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1 Introduction

The rare decays b → s(d)ll̄ have particular features. These transitions are of the single-

quark flavor-changing neutral current (FCNC) processes, which are forbidden at tree level

in the Standard Model (SM) but mediated by loop processes. Hence, within the SM, the

b → s(d)ll̄ amplitudes are greatly suppressed. The situation is different for the standard

model extensions, where many new particles beyond the SM are predicted. These new

particles can virtually entry the loops relevant to FCNC processes or induce the transitions

at tree level, which makes that the observables predicted in the standard model extensions

may significantly deviate from the ones in the SM. This sensitive nature to the effects

beyond the SM can be exploited as a tool for stringently testing the SM and indirectly

hunting the New Physics (NP).

In literatures, the b → sll̄ processes were extensively analyzed in the decays B →
K(∗)ll̄. In recent years, the decays B → K1(1270, 1400)ll̄ [1], B → K∗

0 (1430)ll̄ [2–9] and

B → K∗
2 (1430)ll̄ [8, 10–21] have also been emphasized. However, according to ref. [22], the

mass differences among the K
(∗)
J s, where K

(∗)
J s denote the mesons K1(1270), K1(1400),

K∗
0 (1430) and K∗

2 (1430), are small and their widths are rather wide. This leads to the

problem that the observables in a certain kinematic region may receive contributions from

several different channels and it is not easy to separate them confidently. For instance, as

estimated in ref. [8], at mKπ ∼ 1.4 GeV, the longitudinal differential branching fraction

dBrL(B → Kπll̄)/dm2
Kπ is affected by the channels B → K∗

0 (1430)ll̄, B → K∗
2 (1430)ll̄,

B → K∗(1680)ll̄ and B → K∗(1410)ll̄ un-negligibly. But this situation will be ameliorated,

if the decays Bc → D
(∗)
sJ ll̄ are investigated. Compared with the K

(∗)
J s, the mass differences

among the D
(∗)
sJ mesons are bigger and their widths are much narrower [22]. These features

are helpful in reducing the interferences among the different channels. Hence in this paper,

we are motivated to investigate the processes Bc → D
(∗)
sJ ll̄.

In the previous works [23, 24], the process Bc → D∗
s0(2317)ll̄ was calculated including

only the b → sll̄ effects, whose typical Feynman diagrams are Box and Penguin (BP)

diagrams, as plotted in figures 1 (a, b). However, besides the BP effects, the Annihilation

(Ann) diagrams, as shown in figure 1 (c), also make un-negligible contributions. On one

hand, both BP and Ann diagrams are of order O(αemGf ) and the ratio of their CKM

matrix elements is |V ∗
cbVcs(d)|/|V ∗

ts(d)Vtb| ∼ 1. On the other hand, from figure 1 (c), we see

that the color factors of Ann diagrams are 3 times larger than those of BP diagrams. Thus,

when the decay Bc → D∗
s0(2317)ll̄ is analyzed, it is necessary to include the Ann effects.

In addition to the BP and Ann effects, the process Bc → D∗
s0(2317)ll̄ is also influenced

by resonance cascade processes, such as Bc → D∗
s0(2317)J/ψ (ψ(2S)) → D∗

s0(2317)ll̄. Their

typical Feynman diagrams are illustrated in figures 1 (d, e). Transition amplitudes of these

diagrams in the area m2
ll̄
∼ m2

J/ψ (ψ(2S)) always become much larger than the BP and Ann

ones. Hence, to avoid overwhelming the BP and Ann contributions, the regions around

m2
ll̄
∼ m2

J/ψ (ψ(2S)) should be experimentally removed. In ref. [23], the regions [25], which

are defined through comparing the BP and color-suppressed (CS) cascade contributions,

are employed. However, in the Bc → D∗
s0(2317)ll̄ process, both the color-favored (CF) and

CS diagrams exist. Furthermore, the CF transition amplitudes are expected to be larger

– 2 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
1

b

c̄ c̄

s(d)

Bc D
(∗)
s(d)J

u, c, t

W W

l̄l

(a) box diagram

b

c̄ c̄

s(d)

Bc D
(∗)
s(d)J

W−

u, c, t u, c, t

Z0(γ) l

l̄

(b) Z0 (γ) penguin diagram

W−

l

l̄

γ

b

c̄

s(d)

c̄

Bc D
(∗)
s(d)J

(c) annihilation diagram

Bc D
(∗)
s(d)J

b

c̄ c̄

s(d)

W−

γ
l

l̄

(d) color-suppressed cascade dia-

gram

b

c̄

c

c̄

γ

l

l̄
Bc

D
(∗)
s(d)J

W
c̄

s(d)

(e) color-facored cascade diagram

Figure 1. Typical diagrams of Bc → D
(∗)
s(d)J ll̄ process. In annihilation diagrams (c) the photon

can be emitted from each quark, denoted by
⊗

, and decays to the lepton pair.

than the CS ones by a 3 times larger color factor approximately. Thus, it is necessary to

redefine these regions with both CF and CS cascade influences.

So in this paper, we investigate Bc → D∗
s0(2317)ll̄ transition including BP, Ann, CS

and CF contributions. In addition, in order to give a more comprehensive discussion on the

semi-leptonic rare decays of Bc, the processes Bc →Ds1(2460, 2536)ll̄, Bc → D∗
s2(2573)ll̄

and Bc → D
(∗)
J ll̄ are also analyzed.

In our calculations, the low-energy effective theory is employed [26]. Within this

method, the short distance information of transition amplitude is factorized into the Wilson

coefficients, while the long distance effects are described by the matrix element which is an

operator sandwiched by the initial and the final states. The Wilson coefficients in the SM

can be attained perturbatively. But the matrix elements are of non-perturbative nature

and in this paper we calculate them with the Bethe-Salpeter (BS) method [27]. In this

method, the BS equation [28, 29] is employed to solve the wave functions for mesons,

while the Mandelstam Formalism [30] is used to evaluate hadronic matrix elements. With

such method, the hadronic matrix elements keep the relativistic effects from both the

wave functions and the kinematics. In our previous paper [31], within the BS method,

we calculated the Bc → D
(∗)
s,d ll̄ rare transitions, whose final mesons are of S-wave states,

and checked the gauge-invariance condition of the annihilation hadronic currents. In this

paper, we investigate the processes Bc → D
(∗)
(s)J ll̄, whose final mesons are of P-wave states,

and furthermore, we give a more generalized conclusion: the annihilation hadronic currents

obtained within the BS method satisfy the gauge-invariance condition, no matter what the

JP s of initial and final mesons are.

– 3 –
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This paper is organized as follows. In section 2, we introduce the transition amplitudes

corresponding to BP, Ann, CS and CF contributions and specify the involved hadronic

matrix elements. Within section 3, we calculate these hadronic matrix elements through

the Bethe-Salpeter method and express the results in terms of form factors. In section 4,

using these form factors, we compute the observables, including dBr/dQ2, ALPL, AFB and

PL. Section 5 is devoted to the discussions on the theoretical uncertainties. Finally, we

summarize and conclude in section 6.

2 Transition amplitudes of BP, Ann, CS and CF contributions

In this section, we briefly review the transition amplitudes corresponding to BP, Ann, CS

and CF effects. A more detailed introduction can be found in our previous paper [31].

According to low-energy effective theory [26], the transition amplitude describing the

b → s(d)ll̄ (or equivalently, BP) contribution is,

MBP = i
GFαem

2
√
2π

VtbV
∗
ts(d)

{[

Ceff
9 Wµ − 2mb

Q2
Ceff
7 W T

µ

]

l̄γµl + C10Wµ l̄γ
µγ5l

}

, (2.1)

where Q = Pi − Pf and Pi(f) stands for the momentum of the initial (finial) meson. Vtb

and Vts(d) denote the CKM matrix elements. C10 is the Wilson coefficient. Ceff
7,9 are the

combinations of the Wilson coefficients which are multiplied by the same hadronic matrix

elements. The numerical value of C10 and the explicit expressions of Ceff
7,9 can be found in

ref. [32]. The hadronic matrix elements Wµ and W T
µ are defined as

Wµ = 〈f |s̄(d̄)γµ(1− γ5)b|i〉, W T
µ = 〈f |s̄(d̄)iσµν(Pi − Pf )

ν(1 + γ5)b|i〉, (2.2)

where the definition σµν = (i/2)[γµ, γν ] is used.

Based on the effective theory [26] and the factorization hypothesis [33], the transition

amplitude describing the Ann effects is [31]

MAnn =VcbV
∗
cs(d)

iαem

Q2

GF

2
√
2π

(

C1

Nc
+ C2

)

Wµ
ann l̄γµl, (2.3)

where C1,2 are the Wilson coefficients, whose values can be found in ref. [32]. The an-

nihilation hadronic current Wµ
ann is defined as Wµ

ann = Wµ
1ann + Wµ

2ann + Wµ
3ann + Wµ

4ann,

where

Wµ
1ann =(−8π2)〈f |s̄(d̄)γα(1− γ5)c|0〉〈0|c̄γα(1− γ5)

1

6pq1 −mq1 + iǫ

(

−1

3

)

γµb|i〉,

Wµ
2ann =(−8π2)〈f |s̄(d̄)γα(1− γ5)c|0〉〈0|c̄

(

2

3

)

γµ
1

6pq2 −mq2 + iǫ
γα(1− γ5)b|i〉,

Wµ
3ann =(−8π2)〈f |s̄(d̄)

(

−1

3

)

γµ
1

6pq3 −mq3 + iǫ
γα(1− γ5)c|0〉〈0|c̄γα(1− γ5)b|i〉,

Wµ
4ann =(−8π2)〈f |s̄(d̄)γα(1− γ5)

1

6pq4 −mq4 + iǫ

(

2

3

)

γµc|0〉〈0|c̄γα(1− γ5)b|i〉.

(2.4)

pq1−4 and mq1−4 are momenta and masses of the propagated quarks, respectively.

– 4 –
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For the CS and CF cascade resonance effects, the transition amplitudes are [31]

MCS =i
9GF

2
√
2αem

VcbV
∗
cs(d)

(

C1 +
C2

Nc

)





∑

V=J/ψ,ψ(2S)

Γ(V → l̄l)MV

Q2 −M2
V + iΓV MV



Wµ l̄γ
µl,

MCF =i
GFαem

2
√
2π

VcbV
∗
cs(d)

(

C2 +
C1

Nc

)

Wµ
CF l̄γµl,

(2.5)

where MV and ΓV are the mass and full width of the resonance meson, respectively. Γ(V →
l̄l) denotes the branching width of the transition V → l̄l. The resonance meson V stands

for the particle J/ψ or ψ(2S). The CF hadronic current Wµ
CF is defined as

Wµ
CF=

∑

V=J/ψ,ψ(2S)

−16π2

3M2
V

〈0|c̄γµc|V 〉 i

Q2−M2
V +iΓV MV

〈V |c̄γν(1−γ5)b|i〉〈f |s̄(d̄)γν(1−γ5)c|0〉.

(2.6)

Consequently, the total transition amplitude is

MTotal = MBP +MAnn +MCS +MCF. (2.7)

3 Hadronic transition matrix elements in the BS method

In section 2, the transition amplitudes of the Bc → D
(∗)
(s)J ll̄ processes are introduced and

the hadronic matrix elements W(T ), Wann and WCF are defined. In this section, within the

BS method, we show how to calculate these hadronic matrix elements. In section 3.1, we

express the hadronic currents as the integrals of the wave functions. Section 3.2 is devoted

to showing the wave functions of the mesons which are involved in this paper. Using these

wave functions, we calculate the hadronic currents in section 3.3 and parameterize the

results in terms of form factors in section 3.4. In section 3.5, we present the numerical

results of the form factors.

3.1 General arguments on hadronic currents

In this part, we rewrite the hadronic currents as the integrals of the wave functions and

present some general arguments.

According to the Mandelstam formalism [30], W(T ) can be expressed as the integrals of

the 4-dimensional BS wave functions. In the spirit of the instantaneous approximation [34],

the integrations with respect to q0i , where qi represents the relative momentum between the

quark and anti-quark of the initial meson, can be performed first. And then we have [27, 31]

Wµ = −
∫

d3~qi
(2π)3

Tr

{ 6Pi

Mi
ϕ̄++
f γµ (1− γ5)ϕ

++
i

}

,

Wµ
T = −1

2
(Pi − Pf )ν

(

Yµν
V + Yνµ

A

)

,

(3.1)

– 5 –
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where the hadronic tensors Yµν
V,A are defined as

Yµν
V = −

∫

d3~qi
(2π)3

Tr

{ 6Pi

Mi
ϕ̄++
f γµγνϕ++

i

}

,

Yµν
A = −

∫

d3~qi
(2π)3

Tr

{ 6Pi

Mi
ϕ̄++
f γµγνγ5ϕ

++
i

}

.

(3.2)

The term ϕ++
i(f) in eqs. (3.1)–(3.2) denotes the positive energy part of the initial (finial)

wave function [34] and will be specified in the next subsection. In this paper we ignore the

negative-energy parts since they give negligible contributions.

For Wann, similar to the derivations of eq. (3.1), we have,1

Wµ
1ann(i → f) =

8

π2

{

∫

d3~qi
(2π)3

2Fν
i0(i)(α

i
1P

µ
i + qµa )−Fµν

i+ (i)−Fµν
i− (i)

Mi(Q2 − 2Q · (αi
1Pi + qa) + iǫ)

}

×
{

∫

d3~qf
(2π)3

Ff0
ν (f)

Mf

}

, (3.3)

Wµ
2ann(i → f) =

−16

π2

{

∫

d3~qi
(2π)3

2Fν
i0(i)(−αi

2P
µ
i + qµa ) + Fµν

i+ (i)−Fµν
i− (i)

Mi(Q2 + 2Q · (−αi
2Pi + qa) + iǫ)

}

×
{

∫

d3~qf
(2π)3

Ff0
ν (f)

Mf

}

, (3.4)

Wµ
3ann(i → f) =

8

π2

{

∫

d3~qf
(2π)3

2Fν
f0(f)(α

f
1P

µ
f + qµc ) + Fµν

f+(f) + Fµν
f−(f)

Mf (Q2 + 2Q · (αf
1Pf + qc) + iǫ)

}

×
∫

d3~qi
(2π)3

F i0
ν (i)

Mi
, (3.5)

Wµ
4ann(i → f) =

−16

π2

{

∫

d3~qf
(2π)3

−2Fν
f0(f)(α

f
2P

µ
f − qµc )−Fµν

f+(f) + Fµν
f−(f)

Mf (Q2 + 2Q · (αf
2Pf − qc) + iǫ)

}

×
∫

d3~qi
(2π)3

F i0
ν (i)

Mi
, (3.6)

where qa is defined as qi − (Pi · qi/M2
i )Pi, while qc = qf − (Pf · qf/M2

f )Pf . The coefficients

αi,f
1,2 are given as αi

1 = mb/(mb+mc), α
i
2 = mc/(mb+mc), α

f
1 = ms(d)/(ms(d)+mc), α

f
2 =

mc/(ms(d) + mc), where mb,c,s,d are masses of the constituent quarks. The parameters

Fi0,i±(i → f) and Ff0,f±(i → f) are defined as

Fν
i0(i→f) = Tr

{

ϕ++
i γν(1− γ5)

}

, Fµν
i± (i→f) =

1

2
Tr

{

ϕ++
i γν(1− γ5)( 6Qγµ ± γµ 6Q)

}

,

Fν
f0(i→f) = Tr

{

ϕ̄f
++γν(1− γ5)

}

, Fµν
f±(i→f) =

1

2
Tr

{

ϕ̄f
++γν(1− γ5)(γ

µ 6Q± 6Qγµ)
}

.

(3.7)

1While deriving eqs. (3.3)–(3.6), we employ the weak binding hypothesis [34]. In this manner, the

expansion ω1,2 ≡
√

m2
1,2 − q2a,c = m1,2 +

−q2a,c

2m1,2
+ · · · · · · can be performed [34] and in this paper only the

leading term is kept. Under this approximation, we have the relationships (α1 6P+ 6q
P⊥

−m1)ϕ
++
i,f ∼ 0 and

ϕ++
i,f (α2 6P− 6q

P⊥
+m2) ∼ 0, which are quite useful to simplify Wann.

– 6 –
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Using eqs. (3.3)–(3.7), we now discuss the gauge invariant condition of the Ann hadronic

currents calculated in BS method. One may note that examining whether Wann satis-

fies the gauge invariant condition is equivalent to checking whether Wann · Q is zero. If

we multiply eqs. (3.3)–(3.6) by Qµ, it is obvious that (W1ann ·Q) + (W2ann ·Q) cancels

(W4ann ·Q)+(W3ann ·Q). Hence, we have Wann ·Q = 0. This implies that the Ann hadronic

currents in BS method indeed satisfy the gauge invariant condition. We stress that there is

no need to specify the initial or final state in the process of obtaining Wann ·Q = 0. Thus,

our conclusion is quite general.

For WCF, in this paper, we do not go into any details of their calculations, because

WCFs involved in the Bc → D
(∗)
(s)Jµµ̄ transitions can be obtained from WCF(Bc → D

(∗)
(s)µµ̄)s

by properly replacing the final decay constants. (We refer to ref. [31] for more details

on WCF(Bc → D
(∗)
(s)µµ̄) calculation.) The decay constants of the scalar and axial-vector

mesons can be found in ref. [35]. But due to the angular momentum conservation condition,

the longitudinal decay constants of the tensor mesons are zero. Hence, we have WCF(Bc →
D∗

s2(2573)(D
∗
2(2460))µµ̄) = 0.

3.2 Wave functions in BS method

In BS method, the meson is considered to be a bound state of two constituent quarks and

can be described by the BS wave functions [28]. In the framework of instantaneous approx-

imation [34], the time component of the BS wave functions’ arguments can be integrated

out and the BS equations are reduced to the Salpeter equations. By means of solving the

Salpeter equations, we obtain the wave function [35–38] for each meson.

In the present work, the mesons D∗
s0(2317), D∗

0(2400), D∗
s2(2573), D∗

2(2460),

Ds1(2460, 2536), D1(2420, 2430) and Bc are relevant. In the following paragraphs, their

wave functions are introduced.

(1) Wave functions of D∗

s0(2317) and D∗

0
(2400). Based on ref. [22], JP s ofD∗

s0(2317)

and D∗
0(2400) mesons are 0+. In this paper, we consider them as 3P0 states. In the BS

approach, the positive energy wave function for 3P0 state can be expressed as [39]

ϕ++
3P0

= a1

(

6q
P
⊥
+ a2

6P 6q
P
⊥

M
+ a3 + a4

6P
M

)

, (3.8)

where the parameters a1−4 can be found in ref. [39].

(2) Wave functions of D∗

s2(2573) and D∗

2
(2460). From ref. [22], JP s of D∗

s2(2536)

and D∗
2(2460) mesons are 2+. In this paper, they are described as 3P2 states. The positive

energy wave function for 3P2 state is [39]

ϕ++
3P2

= ǫTµνq
ν
P
⊥

{

qµ
P
⊥

[

d1 + d2
6P
M

+ d3
6q

P
⊥

M
− d4

6P 6q
P
⊥

M2

]

+ γµ
[

d5 + d6
6P
M

+ d7
6q

P
⊥

M
+ d8

6P 6q
P
⊥

M2

]}

, (3.9)

where ǫTµν is the polarization tensor. The parameters d1−8 can be found in refs. [38, 39].

– 7 –
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(3) Wave Functions of Ds1(2460, 2536) and D1(2420, 2430). Unlike the mesons

introduced above, Ds1(2460, 2536) and D1(2420, 2430) can not be described by the pure
(2S+1)LJ states. Based on [40, 41], we consider them as the mixtures of the 1P1 and 3P1

states, namely,

(

|D1(2430)〉
|D1(2420)〉

)

= A
(

|D1P1
〉

|D3P1
〉

)

≡
(

sinα cosα

cosα − sinα

)(

|D1P1
〉

|D3P1
〉

)

,

(

|Ds1(2460)〉
|Ds1(2536)〉

)

= B
(

|Ds1P1
〉

|Ds3P1
〉

)

≡
(

sinβ cosβ

cosβ − sinβ

)(

|Ds1P1
〉

|Ds3P1
〉

)

,

(3.10)

where α = θ − arctan(
√

1/2) and β = θs − arctan(
√

1/2). Based on the experimental

observation [42] and the discussions in ref. [41], the mixing angle θ = 5.7◦ is used in this

paper. Besides, according to the analysis in the quark potential model [43], θs = 7◦ is

employed.

From eq. (3.10), the wave functions of Ds1(2460, 2536) and D1(2420, 2430) can be

constructed from the ones of 1P1 and 3P1 states. In the BS method, the positive energy

wave functions of 1P1 and 3P1 states [39] are

ϕ++
1P1

=b1

(

ǫA · q
P
⊥

)

(

1 + b2
6P
M

+ b3 6qP
⊥
− b4

6P 6q
P
⊥

M

)

γ5,

ϕ++
3P1

=ic1ǫµναβP
νqα

P
⊥

ǫβA

(

Mγµ + c2γ
µ 6P + c3γ

µ 6q
P
⊥
+ c4γ

µ 6P 6q
P
⊥

)

/M2,

(3.11)

where ǫAµ is the polarization vector of the axial-vector meson. The explicit expressions

of b1−4 and c1−4 can be found in ref. [39] and their numerical values can be obtained by

solving the Salpeter equations [35]. In the processes of solving the Salpeter equations, the

masses of 1P1 and 3P1 states, namely, MD(s)1P1
and MD(s)3P1

, are required. In analogy to

the case of η1−η8 mixing [44], we determine them from the following relationships [45, 46],

A†
(

M2
D1(2430)

0

0 M2
D1(2420)

)

A =





M2
D1P1

δ

δ M2
D3P1



 ,

B†
(

M2
Ds1(2460)

0

0 M2
Ds1(2536)

)

B =





M2
D

s1P1

δs

δs M2
D

s3P1



 ,

(3.12)

where MD1(2420,2430) and MDs1(2460,2536) stand for the physical masses and we take them

from ref. [22].

(4) Wave function of Bc. The Bc meson is considered as a 1S0 state, whose the positive

energy wave function can be written as [36],

ϕ++
1S0

= e1

[

e2 +
6P
M

+ 6q
P
⊥
e3 +

6q
P
⊥
6P− 6P 6q

P
⊥

2M
e4

]

γ5. (3.13)

where the parameters e1−4 can be found in ref. [36].

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
1

3.3 Calculations of hadronic matrix elements

In this part, we calculate the hadronic currents through the formalism introduced above.

Since Wµs have been investigated extensively in our previous papers [39, 47–51], here

we do not introduce the Wµ calculations but pay more attentions to Wµ
T,anns. Please

recall that Wµ
T s have been expressed in combinations of Yµν

V,As within eq. (3.1), while in

eqs. (3.3)–(3.6), Wµ
anns are written in terms of Fi,f0(±)s. Hence, in order to obtain Wµ

T,ann,

it is convenient to compute Yµν
V,As and Fi,f0(±)s first of all. From their definitions in eq. (3.2)

and eq. (3.7), we see that the calculations of Yµν
V,As and Fi,f0(±)s are channel-dependent and

the channels under our consideration include P → S, T,A transitions, where P, S, T, A

are the abbreviations for pseudo-scalar, scalar, tensor, axial-vector mesons, respectively.

3.3.1 Hadronic matrix elements of P → S processes

First, we introduce the details of the Yµν
V,A(P → S) estimations. We have expressed Yµν

V,As

as the overlapping integrals of ϕ++
i,f s in eq. (3.2). In the P → S processes, the initial wave

function ϕ++
i corresponds to ϕ++

1S0
, while ϕ++

f should be ϕ++
3P0

. The expressions of ϕ++
1S0

and

ϕ++
3P0

are given in eq. (3.13) and eq. (3.8), respectively. Substituting eqs. (3.8), (3.13) into

eq. (3.2), the hadronic matrix elements Yµν
V,As can be obtained. In light of the forbidden

parity, we have Yµν
V (P → S) = 0, while for Yµν

A (P → S), it reads

Yµν
A (P →S) =

∫

d3~q

(2π)3
−4a1e1
MfMi

{Mi [g
µν (qa · qba2e3ef + e4Mfqa · qb + a4e4Pf · qa + a4e2ef

−a3Mf ) + qµb
(

qνaa2e3ef + qνae4Mf + a2P
ν
f

)

− qµa
(

qνb a2e3ef + qνb e4Mf + a4e4P
ν
f

)]

− a2e3g
µνPf · qaPi · qb − Pµ

i

[

qνb (e2Mf − a2e3Pf · qa) + P ν
f (a2e3qa · qb + a4e2)

+a3e3Mfq
ν
a ] + Pµ

f [qνa (a4e4Mi − a2e3Pi · qb) + P ν
i (a2e3qa · qb + a4e2)− a2Miq

ν
b ]

−a2e3q
µ
b P

ν
i Pf · qa + a2e3q

µ
aP

ν
f Pi · qb + a3e3Mfq

µ
aP

ν
i + e2Mfg

µνPi · qb + e2Mfq
µ
b P

ν
i

}

,

(3.14)

where the definition of qa has been given in section 3.1, while qb is the relative momentum

of the final meson. Due to the spectator approximation, the retarded relationship between

qa and qb reads [27]

qµb = qa + αf
2P

µ
f − αf

2EfPi/Mi. (3.15)

Now we turn to the discussions of Fi,f0(±)(P → S)s. In eq. (3.7), Fi0(±)s are written in

terms of ϕ++
i s, while Ff0(±)s are shown in the integrals of ϕ++

f s. Similar to the calculations

of Yµν
V,A(P → S)s, ϕ++

i(f) corresponds to ϕ++
1S0(3P0)

. So we have

Fν
i0(P → S) = 4e1 (e3Miqa + Pi)

ν ,

Fµν
i+ (P → S) = 4e1 [−gνµ (e3MiQ · qa +Q · Pi) +Qν (e3Miq

µ
a+Pµ

i ) + e3MiQ
µqνa +QµP ν

i ],

Fµν
i− (P → S) = 4ie1

(

e3Miǫ
νµQqa + ǫνµQPi

)

,

Fν
f0(P → S) = 4a1(a4Pf +Mfqc)

ν ,

Fµν
f+(P → S) = 4a1

{

−gνµ (a4Q·Pf+MfQ · qc)+Qν
(

a4P
µ
f +Mfq

µ
c

)

+a4Q
µP ν

f +MfQ
µqνc

}

,

Fµν
f−(P → S) = −4ia1

(

a4ǫ
νµQPf +Mf ǫ

νµQqc
)

. (3.16)
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3.3.2 Hadronic matrix elements of P → T processes

Here we deal with Yµν
V,A in the P → T precesses. The calculations of Yµν

V,A(P → T ) are

similar to the ones of Yµν
V,A(P → S), except replacing the final wave function ϕ++

3P0
by ϕ++

3P2
.

The expression of ϕ++
3P2

can be found in eq. (3.9). Hence, we have

Yµν
V (P → T ) =

∫

d3~q

(2π)3
−4ie1
M2

fM
2
i

ǫTαβq
β
b

{

Fαµν
V 1 + Fαµν

V 2 +Fαµν
V 3 +Fαµν

V 4 +Fαµν
V 5 +Fαµν

V 6 +Fαµν
V 7

}

,

Yµν
A (P → T ) =

∫

d3~q

(2π)3
−4e1
M2

fMi
ǫTαβq

β
b

{

−e3Fαµν
A1 − e2MiFαµν

A2 − e4MiFαµν
A3 }. (3.17)

The expressions of Fαµν
V l and Fαµν

Ak , where l = 1, . . . , 7 and k = 1, 2, 3, are presented in

appendix A.

Next, we pay attentions to Fi0(±)(P → T )s. From eq. (3.7), we see that Fi0(±)(P → T )s

are the same as Fi0(±)(P → S)s, due to the identical initial meson Bc in the decays

P → S, T . The discussions of Fi0(±)(P → S)s have been performed in section 3.3.1.

But for Ff0(±)(P → T )s, the situations are different. They should be calculated through

eq. (3.7), with the final wave functions ϕ++
f being ϕ++

3P2
. After factoring the polarization

tensor out, we have

Fν
f0(P → T ) = Eνδ

f0(
3P2)ǫ

T
δσq

σ
c /Mf , Fµν

f+(P → T ) = Eµνδ
f+ (3P2)ǫ

T
δσq

σ
c /Mf ,

Fµν
f−(P → T ) = Eµνδ

f− (3P2)ǫ
T
δσq

σ
c /Mf ,

(3.18)

where Ef0,f±(3P2) are defined as

Eνδ
f0(

3P2) = 8
{

(d2Mf − d8)P
ν
f q

δ
c +Mf

(

d3q
ν
c q

δ
c + d5g

δνMf

)

+ id8ǫ
νδPf qc

}

,

Eµνδ
f+ (3P2) = 4Mfq

δ
c

[

−gνµ (d3Q · qc + d2Q · Pf ) +Qν
(

d3q
µ
c + d2P

µ
f

)

+ d3Q
µqνc + d2Q

µP ν
f

]

− 2id8

[

−2iqδc

(

−gνµQ · Pf +QµP ν
f +QνPµ

f

)

− 2gνµǫδQPf qc + 2QνǫδµPf qc +QδǫνµPf qc

−2Pµ
f ǫ

νδQqc + 2qµc ǫ
νδQPf

]

+ 4d5M
2
f

(

Qνgδµ −Qδgνµ +Qµgνδ
)

,

Eµνδ
f− (3P2) = 2id8

{

−2gδµǫνQPf qc + 2qνc

[

ǫδµQPf + i
(

QδPµ
f − gδµQ · Pf

)]

− 2P ν
f

[

ǫδµQqc + i
(

Qδqµc − gδµQ · qc
)]

+ 2gνδ
[

ǫµQPf qc + i
(

qµcQ · Pf − Pµ
f Q · qc

)]

+QδǫνµPf qc + 2
(

qδcǫ
νµQPf +QµǫνδPf qc +Q · Pf ǫ

νδµqc −Q · qcǫνδµPf

)}

− 4iMfq
δ
c

(

d3ǫ
νµQqc + d2ǫ

νµQPf
)

− 4id5M
2
f ǫ

νδµQ. (3.19)

3.3.3 Hadronic matrix elements of P → A processes

Due to the mixing nature of the final mesons as formulated in eq. (3.10), the calculations

of Yµν
V,A(P → A)s and Fi,f0(±)(P → A)s are different from the cases of P → S and P → T .

In order to obtain Yµν
V,A(P → A)s and Fi,f0(±)(P → A)s, first of all, we compute Yµν

V,A(P →
A3P1,1P1

)s and Fi,f0(±)(P → A3P1,1P1
)s. And then, based on the mixing relationships in

eq. (3.10), we combine the results of P → A3P1
and P → A1P1

.
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For Yµν
V,A(P → A3P1,1P1

)s, we calculate them from eq. (3.2), with the initial wave

function ϕ++
i being ϕ++

1S0
and the final one ϕ++

f being ϕ++
3P1,1P1

. The expressions of ϕ++
3P1,1P1

are given in eq. (3.11), while the initial ones ϕ++
1S0

is shown in eq. (3.13). The results of

Yµν
V,A(P → A3P1,1P1

)s read

Yµν
V (P→A3P1

) =

∫

d3~q

(2π)3
−8c1c4e1
M2

fM
2
i

ǫνPf qbǫA
[

e4
(

M2
i ǫ

µPf qaqb+2Pµ
i ǫ

PfPiqaqb − 2Pf · Piǫ
µPiqaqb

+2Pi · qbǫµPfPiqa
)

− e2Miǫ
µPfPiqb

]

,

Yµν
A (P→A3P1

) =

∫

d3~q

(2π)3
−8ic1e1
M2

fMi
ǫνPf qbǫA

{

qµb
[

Mi

(

c4e4Pf · qa + 2c3M
2
f

)

+ c4e2Pf · Pi

]

−Pµ
f [c4 (e4Miqa · qb + e2Pi · qb)− 2c2Mi] +Mf (e4Miq

µ
a + e2P

µ
i )

}

,

Yµν
V (P→A1P1

) =

∫

d3~q

(2π)3
−4b1e1qb · ǫA

MfMi
{Mi [g

µν (e4b3Mfqa · qb + e4b2Pf · qa +Mf )− e4q
µ
a

(

b3Mfq
ν
b + b2P

ν
f

)

+ qµb
(

b3e4Mfq
ν
a + b4P

ν
f

)]

− b4e3g
µνPf · qaPi · qb + b4e3g

µνqa · qbPf · Pi

− Pµ
i

[

qνb (b3e2Mf − b4e3Pf · qa) + P ν
f (b4e3qa · qb + b2e2)− e3Mfq

ν
a

]

+ Pµ
f [qνa (b2e4Mi

−b4e3Pi · qb) + P ν
i (b4e3qa · qb + b2e2)− b4Miq

ν
b ] + b4e3q

ν
aq

µ
b Pf · Pi − b4e3q

µ
a q

ν
bPf · Pi

− b4e3q
µ
b P

ν
i Pf · qa + b4e3q

µ
aP

ν
f Pi · qb − e3Mfq

µ
aP

ν
i + b3e2Mfg

µνPi · qb + b2e2g
µνPf · Pi

+b3e2Mfq
µ
b P

ν
i

}

,

Yµν
A (P → A1P1

) =

∫

d3~q

(2π)3
4ib1e1qb · ǫA

MfM
2
i

{

Mi

[

b4e3

(

−gµνǫPfPiqaqb − Pµ
f ǫ

νPiqaqb

+ Pµ
i ǫ

νPf qaqb + qµb ǫ
νPfPiqa + P ν

f ǫ
µPiqaqb − P ν

i ǫ
µPf qaqb − qνb ǫ

µPfPiqa + Pf · Piǫ
µνqaqb

+Pf · qaǫµνPiqb + Pi · qbǫµνPf qa
)

+Mf

(

b3e2ǫ
µνPiqb − e3ǫ

µνPiqa
)

+ (b4e3qa · qb
−b2e2) ǫ

µνPfPi
]

−M2
i

(

e4b3Mf ǫ
µνqaqb − e4b2ǫ

µνPf qa + b4ǫ
µνPf qb

)

+ b4 (e3Miq
µ
a

+2Pµ
i ) ǫ

νPfPiqb − b4 (e3Miq
ν
a + 2P ν

i ) ǫ
µPfPiqb + 2

[

e4
(

b3MfP
ν
i ǫ

µPiqaqb − b3MfP
µ
i ǫ

νPiqaqb

−ǫµνPiqa (b3MfPi · qb + b2Pf · Pi) + b2P
µ
i

(

−ǫνPfPiqa
)

+ b2P
ν
i ǫ

µPfPiqa
)

+b4Pf · Piǫ
µνPiqb + b4Pi · qbǫµνPfPi

]}

.

(3.20)

For Fi0(±)(P → A3P1,1P1
)s, we see that they are identical to Fi0(±)(P → S)s. But as

to Ff0(±)(P → A3P1,1P1
)s, we need to compute them by substituting ϕ++

3P1,1P1
into eq. (3.7).

The results read

Fα
f0(A1P1

)= 4b1qc · ǫA
(

b3Mfq
α
c + b2P

α
f

)

,

Fµα
f+(A1P1

)=
4b1qc · ǫA

Mf

[

b3Mf (−gαµQ·qc+Qµqαc +Qαqµc )+b2

(

−gαµQ·Pf+QµPα
f +QαPµ

f

)]

,

Fµα
f−(A1P1

)= −4ib1qc · ǫA
(

b3Mf ǫ
αµQqc + b2ǫ

αµQPf
)

Mf
,

Fα
f0(A3P1

)= 4c1
[

c4
(

qαc Mfqc · ǫA − q2c ǫ
α
A

)

− iǫαPf qcǫA
]

,
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Fµα
f+(A3P1

)=
1

Mf
4c1

{

c4Mf

[

qc · ǫA (−gαµQ · qc +Qµqαc +Qαqµc )− q2c (−gαµQ · ǫA

+QµǫαA +QαǫµA
)]

− i
[

gαµ
(

−ǫQPf qcǫA
)

+QαǫµPf qcǫA +QµǫαPf qcǫA
]}

,

Fµα
f−(A3P1

)=
1

M2
f

4c1

{

Mf

[

ǫαA

(

qµcQ · Pf − Pµ
f Q · qc

)

+ qαc

(

Pµ
f Q · ǫA − ǫµAQ · Pf

)

+Pα
f

(

ǫµAQ · qc−qµcQ·ǫA
)]

+ic4

[(

qµc P
α
f −qαc P

µ
f

)

ǫQPf qcǫA+ǫµPf qcǫA (qαc Q·Pf

−Pα
f Q · qc

)

+ ǫαPf qcǫA
(

Pµ
f Q · qc − qµcQ · Pf

)]}

. (3.21)

Finally, with the results above and the mixing relationship in eq. (3.10), we can calculate

the hadronic matrix elements of the physical processes from
(

Yµν
V,A (Bc → D1(2430))

Yµν
V,A (Bc → D1(2420))

)

= A
(

Yµν
V,A (Bc → D1P1

)

Yµν
V,A (Bc → D3P1

)

)

,

(

Yµν
V,A (Bc → Ds1(2460))

Yµν
V,A (Bc → Ds1(2536))

)

= B
(

Yµν
V,A (Bc → Ds1P1

)

Yµν
V,A (Bc → Ds3P1

)

)

,

(

Ff0(±)(Bc → D1(2430))

Ff0(±)(Bc → D1(2420))

)

= A
(

Ff0(±)(Bc → D1P1
)

Ff0(±)(Bc → D3P1
)

)

,

(

Ff0(±)(Bc → Ds1(2460))

Ff0(±)(Bc → Ds1(2536))

)

= B
(

Ff0(±)(Bc → Ds1P1
)

Ff0(±)(Bc → Ds3P1
)

)

.

(3.22)

During our calculations of eq. (3.22), to avoid the kinematic confusion, we consider Mf in

eqs. (3.20)–(3.21) as the physical mass of the finial meson. (In this paper, the masses of
1P1 and

3P1 states introduced in Eq (3.12) are used only in solving the BS equations.) This

approximation can also be found in the investigations of B → K1(1270, 1400)ll̄ [52–56].

3.4 The definitions of form factors

In the previous parts, we show how to calculate the hadronic currents. In order to show

their results conveniently, here we parameterize the hadronic matrix elements in terms of

the form factors. In this paper, we do not define the form factors of WCFs, because as

introduced in section 3.1, Wµ
CF(P → S,A) can be obtained from Wµ

CF(P → P, V ) by some

trivial replacements, while Wµ
CF(P → T ) = 0. Hence, in the following paragraphs, we pay

more attentions to the form factors of W(T ) and Wanns.

In the case of the P → Sll̄ transitions, according to the Lorentz symmetry and the

gauge invariant condition of the Ann currents discussed in section 3.1, we have

Wµ(P → S) = FS
z

(

Pµ
+ − P+ ·Q

Q2
Qµ

)

+ FS
0

P+ ·Q
Q2

Qµ,

Wµ
T (P → S) =

−FS
T

Mi +Mf

{

Q2Pµ
+ − (P+ ·Q)Qµ

}

,

Wµ
ann(P → S) = BS

z

{

Q2Pµ
+ − (P+ ·Q)Qµ

}

,

(3.23)

where P+ ≡ Pi + Pf and FS
z , F

S
0 , F

S
T , B

S
z are form factors.

– 12 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
1

Similarly, for P → T ll̄ transitions, the definitions are shown as

Wµ(P → T ) =
iV T

(Mi +Mf )Mf
ǫTαβQ

βǫµαQP+ − 2AT
0

ǫαβT QβQα

Q2
Qµ − Mi +Mf

Mf
AT

1

(

ǫµαT Qα

−ǫαβT QβQα

Q2
Qµ

)

+AT
2

ǫαβT QβQα

Mf (Mi +Mf )

{

Pµ
+ − P+ ·Q

Q2
Qµ

}

,

Wµ
T (P → T ) =− i

T T
1

Mf
ǫTαβQ

βǫµαQP+ +
T T
2

Mf

{

P+ ·QǫµβT Qβ − (ǫαβT QβQα)P
µ
+

}

+
T T
3

Mf

(

ǫαβT QβQα

)

{

Qµ − Q2

P+ ·QPµ
+

}

,

Wµ
ann(P → T ) =(Mi −Mf )

{

T T
1ann

M2
i

Mf

(

ǫµαT Qα −
QαQβǫTαβ

Q2
Qµ

)

+
T T
zann

Mf
ǫαβT QαQβ

(

Pµ
+

−P+ ·Q
Q2

Qµ

)

+
1

2
i
V T
ann

Mf
ǫTαβQ

β ǫµαQP+

}

, (3.24)

where V T , AT
1 , A

T
2 , A

T
0 , T

T
1 , T T

2 , T T
3 , T T

1ann, T
T
zann and V T

ann are the form factors.

As to P → All̄ decays, the definitions take the following forms,

Wµ(P → A) =
iV A

Mi +Mf
ǫµǫAQP+ − 2MfA

A
0

ǫA ·Q
Q2

Qµ − (Mi +Mf )A
A
1

(

ǫµA − ǫA ·Q
Q2

Qµ

)

+AA
2

ǫA ·Q
Mi +Mf

{

Pµ
+ − P+ ·Q

Q2
Qµ

}

,

Wµ
T (P → A) =− iTA

1 ǫµǫAQP+ + TA
2

{

P+ ·QǫµA − (ǫA ·Q)Pµ
+

}

+ TA
3 (ǫA ·Q)

{

Qµ − Q2

P+ ·QPµ
+

}

,

Wµ
ann(P → A) =(Mi −Mf )

{

TA
1ann M2

i

(

ǫµA − Q · ǫA
Q2

Qµ

)

+ TA
zannQ · ǫA

(

Pµ
+ − P+ ·Q

Q2
Qµ

)

+
1

2
iV A

ann ǫµǫAQP+

}

, (3.25)

where V A, AA
1 , A

A
2 , A

A
0 , T

A
1 , TA

2 , TA
3 , TA

1ann, T
A
zann and V A

ann are the form factors.

3.5 Numerical results of form factors

In this part, we present the numerical results of form factors and the according discussions.

3.5.1 Parameters in the calculations

Here we specify the involved parameters. First, the masses and the lifetimes of Bc and

D
(∗)
(s)J are required in our calculations and we take their values from ref. [22]. Second, the

BS-inputs are also needed, which include the Cornell-Potential-Parameters (CPPs) and

the masses of the constituent quarks. The CPPs can be found in ref. [57]. The masses of

the constituent quarks are taken as mb = 4.96GeV, mc = 1.62GeV, ms = 0.5GeV and

md = 0.311GeV [47].
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3.5.2 Results and discussions on form factors

From the aforementioned parameters and the derivations in section 3.3, the form factors

can be evaluated. In the following paragraphs, we will show and discuss them.

In figure 3 (a), the form factors of Wµ
(T )(Bc → D∗

s0(2317)) are presented. These form

factors are all positively related to Q2. This behavior can be understood from the facts

that 1) as shown in eqs. (3.1)–(3.2), our hadronic currents Wµ
(T )s are obtained from the

integrals over the overlapping regions of the initial and final wave functions and 2) due to

the retarded relationship in eq. (3.15), the overlapping regions grow with increase in the

variable Q2.

In recent years, Wµ
(T )(Bc → D∗

s0(2317)) have also been calculated in the three-point

QCD sum rules [23] and light-cone quark model [24]. The definitions of the Wµ
(T ) form

factors in refs. [23, 24] are different from the ones in this paper. But if the same definitions

are taken, the absolute values of our form factors are comparable with theirs.

Figure 3 (b) shows the form factors of Wµ
ann(Bc → D∗

s0(2317)). We see that BS
z are

complex. The reason is that in the calculations of the Wann, the quark propagators are

involved, as shown in eqs. (3.3)–(3.6). In order to deal with these propagators, we sepa-

rate them into two parts: the principal value terms and δ function ones. The real part

of BS
z comes from the principal value terms, while its imaginary part is caused by δ func-

tion terms.2

Figures 4 (a, b) display the results of Wµ
(T )(Bc → D∗

s2(2573)). Similar to Wµ
(T )(Bc →

D∗
s0(2317)), the form factors of Wµ

(T )(Bc → D∗
s2(2573)) also increase monotonically as

Q2 grows. This similarity comes from the facts that both Wµ
(T )(Bc → D∗

s0(2317)) and

Wµ
(T )(Bc → D∗

s2(2573)) are evaluated by eqs. (3.1)–(3.2).

In figures 4 (c, d), the Ann form factors of Bc → D∗
s2(2573)ll̄ process are plotted. One

may note that the absolute values of these form factors are quite smaller than the ones of

Wµ
ann(Bc → D∗

s0(2317)). To see how this happens, one should recall that the Ann currents

Wann are the sums of the terms Wann1,...,ann4s. In the case of Wµ
ann(Bc → D∗

s0(2317)), the

four terms all contribute. But as to Wµ
ann(Bc → D∗

s2(2573)), the vanishing decay constant

of the final meson forbids the Wann1,ann2 contributions and leaves only Wann3,ann4 terms.

Compared with the sums of Wann1 and Wann2, the contributions of Wann3 and Wann4

are fairly suppressed.3 Thus, we see the smaller Wµ
ann(Bc → D∗

s2(2573)) form factors in

figures 4 (c, d).

In figures 5 (a, b) and figures 6 (a, b), we plot the BP form factors of Bc →
Ds1(2460, 2536)ll̄. First, we see that the form factors of Wµ

(T )(Bc → Ds1(2460, 2536))

are not of the same sign. To understand this feature, recall that in order to calculate

Wµ
(T )(Bc → Ds1(2460, 2536)), the hadronic currents W(T )(Bc → Ds1P1,3P1

) are first evalu-

2The monotonicity of the BP form factors and complexity of the Ann form factors can also be found in

the case of Bc → D
(∗)

(s)µµ̄ processes [31]. And in ref. [31], there is a more detailed discussion on them.
3The reason of this suppression is that Wann3 and Wann4 correspond to the diagrams where the virtual

photons are emitted from the final quarks. Under the non-relativistic limit, the propagated quarks of these

diagrams are highly off-shell and therefore when calculating the amplitudes of these diagrams, the denom-

inators are considerably large. Even though the relativistic effects are included, this kind of suppression is

still not obviously ameliorated.
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ated and then we mix the results according to the mixing relationship in eq. (3.22). The

form factors of W(T )(Bc → Ds1P1,3P1
) are all of the same sign. But in the mixing step, we

need to evaluate the sums and differences of the W(T )(Bc → Ds1P1,3P1
) form factors. Hence,

as illustrated in figures 5 (a, b) and figures 6 (a, b), the form factors with the different signs

emerge.

Second, from figures 6 (a, b), one may note that the absolute values of V A, AA
1 , T

A
1 and

TA
2 are much smaller than those of AA

0,2 and TA
3 . This feature implies that the hadronic

matrix element W(T )(Bc → Ds1(2536)⊥) obtained in the BS method is suppressed signif-

icantly compared with W(T )(Bc → Ds1(2536)‖). Here Ds1(2536)⊥(‖) stands for the final

meson Ds1(2536) which is transversely (longitudinally) polarized.

Figures 5 (c, d) and figures 6 (c, d) present the Ann form factors of Bc →
Ds1(2460, 2536)ll̄. Due to the suppressions from the small decay constant of Ds1(2536) [35],

we see that the form factors corresponding to Wann(Bc → Ds1(2536)) are much smaller

than those of Wann(Bc → Ds1(2460)).

In figures 7–10, we illustrate the form factors of Bc → D
(∗)
J ll̄ decays. The form factors

of W(T ),ann(Bc → D
(∗)
J ) behave similarly to the W(T ),ann(Bc → D

(∗)
sJ ) ones. This is because

1) as discussed in section 3.3, W(T ),ann(Bc → D
(∗)
J ) and W(T ),ann(Bc → D

(∗)
sJ ) are calcu-

lated within the same formalism and 2) in the BS method, due to the constituent mass

relationship ms ∼ md ≪ mc, the wave functions of D
(∗)
J are quite comparable with the

D
(∗)
sJ ones.

4 The observables

In the previous section, we calculate the hadronic matrix elements within the BS method

and express the results in terms of the form factors. Using these form factors, the total

amplitude MTotal in eq. (2.7) can be estimated. From the obtained total amplitude, in

this section, we evaluate the physical observables.

4.1 The calculations of observables

In this part, we employ the helicity amplitude method [32] to calculate observables.

First of all, we need to split the total transition amplitudes as

MTotal ≡ Mµ
1 l̄γµl +Mµ

2 l̄γµγ5l, (4.1)

where Mµ
1(2) can be determined by matching eq. (2.7) to the equation above.

And then by projecting Mµ
1(2) to the helicity components ǫµH(t, 0,±1), the helicity

amplitudes can be obtained, that is [32],

H
1(2)
t, ±, 0 = ǫH(t, ±, 0) ·M1(2). (4.2)

The explicit expressions of ǫµH(t, 0,±1) are specified in appendix B.

Finally, according to the derivations in ref. [32], the differential branching fractions

dBr/dQ2, the forward-backward asymmetries AFB, the longitudinal polarizations of the
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final mesons PL and the leptonic longitudinal polarization asymmetries ALPL can be ex-

pressed in terms of helicity amplitudes, which are

dBr

dQ2
=

1

(2π)3ΓBc

λ1/2Q2

24M3
Bc

√

1− 4m2
l

Q2
M2

H ,

AFB =
3

4

√

1− 4m2
l

Q2

2

M2
H

{

Re
(

H
(1)
+ H

†(2)
+

)

− Re
(

H
(1)
− H

†(2)
−

)}

,

PL =
1

M2
H

{

H
(1)
0 H

†(1)
0

(

1 +
2m2

l

Q2

)

+H
(2)
0 H

†(2)
0

(

1− 4m2
l

Q2

)

+
2m2

l

Q2
3H

(2)
t H

†(2)
t

}

,

ALPL ≡
dBrh=−1/2/dQ

2 − dBrh=1/2/dQ
2

dBrh=−1/2/dQ2 + dBrh=1/2/dQ2

=

√

1− 4m2
l

Q2

2

M2
H

{

Re
(

H
(1)
+ H

†(2)
+

)

+Re
(

H
(1)
− H

†(2)
−

)

+Re
(

H
(1)
0 H

†(2)
0

)}

, (4.3)

where h denotes the helicity of l−, while the denotation λ = (M2
i −M2

f )
2+Q2(Q2−2M2

i −
2M2

f ) is employed. And the definition of MH is

M2
H =

(

H
(1)
+ H

†(1)
+ +H

(1)
− H

†(1)
− +H

(1)
0 H

(1)†
0

)

(

1 +
2m2

l

Q2

)

+

(

H
(2)
+ H

†(2)
+ +H

(2)
− H

†(2)
− +H

(2)
0 H

(2)†
0

)

(

1− 4m2
l

Q2

)

+
2m2

l

Q2
3H

(2)
t H

†(2)
t .

(4.4)

Plugging the helicity amplitudes H
1(2)
t, ±, 0 into eq. (4.3), the observables are obtained.

4.2 Numerical results of the observables

Within figures 11–18, the numerical values of the observables are presented in the solid

(or dash-dot) lines, while their theoretical uncertainties are illustrated in the pale green

(or pink) areas. In this part, we lay stress on the introductions of numerical results of the

observables. And in next section, the systematic discussions on the theoretical uncertainties

will be shown.

When the numerical values of observables are calculated in this paper, we have consid-

ered the BP, Ann, CS and CF diagrams. In order to show their influences clearly, for each

channel, we plot 1) the observables where only BP contributions are considered, 2) the

ones where BP and CS effects are contained, 3) the ones with BP and Ann influences and

4) the ones including the BP, Ann, CS and CF diagrams. In the following paragraphes,

their comparisons and discussions will be presented.

4.2.1 The observables of Bc → D∗
s0(2317)µµ̄ decays

In figures 11 (a, b), the differential branching fractions of Bc → D∗
s0(2317)µµ̄ process are

illustrated.

For dBr/dQ2 which includes only BP contributions, as shown in the dash-dot line

of figure 11 (a), we see that dBr/dQ2 is biggest around Q2 ∼ 10.5 GeV2 and suppressed
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considerably at the end points. This is similar to the result in ref. [24] but quite different

from the one in ref. [23]. If the Ann effects are added, as plotted in the dash-dot line of

figure 11 (b), dBr/dQ2 is enhanced un-negligibly around Q ∼ 12.5 GeV2.

For dBr/dQ2 which contains BP and CS effects, as plotted in the solid line of fig-

ure 11 (a), because of the Breit-Wigner propagators in CCS
9 , the significant enlargements

emerge around the resonance regions. If the Ann and CF diagrams are included, as dis-

played in solid line of figure 11 (b), dBr/dQ2 around Q2 ∼ M2
J/ψ continues enlarging. But

in light of the node structure of the ψ(2S) wave function, which leads to the cancela-

tions in the WCF(Bc → D∗
s0(2317)ψ(2S) → D∗

s0(2317)µµ̄) calculation, dBr/dQ2 around

Q2 ∼ M2
ψ(2S) changes imperceptibly. This feature can also be found in the processes

Bc → D(s)µµ̄ [31].

In figures 11 (c, d), we illustrate ALPLs of the Bc → D∗
s0(2317)µµ̄ process.

For ALPL which includes only BP diagrams, as shown in dash-dot line of figure 11 (c),

we note that ALPL ∼ −1 in the region Q2 ∈ [2, 15] GeV2. In order to see how this happens,

note that due to the relationship Ceff
9 ∼ C10 ≫ 2mbC

eff
7 /(Mi +Mf ), ML

BP contributes to

MBP dominantly. (Hereafter, ML(R)
BP(ann)s stand for the BP (or Ann) amplitudes whose final

leptons are all left (or right) handed.) This makes that for the relativistically boosted µ±,
dBrh=+1/2/dQ

2s are much bigger than dBrh=−1/2/dQ
2s over the domainQ2 ∈ [2, 15] GeV2.

Hence, from the definition of ALPL in eq. (4.3), we have ALPL ∼ −1. This feature can also

be found in the decays Bc → D
(∗)
(s)µµ̄ [31].

If the Ann effects are added, as given in dash-dot line of figure 11 (d), ALPL deviates

from −1 strongly over the low Q2 area, while in the high Q2 region, this kind of deviation

becomes weaker. To understand this feature, recall that the real part of Ann form factor

ℜ[BS
zann] is positive within the low Q2 domain but turns negative when Q2 ≥ 12 GeV2, as

shown in figure 3 (b). When ℜ[BS
zann] > 0, ML

ann interferes destructively withML
BP, making

dBrh=+1/2/dQ
2 suppressed. But if ℜ[BS

zann] < 0, there are constructive interferences

between ML
ann and ML

BP, leading to the enhanced dBrh=+1/2/dQ
2. Hence, based on

eq. (4.3), ALPL should be quite larger than −1 in the low Q2 domain but become smaller

with the increase in Q2.

Once the BP, Ann, CS and CF contributions are all considered, as seen in solid line

of figure 11 (d), one may find that ALPL ∼ −1 in the low Q2 region. This is due to the

cancelations between Ann and CF transition amplitudes.

4.2.2 The observables of Bc → D∗
s2(2573)µµ̄ decays

Figures 12 (a–h) depict observables of the Bc → D∗
s2(2573)µµ̄ transition. Considering

WCF(Bc → D∗
s2(2573)) = 0 as discussed in section 3.1, the Bc → D∗

s2(2573)µµ̄ process

does not receive any contributions from the CF diagrams. Hence, in figures 12 (a–h), we

do not illustrate the observables which include CF effects.

Within figures 12 (a, b), we plot dBr/dQ2s as the functions of Q2. First, we see

that dBr/dQ2(Bc → D∗
s2(2573)µµ̄)s are much bigger than dBr/dQ2(Bc → D∗

s0(2317)µµ̄)s

around the Q2 ∼ 0 GeV2 point. To understand this behavior, note that 1) from eq. (4.3),

dBr/dQ2s are almost proportional to the sum of H
(1,2)
±,0 H

†(1,2)
±,0 s and 2) in the low Q2 area,

– 17 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
1

the transverse contributions H
(1,2)
± H

†(1,2)
± s can be enhanced significantly by the γ propa-

gators. For Bc → D∗
s2(2573)µµ̄ decay, both H

(1,2)
0 H

†(1,2)
0 s and H

(1,2)
± H

†(1,2)
± s contribute.

But in Bc → D∗
s0(2317)µµ̄ process, only H

(1,2)
0 H

†(1,2)
0 s participate. Hence, around the

Q2 ∼ 0 GeV2 point, there are enhancements in dBr/dQ2(Bc → D∗
s2(2573)µµ̄) but not in

dBr/dQ2(Bc → D∗
s0(2317)µµ̄). Second, from figures 12 (a, b), one may note that dBr/dQ2

including the BP and Ann effects deviates imperceptibly from the one with only BP con-

tribution. This is because that as plotted in figures 4 (c, d), the Ann form factors are quite

small, which suppresses Mann considerably so that the Ann contributions are much less

than the BP ones. Hence, as illustrated in figures 12 (a, b), dBr/dQ2s show the insensitiv-

ities to the Ann diagrams.

Figures 12 (c, d) are devoted to presenting the results of ALPL(Bc → D∗
s2(2573)µµ̄).

When the BP (and CS) effects are included, we see the similarities between ALPL(Bc →
D∗

s2(2573)µµ̄)s and ALPL(Bc → D∗
s0(2317)µµ̄)s. If the Ann contributions are added, in

analogy to the case of dBr/dQ2(Bc → D∗
s2(2573)µµ̄)s, ALPL(Bc → D∗

s2(2573)µµ̄)s also

change slightly.

In figures 12 (e, f), we display AFBs of the Bc → D∗
s2(2573)µµ̄ process. In figure 12 (e),

we see that AFBs are positive over the highQ2 domain (except the resonance regions), while

due to suppressions from the γ penguin diagrams, AFBs turn negative in the low Q2 region.

Once the Ann influences are take into account, likewise for dBr(Bc → D∗
s2(2573)µµ̄)/dQ

2s

and ALPL(Bc → D∗
s2(2573)µµ̄)s, AFBs behave insensitively to Ann effects.

Figures 12 (g, h) show the results of PL(Bc → D∗
s2(2573)µµ̄)s. When only the BP

diagrams are contained, PL is positively related to Q2 in the low Q2 region but inversely

to Q2 in the high Q2 domain. If the Ann effects are added, PLs change negligibly.

4.2.3 The observables of Bc → Ds1(2460)µµ̄ decays

Figures 13 (a–h) present the observables of Bc → Ds1(2460)µµ̄ process. When the BP (and

CS) contributions are under consideration, the Bc → Ds1(2460)µµ̄ observables are similar

to those of Bc → D∗
s2(2573)µµ̄ decays.

But once the CF and Ann effects are included, the Bc → Ds1(2460)µµ̄ observables

behave quite sensitively. More specifically, we see that 1) in figures 13 (c, d), ALPL which

includes the BP (and CS) diagrams is negative in the low Q2 region. But if the CF

and Ann contributions are taken account of, ALPL turns positive; 2) in figures 13 (a, b),

dBr/dQ2(Bc → Ds1(2460)µµ̄)s around Q2 = M2
J/ψ are enlarged considerably by the CF

contributions; 3) in figures 13 (e–h), PLs and AFBs are suppressed fairly after the Ann and

CF effects are added.

These sensitive behaviors imply that the CF and Ann contributions play impor-

tant roles in the Bc → Ds1(2460)µµ̄ process. Therefore, when the observables of

Bc → Ds1(2460)µµ̄ transition are calculated, besides the BP and CS Feynman diagrams,

it is necessary to include the CF and Ann diagrams.

4.2.4 The observables of Bc → Ds1(2536)µµ̄ decays

In figures 14 (a–h), the observables of the decay Bc → Ds1(2536)µµ̄ are illustrated. The

behaviors of these observables are very different from those in the Bc → Ds1(2460)µµ̄

process.
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First, we see that if only the BP contribution is considered, dBr/dQ2(Bc →
Ds1(2536)µµ̄) is much smaller than dBr/dQ2(Bc → Ds1(2460)µµ̄). To understand this

smallness, note that, as discussed in section 3.5.2, the BP form factors of the Bc →
Ds1(2536)µµ̄ process have different signs. This makes that when MBP(Bc → Ds1(2536)µµ̄)

is calculated, the cancelations emerge between the positive BP form factors and the neg-

ative ones. Hence, as shown in figures 13, 14 (a), dBr/dQ2(Bc → Ds1(2536)µµ̄) ≪
dBr/dQ2(Bc → Ds1(2460)µµ̄).

Second, we see that when only BP Feynman diagrams are included, AFB ∼ 0 and

PL ∼ 1 within the area Q2 ∈ [1, 6] GeV2. To see how this happens, we note that as

concluded in section 3.5.2, the hadronic current W(T )(Bc → Ds1(2536)⊥) obtained in BS

method is much smaller than W(T )(Bc → Ds1(2536)‖). This implies that, if only BP

effects are considered, the transverse helicity amplitudes in the Bc → Ds1(2536)µµ̄ decay

are considerably suppressed compared with the longitudinal ones, namely, H
(1,2)
± ≪ H

(1,2)
0 .

Hence, according to the expressions of AFB and PL in eq. (4.3), over the domain Q2 ∈
[1, 6] GeV2, |AFB| has a quite small value, while PL almost equals one.

Third, if the Ann and CF influences are contained, the Bc → Ds1(2536)µµ̄ observables

show the insensitivities. This is because the decay constant of Ds1(2536) is fairly small,

which suppresses Mann and MCF strongly so that the BP contributions are quite bigger

than the others. Hence, as illustrated in figures 14 (a–h), when the Ann and CF diagrams

are added, there are no obvious deviations in the Bc → Ds1(2536)µµ̄ observables outside

the resonance regions.

4.2.5 The observables of Bc → D
(∗)
J µµ̄ decays

In figures 15–18 (a, b), the differential branching fractions of Bc → D
(∗)
J µµ̄ are dis-

played. One may note that dBr(Bc → D
(∗)
J µµ̄)/dQ2s are much smaller than dBr(Bc →

D
(∗)
sJ µµ̄)/dQ

2s. We attribute this smallness to their suppressed CKM matrix elements.

More specifically, for Bc → D
(∗)
sJ µµ̄, the CKM matrix element of BP diagrams is VtbV

∗
ts ∼

−Aλ2 [22], while the one corresponding to Ann, CS and CF effects is VcbV
∗
cs ∼ Aλ2 [22].

But as to Bc → D
(∗)
J µµ̄, the CKM matrix element for BP diagrams is VtbV

∗
td ∼ Aλ3 [22],

while the one of Ann, CS and CF contributions is VcbV
∗
cd ∼ −Aλ3 [22]. Hence, when

dBr/dQ2(Bc → D
(∗)
J µµ̄)s are calculated, the small parameter λ suppresses their numeri-

cal values.

In figures 15 (c, d) and figures 16–18 (c–h), the ALPLs, AFBs and PLs of Bc → D
(∗)
J µµ̄

are shown. We see that these observables behave similarly to those in Bc → D
(∗)
sJ µµ̄

decays. The reasons are 1) in the present work, the Feynman diagrams corresponding

to Bc → D
(∗)
J µµ̄ are analogous to those of the Bc → D

(∗)
sJ µµ̄ processes; 2) as shown in

section 3.5.2, the Bc → D
(∗)
J µµ̄ form factors are quite similar to the Bc → D

(∗)
sJ µµ̄ ones.

4.3 The experimentally excluded regions and integrated branching fractions

Using the results of dBr/dQ2s, as shown in figures 11–18 (a, b), now we define the experi-

mentally excluded regions. According to the sensitivities to the CF effects, the decays Bc →
D

(∗)
(s)Jµµ̄ fall into two categories. The first category includes Bc → D∗

0(2400)(D
∗
s0(2317))µµ̄,
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Modes BrBP+Ann BrBP+Ann+CS+CF

Bc → D∗
0(2400)µµ̄) 8.9+2.8

−2.3 × 10−11 1.1+0.5
−0.4 × 10−10

Bc → D∗
s0(2317)µµ̄) 4.0+1.4

−1.1 × 10−9 5.4+2.5
−2.0 × 10−9

Bc → D1(2420)µµ̄) 8.3+1.9
−1.5 × 10−10 7.1+1.7

−1.7 × 10−10

Bc → D1(2430)µµ̄) 1.2+0.5
−0.2 × 10−9 9.7+4.5

−2.0 × 10−10

Bc → Ds1(2460)µµ̄) 4.7+1.2
−1.3 × 10−8 4.5+1.1

−1.2 × 10−8

Bc → Ds1(2536)µµ̄) 3.7+0.4
−0.9 × 10−8 3.4+0.5

−1.0 × 10−8

Bc → D∗
2(2460)µµ̄) 9.5+2.6

−2.1 × 10−10 9.8+3.2
−2.7 × 10−10

Bc → D∗
s2(2573)µµ̄) 4.5+1.3

−1.0 × 10−8 4.7+1.7
−1.4 × 10−8

Table 1. Branching ratio for each channel.

Bc → Ds1(2460)µµ̄ and Bc → D1(2430)µµ̄ channels, which are quite sensitive to the CF

contributions. Through comparing dBr/dQ2s which contain only BP and Ann effects with

the ones which include BP, Ann, CS and CF contributions, we define their experimentally

excluded region as

Region : Q2 > 5 GeV2. (4.5)

The second category contains Bc → D∗
2(2460)(D

∗
s2(2573))µµ̄, Bc → Ds1(2536)µµ̄ and

Bc → D1(2420)µµ̄ transitions, which are not sensitive to the CF contributions. So their

experimentally excluded area is defined as

Region : Q2 > 7 GeV2. (4.6)

Based on the experimentally excluded regions introduced above, the integrated branch-

ing fractions are calculated and shown in table 1. As seen in table 1, the branching fractions

including BP and Ann effects are comparable with the ones containing both BP, Ann, CF

and CS contributions. This implies that our experimentally excluded regions defined in

eqs. (4.5), (4.6) are workable.

5 Discussions

5.1 Estimations of the theoretical uncertainties

In the previous section, the numerical results of the Bc → D
(∗)
(s)Jµµ̄ observables are dis-

cussed. In this part, we discuss their theoretical uncertainties.

In this paper, we estimate the theoretical uncertainties of the observables including two

aspects. First, the theoretical errors from hadronic matrix elements are considered. Recall

that our hadronic currents are calculated in the BS method and the obtained form factors

are dependent on the numerical values of the BS inputs. In order to estimate the according
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systematic uncertainties, we calculate the observables with changing the BS inputs by

±5%. Second, the systematic errors aroused by the factorization hypothesis are included.

In the derivations of MAnn,CS,CF, the factorization hypothesis [33] is employed. In this

method, in order to include the non-factorizable contributions, the number of colors Nc in

the expression (C1/Nc +C2) or (C1 +C2/Nc) is treated as an adjustable parameter which

should be determined by fitting the experimental data [58–61]. But since that the present

experimental data on Bc meson is still rare so that this parameter can not be obtained at

the moment, we calculate the observables with Nc = 3 but change the numerical values of

Nc within the region [2,∞] for estimating systematic uncertainties brought by factorization

hypothesis.

Actually, in recent years, several methods, dealing with the non-factorizable contribu-

tions more systematically, have been devoted to investigating the Bc decays, such as pertur-

bative QCD approach(PQCD) [62, 63] and QCD factorization (QCDF) [64]. However, the

channels in which the PQCD and QCDF are workable must have energetic final particles.

Moreover as to Bc → D
(∗)
(s)J ll̄, the finial mesons have small recoil momenta in the high Q2

domain. Hence, in this paper, we choose to employ the factorization method [33]. Similar

situations can also be found in the calculations of Bc → D
(∗)
(s) ll̄ [32, 65–73] in which the

factorization method has to be used extensively to account for the non-factorizable effects.

Here we stress that using the factorization assumption to deal with the non-factorizable

effects is a temporary way in the early stage of investigating the rare Bc decays. A more sys-

tematical method is important and necessary. Hence, more work in the future is required.

5.2 Testing the hadronic matrix elements

In the previous subsection, by changing the BS inputs within ±5%, we estimate the theoret-

ical uncertainties from hadronic currents. Strictly speaking, this only measures parts of the

uncertainties, because the systematic uncertainties from the approximations made within

the BS method are not considered. Considering that this kind of uncertainties are rather

difficult to be systematically estimated, in fact, we do not control the hadronic uncertain-

ties confidently.4 Hence, testing whether the hadronic currents are properly evaluated is

important.

From eq. (2.1), we see that within the transition amplitudeMBP, the hadronic currents

are multiplied by the Wilson coefficients Ceff
7,9, C10 which are sensitive to NP. This makes

that from the observables of Bc → D
(∗)
(s)J ll̄, it is quite involved to tell whether each hadronic

current is correctly estimated. Hence, in order to test them, it is beneficial to analyze the

channels in which the short distance interactions are not sensitive to NP and the hadronic

matrix elements are similar or identical to the ones participating in Bc → D
(∗)
(s)J ll̄.

First, we pay attentions to the decays Bc → D
(∗)
J µν̄µ. The processes Bc → D

(∗)
J µν̄µ

are induced by the transitions b → uµν̄µ. From the experiences of B decays, b → uµν̄µ
is dominated by the SM contributions [22]. In the SM, the according amplitude reads

M(Bc → D
(∗)
J µν̄µ) = −iV ∗

ub
4Gf√

2
〈D(∗)

J |ūγα(1− γ5)b|Bc〉l̄µγα(1− γ5)lν . In light of the isospin

4To our knowledge, most (maybe all) of models, which are employed to calculate the hadronic matrix

elements, suffer from this problem.
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Figure 2. Typical diagrams of Bc → ll̄lν̄.

symmetry of u and d quarks, 〈D(∗)
J |ūγα(1−γ5)b|Bc〉s are almost identical to 〈D(∗)

J |d̄γα(1−
γ5)b|Bc〉s. Hence, by means of investigating the Bc → D

(∗)
J µν̄µ observables experimentally,

we can test the form factors of 〈D(∗)
J |d̄γα(1 − γ5)b|Bc〉. In our previous paper [39], the

decays Bc → D
(∗)
J µν̄µ have been calculated.

Second, we turn to investigating Bc → lA l̄AlB ν̄B, whose typical diagrams are illustrated

in figure 2. For figure 2 (a), the according hadronic matrix element is 〈0|c̄γµ(1− γ5)b|Bc〉,
which can be obtained from the future experimental data on pure leptonic decays Bc → lν̄l.

As to figure 2 (b), the according hadronic matrix elements are the same as W1ann +W2ann

in eq. (2.4), except the absence of 〈f |s̄(d̄)γν(1 − γ5)c|0〉. Likewise, for figure 2 (c), its

hadronic current is similar to WCF in eq. (2.6), except lacking 〈f |s̄(d̄)γν(1−γ5)c|0〉. Hence,
through experimentally detecting Bc → lA l̄AlB ν̄B, we can examine the hadronic currents

W1ann + W2ann and WCF. (or, parts of W1ann + W2ann and WCF.) Considering that in

this paper we focus on the calculations of Bc → D
(∗)
(s)J ll̄, we do not show the results of

Bc → lA l̄AlB ν̄B here but put them into our future work.

However, for the other hadronic matrix elements WT , W3ann, W4ann and W (Bc →
D

(∗)
sJ ), the ideal channels to examine them are difficult to find unless extra hypothesis

is introduced. Hence, we attempt to test them in an indirect way: we use the same

framework and the same set of inputs as the ones, which are used to calculate WT , W3ann,

W4ann and W (Bc → D
(∗)
sJ ), to investigate the processes Bs → D∗

sJµν̄, B → D∗
Jµν̄ and

Bc → χcJµν̄. The reasons for choosing these channels are that 1) these channels are induced

by b → c(u)µν̄ transitions, which are dominated by SM contributions from experiences of

B(s) decays [22]; 2) unlike the non-leptonic decays, these semi-leptonic processes do not

suffer from the theoretical uncertainties from the factorization problem. In our previous

papers [50, 74], the processes Bs → D∗
sJµν̄, B → D∗

Jµν̄ were calculated, while in ref. [51],

Bc → χcJµν̄ were analyzed.

In the paragraphs above, the channels Bc → D
(∗)
J µν̄µ, Bc → lA l̄AlB ν̄B, Bs → D∗

sJµν̄,

B → D∗
Jµν̄ and Bc → χcJµν̄ are recommended in order to test our hadronic matrix

elements. At present, only the experimental results on B → D∗
Jµν̄ [22] are available and

most of them are comparable with our theoretical results [50, 74] within the systemic

errors. If in the future more experimental results on the Bc,s decays are reported, we can

continue examining our hadronic matrix elements. Once the deviations appear between

our predictions on Bc → D
(∗)
J µν̄µ, Bc → lA l̄AlB ν̄B, Bs → D∗

sJµν̄, B → D∗
Jµν̄, Bc → χcJµν̄

and the future experimental observations, we need to check whether these deviations come

from 1) the BS inputs or the approximations of the BS method; 2) our assumption that

D
(∗)
(s)J can be categorized as the conventional charmed(-strange) meson family.
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In order to examine the BS inputs and the approximations of the BS method, we should

pay attentions to the Bc,s,u,d → D
(∗)
s,d,u(ηc, J/ψ)µν̄ decays whose finial mesons are of S-wave

states. In our previous papers [48, 75], the observables of the processes B(s) → D
(∗)
(s)µν̄ are

estimated and the results are in good agreements with the experimental observations [22].

In ref. [76], the Bc → J/ψ(ηc)µν̄ are analyzed and we expect that these channels can

be tested by the future experimental data. If our results deviate from the future data,

constraining our BS inputs or modifying BS method is required.

In this work, we take all the D
(∗)
(s)J mesons as the conventional charmed(-strange)

mesons. However, there are still controversies on the natures of D∗
s0(2317) and Ds1(2460)

mesons (A recent review on this problem can be found in ref. [77].) For examining whether

D∗
s0(2317) and Ds1(2460) mesons are pure cs̄ states, we need to lay stress on their electro-

magnetic and strong decays. If the future data implies that this assumption is not suitable,

we should modify our wave functions describing D
(∗)
(s)J mesons.

6 Conclusion

In this paper, including the BP, Ann, CS and CF contributions, we re-analyze the

process Bc → D∗
s0(2317)µµ̄ and first calculate the decays Bc → Ds1(2460, 2536)µµ̄,

Bc → D∗
s2(2573)µµ̄ and Bc → D

(∗)
J µµ̄. Their results are illustrated in figures 11–18.

And our conclusions contain

1. If only BP effects are considered, our results on the Bc → D∗
s0(2317)µµ̄ transition

are agreeable with the ones in ref. [24] but quite different from the ones in ref. [23].

Once Ann, CS and CF Feynman diagrams are contained, the Bc → D∗
s0(2317)µµ̄

observables change considerably, as shown in figures 11 (a-d).

2. As plotted in figures 14, 18 (a-h), the observables of the Bc → Ds1(2536)(D1(2430))µµ̄

processes behave quite sensitively to the Ann and CF influences. This makes that

when these channels are analyzed, besides the BP and CS diagrams, it is necessary

to include the Ann and CF ones.

3. Unlike the case of Bc → Ds1(2536)(D1(2430))µµ̄, the observables of the Bc →
D∗

s2(2573)µµ̄, Bc → D∗
2(2460)µµ̄, Bc → Ds1(2536)µµ̄ and Bc → D1(2420)µµ̄

processes are influenced by Ann and CF diagrams slightly. Hence, if only BP

effects are interesting, these channels offer purer laboratories than the Bc →
Ds1(2536)(D1(2430))µµ̄ processes.
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A Definitions of Fα
V 1−7

and F
α
A1−3

Here we present the explicit expressions of Fα
V 1−7 and Fα

A1−3.

Fα
V 1 =d8e4M

2
i (−gµν) ǫαPfqaqb + d8ǫ

αPfPiqb (2e4 (q
ν
aP

µ
i − qµaP

ν
i ) + e2Mig

µν) + ǫαPfPiqa (d6e3

MfMig
µν − 2d8e4 (g

µνPi · qb + qµb P
ν
i − qνbP

µ
i )) + ǫαPiqaqb (d7e3MfMig

µν+

2d8e4

(

gµνPf · Pi − P ν
f P

µ
i + Pµ

f P
ν
i

))

. (A.1)

Fα
V 2 =−Miǫ

µαPfqa (d8e4Miq
ν
b + d6e3MfP

ν
i )− d8Mi (e4Miq

ν
a + e2P

ν
i ) ǫ

µαPfqb +Miǫ
µαqaqb

(

d7e3MfP
ν
i − d8e4MiP

ν
f

)

+ ǫµαPfPi (−2P ν
i (d8e4qa · qb + d6Mf ) + qνa (2d8e4Pi · qb

Pi · qb − d6e3MfMi) + d8e2Miq
ν
b ) + ǫµαPiqa

(

e3MfMi

(

d7q
ν
b + d6P

ν
f

)

− 2e4
(

d8
(

P ν
f Pi · qb

−qνbPf · Pi) + d5M
2
fP

ν
i

))

+ ǫµαPiqb (P ν
i (2d7Mf − 2d8e4Pf · qa) + qνa (d7e3MfMi

+2d8e4Pf · Pi) + d8e2MiP
ν
f

))

. (A.2)

Fα
V 3 =Miǫ

µPfqaqb (d8e4Mig
αν − d4e3q

α
b P

ν
i ) + ǫµPfPiqa (2e4 (q

α
b (d8 − d2Mf )P

ν
i + d8 (g

ανPi · qb
−qνbP

α
i ))− e3Mi (d4q

α
b q

ν
b + d6Mfg

αν)) + ǫµPiqaqb
(

e3Mi

(

d4q
α
b P

ν
f − d7Mfg

αν
)

− 2e4 (d3

Mfq
α
b P

ν
i + d8

(

gανPf · Pi − P ν
f P

α
i

)))

+ ǫµPfPiqb (−qνa (d4e3Miǫ1 · qb + 2d8e4α · Pi)

−2 (d4 − d8e4) q
α
aP

ν
i − d8e2Mig

αν) . (A.3)

Fα
V 4 =Miǫ

ναPfqa (d8e4Miq
µ
b + d6e3MfP

µ
i ) + d8Mi (e4Miq

µ
a + e2P

µ
i ) ǫ

ναPfqb +Miǫ
ναqaqb (d8e4

MiP
µ
f − d7e3MfP

µ
i

)

+ ǫναPfPi (2Pµ
i (d8e4qa · qb + d6Mf ) + qµa (d6e3MfMi − 2d8e4Pi · qb)

−d8e2Miq
µ
b ) + ǫναPiqa

(

2e4

(

d8

(

Pµ
f Pi · qb − qµb Pf · Pi

)

+ d5M
2
fP

µ
i

)

− e3MfMi (d7q
µ
b

+d6P
µ
f

))

+ ǫναPiqb (2Pµ
i (d8e4Pf · qa − d7Mf )− qµa (d7e3MfMi + 2d8e4Pf · Pi)

−d8e2MiP
µ
f

))

. (A.4)

Fα
V 5 =ǫνPfPiqb (Mi (d4e3q

µ
a q

α
b + d8e2g

αµ) + 2Pµ
i (d4q

α
b − d8e4q

α
a ) + 2d8e4q

µ
aP

α
i ) +Miǫ

νPfqaqb

(d4e3q
α
b P

µ
i − d8e4Mig

αµ) + ǫνPfPiqa (2e4 (q
α
b (d2Mf − d8)P

µ
i + d8 (q

µ
b P

α
i − gαµPi · qb))

+e3Mi (d4q
α
b q

µ
b + d6Mfg

αµ)) + ǫνPiqaqb
(

e3Mi

(

d7Mfg
αµ − d4q

α
b P

µ
f

)

+ 2e4 (d3Mfq
α
b P

µ
i

+d8

(

gαµPf · Pi − Pµ
f P

α
i

)))

. (A.5)

Fα
V 6 =Miǫ

µναPf (Mi (d8e4qa · qb + d6Mf ) + d8e2Pi · qb) + ǫµναPi (−2 (Pf · Pi (d8e4qa · qb
+d6Mf )+d7MfPi · qb) +MfMi (d5e2Mf − e3 (d7qa · qb + d6Pf · qa))+2d8e4Pf · qaPi · qb)
−MfMiǫ

µναqa (e3 (d7Pi · qb + d6Pf · Pi) + d5e4MfMi)−Miǫ
µναqb (Mi (d8e4Pf · qa

−d7Mf ) + d8e2Pf · Pi) . (A.6)

Fα
V 7 =Miǫ

µνPfqb (Mi (d8e4q
α
a − d4q

α
b ) + d8e2P

α
i ) + ǫµνPfPi (2Pα

i (d8e4qa · qb + d6Mf ) (A.7)

+qαa (d6e3MfMi − 2d8e4Pi · qb) + qαb (Mi (d4e3qa · qb + e2 (d2Mf − d8)) + 2d4Pi · qb))
+Miǫ

µνPfqa (qαb (d4e3Pi · qb + e4Mi (d8 − d2Mf )) + d6e3MfP
α
i ) + ǫµνPiqa (qαb (2e4
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(d3MfPi · qb + (d2Mf − d8)Pf · Pi)− e3MfMi (d1Mf + d7)) + 2d5e4M
2
fP

α
i

)

+ ǫµνPiqb

(qαb (Mi (d4e3Pf · qa−d3e2Mf )+2d4Pf · Pi)+2Pα
i (d8e4Pf · qa−d7Mf )− qαa (d7e3MfMi

+2d8e4Pf · Pi)) +Miǫ
µνqaqb (qαb (d3e4MfMi + d4e3Pf · Pi)− d7e3MfP

α
i ) .

Fα
A1 =− d7Mf (−qνag

αµPi · qb + qµag
ανPi · qb − qαa g

µνPi · qb + gαµP ν
i qa · qb − gανPµ

i qa · qb (A.8)

+gµνPα
i qa · qb + qµa q

α
b P

ν
i − qνaq

α
b P

µ
i − qαa q

µ
b P

ν
i + qνaq

µ
b P

α
i + qαa q

ν
bP

µ
i − qµa q

ν
bP

α
i )

+ d4q
α
b (gµνqa · qbPf · Pi − gµνPf · qaPi · qb + qνaq

µ
b Pf · Pi − qµa q

ν
bPf · Pi − qµb P

ν
i Pf · qa

+qνbP
µ
i Pf · qa + qµaP

ν
f Pi · qb − qνaP

µ
f Pi · qb − P ν

f P
µ
i qa · qb + Pµ

f P
ν
i qa · qb

)

+ d1M
2
f q

α
b

(− (qµaP
ν
i − qνaP

µ
i ))− d6Mf (−qαa g

µνPf · Pi − qνag
αµPf · Pi + qµag

ανPf · Pi

+gαµP ν
i Pf · qa−gανPµ

i Pf · qa+gµνPα
i Pf · qa+qαaP

ν
f P

µ
i −qαaP

µ
f P

ν
i −qµaP

ν
f P

α
i +qνaP

µ
f P

α
i

)

.

Fα
A2 =d2Mfq

α
b

(

−gµνPf · Pi + P ν
f P

µ
i − Pµ

f P
ν
i

)

− d3Mfq
α
b (gµνPi · qb + qµb P

ν
i − qνbP

µ
i )− d8 (A.9)

(

−qαb g
µνPf · Pi − qνb g

αµPf · Pi + qµb g
ανPf · Pi + P ν

f g
αµPi · qb − Pµ

f g
ανPi · qb + qαb P

ν
f P

µ
i

−qαb P
µ
f P

ν
i − qµb P

ν
f P

α
i + qνbP

µ
f P

α
i

)

+ d1M
2
f (−qαb ) g

µν − d7Mf (q
ν
b g

αµ − qµb g
αν + qαb g

µν)

− d4q
α
b

(

qµb P
ν
f − qνbP

µ
f

)

− d5M
2
f (gαµP ν

i − gανPµ
i + gµνPα

i )− d6Mf

(

P ν
f g

αµ − Pµ
f g

αν
)

.

Fα
A3 =d2Mfq

α
b

(

−gµνPf · qa + qµaP
ν
f − qνaP

µ
f

)

− d3Mfq
α
b (gµνqa · qb + qνaq

µ
b − qµa q

ν
b ) (A.10)

− d8

(

−qαb g
µνPf · qa − qνb g

αµPf · qa + qµb g
ανPf · qa + P ν

f g
αµqa · qb − Pµ

f g
ανqa · qb

+qµa q
α
b P

ν
f − qνaq

α
b P

µ
f − qαa q

µ
b P

ν
f + qαa q

ν
bP

µ
f

)

+ d5M
2
f (− (qνag

αµ − qµag
αν + qαa g

µν)) .

B Definitions of Pi, Pf , ǫA, ǫT and ǫ
µ
H

During calculating the physical observables, we must specify the Pi, Pf , ǫA, ǫT and ǫµH . In

the initial meson rest frame, we have Pα
i = (Mi, 0, 0, 0) and Pα

f = (Ef , 0, 0, P
3
f ). The polar-

ization vectors ǫαA are chosen as ǫαA(±1) = 1√
2
(0,±1,+i, 0) and ǫαA(0) =

1
Mf

(−P 3
f , 0, 0,−Ef ).

The polarization tensors ǫαβT can be constructed in terms of the polarization vectors ǫαA,

which are written as

ǫαβT (±2) = ǫA(±1)αǫA(±1)β ,

ǫαβT (±1) =

√

1

2

{

ǫA(±1)αǫA(0)
β + ǫA(0)

αǫA(±1)β
}

,

ǫαβT (0) =

√

1

6

{

ǫA(+1)αǫA(−1)β + ǫA(−1)αǫA(+1)β
}

+

√

2

3
ǫA(0)

αǫA(0)
β .

(B.1)

Besides, we define the helicity amplitudes as [32]

ǫµH(t) =
1

√

Q2
(Mi − Ef , 0, 0,−P 3

f ),

ǫµH(±1) =
1√
2
(0,∓1,+i, 0),

ǫµH(0) =
1

√

Q2
(−P 3

f , 0, 0,Mi − Ef ).

(B.2)
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Figure 12. Observables of Bc → D∗
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Figure 13. Observables of Bc → Ds1(2460)µµ̄.
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Figure 14. Observables of Bc → Ds1(2536)µµ̄.
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Figure 15. Observables of Bc → D∗

0(2400)µµ̄.
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Figure 16. Observables of Bc → D∗

2(2460)µµ̄.
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Figure 17. Observables of Bc → D1(2420)µµ̄.
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Figure 18. Observables of Bc → D1(2430)µµ̄.
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