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1 Introduction

There are two topics in the mathematical physics that remained independent for a long

time: the theory of isomonodromic deformations, initiated by R. Fuchs, P. Painlevé and

L. Schlesinger in the beginning of 20th century (see [1] and references therein), and the 2d

conformal field theory (CFT) founded by A. Belavin, A. Polyakov and A. Zamolodchikov in

1984 [2]. Both theories have wide range of applications. Conformal field theory describes

perturbative string theory and second order phase transitions in the 2d systems. The

theory of isomonodromic deformations gives rise to non-linear special functions such as

Painlevé transcendents, which appear in different problems of mathematical physics: for

example, in the random matrix theory and general relativity.

First relations between the theory of isomonodromic deformations and 2d quantum

field theory have been established in 1978-80 by M. Sato, M. Jimbo and T. Miwa [3–7].

More recently, O. Gamayun, N. Iorgov and O. Lisovyy have discovered that the τ -function

of the Painlevé VI equation (related to the rank two Fuchsian system with four regular

singular points on the Riemann sphere) can be expressed as a sum of c = 1 conformal blocks,

multiplied by certain ratios of the Barnes functions — a typical expansion of the correlation

function in CFT [8]. Their formula gives the general solution of Painlevé VI equation. This

conjecture has already been proved in two ways: one proof is purely representation-theoretic

and adapted initially for the 4-point τ -function [9] but can provide us with a collection of
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nontrivial bilinear relations for the n-point conformal blocks, whereas another one is based

on the computation of monodromies of conformal blocks with degenerate fields and allows

to consider an arbitrary number of regular singular points on the Riemann sphere [10]. The

correspondence also extends to the irregular case: for instance, it gives exact solutions of

the Painlevé V and III equations [11, 12], which are known to describe correlation functions

in certain massive field theories.

The present paper is concerned with the extension of the isomonodromy-CFT cor-

respondence to higher rank. Already in [8] there was a suggestion that the monodromy

preserving deformations of Fuchsian systems of rank N should be related to 2d CFT with

central charge c = N −1. One obvious and natural candidate for such a theory is the Toda

CFT with WN algebra of extended conformal symmetry. We show that indeed the N ×N

isomonodromic problem corresponds to the WN algebra, whose Virasoro part has central

charge c = N − 1. These algebras were first introduced by A. Zamolodchikov in [13], and

their study was substantially developed in [14] (for the first nontrivial W3-case) and [15]

(for generic WN ). Other developments in the theory of W -algebras are discussed in the

review [16].

The most condensed form of the commutation relations of W3 is given by the operator

product expansions (OPEs) of the energy-momentum tensor T (z) and theW -currentW (z):

T (z)T (w) =
c

2(z − w)4
+

2T
(

z+w
2

)

(z − w)2
+ reg. ,

T (z)W (w) =
3W (w)

(z − w)2
+

∂W (w)

z − w
+ reg. ,

W (z)W (w) =
c

3(z − w)6
+

2T
(

z+w
2

)

(z − w)4

+
1

(z − w)2

(

32

22 + 5c
Λ

(

z + w

2

)

+
1

20
∂2T

(

z + w

2

))

+ reg.

(1.1)

where Λ(z) = (TT )(z)− 3
10∂

2T (z).

The representation theory of this algebra is very similar to that of the Virasoro algebra.

In the generic case one has the Verma module with the highest vector |∆,w〉 such that

L0|∆,w〉 = ∆|∆,w〉, W0|∆,w〉 = w|∆,w〉. Hence the representation space is spanned by

the vectors

L−m1
L−m2

. . . L−mk
W−n1

W−n2
. . . |∆,w〉, m1 ≥ m2 ≥ . . . ≥ mk, n1 ≥ n2 ≥ . . . ≥ nk ,

(1.2)

while the set of the highest weight vectors themselves corresponds to primary fields (vertex

operators) of the 2d CFT. As in the Virasoro case, these fields can be determined by their

OPEs with higher-spin currents T (z) and W (z):

T (z)φ(w) =
∆φ(w)

(z − w)2
+

∂φ(w)

z − w
+ reg.

W (z)φ(w) =
wφ(w)

(z − w)3
+

(W−1φ)(w)

(z − w)2
+

(W−2φ)(w)

z − w
+ reg.

(1.3)
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However, the W-descendants such as (W−1φ) and (W−2φ) are not defined in general

(this is to be contrasted with the Virasoro case where one has e.g. (L−1φ)(w) = ∂φ(w)),

which means that the 3-point functions involving such fields are not really defined. As a

consequence, one cannot express the matrix elements

〈∆∞,w∞|φ(1)L−m1
L−m2

. . . L−mk
W−n1

W−n2
. . . |∆0,w0〉

in terms of 〈∆∞,w∞|φ(1)|∆0,w0〉 only. It was shown in [17] in an elegant way that all such

3-point functions can be expressed in terms of an infinite number of unknown constants

Ck = 〈∆∞,w∞|φ(1)W k
−1|∆0,w0〉, k = 1, 2, . . . (1.4)

The problem is that having this infinite number of constants (which for the 4-point

conformal block actually becomes doubly infinite) one can adjust them as to obtain any

function as a result. In this paper we show that the isomonodromic approach can fix

this ambiguity in such a way that all these parameters become functions on the moduli

space of the flat connections on the sphere with 3 punctures. In the sl3 case this space is

2-dimensional (we denote the corresponding coordinates by µ and ν), so all Ck = Ck(µ, ν).

Note that for the WN algebra one would have the set of constants Ck1,...,kl with l =
1
2(N−1)(N−2) non-negative indices (e.g., this easily follows from analysis of [17]), which is

half of the dimension of the moduli space of flat slN connections on the 3-punctured sphere.

The paper is organized as follows. In section 2 we briefly discuss the origins of the

Schlesinger system and the space of flat connections on the punctured Riemann sphere.

Then we introduce a collection of convenient local coordinates on this space, which are

related to pants decomposition of the sphere. In section 3 an iterative algorithm of the

solution of the Schlesinger system is proposed. We then present a set of non-trivial prop-

erties of this solution, discovered experimentally, and put forward a conjecture about

isomonodromy-CFT correspondence in higher rank, which relates WN conformal blocks

to the isomonodromic tau function. In particular, for a collection of known W3 confor-

mal blocks we present the 3-point functions that can be used to construct the τ -function

in the form of explicit expansion. In section 4 we describe the problems of definition of

the general W3 conformal block and discuss how they can be addressed using the global

analytic structure induced by crossing symmetry. We conclude with a brief discussion of

open questions.

2 Isomonodromic deformations and moduli spaces of flat connections

The main object of our study will be the Fuchsian linear system

d

dz
Φ(z) =

n
∑

ν=1

Aν

z − zν
Φ(z) = A(z)Φ(z) ,

∑

ν

Aν = 0 .

(2.1)

Here Aν are traceless matrices with distinct eigenvalues, Φ(z) is the matrix of N indepen-

dent solutions of the system normalized as Φ(z0) = 1. It is obvious that upon analytic
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continuation of the solutions along a contour γν encircling zν they transform into some

linear combination of themselves:

γν : Φ(z) 7→ Φ(z)Mν , (2.2)

where Mν ∈ GLN (C). The relation γn . . . γ1 = 1 from π1(CP
1\{z1, . . . , zn}, z0) imposes

the condition

M1 . . .Mn = 1 . (2.3)

The well-known Riemann-Hilbert problem is to find the correspondence

{M1, . . . ,Mn} → {A1, . . . , An} . (2.4)

It is easy to see that the conjugacy classes of Mν are

Mν ∼ exp (2πiAν) . (2.5)

The eigenvalues of Aν determine the asymptotics of the fundamental matrix solution near

the singularities, so one can fix even this asymptotics and study the corresponding refined

Riemann-Hilbert problem. We will work only with traceless matrices Aν since the scalar

part trivially decouples.

2.1 Schlesinger system

Since it is difficult to solve the generic Riemann-Hilbert problem exactly, one can first ask

a simpler question: how to deform simultaneously the positions of the singularities zν and

matrices Aν but preserve the monodromies Mν . The answer follows from the infinitesimal

gauge transformation

Φ(z) 7→

(

1 + ǫ
Aν

z − zν

)

Φ(z) ,

A(z) 7→ A(z) + ǫ
Aν

(z − zν)2
− ǫ

[

Aν

z − zν
, A(z)

]

,

(2.6)

that is

zν 7→ zν + ǫ ,

Aµ 6=ν 7→ Aµ + ǫ
[Aν , Aµ]

zν − zµ
,

Aν 7→ Aν − ǫ
∑

µ 6=ν

[Aν , Aµ]

zν − zµ
,

(2.7)

leading to the Schlesinger system of non-linear equations

∂Aµ

∂zν
=

[Aµ, Aν ]

zµ − zν
,

∂Aν

∂zν
= −

∑

µ 6=ν

[Aµ, Aν ]

zµ − zν
.

(2.8)
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Note that one can fix zn = ∞, then the corresponding matrix A∞ = −
∑n−1

ν=1 Aν will be

constant. A non-trivial statement is that the relations

∂

∂zµ
log τ =

∑

ν 6=µ

trAµAν

zµ − zν
(2.9)

are compatible and define the τ -function τ(z1, . . . , zn) of the Schlesinger system. It is easy

to see that the 3-point τ -function is given by a simple expression:

τ(z1, z2, z3) = const · (z1 − z2)
∆3−∆1−∆2(z2 − z3)

∆1−∆2−∆3(z1 − z3)
∆2−∆1−∆3 ,

where ∆ν = 1
2 trA

2
ν . Let us now attempt to solve the Schlesinger system for the 4-point

case and compute the corresponding τ -function in the form of certain expansion.

2.2 Moduli spaces of flat connections

The main object of our interest is the τ -function. It depends on monodromy data which

provide the full set of integrals of motion for the Schlesinger system. It will be useful to

start by introducing a convenient parametrizaton of this space.

One starts with n matrices Mν ∈ SLN , with fixed nondegenerate eigenvalues, i.e. there

are n(N2 −N) parameters. These matrices are constrained by one equation (2.3) and are

considered up to an overall SLN conjugation, which decreases the number of parameters

by 2(N2 − 1). So the resulting number of parameters is

dimMslN
n (θ1, . . . ,θn) = (n− 2)N2 − nN + 2 . (2.10)

Here θν ∈ h (h is the Cartan subalgebra) define the conjugacy classes: Mν ∼ e2πiθν . It is

obvious that θν is equivalent to θν + hν , such that for all weights of the first fundamental

representation ei one has (ei,hν) ∈ Z. It means that hν ∈ ⊕r
i=1Zα

∨
i , where α∨

i ∈ h are

simple coroots (for the simply-laced case they coincide with the roots).

For the general Lie algebra this formula can be written as

dimMg
n(θ1, . . . ,θn) = (n− 2) dim g− n · rank g . (2.11)

In particular, for n = 3 punctures on the sphere

dimMg
3(θ1,θ2,θ3) = dim g− 3 · rank g .

This formula gives the number of non-simple roots of g. In the slN case it specializes to

dimMslN
3 (θ1,θ2,θ3) = (N − 1)(N − 2) . (2.12)

This expression vanishes for sl2, which drastically simplifies the study of the corresponding

isomonodromic problem. However already for sl3 this dimension is equal to 2, i.e. it is

nonvanishing. One way to simplify the problem is to set θ2 = ae1: in this case the orbit of

the adjoint action

e2πiae1 7→ g−1e2πiae1g

– 5 –
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has the dimension dimOae1 = dim g − dim stab(e1) = N2 − 1 − (N − 1)2 = 2N − 2. The

total dimension is 2(N2 −N) + (2N − 2)− 2(N2 − 1) = 0. In this calculation the first two

terms correspond to the dimensions of orbits: two generic and one with a large stabilizer.

The last term corresponds to one equation and one factorization. Hence

dimMslN
3 (θ1, ae1,θ3) = 0 . (2.13)

This case is the best known on the side of W -algebras [18–20]. In the mathematical

framework, this situation corresponds to rigid local systems.

2.3 Pants decomposition of M
g
4

We begin our consideration with an arbitrary Lie group G containing a Cartan torus

H ⊂ G. The corresponding Lie algebras are g and h, respectively. At some point we will

switch to G = SLN (C) case.

The moduli space Mg
4 is described by 4 matrices satisfying M1M2M3M4 = 1, defined

up to conjugation:

Mg
4 = {(M1,M2,M3,M4)}/G . (2.14)

Let us introduce S = M1M2 and consider two triples

{(M1,M2, S
−1), (S,M3,M4)} . (2.15)

Note that the products inside each of these triples are equal to the identity. Let us now

choose the submanifold with fixed eigenvalues of M1, . . . ,M4, S. One may also use the

freedom of the adjoint action to diagonalize S

S = e2πiσ ,

where σ ∈ h. We thereby obtain a submanifold

Mg
4(θ1,θ2;σ;θ3,θ4) = {(M1,M2, e

−2πiσ), (e2πiσ,M3,M4)}/H ⊂ Mg
4(θ1,θ2,θ3,θ4) ,

(2.16)

where the remaining factorization is performed over the Cartan torus H ⊂ G. It is very

similar to what happens for Mg
3:

Mg
3 = {(M1,M2,M3)}/G = {(M1,M2, e

2πiθ3)}/H , (2.17)

except that the conjugation is simultaneous for both triples. To relax this condition, let us

define an extra Cartan torus acting on Mg
4:

h : {(M1,M2, e
−2πiσ), (e2πiσ,M3,M4)} 7→ {(M1,M2, e

−2πiσ), h−1(e2πiσ,M3,M4)h} ,

(2.18)

which looks like a relative twist of one part of the sphere with respect to another (in the

sl2 case it will be exactly the geodesic flow). Therefore one can say that

Mg
4(θ1,θ2;σ;θ3,θ4)/H = Mg

3(θ1,θ2,−σ)×Mg
3(σ,θ3,θ4) . (2.19)

– 6 –
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μ ,ν μ1∞ ν1∞
β

σ

θ

θ

θ1

θ∞

σ

Figure 1. Coordinates on Mg
4
: eight = two σ’s + two β’s + µ0t + ν0t + µ1∞ + ν1∞

The torus action is free, so locally it looks as a product (actually it is true even globally

because the fibration (M1,M2,M3) 7→ (M1,M2,M3)/G is trivial: we can give an algebraic

parametrization for one representative from each conjugacy class). Therefore we have the

equality for the open subsets (denoted by ≈):

Mg
4(θ1,θ2;σ;θ3,θ4) ≈ Mg

3(θ1,θ2,−σ)×H ×Mg
3(σ,θ3,θ4) . (2.20)

The above considerations suggest the following choice of coordinates on Mg
4:

• Gluing parameters σ: rank g items.

• Invariant functions on Mg
3 × Mg

3 (for example, trM1M
−1
2 , trM−1

3 M4). They are

invariant with respect to the action of “relative twists”: we have 2 dimMg
3 such

functions.

• Relative twist parameters, which change under the twist (for example, trM2M
−1
3 ,

trM−1
2 M3), rank g items. These coordinates will be denoted by β ∈ h.

This procedure is schematically depicted in figure 1 for the sl3 case, where dimMsl3
3 =

2, dimMsl3
4 = 8. The coordinates on each copy of Msl3

3 are denoted by µ, ν. The indices

{1, 2, 3, 4} of the matrices are replaced by {0, t, 1,∞}

2.4 Pants decomposition for Mg
n

Suppose that the coordinates on Mg
n−1 are chosen via the pants decomposition. Split the

matrices into two groups and define

Sn−3 = M1 . . .Mn−2 ,

Mg
n = {(M1, . . . ,Mn−2, S

−1
n−3), (Sn−3,Mn−1,Mn)}/G

= {(M1, . . . ,Mn−2, e
−2πiσ), (e2πiσ,Mn−1,Mn)}/H ≈ Mg

n−1 ×H ×Mg
3 .

(2.21)

Iteratively repeating this procedure, one is led to the following choice of coordinates onMg
n:

• (n− 3) rank g gluing parameters σi,

• (n− 3) rank g relative twist parameters βi,

•
∑n−2

i=1 dimMg
3(σi−1,θi+1,−σi) 3-point moduli of flat connections (here we identify

σ0 = θ1 and σn−2 = −θn).

– 7 –
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Anticipating the result, let us mention that these coordinates are convenient from

the CFT point of view: σi will parametrize intermediate charges in the conformal block

and βi will be the Fourier transformation parameters. This description was shown to

be valid in the sl2 case [8, 10] and was recently demonstrated to hold for slN case with

dimMg
3 = 0 [21]. From a more conceptual point of view, this decomposition illustrates

that all extra parameters in the τ -function expansion come from the 3-point functions.

3 Iterative solution of the Schlesinger system

In order to study the generic Schlesinger system, let us follow the approach proposed in

the original paper of M. Jimbo [22] and in [4].

Let us take the 4-point Schlesinger system and fix the singularities to be 0, t, 1,∞. The

system becomes

t∂tA0 = [At, A0] ,

t∂tA1 =
t

t− 1
[At, A1] ,

∂tAt = −
1

t
[At, A0]−

1

t− 1
[At, A1] .

(3.1)

Fixing the integral of motion A∞ = −A0 −At −A1, one obtains

t∂tA0 = [A0, A1 +A∞] ,

t∂tA1 = t(1− t)−1[A0 +A∞, A1] .
(3.2)

The isomonodromic τ -function is defined by

∂t log τ =
1

t
trAtA0 +

1

t− 1
trAtA1 . (3.3)

Let us study the solution of the system (3.2) for the case when A1(t) is finite in the

limit t → 0: A1(t) = A1(0) +O(tǫ>0). Under this assumption we have

t∂tA0(t) = [A0, A∞ +A1(0) +O(tǫ>0)] .

If the last term were absent, then the solution would be A0 = t−A∞−A1(0)Ã0t
A∞+A1(0).

Therefore it is natural to introduce

B = −A1(0)−A∞ = lim
t→0

(A0(t) +At(t)) ,

Ã0(t) = t−BA0(t)t
B ,

(3.4)

where Ã0(t) has a well-defined limit as t → 0. We see that in view of its definition B

describes the total monodromy around 0 and t in the limit t → 0. Since the deformation

is isomonodromic, this monodromy is constant and is given by M0Mt = M0t ∼ e2πiB. This

allows to make the identification

B = σ . (3.5)

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
7

Our system then becomes

t∂tÃ0(t) = [Ã0(t), t
−σ(A1(t)−A1(0))t

σ] ,

t∂tA1 = t(1− t)−1[tσÃ0(t)t
−σ +A∞, A1(t)] .

(3.6)

Here we see an operator tadσ , which produces some fractional powers of t. It is convenient

to impose the condition that (σ,σ) ≪ 1, or at least that for all roots α one has |(σ, α)| <
1
2 . This allows to organize the terms of the expansion in powers of t according to their

order of magnitude in the asymptotic behavior. If necessary, one can perform an analytic

continuation of the solution from the region with small σ.

We know that in the Lie algebra the operator tadσ acts by

tσEαt
−σ = t(σ,α)Eα ,

tσHαt
−σ = Hα ,

(3.7)

where α ∈ g∗ is a root and Eα, Hα are the elements of the Cartan-Weyl basis. Let us

define a grading on the space of monomials

deg[tk+(σ,w)] = (k,w) ,

where w ∈ Qg is an element of the root lattice Qg =
⊕rankg

i=1 Zαi of g. It is useful to define

a filtration

Q0
g ⊂ Q1

g ⊂ Q2
g ⊂ . . . ⊂ Qg (3.8)

on this root lattice, which is recursively constructed as follows: Q0
g = {0}, Q1

g is the set of

all roots of g and 0, and

Qi+1
g = {x+ y|x ∈ Qi

g,y ∈ Q1
g} = Q1

g + . . .+Q1
g .

Also define the double filtration Vn,m on the space of all fractional-power series:

tk+(σ,w) ∈ Vn,m ⇔ (k ≥ n) ∧ (w ∈ Qm
g ) ,

Vn+1,m ⊂ Vn,m , Vn,m ⊂ Vn,m+1 .
(3.9)

Each term of the filtration is generated by these monomials. This definition turns out to

be useful because of the properties

t· : Vn,m → Vn+1,m ,

tadσ : Vn,m → Vn,m+1 ,

Vn1,m1
· Vn2,m2

→ Vn1+n2,m1+m2
.

(3.10)

One can also see that the degrees present in Vn+1,m+k are larger then in Vn,m if σ is

sufficiently small (∀α ∈ Q1
g : |(σ, α)| < 1

k
). We also define a slightly ambiguous notation

Vn,w by

tk+(σ,w) ∈ Vn,w ⇔ (k ≥ n) . (3.11)

– 9 –
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Now we have all the ingredients that are necessary for the construction of an iterative

solution of the system (3.6). Our initial data will be given by the triple of matrices σ,

Ã0(0) and A1(0). Symbolically, the system (3.6) can be written as

Ã0(t) = F0(Ã0(t), A1(t)) ,

A1(t) = F1(Ã0(t), A1(t)) ,
(3.12)

where “affine” bilinear (in the sense f(x, y) = axy+ bx+ cy+ d) functions F0, F1 have the

following properties:

F0 : Vn0,m0
× V0,0 → 0 ,

F0 : Vn0,m0
× Vn1,m1

→ Vn0+n1,m0+m1+1 ⊂ Vn0+n1,∞ ,

F1 : Vn0,m0
× Vn1,m1

→ Vn0+n1+1,m0+m1+1 + Vn1+1,m1
⊂ Vn1+1,∞ .

(3.13)

Let us substitute into (3.12) the expressions

Ã0(t) = Ã0(0) +
∞
∑

k=1

tkÃk
0(t) ,

A1(t) = A1(0) +
∞
∑

k=1

tkAk
1(t) ,

tkÃk
0(t), t

kAk
1(t) ∈ Vk,∞ .

(3.14)

From (3.13) we immediately see that (3.6) takes the form

Ãk
0(t) = fk

0 (Ã
<k
0 (t), A≤k

1 (t)) ,

Ak
1(t) = fk

1 (Ã
<k
0 (t), A<k

1 (t)) .
(3.15)

Because of the ≤ sign our strategy of solving will be to compute first Ak
1(t), and then

subsequently determine Ãk
0(t). One can also write down explicit formulas for bilinears fk

1

and fk
0 , which are immediate (though cumbersome) consequences of the system (3.6).

Now let us determine which powers (k,w) will be actually present in the solution. This

will be done again iteratively, using only the properties (3.13):

• Taking Ã0(0) ∈ V0,0 and A1(0) ∈ V0,0, and computing F1, we get an element of V1,1,

therefore A1 ∈ V0,0 + V1,1 + . . .

• Take Ã0(0) ∈ V0,0 and A1 ∈ V0,0 + V1,1 + . . ., then Ã0 ∈ V0,0 + V1,2 + . . .

• For Ã0 ∈ V0,0+V1,2+. . . and A1 ∈ V0,0+V1,1+. . . one finds A1 ∈ V0,0+V1,1+V2,3+. . .

• Setting Ã0 ∈ V0,0+V1,2+ . . . and A1 ∈ V0,0+V1,1+V2,3+ . . . yields Ã0 ∈ V0,0+V1,2+

V2,4 . . .

• . . .

– 10 –
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Continuing this procedure one finds the following structure

Ã0(t) ∈
∞
∑

k=0

Vk,2k ,

A1(t) ∈ V0,0 +
∞
∑

k=1

Vk,2k−1 .

(3.16)

It is easy to check that these spaces are stable under the action of (F0, F1) described by

the rules (3.13). This is somewhat similar to the statement that the cone is stable under

the addition operation.

Indeed, let us try to find an element of Ã0(t) lying in Vk,2k+1. For this one would need

n0+n1 ≤ k, m0+m1 ≥ 2k, so m0+m1 ≥ 2(n0+n1). Since m1 ≤ 2n1−1 for n1 6= 0 (when

F0 vanishes) and m0 ≤ 2n0, such an element cannot exist. Similarly, for A1, let us take

an element lying in Vk,2k. One then needs to satisfy the constraints n1 ≤ k − 1, m1 ≥ 2k

(impossible) or n0+n1+1 ≤ k andm0+m1+1 ≥ 2k, which impliesm0+m1 ≥ 2n0+2n1+1.

But m1 ≤ 2n1 and m0 ≤ 2n0, therefore one cannot get such an element neither.

Now let us compute the τ -function and try to understand in which elements of the

filtration does it lie. Since we have

t∂t log τ(t) = − tr [t−σ(A1 +A∞)tσÃ0 + Ã2
0] + t(1− t)−1 tr [(A1 +A∞ + tσÃ0t

−σ)A1] ,

(3.17)

naively it could be a term in V0,1. However, computing the constant part one finds

t∂t log τ(t) = tr (BÃ0 − Ã2
0) + . . . = tr (AtA0) + . . .

=
1

2
tr (At +A0)

2 −
1

2
trA2

0 −
1

2
trA2

t + . . .

=
1

2
(σ,σ)−

1

2
(θ0,θ0)−

1

2
(θt,θt) + . . . ,

(3.18)

where Aν ∼ θν . For convenience, let us introduce the notation

χ =
1

2
(σ,σ)−

1

2
(θ0,θ0)−

1

2
(θt,θt) (3.19)

The terms present in tr (t−σA1(t)t
σÃ0(t)) that are closest to the boundary originate from

the constant part of A1(t). These terms belong to
∑∞

k=0 Vk,2k, therefore

log τ(t) ∈
∞
∑

k=0

Vk,2k (3.20)

Note that these estimates are too rough, since we have not taken into account that a

number of the commutators actually vanish. The actual result turns out to be the same

for all three functions

log τ, Ã0, A1 ∈
∞
∑

k=0

Vk,k ,

– 11 –
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Figure 2. Filtration Q•

sl2
.

Figure 3. Filtration V•,•.

and it can be checked numerically. Moreover, it turns out that the expansion of the τ -

function itself is even more restricted:

t−χτ(t) ∈
∑

w∈Qg

V 1

2
(w,w),w , (3.21)

which in fact provides an evidence for the 2d CFT description: different fractional powers

come from t∆ for the different ∆’s, but the conformal dimension ∆ = 1
2(σ +w,σ +w) is

a quadratic function of w leading to the structure (3.21).

3.1 sl2 case

In this case we illustrate all procedures, definitions and statements using the exact solu-

tion of [8].

The Lie algebra sl2 is given by 3 generators Eα, E−α, Hα, such that

[Eα, E−α] = Hα ,

[Hα, E±α] = ±2E±α .
(3.22)

The root lattice Qsl2 is shown in figure 2. It is spanned by one root α. Q0
sl2

is the

empty square, Q1
sl2

is the red rectangle, Q2
sl2

is green and Q3
sl2

is blue.

All monomials have the form tn+(σ,w) = tn+m(σ,α), and therefore can be depicted by

the points of a two-dimensional lattice. Note that in our normalization (α, α) = 2. Several

examples of the elements of this filtration are presented in figure 3.

Here the blue region represents V0,0, red corresponds to V1,1 and green is V3,4.

We can also show the “true” and “naive” lattice supports of the quantities Ã0(t), A1(t),

log τ(t) and t−χτ(t). See figure 4: green region is the “naive” support of A1(t), the blue

region is the true support of Ã0(t), A1(t), log τ(t), which can be derived experimentally.

– 12 –
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Figure 4. Support of the solutions.

✚✙
✛✘

0

0 ✚✙
✛✘

1

1✚✙
✛✘

1

1 ✚✙
✛✘

4

2✚✙
✛✘

4

2 ✚✙
✛✘

9

3✚✙
✛✘

9

3

Figure 5. Supports of τ(t) and log τ(t): circles correspond to the integral points of the x-axis,

numbers inside show the y-coordinates of the cone and parabola.

Now one can use an exact formula for the tau function expansion [8] (cf (3.25) below) to

see that

τ(t) = tσ
2−θ2

0
−θ2t

∑

k∈Z

t2σntn
2

fn(t) , (3.23)

which in turn implies

tθ
2

0
+θ2t−σ2

τ(t) ∈
∞
∑

k=0

Vk2,k . (3.24)

It looks like a miracle and means that a huge number of terms cancel out when we ex-

ponentiate, but this answer confirms the conjecture (3.21). This phenomenon is illustrated

in figure 5 in two ways. Upper bold numbers account for the degree in τ(t) (blue region),

lower numbers correspond to the degree in log τ(t) (green region). Horizontal coordinate

corresponds to the position in the sl2 root lattice.

Let us take the main formula from [8]:

τ(t) =
∑

n∈Z

snC(0t)
n (θ0, θt, σ0t)C

(1∞)
n (θ1, θ∞, σ0t)t

(σ0t+n)2−θ2
0
−θ2tB({θi}, σ0t + n; t) , (3.25)

– 13 –
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Figure 6. Filtration Q•

sl3
.

where B(. . . ; t) is the c = 1 Virasoro conformal block and

C(0t)
n (θ0, θt, σ0t)C

(1∞)
n (θ1, θ∞, σ0t) (3.26)

=

∏

ǫ=±,ǫ′=±G(1 + θt + ǫθ0 + ǫ′(σ0t + n))G(1 + θ1 + ǫθ∞ + ǫ′(σ0t + n))

G(1− 2σ0t)G(1 + 2σ0t)
.

Here (θν ,−θν) are the eigenvalues of the matrices Aν in the linear system (2.1),

(e2πiσµν , e−2πiσµν ) are the eigenvalues of MµMν , s is the only variable depending on σ1t
(in a complicated way). The main properties of (3.25) and (3.26) can be summarized as

follows:

1. The support of τ(t) is as indicated in (3.24).

2. Relative twist parameter enters only via the factor sn in the structure constants.

3. The 3-point coefficients Cn factorize with respect to the pants decomposition

parametrization.

We are now going to check these important properties in the sl3 case.

3.2 sl3 case

Figure 6 illustrates the filtration on the sl3 root lattice. The red hexagon corresponds to

Q1
sl3
, Q2

sl3
is shown in green and Q3

sl3
is blue. It is difficult to visualize Vm,n, since one

would then need a 3d picture. One can however think of
∑∞

k=0 Vk,k as being a cone with

hexagonal section.

Let us perform the numerical study of the 3×3 Schlesinger system. We first determine

which degrees (k,w) are present in log τ(t) and in τ(t) (figure 7).
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Figure 7. Degrees present in t−χτ(t) and in log τ(t). Number χ is given by (3.19).

As above, the upper bold numbers correspond to degrees in t−χτ(t) and the lower ones

to log τ(t). We mark with “?” sign those values which are obtained at the limit of machine

precision or which are greater then 7 (so that they are not seen in the solution up to the

7th order). Carefully analyzing this picture, one deduces that

log τ(t) ∈
∞
∑

k=0

Vk,k ,

t−χτ(t) ∈
∑

w∈Qsl3

V 1

2
(w,w),w .

(3.27)

It means that nonzero monomials of τ(t) fill a paraboloid, and not the naively expected

cone. In other words, a lot of nontrivial cancellations take place, which provides further

evidence for the conjecture (3.21). We now list other nontrivial properties of τ(t) revealed

by our experimental study.

1. The expansion has the form

τ(t) =
∑

w∈Q

e(β,w)C
(0t)
w (θ0,θt,σ0t, µ0t, ν0t)C

(1∞)
w (θ1,θ∞,σ0t, µ1t, ν1t)× (3.28)

× t
1

2
(σ0t+w,σ0t+w)− 1

2
(θ0,θ0)−

1

2
(θt,θt)Bw({θi},σ0t, µ0t, ν0t, µ1∞, ν1∞; t) .

2. The non-zero coefficients of the expansion start from t
1

2
(w,w).

3. All the dependence on the relative twist parameters is hidden in β ∈ h, which enters

in a trivial way.
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4. The dependence of structure constants on the 3-point monodromy parameters is

factorized.

5. The first term in the expansion of conformal block has the form

B0 = 1 + [α+ βC1(µ0t, ν0t) + γC̃1(µ1∞, ν1∞) + δC1(µ0t, ν0t)C̃1(µ1∞, ν1∞)]t+ . . .

This property is new, as compared to the N = 2 case, and we will see later that it is

very important.

All these facts tell us that almost all properties of sl2 case hold in the sl3 case. This

leads us to

Main conjecture:

B0({θi},σ0t, µ0t, ν0t, µ1∞, ν1∞; t) is a conformal block of W3 algebra

The corresponding dimensions and W -charges are given by

∆ν =
1

2
(θν ,θν)

wν =

√

3

2

∏

i

(θν , ei) .
(3.29)

The main advantage of the above definition of conformal block is that it depends only

on 4 extra variables instead of a doubly-infinite set.

It is easy to check this definition for the case when W3-block can be defined alge-

braically. This becomes possible when θt = ate1 and θ1 = a1e1, where e1 is the weight of

the first fundamental representation. The best way to present this conformal block is to

use Nekrasov formulas [23] which can be applied to conformal field theory in view of the

extended AGT [24] correspondence, first established in [25, 26]. The most convenient (for

c = 2) expression for the conformal block can be found in [20]:

Bw(θ∞, a1,σ, at,θ0; t) = B(θ∞, a1,σ +w, at,θ0; t) (3.30)

B(θ∞, a1,σ, at,θ0; t) = (1− t)
1

3
ata1

∑

~Y

t|
~Y |Zbif (−θ∞, a1,σ|~0, ~Y )×

×
1

Zbif (σ, 0,σ|~Y , ~Y )
Zbif (σ, at,θ0|~Y ,~0) , (3.31)

where

Zbif (θ, a,θ
′|~ν, ~ν ′) =

3
∏

i,j=1

∏

s∈ν′i

(

− Eν′i,νj
(i(θ, ej)− i(θ′, ei)|s)− i

a

3

)

×

×
∏

t∈νj

(

Eνj ,ν
′

i
(i(θ′, ei)− i(θ, ej)|t)− i

a

3

)

, (3.32)
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and the quantities E are defined by

Eλ,µ(x|s) = x− ilµ(s)− iaλ(s)− i . (3.33)

It yields exactly the same result as our computations using iterative solution of the

Schlesinger system.

We have also conjectured in this case and checked experimentally a formula for the

structure constants, which is a straightforward generalization of (3.26):

C
(0t)
w (θ0, at,σ)C

(1∞)
w (σ, a1,θ∞)

=

∏

ij G[1− at
N

+ (ei,θ0)− (ej ,σ+w)]G[1− a1
N

+ (ei,σ +w)+(ej ,θ∞)]
∏

i

G[1 + (αi,σ +w)]
.
(3.34)

Here ei denote the weights of the first fundamental representation and αi are all roots of

slN (in our case N = 3). This formula was recently proved [21] for general N . One can

also observe a similarity between this formula and Toda 3-point function computed in [18].

4 Remarks on W3 conformal blocks

4.1 General conformal block

Here we consider for simplicity the c = 2 case, but the generalization to arbitrary c is

straightforward. First we explain how the WN conformal block is defined algebraically.

For that let us compute the following expression:

B(θ∞,θ1,σ,θt,θ0; t) = 〈−θ∞|φθ1
(1)Pσφθt

(t)|θ0〉 , (4.1)

where |θ0〉 and 〈−θ∞| are the highest-weight vectors with the charges given by (3.29),

Pσ is the projector onto the whole Verma module (1.2) with given highest weight. This

conformal block can be computed by inserting the resolution of the identity in the Verma

module. One can take, for instance, the naive basis (1.2), or (if we do not necessarily

want to preserve the L0 grading) the basis from [17], or (if we wish to add the Heisenberg

algebra) the AGT basis from [20, 27]. Let us call the vectors of this basis |σ, ~Y 〉 and

suppose that

L0|σ〉 = (∆(σ) + |~Y |)|σ, ~Y 〉 .

Their scalar products will be Kσ(~Y , ~Y ′) = 〈σ, ~Y |σ, ~Y ′〉. This allows to express conformal

block as

B(θ∞,θ1,σ,θt,θ0; t) = tχ
∑

~Y ,~Y ′

t|
~Y |〈−θ∞|φθ1

(1)|σ, ~Y 〉K−1(~Y , ~Y ′)〈σ, ~Y ′|φθt
(1)|θ0〉

= tχ
∑

~Y

t|
~Y |Q(~Y )Q̃(~Y ) ,

(4.2)
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where Q̃(~Y ) =
∑

~Y ′
K−1(~Y , ~Y ′)〈σ, ~Y ′|φθt

(1)|θ0〉 and Q(~Y ) = 〈θ∞|φθ1
(1)|σ, ~Y 〉 and χ is

given by (3.19). The claim of [17] is that Q(~Y ) and Q̃(~Y )

Q(~Y ) = Q(~Y |C1, . . . , C|~Y |) = γ0(~Y ) +

|~Y |
∑

k=1

γk(~Y )Ck ,

Q̃(~Y ) = Q(~Y |C̃1, . . . , C̃|~Y |) = γ̃0(~Y ) +

|~Y |
∑

k=1

γ̃k(~Y )C̃k ,

(4.3)

are “triangular” “affine” linear functions of infinitely many arbitrary parameters Ck, C̃k

defined by

Ck = 〈−θ∞|φθ1
(1)W k

−1|σ〉, C̃k = 〈σ|W k
1 φθt

(1)|θ0〉 . (4.4)

4.2 Degenerate field

Let us consider the case θt = e1 (the weight of the first fundamental representation). The

fusion rules for such fields are known to be given by

[e1]
⊗

[θ] =
⊕

k

[θ + ek] . (4.5)

Let us also shift θ0 7→ θ0 − en, multiply the conformal block by t
2

3 = t(e1,e1), and define

the quantity

Φnk(t) = t(e1,e1)B(θ∞,θ1,θ0 + ek − en, e1,θ0 − en; t)

= t(θ0,ek)+(1−δkn)
∑

~Y

t|
~Y |Q(~Y ,C1, . . . , C|~Y |)q̃(

~Y ) ,
(4.6)

where q̃(~Y ) do not contain any free parameters [17].

Now denote the degenerate field φe1(t) by ψ(t) and consider the correlation function

t(e1,e1)〈−θ∞|φθ1
(1)ψ(t)|θ0 − ek〉 .

In the region t → 0 (s-channel) it can be expanded in the basis of conformal blocks written

above. But if we set t → 1 or t → ∞ (t- and u-channel), then we will have the following

OPEs

ψ(t)φθ1
(1) =

∑

k

Cθ1+ek
e1,θ1

· (t− 1)(θ1,ek) (φθ1+ek(1) + descendants) ,

t(e1,e1)〈−θ∞|ψ(t) =
∑

k

Cθ∞+ek
θ∞,e1

· t−(θ∞,ek) (〈−θ∞ − ek|+ descendants) .
(4.7)

These formulas suggest that the space of conformal blocks involving ψ(t) is 3-dimensional

and near each point we have a basis with asymptotics prescribed by θν . It is clear that

upon analytic continuation of Ψ1k(t) around 0, 1,∞ one gets some linear combinations of
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the basis elements
γ0 : Φ1k(t) 7→

∑

k′

Φ1k′(t)(M0)k′k ,

γ1 : Φ1k(t) 7→
∑

k′

Φ1k′(t)(M1)k′k ,

γ∞ : Φ1k(t) 7→
∑

k′

Φ1k′(t)(M∞)k′k .

(4.8)

In our case M0 = diag(e2πi(θ0,e1), e2πi(θ0,e2), e2πi(θ0,e3)). That these formulas must hold can

be expected on general grounds (crossing symmetry) and from the fact that the space is

3-dimensional. However, looking at the formula (4.6), the freedom in choice of Ck can give

us Φ1k = t(θ0,e1)+(1−δk1)
∞
∑

k=0

flt
l with arbitrary fn’s. It means that W -algebra itself does

not account for the global structure of conformal blocks and this information should be

introduced as an extra input.

Now suppose that we have some globally-defined multivalued functions Φ1k. Then

we have three monodromies M0,M1,M∞ and one can solve the refined 3-point Riemann-

Hilbert problem. Suppose that its solution is given by the matrix F (t) such that

d

dt
F (t) =

(

A0

t
+

A1

t− 1

)

F (t) , (4.9)

A0 = diag ((θ0, e1), (θ0, e2), (θ0, e3)) and F (t) is normalized in such a way that F (t) =

tA0(1 + O(t)). Next let us compute Ri(t) =
∑

k Φ1k(t)(F (t)−1)ki. This vector has the

trivial monodromies around all singular points, it is regular there and R(0) = (1, 0, 0), so

that R(t) = (1, 0, 0). It means that

Φ1k(t) = F1k(t) . (4.10)

This formula allows us to fix all constants Ck. This is done in the following way:

we solve the 3-point Riemann-Hilbert problem, take F11(t) and read the coefficients of

conformal block from its series. These coefficients are triangular linear combinations (4.3) of

Ck (i.e., kth term of the conformal block expansion involves only Cj≤k). This construction

thus expresses Ck via the moduli (µ, ν) of flat connections on the 3-punctured sphere.

Ck = Ck(µ, ν) . (4.11)

All constants are expressed in terms of only two parameters. If we now recall the 5th

experimental property of the τ -function, its origin can be easily understood: the first term

of the conformal block (with the structure constants fixed above) depends only on C1(µ, ν)

and C̃1(µ, ν) and this dependence is at most bilinear.

Verlinde loop operators. Here we can slightly modify our point of view: now all

possible vertex operators defined by (1.3) and (1.4) have to be considered simultaneously.

They form some ∞-dimensional vector space, which can be identified with the space of

3-point conformal blocks (and which was one-dimensional in the Virasoro case). One can
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define the action of the Verlinde loop operators on this space in the same way as it was

done in [28]. This action is given by some operators V̂ (γ) depending on the loop γ.

If we now look at the results of [10] then we realize that (3.25) can be defined alterna-

tively as the common eigenvector of all possible Verlinde loops. One can act in the same

way for the case of 3-point conformal blocks

V̂ (γ) · 〈Y |φθ1,µ,ν(1)|Y
′〉 = Mγ(µ, ν) · 〈Y |φθ1,µ,ν(1)|Y

′〉 (4.12)

This procedure defines the basis of the “right” vertex operators φθ1,µ,ν(1) characterized by

some Ck(µ, ν). It looks more natural in this approach that τ -function constructed from

such operators should solve the Riemann-Hilbert problem.

The question about interpretation in c 6= N−1 case is still open: the problem is caused

by non-commutativity of the algebra of V̂ (γ). Moreover, even in the minimal model-like

cases c = N − 1−N(N2 − 1) (k−1)2

k
for integer k, when the algebra is commutative again,

the relation to the isomonodromic deformations becomes unclear (see “concluding remarks”

in [9] for discussion of the Virasoro case).

5 Conclusions

We have discovered several important properties of the isomonodromic τ -functions in higher

rank, which can be interpreted as signatures of the isomonodromy-CFT correspondence

for the WN case. This allows to give a definition of the general WN conformal block,

depending only on a finite number of parameters. It is also possible to prove [21] that the

algebraic way to define well-known conformal blocks for semi-degenerate fields agrees with

the above definition.

We have also considered a particular conformal block with degenerate field and shown

that its global structure is not fixed algebraically. The requirement of the correct global

behavior of this object yields an expression for the whole infinite series of constants in the

W3 conformal block in terms of the solution of the 3-point Riemann-Hilbert problem.

These expressions can be written in terms of coordinates on the moduli space of flat

connections on sphere with 3 punctures. This is expected to be universal and work for any

conformal block (not only for those with degenerate fields). We have checked experimen-

tally some properties, which support this conjecture.

Finally, let us list some remaining open problems:

• One needs to check that the procedure of fixing Ck is self-consistent.

• If the constants Ck can be fixed in such a way, we may try to prove that the τ -function

can be given as a sum of the general WN conformal blocks.

• A constructive solution of the 3-point Riemann-Hilbert problem is still missing.

• It would be interesting to understand the meaning of Zbif (θt,σ,θ0;µ, ν|~Y , ~Y ′) in the

context of isomonodromy-CFT correspondence. It can be done for the case ~Y ′ = ~0

and it is interesting what happens for the arbitrary Young diagrams.
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• There as an approach to the definition of conformal blocks of the light fields in the

limit c → ∞ [29]. In that case explicit integral expression for the conformal block

was derived. All the information about the 3-point functions enters this definition

via several functions of one variable. The open problem is to obtain the monodromy

properties of such conformal blocks and to identify the choice of 3-point functions

that gives the conformal blocks arising in our approach.

• It is also important to understand the meaning of the results [30] about partition

functions of TN theories without lagrangian description (which are believed to be

the counterparts of the general WN 3-point functions) from the isomonodromic point

of view.
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