz2 +A(z)d~x2

)
, (3.3)

Fzt =
eL

κzH
h′(z), Fxy =

eL

κz2
H

B . (3.4)

The horizon is at zH and the UV at z = 0. When we wish to consider cases where

there is no electric or no magnetic field, we will find it consistent to simply set h(z) ≡ 0

or B ≡ 0, respectively. The coordinates are dimensionful; however, the fields h and B

are dimensionless. We will require our solutions to asymptote to AdS4 in the UV, which

dictates the leading behavior of the fields to be

F (z) = 1 + . . . , G(z) = 1 + . . . , A(z) = 1 + . . . , (3.5a)

h(z) = µ− Q

zH
z + . . . , Φ(z) =

φ1

zH
z +

φ2

z2
H

z2 + . . . . (3.5b)

The physical quantities in the dual field theory are the chemical potential µP = eL
κzH

µ, the

charge density QP = L
eκz2H

Q, the magnetic field BP = eL
κz2H

B, the source for the operator

dual to the dilaton φ1P = L
κzH

φ1, and the vacuum expectation value (vev) of the operator

dual to the dilaton φ2P = L
κz2H

φ2. It is convenient to work with dimensionless quantities,

and so, by taking ratios with respect to µP , we can characterize the dual field theory by

the following dimensionless ratios:

BP
µ2
P

=
κ

eL

B

µ2
,

QP
µ2
P

=
κ

eL

Q

µ2
,

φ1P

µP
=

1

e

φ1

µ
,

φ2P

µ2
P

=
κ

e2L

φ2

µ2
. (3.6)

In order not to specify values for e, L, and κ, we will give the values of B/µ2, Q/µ2, etc.

in what follows. We also work in dimensionless coordinates defined by replacing (z, t, ~x)

in the expressions above by (zHz, zHt, zH~x), such that the horizon position is at z = 1.

– 6 –
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We now summarize our work in ref. [26] on how to introduce the charged star, and

refer to that reference for the full details. We take as our action

S = SEMD + Sfluid, (3.7)

where the fluid action comes from the Lagrangian [32–34]

Lfluid =
√
−G (−ρ(σ) + σuµ (∂µφ+Aµ + α∂µβ) + λ (uµuµ + 1)) . (3.8)

Here φ is a Clebsch potential variable, (α, β) are potential variables, and λ is a Lagrange

multiplier. The energy density of the fluid, ρ, and the charge density, σ, were found in

ref. [26] to be that of a free fermion with mass m̃ = κm/e:

σ̃ = eL2κσ =
1

3
β̃
(
µ̃− m̃2

)3/2
, (3.9)

ρ̃ = L2κ2ρ =
1

8
β̃

(
µ̃
√
µ̃2 − m̃2

(
2µ̃2 − m̃2

)
+ m̃4 ln

(
m̃

µ̃+
√
µ̃2 − m̃2

))
, (3.10)

where µ̃(z) = zh(z)/
√
F (z), β̃ = e4L2β/κ2 ∼ O(1) is a constant of proportionality, and

a tilde means that it is a dimensionless quantity. The free fermion result is valid so long

as 2q̃B � 1, where q̃ = κ
e2L

2e
a(z) and a(z) = A(z)/z2. To be in a regime where we can use

classical gravity we must have κ/L� 1, and since β̃ ∼ O(1) it follows that e2 ∼ κ/L� 1.

Thus the free fermion result is valid when 4eB
a(z) � 1. In the solutions that follow it is assumed

that we adjust the value of e so as to maintain this constraint. Our ansatz for the fluid is

ut = −
√
−Gtt, Ay =

eL

κ
By, φ =

eL

κ
Bxy, α =

eL

κ
By, β = x. (3.11)

With this ansatz the equations of motion from the action in eq. (3.7) become, after

some work,

P̃ ′(z) +
f ′(z)

2f(z)

(
P̃ (z) + ρ̃(z)

)
− σ̃(z)

h′(z)√
f(z)

=0 , (3.12a)

a′′(z)−a′(z)

(
g′(z)

2g(z)
+
f ′(z)

2f(z)
+
a′(z)

2a(z)

)
+a(z)

(
g(z)

(
P̃ (z)+ρ̃(z)

)
+2Φ′(z)2

)
=0 , (3.12b)

f ′′(z)

f(z)
− f ′(z)

f(z)

(
g′(z)

2g(z)
+
f ′(z)

2f(z)
− 2a′(z)

a(z)

)
+

(
a′(z)2

2a(z)2
− 2Φ′(z)2 − g(z)

(
5P̃ (z) + ρ̃(z)− 2Ṽ (Φ)

))
= 0 , (3.12c)

Φ′(z)2+g(z)

(
−Z(Φ)B2

2a(z)2
+

(
P̃ (z)− 1

2
Ṽ (Φ)

))
− a′(z)2

4a(z)2
− a
′(z)f ′(z)

2a(z)f(z)
−Z(Φ)h′(z)2

2f(z)
=0 , (3.12d)

h′′(z)− h′(z)

(
g′(z)

2g(z)
+
f ′(z)

2f(z)
− a′(z)

a(z)
− Z ′(Φ)Φ′(z)

Z(Φ)

)
−
√
f(z)g(z)

Z(Φ)
σ̃(z) = 0 , (3.12e)

Φ′′(z)+Φ′(z)

(
f ′(z)

2f(z)
− g′(z)

2g(z)
+
a′(z)

a(z)

)
−Z

′(Φ)

4

(
g(z)B2

a(z)2
−h
′(z)2

f(z)

)
− g(z)Ṽ ′(Φ)

4
=0 . (3.12f)

– 7 –
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Figure 2. Schematic phase diagram of the various black hole solutions considered in this paper.

The vertical axis is the purely electric dilaton black hole (PED) with no magnetic charge, the

horizontal axis is the purely magnetic dilaton black hole (PMD) with no electric charge, and the line

is the dilaton-dyon black hole, with magnetic and electric charge satisfying Q = B. The IR behavior

of the dilaton is indicated for each phase, in coordinates where the horizon is located at infinity.

In these equations, we have written f(z) = F (z)/z2, g(z) = G(z)/z2, a(z) = A(z)/z2,

and Ṽ (Φ) = L2V (Φ). Here the fluid pressure P̃ (z) is given by the thermodynamic rela-

tion P̃ (z) = −ρ̃(z) + µ̃(z)σ̃(z) so that eq. (3.12a) is automatically satisfied. As a check,

setting the fluid fields to zero reduces eq. (3.12) to those coming from just the Einsten-

Maxwell-Dilaton system in eq. (3.1), so when we consider cases without the star we will

find solutions to eq. (3.12) with the fluid fields turned off. We still require our star back-

grounds to be asymptotically AdS4, and so the UV dual field theory is again characterized

by the dimensionless ratios in eq. (3.6).

It was found in ref. [26] that the solutions of these equations fall into three broad

phases governed by the IR behavior of the dilaton. In the case with no star, the dilaton

can diverge logarithmically either positively or negatively in the IR, giving rise to a purely

electric horizon or a purely magnetic horizon. If it tends to a finite value, then it is a dyonic

solution. Figure 2 schematically illustrates this phase structure. With the star present, the

same classification scheme can be used and we can label the solutions: a “mesonic” phase,

where all the electric charge is sourced by the star; a “partially fractionalized” phase, where

a fraction of the charge is sourced by the star and the rest by the horizon; and a “fully

fractionalized” phase, where all the charge is sourced by the horizon.

In this paper, we will study the entanglement entropy of the following phases: no star

purely electric horizon, no star purely magnetic horizon, no star dilaton-dyon, and star

mesonic phase. These solutions were found in ref. [26] as asymptotic expansions in the

IR and were integrated numerically out to the UV, matching onto AdS4. We display the

relevant expansions as they are needed in the following sections.

– 8 –
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4 Entanglement entropy of the purely electric dilaton black hole

We first begin with the purely electric dilaton black hole (PED) with no star. An analytic

form of this solution was written down in ref. [35] (where it arises as the three-equal-charge

dilatonic black hole in four dimensions) at a single point in the phase diagram; below,

we indicate which point this is in terms of parameters. Since our star backgrounds are

constructed numerically, as a check of our numerical procedure, we construct a numerical

PED below and compare the results with the analytic solution of ref. [35].

Our IR (z = 1) series expansion for the metric (3.3) is

F (z) = (1− z)3/2

(
f0

(
1 +

∞∑
n=1

fn(1− z)n

)
+ δf(1− z)b

)
, (4.1a)

G(z) = (1− z)−3/2

( ∞∑
n=0

gn(1− z)n + δg(1− z)b

)
, (4.1b)

A(z) = (1− z)1/2 . (4.1c)

We can consistently set B ≡ 0 in our equations of motion and ansatz, and take for the

electric component of the Maxwell field and for the dilaton the expansions

h(z) = (1− z)

(√
f0

2
+ δh(1− z)b

)
, (4.2a)

Φ(z) = −
√

3

4
log (1− z) + δΦ(1− z)b . (4.2b)

We have turned on a perturbation {δf, δg, δh, δΦ}, with b = 1
6

(
−3 +

√
57
)
, to allow us

to flow to different values of the dual field theory parameters in eqs. (3.6). To find the

perturbation, we treat the equations of motion (EOM) as functions of the δf , etc., and

then consider the linear problem

∂EOM(δI)

∂δJ

∣∣∣
δJ=0

δJ = 0 , (4.3)

where I, J = 1, . . . , 4 and δ1 = δf, δ2 = δg, etc., and “EOM” in eq. (4.3) refers to each

of the eqs. (3.12). We require this to have a nontrivial solution for the δI and thus, the

matrix of derivatives must be non-invertable. Requiring its determinant to vanish gives

us a polynomial condition for β which we can solve, and then using this, we can solve the

linear system in eq. (4.3) for the perturbations.

Substitution of eq. (4.1) into the equations of motion in eqt. (3.12) fixes all coefficients

in the expansions except for f0, which is chosen so that the UV metric flows to AdS. In

fact, this fixes all perturbations except δf , whose choice takes us to different values of the

dimensionless ratios in eq. (3.6).

We now compute the finite part of the entanglement entropy for the strip geometry

using eqs. (2.6) and (2.7). Figure 3 shows a plot of sS as a function of the strip width `.

In order to check our numerics, we compared this calculation with that of the analytical
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solution for the PED in ref. [35].5 Their metric, written in the form of eq. (3.3), is

F (z′) =
(

1 + Q̃z′
)3/2

1− Q̃3z′3(
1 + Q̃z′

)3

 , (4.4a)

G(z′) =
(

1 + Q̃z′
)−3/2

1− Q̃3z′3(
1 + Q̃z′

)3


−1

, (4.4b)

A(z′) =
(

1 + Q̃z′
)3/2

, (4.4c)

where we have used a prime to denote their coordinates, and in their coordinates {t′, z′, ~x′}
the horizon is at z′ =∞ and the UV at z′ = 0, and L′ is the AdS radius. Lastly, to compare

to our solution we did one further rescaling of the coordinates by Q̃ so that eqs. (4.4) are

only in terms of z′, although in section 6 we need the explicit Q̃ dependence and so have

kept it in for eqs. (4.4).

The analytic solution corresponds to our δf = 0, for which the dimensionless UV field

theory parameters take the values

µ = 1.2247 ,
φ1

µ
= 0.3535 ,

Q

µ2
= 0.8165 ,

φ2

µ2
= 0.1444 . (4.5)

These values agree with the analytical values to within 10−4 accuracy. The result of the

analytical entanglement entropy computation is also shown in figure 3, and there seems to

be a mismatch. However, this is due to the difference in coordinates used in the two calcula-

tions. The analytic solution’s coordinates are related to our coordinates via z = z′

1+z′ . The

consequence is that when regulating the entanglement entropy so that it is finite, we must

specify what our chosen regulator is and this is a coordinate dependent statement. When

comparing the two results we must take into account that the UV regulators are different

because the location of the UV relative to the IR is rather different in the two cases; indeed,

the shift seen in figure 3 for the asymptotic IR value of sS is 1, which from the coordinate

relationship between the two systems is precisely the difference in regulators: 1/ε = 1+1/ε′.

It is usually expected that the large ` limit of the entanglement entropy should approach

the thermal entropy of the system. However, in this case, our PED solutions have zero

thermal entropy and we see that both the numerical and the analytic solution asymptote to

two different values as ` increases. In fact, we see in figure 4a plots of the strip entanglement

entropy for various values of δf each of which asymptotes to a different large ` value. We

also find that as δf is increased, the value of the dual field theory chemical potential µ also

increases, while the values of φ1/µ and Q/µ2 decrease.

5In comparing their four-dimensional Lagrangian with ours, the relationships between their dilaton α

and ours is α = 2√
3
Φ. In addition, their metric is in terms of a coordinate r′, but we have done a change

of coordinates to z′ = L′/r′ and replaced their {t′, ~x′} by L′{t′, ~x′} for comparison. We have also defined a

dimensionless charge Q̃ via Q̃ = Q′/L′. We have omitted writing expressions for their dilaton and Maxwell

field as their particular form is not needed for what we discuss here.
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Figure 3. The finite part of the entanglement entropy sS as a function of the strip width ` for the

numerical PED (blue/lower), with δf = 0, and the analytical solution (red/upper), eqs. (4.4). We

have taken our UV cutoff to be ε = 10−5 and our maximal IR value of zT = 0.9999. See text for

explanation of the shift.
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Figure 4. (a) The finite strip entanglement entropy sS as a function of ` for various values of δf .

Blue/lower is δf = −10 (Q/µ2 = 1.0209), red/middle is δf = 0 (Q/µ2 = 0.8165), and orange/upper

is δf = 10 (Q/µ2 = 0.5863). (b) A zoomed in version of (a) where the horizontal lines are the areas

of the in-falling solution for each.

Interestingly, if we consider the “in-falling” minimal surface, namely the one that just

hangs straight down into the black hole, and compute its finite area via

Area(γif)

2L
=

∫ 1

ε
dz
√
a(z)g(z)− 1

ε
, (4.6)

(where γif denotes the in-falling surface) we find that this value agrees to within reasonable

numerical precision with the large ` value of sS . For example, when δf = 0, we find that

the large ` value of sS is given by −0.4325 and the finite area of the in-falling piece is given

by −0.4427. This suggests that these “side pieces” contribute to the entanglement entropy.

Since our solutions have zero temperature and zero thermal entropy, as well as a zero area

horizon, this may be the reason we are able to see their contribution, whereas in the case
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Figure 5. The large ` value of sS as a function of Q/µ2 for −10 ≤ δf ≤ 10.

of a non-zero thermal entropy, these pieces are negligible compared to the thermal entropy.

Figure 4b shows the same plots as figure 4a but zoomed in to show a comparison between

the large ` behavior of the entanglement entropy and the in-falling piece. In figure 5, we

show how the large ` value of sS changes as the dimensionless ratio Q/µ2 is varied.

We can also compute the entanglement entropy for the disk geometry sD defined in

eq. (2.4) and found by computing the integral in (2.8) using the minimal surface z(r)

found by extremizing the area functional of (2.8). For numerical reasons, we find it more

convenient to work with a new radial coordinate defined by [36]

ζ(`) =
1

`

√
`2 + ε2 − r2 , (4.7)

where ` is the radius of the disk. In terms of this radial coordinate the pure AdS4 minimal

surface would just be given by z(ζ) = `ζ. Using this, we are able to find sD for various

values of δf . In figure 6, we plot sD/` vs. ` for three different values of δf . We see6 that

entanglement entropies seem to be asymptoting to different large ` values as in the case

with the strip.

5 Entanglement entropy of the purely magnetic dilatonic black hole

In this section, we will consider dilatonic black holes that have no electric charge but do have

a magnetic charge. We can use as our ansatz the same metric (3.3) and Maxwell fields (3.4)

except we set h(z) ≡ 0. The IR expansion for our metric fields and dilaton then becomes

f(z) =
(1− z)2

z2

∞∑
n=0

fn(1− z)4n/3 , (5.1a)

g(z) = (1− z)−4/3
∞∑
n=0

gn(1− z)4n/3 , (5.1b)

6As mentioned in section 2 finding sD requires solving a order differential equation as well as numerical

integration. Since our backgrounds are numerical and we also have to solve the second order differential

equation numerically, we have some numerical variance, as seen in the disk plots.
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Figure 6. The finite part of the entanglement entropy sD as a function of the disk radius ` for

three values of δf . Blue/lower is δf = −4 (Q/µ2 = 0.9002), red/middle is δf = 0 (Q/µ2 = 0.8165),

and orange/upper is δf = 4 (Q/µ2 = 0.7289). Recall that finding sD requires solving a second order

differential equation as well as numerical integration, so the numerical accuracy is not as controlled

as in the strip case, hence the numerical variance in the entanglement entropy curves shown.

a(z) = (1− z)2/3
∞∑
n=0

an(1− z)4n/3 , (5.1c)

Φ(z) =

√
3

3
log (1− z) +

∞∑
n=0

Φn(1− z)4n/3 . (5.1d)

We find that the entire function f(z) is free in the IR, along with the values of B and

Φ0. For simplicity, we fix f(z) = (1 − z)2/z2 and choose B, tuning the value of Φ0 so

that the other metric functions give the correct AdS4 behavior. In this case, we do not

find the need to introduce a perturbation to allow us to flow to different values of the UV

parameter that characterize the theory. Since here we do not have any electric component

to our solution, we will take the dimensionless ratio to be B/φ2
1.

Figure 7a shows the finite part of the entanglement entropy for the strip geometry for

three solutions with different values of B/φ2
1. We note that the behavior seems similar to

that of the PED, suggesting that the form of the entanglement entropy may be invariant

under electromagnetic duality. We explore this next.

For the disk geometry, the finite part of the entanglement entropy can be found in

figure 7b for the same values of the UV parameter. Again, the behavior is similar as to

that of the PED disk entanglement entropy.

6 Electromagnetic duality

For both the PED and PMD solutions, the Maxwell equation of motion from the action in

eq. (3.1) is

∂ν

(√
−GZ (Φ)Fµν

)
= 0 . (6.1)
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Figure 7. (a) The finite part of the entanglement entropy sS as a function of the strip width `

for the PMD with B/φ21 = 0.4183 (blue/lower), B/φ21 = 0.6710 (red/middle), and B/φ21 = 1.6383

(orange/upper). (b) The finite part of sD/` as a function of ` for the same value of the UV

parameters with the same colors/locations. See footnote 6 for an explanation of the numerical

variance in (b).

In vacuum, there is the well-known electromagnetic duality where the equation of motion,

eq. (6.1), is invariant under Fµν → ?F , where ?F is the Hodge dual given by

(?F )µν =
1

2

√
−GεµνρσGρλGσωFλω. (6.2)

Here, εµνρσ is the completely antisymmetric tensor with ε0123 = +1. In the case when

there is a scalar in the theory that couples to the Maxwell field strength as in the action

in eq. (3.1) as Z(Φ)F 2, then the electromagnetic duality also requires that Φ(z)→ −Φ(z).

We now consider the electromagnetic duality in the boundary theory, applied to the PED

and PMD solutions and their strip entanglement entropy.

Evaluating eq. (6.2) for the PED solution with metric written as in eq. (4.1) we have

that

(?F )xy = − A(z)√
F (z)G(z)

h′(z) . (6.3)

Recall we require the UV behavior of h(z) = µ−Qz and {F,G,A} → {1, 1, 1}. Thus, the

UV “magnetic dual” solution to the PED solution with given Q value is

(?F )xy = Q . (6.4)

Because we have scaled out the dependence of the solution on the horizon, zH , we must

always consider dimensionless ratios. Thus in comparing the PED and PMD solutions

under electromagnetic duality, we fix the value of Q/φ2
1 in the PED and then find the

corresponding PMD solution that has B/φ2
1 = Q/φ2

1. We also check that the UV behavior

of the dilaton has opposite sign between the two theories.

It turns out that all of our PED solutions have approximately the same value of

Q ≈ 1.224, although the dimensionless ratios change. We pick the value Q/φ2
1 = 3.40684,
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Figure 8. (a) The finite part of the strip entanglement entropy sS(`) for the PMD (red/upper)

and the PED (blue/lower), EM dual solutions with ratios B/φ21 = Q/φ21 = 3.4068. The PMD is

shifted up by 0.3440. (b) The same entanglement entropies as in (a) but with the PMD shifted

down; see text for explanation. The agreement is nearly perfect.

which is for a δf value of δf = −4.7218. We then find the corresponding PMD solution

with B/φ2
1 = 3.40688. We note that for the PED solution, φ1 = 0.5995 and for the PMD

φ1 = −0.5994. We then compute the finite part of the strip entanglement entropy for both

and obtain the results in figure 8a.

We find that the two entanglement entropies are shifted relative to one another, with

the PMD solution being 0.3440 higher than the PED. We observed a similar shift between

the analytic and numerical backgrounds for the PED solution δf = 0, which was due to

different coordinates giving rise to different UV cutoffs. For the PED and PMD solutions,

we have used the same coordinates with the horizon at z = 1; however, there is a subtlety.

We rescaled the radial coordinate z by the position of the horizon, zH , so that we could

use the range 0 ≤ z ≤ 1 for our numerics. However, in the definition of the entanglement

entropy in eq. (2.6), this rescaling will change the UV cutoff ε by ε/zH . Thus, if we are to

restore the position of the horizon, we would have

εPED = εzQ , (6.5a)

εPMD = εzB , (6.5b)

where ε = 10−5 is the numerical UV cutoff we have used in both backgrounds. If our

choices of the PED horizon zQ and the PMD horizon zB are not the same, it would lead to

slightly different UV cutoffs between the two theories, and hence a shift in the entanglement

entropy.

To see this, recall from the analytic vs. numerical shift we observed previously, we

know that the shift, η, is related to the UV cutoffs via

1

εPMD
= η +

1

εPED
. (6.6)

Using (6.5), this means that the PMD horizon zB in terms of the shift η and the PED
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Figure 9. (a) The finite part of the strip entanglement entropy sS(`) for the analytic PED solution.

The three curves are for Q̃ = 1 (blue/lower), Q̃ = 1.5 (red/middle), and Q̃ = 2 (orange/upper). (b)

The same entanglement entropies as in (a) after being shifted down; see text for explanation.

horizon zQ is given by

zB =
zQ

1 + εηzQ
. (6.7)

Thus, if the shift is non-zero, then we have that zB 6= zQ. We check this by shifting the

PMD entanglement entropy down by sS(`)−0.3440 for all values of ` and find near perfect

agreement with the PED entanglement entropy — see figure 8b.

As a further check, we revisit the analytical solution [35] for the PED, given in our

notation by eqs. (4.4). We can now do a rescaling of the analytic solution’s coordinates,

letting z′ = ẑ/Q̃, which mimics the rescaling of our coordinates by the horizon radius. This

implies that the UV cutoff ε′ for the analytic solution is then rescaled to become ε̂/Q̃ and

we find a relationship similar to eq. (6.5): ε̂ = εQ̃. Following the above arguments for our

case with the different horizons, we find that if Q̃ is varied then there will also be a shift

η′ in the analytic entanglement entropy, controlled by Q̃, via

Q̃ =
1

1 + ε′η′
. (6.8)

This shows that changing Q̃ should have the same effect as changing the horizon positions in

the PED and PMD solutions, which leads to a shift in the entanglement entropy. We show

in figure 9a the analytic entanglement entropy sS(`) for values of Q̃ = 1, 1.5, 2 and indeed

there is a shift. In figure 9b we subtract this shift from the entanglement entropies when

Q̃ > 1 and we find there is good agreement, which confirms that changing Q̃-and hence

changing the horizon position for the PED and PMD solutions-leads to an overall shift.

From the point of view of the dual field theory, the electromagnetic duality should act

by exchanging electric and magnetic charge carriers [37, 38], and so our results suggest that

the entanglement entropy is invariant under this exchange, at least for the field theories

dual to the PED and PMD backgrounds.7

7In ref. [27], they also find that under electromagnetic duality transformation, the logarithmic violation of

the area law that they see is preserved, suggesting a Fermi surface even though the charge density vanishes.
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Figure 10. (a) The finite part of the entanglement entropy sS as a function of the strip width `

for three values of the dimensionless ratio B/µ2. Blue/upper curve is B/µ2 = 1.040, red/middle

curve is B/µ2 = 6.779 and orange/lower curve is B/µ2 = 27.866. (b) The same plot as (a) but

zoomed in to see the large ` behavior of sS .

7 Entanglement entropy of the dilaton-dyon black hole

Now we turn to the dilaton-dyon black hole. The IR series expansion for the metric in

eq. (3.3) Maxwell field (3.4), and dilaton are

F (z) = (1− z)2
∞∑
n=0

fn(1− z)n , (7.1a)

G(z) =
1

(1− z)2

∞∑
n=0

gn(1− z)n , (7.1b)

A(z) =

∞∑
n=0

an(1− z)n , (7.1c)

h(z) = h0(1− z) , (7.1d)

Φ(z) =

∞∑
n=0

Φn(1− z)n . (7.1e)

The equations of motion fix all coefficients except for {f0, a1,Φ0}, and we also have a choice

of the value of the magnetic field B. We fix f0 = 1 and generate different backgrounds that

give different dual UV field theory parameters by choices of B, a1 and Φ0. Our particular

choice of ansatz actually fixes Q = B for all of our solutions.

In figure 10a, we plot sS for the dilaton-dyon black hole for a few values of B/µ2. We

find that increasing the value of B/µ2 appears to shift the entire entanglement entropy

down. Zooming in on sS(`) (figure 10b), we see that the behavior of the entanglement

entropy appears to be linear in `, sS(`) ∼ `, with the slope increasing as B/µ2 is decreased.
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Figure 11. (a) The finite part of the entanglement entropy sD/` as a function of the disk radius

` for four values of the dimensionless ratio B/µ2. Blue/upper curve is B/µ2 = 3.249, red/middle

curve is B/µ2 = 6.779, and orange/lower curve is B/µ2 = 27.866. (b) The same data as in (a) but

plotting sD/`
2. See footnote 8 for an explanation as to why the results have less numerical variance

than those for the PED and PMD.

The results for the disk8 entanglement entropy are shown in figure 11, where we again

found it useful to switch to the radial coordinate defined in (4.7), for three values of B/µ2.

We find that the entanglement entropy, sD(`)
` , appears to be linear in `, which suggest that

sD(`) ∼ `2, which would be a “volume” law rather than an area law for the entanglement

entropy. As with the strip entanglement entropy, increasing B/µ2 shifts sD/` down but it

also leads to a much more noticeable shift in the slope of the linear part of sD/`.

As a check, we turn off the dilaton (consistently setting Φ(z) ≡ 0 in our equations

of motion) and compute sD/` for the dyonic black hole. We can compare our numerical

background’s result to that of the analytical background written in ref. [39]. The result is

shown in figure 12 and we see that there is very good agreement.

All of our solutions are at zero temperature, and the PED black holes also have zero

thermal entropy because they have zero area horizon, but our dilaton-dyon black hole has

a finite area horizon (which in the dual gauge theory is interpreted as a large ground state

degeneracy) and thus a finite entropy, S, even at zero temperature. Namely, computing

the area of the horizon at z = 1 using our IR expansion (7.1) (and dividing out by the

infinite volume of R2), we find

S

Vol(R2)
=

Area(Horizon)

4
=

1

4

∫
dxdy

√
A(z)

z2

∣∣∣
z=1

=

√
a0

4
, (7.2)

which is a constant, where we have absorbed the factor of the AdS radius L into the volume

8The numerical results for the dilaton-dyon sD in figure 11 have very little numerical variance in com-

parison to those for the PED and PMD solutions. This is due to the fact that for the dyon solution the

dilaton does not diverge in the IR.
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Figure 12. Comparing the numerical and analytical dyonic black hole sD/`
2. Blue is the analytical

background and red is the numerical background.

Plot Color/Location UV B/µ2 IR B B1/2/(31/4 · 4) Slope

Blue/Upper 3.249 0.3074 0.1053 0.1011

Red/Middle 6.779 0.1477 0.0730 0.0569

Orange/Lower 27.866 0.035 0.0359 0.0322

Table 1. Comparing the numerically determined slope of the linear part of figure 11a for sD/`

to the ground state degeneracy in eq. (7.3). The plot colors/location and UV value of B/µ2 are

given for ease of reference, as is the IR value of B, which is used to determine the ground state

degeneracy via eq. (7.3).

factor. In fact, from the equations of motion, we have that a0 = B√
3

and so

S

Vol(R2)
=

1

31/4

B1/2

4
. (7.3)

To see whether or not our entanglement entropy approaches the ground state entropy in

the large ` limit, we did a numerical fit to the linear part of sD/` in figure 11a. The

resulting slope is in table 1, comparing to the value of eq. (7.3) using the IR value of B.

8 Entanglement entropy of the magnetic electron star

We are now ready to turn on the star. The solutions were found in ref. [26] in coordinates

where the horizon is at infinity, but here we find it better to rescale those solutions so that

the horizon is at z = 1. We will consider the mesonic phase, where there is a charged star

in the IR as well as a horizon, but with no electric charge behind the horizon. The IR

expansion of the fields is given by

F (z) = z2(1− z)2

( ∞∑
n=0

fn(1− z)2n/3 + δf(1− z)2b/3

)
, (8.1a)
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Figure 13. (a) The local chemical potential is shown in blue (the curve), where the fermion mass

(shown in red, a horizontal line) is m̃ = 0.5 and zstar = 0.3529 is the vertical line. The dual UV

field theory parameters are B/µ2 = 6.8132, Q/µ2 = 0.1136, φ1/µ = −3.6507, and φ2/µ
2 = 12.4852.

(b) The background metric and dilaton (lowest purple curve) for the same UV parameters as in

(a). Here we have actually plotted G(z) = z2g(z), A(z) = z2a(z), and F (z) = z2f(z) (lower-middle

blue curve, upper red curve, and upper-middle orange curve respectively) so that our expect UV

behavior is that each metric function goes to 1. We have also pulled out a factor of z in Φ(z),

redefining Φ(z)→ zΦ(z) (purple). The vertical line is zstar.

G(z) = z2(1− z)−4/3

( ∞∑
n=0

gn(1− z)2n/3 + δg(1− z)2b/3

)
, (8.1b)

A(z) = z2(1− z)2/3

( ∞∑
n=0

an(1− z)2n/3 + δa(1− z)2b/3

)
, (8.1c)

h(z) = h0(1− z), (8.1d)

Φ(z) =

√
3

3
ln (1− z) +

∞∑
n=0

Φn(1− z)2n/3 + δΦ(1− z)2b/3. (8.1e)

We have again turned on a perturbation with b = 1
3

(
−3 +

√
57
)

in order to flow to different

values of the UV parameters (3.6). The equations of motion fix all coefficients except

{B, f0,Φ0, δΦ}. We choose a value of the fermion mass, m̃, and choose {B, f0, δΦ} and

then adjust Φ0 (and rescale the time coordinate) so that the solution flows to AdS4 in the

UV. Figure 13a shows an example, plotting the local chemical potential, fermion mass,

and value of the ending radius of the star, zstar; figure 13b shows the metric functions and

dilaton for the same background.

For this background, we show in figure 14a the finite entanglement entropy for the

strip geometry. As with the PED black hole solution, we have computed the area of the

“in-falling” solution. We find that the large ` value of sS is greater than the area of the “in-

falling” solution. In fact, we are able to generate several magnetic electron star backgrounds

(see figure 15) and from those backgrounds there are strong indications that for every one

the large ` value of sS is greater than the in-falling solution, with the difference between

the two always around 1.5 ± 0.2. However, we do not show curves for sS for all of these
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(a) (b)

Figure 14. (a) The finite part of the entanglement entropy sS for the strip geometry as a function

of the strip width ` for the mesonic phase of the magnetic electron star with B/µ2 = 6.8132. The

red, lower part of the curve (that tends to negative infinity), is the part of sS that lies outside the

star and the blue, upper part of the curve (larger values of `), is the part that lies inside the star;

the minimal surface crosses into the star at a value of `star = 0.1938. The orange, horizontal line

is the value of sS for the “in-falling” solution and the intersection of the horizontal and vertical

lines indicate the point at which the entanglement entropy crosses over to the in-falling one. (b)

Same as (a) but for B/µ2 = 14.1343. Here the minimal surface crosses into the star at a value of

`star = 0.1883. This differs from (a) since the value of zstar is different.

backgrounds because the data are too difficult to control numerically well enough to display

— there is too much numerical noise; nevertheless, the relationship between the in-falling

and large ` value of sS is clear to us from these investigations. We also checked this behavior

in a different coordinate system (one in which the horizon is at z →∞) and again find the

same behavior. This suggests that the behavior is robust. Since the in-falling solution has a

lower entropy than the minimal surface, we conclude that the actual entanglement entropy

as seen in figure 14 follows the red curve, then the blue, until it meets the orange line, and

then it remains that of the in-falling solution for all ` thereafter (that is, it follows the curve

starting from negative infinity all the way until it means the intersection of the vertical

and horizontal lines, after which it remains the horizontal line). From the point of view of

the minimal surface, at a certain value of `, the hanging surface breaks and becomes the

in-falling solution. Figure 14b shows the strip entanglement entropy for a different value of

the dimensionless ratio B/µ2 to demonstrate this point. We also find evidence that for the

backgrounds generated along the line in figure 15 that the entanglement entropy increases

as B/µ2 is increased (as explained above, we choose not to display this data due to the

difficult numerics involved).

We note that we were unable to compute the disk entanglement entropy for the mesonic

phase of the magnetic electron star at this point in time due to numerical instability in

solving the second order problem for these backgrounds, at least at the level of the numerical

sophistication that we are using. In addition, although we have solutions for partially

fractionalized phases of magnetic electron stars, given in ref. [26], we are currently unable

to change how populated the star is (i.e. how much the chemical potential is greater than

the fermion mass) and so cannot fully explore the entanglement entropy of these solutions.
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Figure 15. (a) The line in the phase diagram for the different magnetic electron star backgrounds

we are able to generate, showing here the relationship between B/µ2 vs. Q/µ2, where B/µ2 is the

free parameter. (b) The same line in the phase diagram but showing two of the parameters we

control, φ1/µ vs. B/µ2.

Our results strongly indicate that the entanglement entropy of the mesonic phase

of the magnetic electron star is undergoing a “phase transition” as it transitions to the

in-falling solution. This is reminiscent of the breaking of the hanging string in confine-

ment/deconfinement phase transitions [7, 40, 41], and similar behavior has been seen in

the work of two of the authors of this paper, ref. [42], in the case of holographic super-

conductors. However, without being able to compare to the disk case we cannot say how

robust this “phase transition” may be, and in addition, without a careful study of the

stability of magnetic electron stars we cannot rule out the possibility that we are detecting

an instability. These are matters that demand further investigation.

9 Conclusion

We have computed the finite part of the holographic entanglement entropy for the strip

and disk geometry for purely electric, purely magnetic, and dyonic dilatonic black holes, as

well as the strip entanglement entropy for the magnetic electron star solutions of ref. [26].

We observed how the entanglement entropy for the PED solution backgrounds at large `

approach the in-falling solution, which contributes a non-zero value to the entanglement

entropy. We also found that different UV regulators, due to having different coordinate

systems, can introduce a shift in the entanglement entropy. Similar results are obtained for

the PMD backgrounds, and we are able to show that the entanglement entropy is invariant

under electromagnetic duality, as long as one shifts the relative location of the physical

horizons between the PED and PMD solutions.

For the dilaton-dyon black hole, we found that the entanglement entropy for the disk,

at large `, grows linearly with `, with a coefficient approximately equal to the ground state

degeneracy of our solutions. This suggests a volume law rather than an area law for these

backgrounds. Lastly, for the mesonic phase of the magnetic electron star solution, we found
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that the entanglement entropy smoothly passes into the star, but that at a certain value

of `, it is actually the in-falling solution that has lower entropy than the hanging surface.

This suggests that at a value of z, with zstar < z < 1, the minimal surface breaks to

the in-falling one. This strongly suggests the presence of a “phase transition,” however,

pending further investigation we cannot say for certain; regardless, our results indicate at

least some non-trivial behavior in the far IR for the entanglement entropy. In all cases,

we find a dependence of the large ` behavior of the entanglement entropy on the various

dimensionless ratios in the theory.

There are several directions for future work. We mentioned in section 8 that one could

study the disk entanglement entropy for the mesonic case, as well as the entanglement

entropy of the partially fractionalized phases of the magnetic electron stars. For the case

of zero magnetic field but with a charged star and electrically charged horizon-a partially

fractionalized phase-the entanglement entropy’s dependence on the charge was studied in

refs. [12] and there it was found that there was a logarithmic violation to the area law due

to the charged horizon but not the star. It would be interesting to see if the presence of

the magnetic field in such phases changes this behavior. Since we have only studied the

mesonic phase in this paper, we do not expect the logarithmic violation, at least in the

electric sector. Perhaps, however, even in the mesonic phase the presence of the horizon for

the magnetic sector will modify the area law behavior of the entanglement entropy in an

interesting way. Additionally, one could construct and study finite temperature versions of

our solutions. These points are left for future work.
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A Derivation of eqs. (2.6)–(2.8)

We present here the details of the derivations of eqs. (2.6), (2.7), and (2.8) given in section 2.

Recall we have taken bulk metric to be of the form

ds2 = −gtt(z)dt2 + gzz(z)dz2 + gxx(z)d~x2 , (A.1)

where UV is at z = 0 and the horizon at z = 1, after rescaling the coordinates by zH , the

physical horizon position. Writing the R2 part of the metric as dx2 + dy2 and having the

finite length of the strip run from −`/2 ≤ x ≤ `/2, the minimal surface will be symmetric

about y = 0. We denote the z value of the turning point of the surface as zT . Let the

surface have coordinates (x, y), the same as the R2 coordinates, with embedding z = z(x).

Then we may write the pull-back of the metric, at fixed time, as

ds2
γA

=

(
gzz(z(x))

(
dz

dx

)2

+ gxx(z(x))

)
dx2 + gxx(z(x))dy2 , (A.2)
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and thus the finite part of the entanglement entropy becomes

4GNSS = 2L

∫ `/2

0
dxgxx(z(x))

√
1 +

gzz(z(x))

gxx(z(x))

(
dz

dx

)2

. (A.3)

Because the above equation has no explicit dependence on the coordinate x, we can reduce

the second order problem of minimizing this integral for the surface z(x) into a first order

problem [31]. We see that eq. (A.3) does not have any explicit dependence on x, so thinking

of it as a time coordinate the associated “Hamiltonian” will be a conserved quantity with

respect to x, i.e., dH
dx = 0. We denote by pz the conjugate momentum for the variable z,

and taking the integrand in eq. (A.3) as the “Lagrangian”, we find

pz =
gzz(z(x))z′(x)√

1 + gzz(z(x))
gxx(z(x)) (z′(x))2

, (A.4)

which allows us to write the conserved “Hamiltonian”

H = − gxx(z(x))√
1 + gzz(z(x))

gxx(z(x)) (z′(x))2
= constant. (A.5)

This constant of motion is related to the turning point zT , as we will shortly see, so we

denote the constant by c(zT ) and, squaring both sides of eq. (A.5) and doing some algebra,

we find

dz

dx
=

√
1

c2(zT )

gxx(z)

gzz(z)
(g2
xx(z)− c2(zT )) . (A.6)

This is our first integral of motion, reducing the original second order problem of finding

z(x) to this first order one. We can go further, however, and bypass solving for z(x) directly.

First, from eq. (A.6) we see that the constant c(zT ) is related to the turning point if we set

c(zT ) = ±gxx(zT ) . (A.7)

Then we have that

dx =
gxx(zT )dz√

gxx(z)
gzz(z) (g2

xx(z)− g2
xx(zT ))

. (A.8)

This last relationship allows us to write the original entanglement entropy integral eq. (A.3)

as an integral over z. The result is

4GNSS = 2L

∫ zT

ε
dz

gxx(z)2√
gxx(z)
gzz(z) (gxx(z)2 − gxx(zT )2)

, (A.9)

where we have introduced the UV cutoff ε in the lower limit of the integral. With this, we

can easily find the length of the strip, ` = 2
∫ `/2

0 dx, as a function of the turning point via

substitution of dx above; we find

`

2
=

∫ zT

0
dz

gxx(zT )√
gxx(z)
gzz(z) (gxx(z)2 − gxx(zT )2)

. (A.10)
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Since the length ` should be positive, in writing eq. (A.10) we made the choice c(zT ) =

−gxx(zT ).

The same trick does not work, however, for the disk geometry, and so the formula is

simply given by the pull-back

4GNSD = 2π

∫ `

0
dr rgxx(z(r))

√
1 +

gzz(z(r))

gxx(z(r))

(
dz

dr

)2

, (A.11)

where 0 ≤ r ≤ ` is the radial variable for polar coordinates of the R2, dr2 + r2dθ2. In

this case, we must explicitly solve for the minimal surface z(r) and then input that into

eq. (A.11) to find the entanglement entropy. Eqs. (A.9), (A.10), and (A.11) are the same

as eqs. (2.6), (2.7), and (2.8) given in section 2.
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