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ABSTRACT: We discuss the soft behaviour of open string amplitudes with gluons and mas-
sive states in any dimension. Notwithstanding non-minimal couplings of massive higher
spin states to gluons, relying on OPE and factorization, we argue that the leading and sub-
leading terms are universal and identical to the ones in Yang-Mills theories. In order to
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the massive super-multiplets at the first massive level and rewrite the amplitudes in D = 4
in the spinor helicity formalism, that we adapt to accommodate massive higher spin states.
We also check the validity of a recently obtained formula relating open superstring ampli-
tudes for mass-less states at tree-level to SYM amplitudes, by factorisation on two-particle
massive poles. Finally we analyse the holomorphic soft limit of superstring amplitudes
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1 Introduction and motivations

Recently the soft behaviour of scattering amplitudes has received renewed attention in
connection with the extended BvBMS symmetry [1-6]. It has been long known that gauge
theory and gravity amplitudes expose universal behaviours when one of the mass-less ex-
ternal momenta is ‘soft’ i.e. &k — 0 [7-9]. In both cases the leading behaviour is singular,
i.e. goesas 6 ! if k = 0k with k some fixed momentum [7]. The sub-leading terms can
be derived from the leading ones and are largely fixed by gauge invariance. In particular,
in gauge theories the sub-leading behaviour ¢V is universal, too. In gravity not only the
sub-leading behaviour §° but also the next-to-subleading or sub-sub-leading behaviour §+!
is universal [8-10].

The problem of what happens when loops or non-minimal higher derivative couplings
are included was addressed in [11-15]. At the loop level IR divergences tend to spoil
the analysis. Yet, in supersymmetric theories such as N' = 4 SYM, one can define loop
integrands recursively and check that they expose the expected soft behaviour at all loops
and for any choice of (massless) external legs. This may be viewed as a further constraint
on (loop) amplitudes derived without resorting to standard perturbative methods (see
e.g. [16] for a recent pedagogical review).

When non-minimal interactions are considered, the result depends on the specific
choice [14]. In gauge theories, F*® terms do not change the universal soft behaviour of
minimal coupling, while ¢F? do modify even the leading term when ¢ is a massless scalar.
Similarly, in gravity theories R? terms do not change the universal soft behaviour of mini-
mal coupling, while $R? do modify even the leading term when ¢ is a massless scalar such
as the dilaton.

These results are largely independent of the number of space-time dimensions and in
particular apply to string theory in critical dimension and in lower dimensions [17-22].
One has to distinguish between open and closed strings and between bosonic, super and
heterotic strings. In [14], the soft behaviour has been shown to be governed by the OPE
of the vertex operators. As a result both open and closed superstring amplitudes with
external massless states expose the expected soft behaviour, while closed bosonic string
amplitudes don’t, due to the tree-level non minimal coupling ¢R? with the dilaton. Open
bosonic string amplitudes behave universally despite the presence already at tree level of
the non-minimal F* correction to the standard Yang-Mills coupling and the coupling 7 F?
to the tachyon.! For the heterotic string at tree level, the soft behaviour of massless vector

LCouplings to gravitons and other closed string states appear at higher order in the string coupling g..



bosons is universal, since the trilinear coupling is purely of Yang-Mills type, while the soft
behaviour of the graviton is non-universal due to ¢R? coupling.? No R? term however
appears due to supersymmetry.

Aim of the present paper is to extend the analysis to open string amplitudes with
massive external states (in the bosonic string case we will also consider tachyons as external
states). Amplitudes with massive external states have not received much attention in
the literature. See however [23-28] for recent work on the subject and [29-33] and the
review [34] for mass-less amplitudes with emphasys on the exchange of massive higher
spin states.

The analysis is interesting in two respects. On the one hand couplings of string states
are generically non-minimal, although probably unique. On the other hand, gravity and
gauge interactions emerge quite naturally in string theory and one would expect the soft
behaviour of scattering amplitudes to expose some universality thanks to gauge invariance.

Plan of the paper is as follows. We start with open bosonic strings. After reviewing
tri-linear couplings on the disk of tachyons, vector bosons and higher spin massive states,
we compute some explicit 4-point amplitudes involving tachyons and massive states. We
then consider open superstrings on the disk and perform a similar analysis in an arbitrary
number of dimension D < 10. For convenience and for comparison with the existing lit-
erature we rewrite superstring amplitudes in D = 4 in the spinor helicity formalism, that
we adapt to accommodate massive higher spin states, after revisiting the structure of the
massive super-multiplets. We also check the validity of a recently obtained formula relating
open superstring amplitudes for mass-less states to SYM amplitudes at tree-level [35, 36],
by factorizing 5-point amplitudes on the first massive pole and recovering our previous
formulae. We explain how to generalise this procedure to an arbitrary number of massive
external states. We then discuss the soft behaviour of open string amplitudes with gluons
and massive states in any dimension and argue that the leading and sub-leading terms are
universal and identical to the SYM case, relying on OPE and factorization. We then check
this explicitly for the amplitudes, we previously computed. We also analyse the holomor-
phic soft limit of superstring amplitudes with one massive state and check consistency with
our expectations. Finally we will draw our conclusions and identify interesting directions
for future investigation. Various appendices contain technical details that are included for
completeness.

2 Open bosonic string amplitudes

In order to check the soft behavior of four-point amplitudes on the disk in the open bosonic
string, we summarize in appendix A all the possible tri-linear couplings involving the vertex
operators up to the first massive level.

2M. B. would like I. Antoniadis to stressing the tree level origin of this term in the heterotic string, which
only is generated at one-loop in 4-dim Type II theories with 16 supercharges, such as after compactification
on K3 x T?.



2.1 Vertex operators

Our first goal is to compute scattering amplitudes with the insertion of vertex operators
up to the first massive level. Up to normalization factors, the tachyon vertex operator is

: 1
Vi =ePX p?=_m2 = i (2.1)
the gluon vertex operator is
Va=a,idX"e*X k2 =-m%i=0 ak=0 (2.2)
and the first massive level vertex operator is
; 1
Vi = H,, i0X"i0X" ¥ PP =—my = ——
o
H,, =H,, H,p"=0 " Hy, = 0. (2.3)

While the choice of the tachyon vertex operator is essentially unique, the choice of the
vertex operators for the massless gluon A and for the massive state H is not unique. It is
kX _ §

always possible to add the null operator cikdXe e X to ¢ V4. For H one can

BRST
choose a linear combination of the operator Vg = B,,i0>X*ePX(z) and a generic H(z) =
H,, i0X"i0X" ePX(z), with H an arbitrary two-index symmetric tensor. Nonetheless, due
to BRST invariance, one has the freedom to fix the gauge in which B, = 0 and H,,, is

symmetric, traceless and traverse as in eq. (2.3).

2.2 Chan-Paton factors and twist symmetry

Although we will mostly consider ‘color-ordered’ amplitudes on the disk, we would like to
review some relevant aspect of the group theory structure. Disk amplitudes are cyclically
invariant and can be dressed with Chan-Paton factors [37]

A(L,2,...n) = A(1,2,...n) = A(1,2,...n)te(t! ...t (2.4)

where t, with @ = 1,... N? are the generators of U(N).®> In modern terms this corre-
sponds to the fact that open strings carry multiplicities associated to the D-branes they
end on. A(1,2,...n) are called ‘color-stripped’ or ‘color-ordered’ amplitudes or simply
sub-amplitudes. They enjoy such remarkable properties as [38]

e Cyclic symmetry: A(k,k+1,...,n,1,2,... k—1) = A(1,2,...n)
e Twist symmetry: A(n,n—1,...,2,1) = [[I"; wiA(L,2,...,n—1,n)
e Dual identity: A(1,2,...n) + A(2,1,3,...n)+... +A(2,3,...,n—1,1,n) =0

where wg = +1 is the eigenvalue in the state S of the ‘twist’ operator €2, that exchanges the

two ends of the strings. In particular wq = —1 while wr g = +1. In general wg = (—1)Ns

*We will not consider unoriented projections or symmetry breaking that may produce matter in bi-
fundamental or (anti-)symmetric representations of the gauge group.



where Ng is the level of S. Pretty much as in gauge theory, complete amplitudes are
obtained by summing over non-cyclical permutations of color-dressed amplitudes. At 3-
points one simply has

A(1,2,3) = A(1,2,3)tr(t1426%) + A(1, 3, 2)tr(t'1342). (2.5)
For the amplitude with three tachyons A(1,3,2) = A(3,2,1) = +.A(1,2,3), so that
A(1,2,3) = A(1,2,3)tr(t14263 + t1131%) = A(1,2,3)d'?, (2.6)
while for three vectors A(1, 3,2) = A(3,2,1) = —A(1,2,3), so that
A(1,2,3) = A(1,2,3)Tr(t 6% — t'432) = A(1,2,3) f123. (2.7)

In general one gets d**° (‘anomaly coefficients’ or cubic Casimir) when H?Zl w; = +1 and
fab (structure constants) when H?Zl w; = —1. In particular all couplings ﬁ(S, S, A) ~ fabe
whichever the state §. Moreover, at least for totally symmetric tensors in the first Regge
trajectory, the dominant term at low energy is

A(S1, 82, A3) = fi23S1" 1S 4 psaz-(p1 — p2) + . .. (2.8)

i.e. string theory tries to be as ‘minimal’ as it can! Yet there are higher derivative corrections
to this, as we will see momentarily.

2.3 Four-point bosonic string amplitude

In this section we collect some open bosonic string amplitudes involving massless, massive
and tachyonic states. Details of the computations can be found in appendix A. For simplic-
ity we consider color-ordered amplitudes. Complete amplitudes arise after multiplying by
the relevant Chan-Paton factors tr(¢'t?t*t*) and summing over non-cyclic permutations.
In fact, exploiting ‘twist symmetry’ i.e. ) invariance, one can further reduce the sum
to three terms (instead of six). For notational simplicity we will drop all adimensional
constants (including powers of g5) that are irrelevant for our analysis and the d-function
of momentum conservation (2m)”§P (3", p;) will be understood. To help recognising the
light-like momenta we will denote them by k’s, while tachyonic and massive momenta will
be denoted by p’s. Starting with Veneziano amplitude (four tachyons)

I'(—1—d's)I(—1—a't)
[(=2-d(s+1))

where s = —(p1 +p2)® = —(p3 +pa)®, t = —(p2 +p3)* = —(p1 + pa)?, u = —(p1 +p3)* =
—(p2 + pa)?, with s +t +u = —4/d/, it is not difficult to compute the three-tachyons

A(Th T2a T3a T4) =

(2.9)

one-vector amplitude

1 I'(1+2a’k1p2)T(1 + 20’k
A(Ay, Ty, Ty, Ty) = <G1P2 3 a1p4> (1 +2a’k1p2) /( + 20 1P4)’ (2.10)
V2o \kip2  kips ['(1 —2a’k1ps3)
the two-tachyons two-vectors amplitude
-~ SO (14 2a’k1py)T(—=1 + 2d' k1 k
.A(Al,AQ,Tg,T4) = (a1a2 —l—2a'a1p3 a2p3) ( @ 1p4) ( @ 2) (2.11)

I'(—20a/k1ps) ’



where
~ aip4 .
s — MR =1,2, 2.12
a; a; kipa iy v s ( )

satisfy a;ps = 0, and finally the two-tachyons-vector-tensor amplitude

1 T(—142dk3ps)T (1420 paks) 14 2dkspy

Ty, 15, A, Hy) = —2a3Hps — 2a3 Hky———"—
A(Ty, Ty, Ag, Hy) R T(—20/p1ks) asHps = 2a3Hksy— 70~
1—-2d'k 1+ 20’k

+ 2/ agpy P2HP273P4 + kg Hhg——— 3P 2p2Hps

20/ kspr 2 —2d'k3py

ksps p2Hpa 1+ 20/])1 ks 1-— 2a’k3p4
—2d/ —E T (1 —2dk —p3sHpg—————— — 2poHky3————— .
Q azp2 <2a’p2 ks 1 k3( o’kspa) — p3Hps 20/ ok P211 k3 20/ paks

Later on we will check that they enjoy the expected behavior in the soft limit.

3 Open superstring amplitudes

3.1 Vertex operators

In this section we consider open superstring amplitudes involving gluons and massive states.
At the first massive level, two independent string excitations appear: a symmetric, trans-
verse and traceless tensor H with dg = D(D — 1)/2 — 1 degrees of freedom (dyg = 44 in
D = 10) and a totally antisymmetric transverse tensor C' with dc = (D—1)(D—2)(D—3)/6
degrees of freedom (dy = 84 in D = 10). It is worth to notice that in D = 4, the tensor
H corresponds to a massive spin 2 particle, while the C' corresponds to a massive pseudo-
scalar. Up to normalization factors, In the canonical ¢ = —1 super-ghost picture their
vertex operators are

VD = e g X K =0 kea =0 (3.1)
Vi) = Hy e PioXr g e’ olp? =1 puH"™ =0  HE=0 (32
VS = Cpup gy P €PX opf=-1  pCMP=0. (3:3)

For our purposes it is necessary to consider also vertex operators in the ¢ = 0 super-
ghost picture

VI = (a-i0X + kb a-p) €*X (3.4)
VY = Hy, [0XP (i0X" + p- 0o¥] + 0y) P (3.5)
VA = Cpupp e @ [10XH + papp) Py X (3.6)

Higher spin massive states in the first Regge trajectory are described by vertex oper-
ators of the form

S S S

Vi, = Hyy ., |[[i0X" + pot [ i0X7 + (s — Dowrrgr [ ioxm | P (3.7)

i=1 =2 =3



with o/p? = (1—s) and H totally symmetric, transverse and trace-less. Their tri-linear
couplings to the vector bosons schematically read

A(Aq, Ay, Hy) = (ce ?Va(z1) ce ?Valze) ¢ Vi, (23)) = (2))2(f1 f2) FY2H s Hk:

(3.8)

In D = 4 the above expressions drastically simplify if one resorts to the spinor helicity
formalism and adapt it so as to encompass massive states.

3.2 Supersymmetry

Although we will only consider bosonic states in the NS sector of the open superstring, it
is worth discussing the structure of the super-multiplet at the first massive level [39)].

In addition to the NS states H and C we have two spin 3/2 fermions of opposite
chirality (in D = 10) that combine to give a massive spin 3/2 fermion. In the canonical

q = —1/2 super-ghost picture their vertex operators read
Vg = U8S,0X e #/2eX (3.9)
and
Vg = UhIW e #/2eX (3.10)

where S, is a spin field of conformal dimension 5/8 in the 16 irrep of SO(1,9) and W
:C*H: is an excited spin field of conformal dimension 13/8 in the 144’ irrep of SO(1,9).
BRST invariance implies transversality pivy =0 = pu¥h, D-traceleness Fgﬁ\llg =0 =
Ffj'B W)y as well as
TV = iM Uy,  TOPp0, 5 =iMUS (3.11)
The N = (1,0) supersymmetry charge in D = 10 is the gaugino vertex at zero mo-
mentum

Q(=1/2) — /dzsae—%”/? (3.12)
In the ¢ = +1/2 super-ghost picture one has

Ql+1/2) — / d2Th ,CP0X et/ (3.13)

Acting with Q((l_l/ 2) on Vg and Vg one gets combinations of the NS vertex operators
Ve and Vg as well as the ‘auxiliary’ vertices Vg and Vg in the canonical ¢ = —1 picture,
yielding very schematically*

0H,y = el 0,y 0Cup =l U, 0By =ely, ¥,  0E,=c¥,  (3.14)

(+1/2)

Similarly acting with Qg on the NS vertex operators Vo and Vi as well as on the

‘auxiliary’ vertices Vp and Vg yields very schematically®

80, = eTy |p*(Hyu + Bu)TV + MFHEA] + MCl TP + ... (3.15)
1See [39] for the precise coefficients.
5See [39] for the precise coefficients.



and
80, = el [M(Hyp + Buy) + puEu) 4+ eD7p,Cln T2 4. (3.16)

3.3 Dimensional reduction to D=4

For obvious reasons we are particularly interested in the dimensional reduction to D = 4.
The massive N' = (1,0) super-multiplet in D = 10 at the first level yields a long multiplet
of the NV = 4 super-algebra

{Huw, 84,27 7,48 x,42 ¢} (3.17)

comprising 128 bosonic and as many fermionic states. In order not to burden the notation
1, v, ... are now 4-dim indices, while ¢, j, ... denote the internal 6 dimensions. The origin
of the bosonic fields is as follows

Hy, < Hyy (3.18)
27 ZM — 6Hp,,i7 15 C,u,ija Gpr,i (3.19)

since a massive vector in D = 4 is equivalent to a massive anti-symmetric tensor, and
4290 +— 21 Hija20 C’ijk,qu (320)

It is perhaps not surprising that these be in one-to-one correspondence with the (bosonic)
fields in the N' = 4 super-current multiplet, upon dualizing the six massive H,; into as
many massive anti-symmetric tensors H i = aw,,\pp)‘H £/M. It is amusing to decompose
this massive multiplet into massive multiplets of the N/ = 1 super-algebra

{Hy, 84,27 Z,, 48 X, 42 o} —
{Hyuw, 24, Zy} + 64,2 Zy, x} +14{2,,2 x, o} + 14 {x, 2} (3.21)

In the case of a Z3 orbifold, whereby z! — 2!, 2* the multiplicities can be expressed in terms
of dimensions of irreps of SU(3) i.e. 6 — 3+3*,14 — 8+3+3"and 14’ — 1+1+6+6".
Once again, it is not surprising that the multiplet content {H,,,2v,, Z,} be in one-to-one
correspondence with the currents {7},,,%,, ‘Zu, Jy} in the N = 1 super-current multiplet
of Ferrara and Zumino [40].

For later purposes, note that H,,, with n**H,, = 0 = ptH,, belongs in a spin-
2 supermultiplets with 8 bosonic and as many fermionic d.o.f. whose vector boson is
Z, = 6'7C,,; 7, while H',,, = Holnju + o/pupy] with Hyj = Hodi;/2 (so that n™N Hyyy = 0)
combine with Cy = €,,,,op” C*P /M in a chiral multiplet.

3.4 Four-point amplitudes (superstring) and spinor helicity basis

For simplicity, we will only consider amplitudes with a single massive external state:
A(Ay, Ag, As, Hy) and A(Aq, Az, A3, Cy). Depending on the choice of incoming particles
these correspond to production, annihilation or 3-body decay of the massive state. In view
of this, it is useful to restrict to 4-dimensional momenta and polarisations and work in



the helicity basis whereby null momenta are expressed in terms of on-shell Weyl spinors of
opposite chirality
koo = kuotly, = uatia (3.22)

and resort to the standard notation us (k) — |k) us(k) — [k], so much so that
u(kiJu(kj) = —=(ij) . wlki)u(k;) = [ij] and  2k;-k; = (ij)[i]] (3.23)

For real momenta w4 (k) = (uq(k))*. Momentum conservation reads
Yol =0="Y"liil. (3.24)

Schoutens’s identity entails (12)(34)+(13)(42)+(14)(23)=0 and a similarly for |k]’s.
Positive and negative helicity polarisations can be expressed as

o=t )

a.:aa.:u?ﬂjé‘ and (fr-:a;r
uv
where goa = va¥4 is an arbitrary light-like momentum that encodes the gauge freedom.

Also for massive particles it proves convenient to express their momenta and polarisa-
tions in terms of null momenta and Weyl spinors. Setting posa==Faa+9ac=talla+Va0s One
has p?=2kgq=—m?’=uv u?.

Helicity of a massive particle is not Lorentz invariant. For later purposes it proves
convenient to explicitly identify the precise Lorentz transformations that map massive
helicity states into one another. Let us choose the basis {u,,v,} for Left-handed spinors
with uv=(uv)#0 and {us, 04} for Right-handed spinors with uv=[uv|#0. Dropping indices

for simplicity, the Lorentz group SL(2,C) x SL(2, C) act as

Lu=u=au+bv Lv=1v =cu+dv (3.26)
with a, b, c,d € C such that ad — bc = 1 and

Ru=1u =au+bv Rvo=1v =éu+do (3.27)

It is easy to check that any symplectic product is invariant i.e. (/5" )=(ij) and [¢'j']=]ij].
The Lorentz transformations that leave the time-like momentum p invariant form an SO(3)
subgroup with

i

a=ecosy, b=e"Psinvy, c=—e Wsiny, d=e""cosny (3.28)

The SO(3) transformations
(u+v) vV =-—(—u+0v) (3.29)

and 1 1
L, : u= ﬁ(u +iv) v = E(zu + ) (3.30)

with R/, =L Iy will prove particularly useful in the following.



For a massive vector boson, with p=uti+vv the three helicity states are®

Wo = Ul — V0 Wy =UuUV wW_ = Vi (3.31)

with wg-wo=4m?, wy-w+=0, w4 w4=0, wi-w¢:2m2. {wp, w4, w_} form a complete basis
for transverse polarisations in that

woRwy + Wy @w_ + w_@w, = 2m>n + 2pp (3.32)
The complex circular polarisations wy can be combined into real ones

Wy = U + VU Wy = U0 — Wi (3.33)

It is easy to check that L, maps w, into wy (up to a sign L,wy=—wgy) and vice versa
L,wo=+wy,, leaving w, unaltered L,w,=w,, while L, maps w, into wy (L,w,=wg) and
vice versa Lywo=—wy,, leaving w, unchanged L,w,;=w;.

For a massive tensor boson (s=2), the five helicity states can be taken to be

Hi| =wi®wy H_ _ =w_®u_ Hyp = wo®@wp — wi@uw_ — w_Quwy

Hyg = wi®uwo + wo@w H_o = w_Quwy + woR@w_ (3.34)
Note that wo®@wy + wi@w_ + w_@w, = 2m?n + 2p®p is a scalar polarisation. As for
the vector polarisations, the complex combinations H44 and Hig can be combined into
real ones Hy, — Hyy=H  +H__, Hyy=1H —iH__, Hyo=H o+H o, Ho=tH o—iH_g
(Hoo is real). The transformation L,+L, leaves H,+H__ invariant, while L,—L, maps
H,(+H__ into Hy. L, maps H{ —H__ into (H_o—H¢)/2 while L, maps H,,—H__
into —i(H0+H_¢)/2.

For spin s totally symmetric tensors (as in the first Regge trajectory) one has 2s+1
helicity states, starting from the ‘top’ component Sy ;=(uv)® = w? to the ‘bottom’
S__. —=(va)*=w?, passing through the middle components Spg. o=(ut—v0)°+...=w{ +

. Applying combinations of the above SO(3) transformations (on the helicity spinors)

one can map any amplitude, e.g. the one with the ‘top’ helicity component of a massive
state, into any other. This applies independently for each external insertion.

3.4.1 Amplitude Ag44¢ in D<10

Let us start with A(A;, Ag, A3, Cy). With a judicious choice of super-ghost pictures and
c-ghost insertions one has

(21,22,24)—

1 .
A (A§_1)7 AgO), AgO)’ Czi_l)) = lim(oo ) 0)/0 dZ3<ce_@a1we’k1X(z1)

c(a2i0X +kopasih)e™ ™ (20) (azid X +kzpagp)e™ ™ (z5)cCapippe™ X (24))  (3.35)

Following the steps detailed in appendix D.1, one finally gets

u
Asaac =B(1, 1){—a1'042f2 [a:s'kl—?as'kz} —a1-Cy:f3 [ ao- 3——a2 k?1}+ ay-f2-Cy: f3

—a1'f3'C41f2—21;a1'C4f?rf2}, (3.36)

SFor a different basis of massive polarisations in 4-pt amplitudes, see [23, 24].



where the contractions are performed in a self-explanatory fashion and

(20& k3p4) (1—1—20&’]{}21’63)
I(1+2a'ks (kg + pa))

Using 2k1 ko=—s=+2ksps—M?, 2koks=—t=-—+2kips—M? and 2ksk;=—u=+2kops—M? i.e.
s+t+u=M?=1/d’, one can check gauge invariance with respect to each of the three vec-

B(1,1)=B(2a/ksps, 1420  koks)= (3.37)

tor legs.
Expanding and shuffling all the terms in eq. (3.36), the amplitude A 44c can be
written in a manifestly symmetric form under the exchange of the three vector boson legs

ask;
Asaac =4da ’LLB(l 1) <C4[a1a2a3 +;C4 alagk k‘ ; —1—204 agalk]k kz+ (3.38)

k: a
Z C4 agagk + C4 [alkgkg]ﬁ + C4 [agkgkl] + C4 [agklkg] kll:),
1#£1 1~h2

where Clabc]=C,atb”c’.

k:k

3.4.2 Apsac in D=4 helicity basis

In D=4 C,,, is equivalent to a (pseudo) scalar Co=e v PprCluvp/6M. In the helicity basis
one has two independent color-ordered amplitudes A(172737Cp) and A(17273"Cj) and
their complex conjugates A(17273%Cy) and A(172+37C).” The former reads

A(172737Cp) = iB(1, 1)7[7;;’]%3 (3.39)
The latter reads 1310193
A(17273%Cy) = iB(1, 1)%. (3.40)

3.4.3 Amplitude Agyay in D<10

Let us now consider Aga47. With a judicious choice of super-ghost pictures and c-ghost
insertions one has

1
A(A§ ), AGY AP ft- ”): lim / dzs(c(aridX +kyparp)e® X (z7)
(#1,22,24)—(00,1,0) Jo
ce_@a2¢eik2x(22) (agiaX—{—kgi/)agi/))eik?’X(zg) c@X-H4~¢eip4X(z:4)>. (3.41)
Following the steps detailed in appendix D.2, one finally finds
1
Assan = —tB(l—o/s, 1—a't){ara3 stlasHki (1—a's)—as Hks(1—a't)]
s

+2a1Has s ki fsko—2azHas t ks f1ke+20[st(azks a1ks ks Has—aiks agky ki Hao)

+arky askau (ki Hag s—ksHag t)]—2a1 ko asky as Hks(1—a't)t+2asks a1ks agHky (1—a's)s
+as fsHay us—as fi Haz ut—2c (azky as fi Hk1—a1ks ao fsHks)st

+2d’ arke(ag fsHky s—as f1 Hkg t)u—20’asks(as fi Hks t—as fi Hky s)u

+2a1ks as fsHk1(1—a's)s—2asky as fi Hks(1—a't)t—2a" st(as f1 fsHk1—aso f3 f1 Hks)

—2as f1 fsHks(1—a't)t+2as f3 frHki(1—a’s)s}. (3.42)

"Once again, details of the computations are relegated in appendix D.3.
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After laborious manipulations, this amplitude can be written in the compact symmet-
ric form

4
Aiann = B(=a’s, 1=a't){ [20' fyH fu ko fokr+ (1420 kiks) faH f1 o] Kk

+ [2¢/ fLH fo ki fsko+(1420 k1 k) f1 H fof3] k1ks

+ [20 fo H f3 ko frks+ (1420 kaks) fo H f3 f1] kgkg}. (3.43)

3.4.4 Apsag in D=4 helicity basis

Let us first consider the amplitudes involving the scalar component of H and start with
A(11273THy)=A(172737 Hp)*. The amplitude can be written in the very compact form

mH[13]

A(1273THy) = B(1, 1)W.

(3.44)
which is identical up to a phase to A(112737C)), for normalised states.

Consider a different choice for the helicity of the vectors in the amplitude with Hy:
A(17273THyg)=A(172737 Hy)*. The final result reads

[13](12)3

A(172737Hy) = B(1, 1)m.
H

(3.45)
which is identical up to a phase to A(17273%Cp).

Consider now the the amplitude for the spin-2 tensor Hy and three vector bosons
A(1-2+3YHI=A(1+t2737 H,;")*. Setting p=ks+ks, the simplest amplitude to compute
is the one for the state with polarisation H™t=(4|(4|5]|5] that reads

(14)"[13]

A(172T3THT) = B(1, 1)mH<12><23><45>2.

(3.46)

The other amplitudes obtain in a straightforward way, after repeatedly applying L, and
L, as outlined above. The final result can be compactly written as

> cnA(IT2T3THY) =
h
B(1.1) [13](14)2(15)2 { (14)2

. (15) (15)2
me(12)(23)(45)2 | (15)2

(14)
—4cyo— + 6cgp — 4o —+ — . (347
C+0<15> + bcoo — 4co (14) tc (142 (3.47)
In the chosen orthogonal basis |Hy . |*=|H__[*=4(ksks)?=m$=(1/a)?, |Hso|?*=|Ho—|* =
16(kaks)?=4mt=(2/ca/)?* and |Hoo|*=24(ksks)?=6m71,=(v/6/a’)?, so much so that ¢4y =
m%{cii, éiO:Qm%ciO and éoozx/érn%]coo for properly normalized polarization tensors.

3.5 Higher-point open superstring amplitudes from SYM

In [35, 36] Mafra, Schlotterer and Stieberger (MSS) have obtained a beautiful formula that
allows one to express open superstring amplitudes for massless external states on the disk
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to SYM amplitudes at tree level. The formula is reminiscent of the KLT (Kawai, Lewellen,
Tye) relations [41] and reads

AT(L2,. )= Y F(12:35...n— 2,n—1,n) A M (112,35 ... n—2,]n—1,n) (3.48)

gESH_3

with z1 =0,2,_1 =1, 2, = o0 so that

F(1[23...n—=2n—1,n) =
Zn_1=1 [n/2] k— L n—1 5
ns/ dZZ/ dzs .. / deaee [ 125 [T 028 H Z A, (3.49)
=3 i<j k=2 I= 1 [n/2]+11= k+1
where sij:2o/ kiki=—ao' spjhys. The formula (3.49) follows from a tree-level CFT compu-

tation using the pure spinor formalism [35] and its soft limits and other properties were
checked in [36]. A pure RNS derivation of eq. (3.49) has been given in [42], the proof is
based on a revisited S-matrix approach [43] .We will here check that it is consistent with
factorization on massive string states in two-particle channels i.e.

S12~>70/MIQ_I

lim  (s12+ o/ M) An(ViVaVs.. Vi) = > As(ViVaH) Ap 1 (HV3V, ... Vy), (3.50)
H

where A3(VV H) is physical (decay rate, width) and can be computed for arbitrary states
following the strategy outlined in appendix C. This is nothing but Res[A, (ViV2Vs...V,)]
for 512:—0/M12{.

For simplicity will only consider mass-less 5-point amplitudes producing 4-point am-
plitudes with 3-massless and 1-massive state in D=4 and briefly mention how to generalize
the procedure to an arbitrary number of mass-less and massive external states. In partic-
ular we give the relevant formula for mass-less 6-point amplitudes and sketch, at least in
the MHV case, how to get the 4-massless and 1-massive at 5-points or the 2-massless and
2-massive at 4-points.

3.6 5-points in D=4 helicity basis

The 5-point color-ordered amplitude for open superstring massless gluons reads [35, 36]
A5(12345) = F(12345) A M (12345) + F(13245)AF M (13245), (3.51)
where F' are multiple hyper-geometric functions
1
F(1[23]45) = 512534/ dm/ dyx®1271yS18 (y — )52 (1 — 2)524(1 — y)34 71 (3.52)
0 T

with s;;=20a/k;k; and F(13245) is obtained by exchanging 2 and 3,8 i.e.

F(1[32]45) = 513324/ dx/ dyx®12yS3 7 (y — )53 (1 — )7 1(1 — y)®. (3.53)
0 T

8Notice that the notation for F(12345) in eq. (3.52) might be confusing in that F(13245) as a function
of the momenta ki, k2, k3, k4, ks is not simply obtained from F'(12345) by exchanging k2 and ks.
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Since in D=4 any 5-pt amplitude is either MHV or antiMHV with AMHV (1+21374757) =
AMHV (1727374F5%)* let us consider the MHV case for definiteness

o _ (12)% (12)1
As(172731475%) = <23><34><45><51>F(12345)+ <13><32><24><45><51>F(13245) (3.54)
that can be written as
3
As(1727374T51) = 1) <2<31>2<>45> 51 giiF(12345)—gz§F(13245) : (3.55)

MSS have checked the correct factorization on the massless poles [35, 36]. Here we will
check consistency in the massive two-particle channel. To this end one has to take the
residue at the pole sj2 — —1 respectively of F(12345) and F'(13245). Starting from the
expression

1 Yy
F(12345) = 312334/ dy/ do x5127 (1 — )24 (y — 2)523(1 — y) 534~ 1y1s (3.56)
0 0

and making use of

izl = S d—zx‘”?“ (3.57)
812(812 + 1) d1'2

in eq. (3.56) and integrating by parts, one finds

.%'312+1 d2

1 y
F(12345) = dy (1 — y)®32~1 513/ dop —— —
(12345) = s [y 1=y y [Caw T

[(1—2)(y —2)**].  (3.58)
Now it is easy to take the residue and find
Res F(12345) = lim (s12 + 1)F(12345)
812271 812%71

= S345243(513 + S23 + 1, $34) + S345238(513 + 523, 534). (3.59)

Performing the same steps for

1 y
F(13245) = 513524/ dy/ drz°12(1 — z)*2 7y — )52 (1 — y)*3ty®13 71, (3.60)
0 0
yields
Res 1F(13245) = lim 1(812 + 1)F(13245) = 5138246(813 + S93, 834 + 1). (361)
S12=— S12—>—

Finally the residue of the color-ordered string amplitude is

s12=—1 535 535
(3.62)

Res AZT(12345) = s34B(s3y, 834){A§M(12345> [323 - msﬂ N A?M(13245)813324},

where s3,=s13+523=—534—S35=0't+a/u=1—0a's, since p=k+ky and 2k1k2:p2:—M[2{/C.
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Using a mixed notation with both physical Mandelstam variables (s,t,u) and s;; variables
we obtain the following expression

Res A27T(12345)
s120=—1

= B(1—d’s, 1—a/t) { A} M (12345)[s03535+(s34+535) 524] —s13524.A% M (13245) }.  (3.63)

One can check the factorization case by case, fixing the helicity of the external gluons.
Before embarking in the computations, notice that only SO(6) singlet bosons can appear
in the two-gluon channel. Following the dimensional reduction we previously revisited in
some detail, one only has HW,CW,):C'OsAu,,pp’\/mC and 5inZ-j:—77“"HW:—3H0, after
decomposing H,,,=H/,+Ho(nu+a'pupy). Let us start with A(172737475%). In this case
we expect that only C' and 3H0:17WH( ) n’“’H(lo) 5inZ.(j10), with H;(fll/)znuu—l-a’pup,,
the four-dimensional part of H, contribute. With this choice, eq. (3.62) becomes
Res AST(I 273T475T)

s12=—1

_ (12)" [(23)[23)(35)[35] + ((34)[34] + (35)[35])(24)[24]
=50V e (12)(34) — [13][24]} (3.64)
= ngizlg(l, 1)Tm:.¢43(12H0)A4(H03+4+5+)+A3(12CO>A4(CO3+4+5+)7

where B(1,1)=B(1+2a'k1ks, 1+2a’k1k3). The result coincides with the one we previously
derived using standard world-sheet techniques.

Consider now the amplitude A(172737475%). As shown in table 1 in appendix D.4, if
we take kiqa=UqUs and k:%ﬁ-,:vg%-, with ki, ko such that 2k; 'k2:p2:—1/0/, we find that
only the spin-2 polarization Vaplally contributes at the massive pole. With this choice,

we have
Res AST(172+374%5%)
_Ba 1)<13> {(23)[23](35)[35] + ((34)[34] + (35)[35])(24)[24] + [13][24](12)(34)}
’ (12)(23)(34)(45)(51)
= muB(1,1)— <<11;’>> :ZAg 172 HM) AL (H "3 4757). (3.65)
h

where only H*+=[1)[1)|2]|2] contributes since Az(1~2T HT+)=mpy=—2va’k ko, while for
the remaining helicity states Az(1727 H"#*+)=0. The result coincides with the one we
previously derived using standard world-sheet techniques.

The last case is the amplitude A(172737475%) in which, as for the first case, only Hy
and Cy get exchanged in the s19 channel.

Res AST(1727374757)

S120=—1
3
= B(1,1) 1) <2<;>4<>45> 1) ((23)[23](35)[35] + ((34)[34]+(35)[35])(24)[24]+][13][24](12)(34))
= EB(LI)M As(1T2YH/C)A4(H/C, 347 5T). (3.66)
mH/C mH/C(45)

The result coincides with the one previously derived using standard world-sheet techniques.
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3.7 6-points and higher point amplitudes

Open-string amplitudes with more than one massive insertion look somewhat cumbersome
and not very illuminating in D=10. In D=4, in the spinor helicity basis, formulae look
more compact. A possible strategy for systematic computations is to derive amplitudes
for massive states by multiple factorization of amplitudes for massless states on massive
poles in two-particle channels. For open superstrings in turn one can rely on the MSS
formula [35, 36], relating string amplitudes to SYM amplitudes, whose validity we have
given further support earlier on.

For instance at 6-points, there are six terms in the MSS formula, corresponding to the
permutations of [234] i.e.

AST(123456) = F(1[234]56).A% M (1]234]56) + F(1[342]56).A% M (1[342]56)
+ F(1[423]56).A8 M (1[423]56) 4 F(1[324]56).A% M (1[324]56)
+ F(1[432]56).A8 M (1[432]56) + F(1[243]56).A8 M (1[243]56)  (3.67)

Differently from the 4- and 5-point cases where only MHV (or anti-MHV) amplitudes are
non-zero, at 6-point one has a NMHV amplitude Aév MHV(— — — + ++) that even in
SYM has a lengthy expression if compared to Parke-Taylor formula [38]. Focussing on
MHV amplitudes AYHY (= — + + ++4)=(12)3/(23)(34) ... (61) one can still compute 5-
point amplitudes with one massive insertion with almost no effort and 4-point amplitudes
with two massive insertions with little more effort.

For an arbitrary number of external massless legs n a priori one has N¥MHV am-
plitudes with & = 0,...[n/2]—2. These, and susy related ones, are needed to compute
amplitudes for generic massive states by factorization. Summarizing one can start with

SY M,k . ST,k
Ao s then derive Al 5

two-particle massive poles. Notice that the initial helicity configuration should be chosen

and finally obtain Ag%k by factorization on the assigned

compatibly with the choice of massive states, i.e. at the first level H°/C° couple to gluons
with the same helicity while Hy couples to gluons with opposite helicity. Reverting the
argument, the allowed helicity configurations in SYM constrain the allowed amplitudes in
superstring theory.

4 Soft limit

4.1 General arguments

In [14] the soft limits of massless string amplitudes was studied both explicitly (up to 6-
point amplitudes) and abstractly by making use of OPE analysis. The conclusion was that
disk amplitudes of gluons behave exactly as in Yang-Mills theory at tree level both for the
open superstring and for the open bosonic string. Indeed one expects universal behaviour
at leading (6~ !) and sub-leading (4°) order, in formulae

An(1,2,...,s,...

as-kst1 _ as-ks_1 + fs:Js+1 _ fs:Js—l
ks'ks+1 ksk ka'kerl 2ks'ksfl

n) =

HAM(Lz,...g...,n) +O)  (41)

s—1
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where J; denotes the angular momentum operator acting on particle i and f{" = kfa? —
kYak, as by now usual.

We would like to extend the analysis of [14] based on the OPE to open string amplitudes
with massive states.

The leading and subleading soft behaviours are captured by the OPE of the soft gluon
integrated vertex with the adjacent (integrated) vertices. Using

Zs+1 / _ F(zsa1, 2
/ d25(23+1 _ 25)204 ksks+l IF(ZS,Z/L') ~ W (42)
and similarly for zs_1 one gets
askst1
VA(as, ks)VA(asilv ksil) ~ iivA(asila ks + ksil) + ... (43)
kaksil
where ... includes massive string states which do not contribute to the leading singular-

ity since

1
Valas, ks)Valastr, kst1) = ...+ Z Vi (Hlas, ast1, ks, k1], ks +Eksx1) +. ..

4120 2ksks1q —l—M%I
(4.4)
where V), denotes the vertex operator of a massive state, with momentum p = kg + kg1
and polarisation H that can be expressed in terms of ag, as+1, ks, ks+1-
Expanding the denominator as

1 1 2ksk
R (1 (4.5)
2kskst1 + Mz Mg M

one immediately sees that at most the sub-leading (regular 6° behaviour) might be affected.
However the tri-linear coupling A—A—H contains at least one soft momentum k; and this
produces a further suppression by 67'. This holds true also for the tachyon since the
T—A— A coupling involves two momenta Ap_ 44 = T'(ki1keaias — kiaskeay), similarly for
H,, since Ag_s_a = Hu”fylf’fg" + ..., while for C,,, at the first massive level of the
superstring one has Ac_4_4 = C”,,pa’fag(kl — ko)P.

Let us now consider the case where the soft gluon is attached to a massive (or tachy-
onic) leg

1
Valas, ks) Vi (Hst1, ps+1) = mVM’(H,[a&Hsilaksapsil]a ks + pst1) +...  (4.6)
SIS

where M’ denotes any state at the same mass level as the state M. For the bosonic string
at the tachyonic and first massive level only one kind of particles appears so much so that
(for totally symmetric tensors of the first Regge trajectory at level N = /¢ — 1)

Aam,m, =

ar1posHE "M Hs yyy oy + a1y HY' MDYy H iy g + D31, HYM M0l Hy iy + O(a/p?)]
(4.7)
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The first term is the string analogue of minimal coupling that is leading in the soft limit
k1 — 0. Gauge invariance fixes the sub-leading term to be as expected. Indeed, for
color-ordered amplitudes with n + 1 gluons and no massive states one finds [14, 22]

An+1(1,$,n+1):
+1

;+1:as+1as'k5:tl_asks'asil+ksas'asil

N a
mAn(l,...S, ""n+1)’kg+1:ks+1+ks (48)
expanding in kg yields
i{ s kst1 _ ks as+1 .. 0 s ks+1 ) 0 As Ust1 ) 0 }
2kskorr  2kgker1  Oast1  2kgkerr  Oksx1r  2kgksr1 Ot
An(1,...8...,n+ 1)+ ... (4.9)
gauge invariance dictates the presence of the additional sub-leading term
ks-k 0
sl An(1,.. 5. n+1) (4.10)

* st'ks:tl e 8ksj:1

that completes at sub-leading order the action of fs:Jsr; on A, (1,...5...,n+ 1).

Including m massive states, if the soft gluon is adjacent to two hard gluons the above
analysis continues to apply. When at least one of the adjacent legs is massive, let’s say the
one in position s + 1, with spin £ one has

:l:l H’+1:H5+1a5~ps+1+...

=—A 1,...5....,n+m+1)] )°
A )

Potp1=Pst1+ks T

(4.11)
where ... denotes the additional terms in the tri-linear V-H-H coupling. Barring a couple
of subtleties, we will deal with later on, expanding in ks one gets (schematically)

4 { As Ps+1 - sl - 0 + Qs Ps+1 .- 0 + gas s+1 ke 0 }
2kspsy1 2kspsy1 - OHyiy o 2kspst1  Opsy1 2kepsin T OHpy

Anm(1,..08. .. ,n+m+1)+ ... (4.12)

gauge invariance w.r.t. the soft gluon dictates the presence of the additional sub-

leading term
kspsi1 0

a/ .
ka'ps-l—l ° 8ps-‘,-l
that completes the action of fs:Js41 on Ay pm(l,...5...,n+m+ 1) at sub-leading order.

Apm(l,...8...,n+m+1) (4.13)

Now let us deal with two subtleties: the higher derivative terms in the tri-linear cou-
pling A-H-H and the possible non-diagonal couplings A- H-H’ that would spoil universality.
The former is easy to dispose of, higher derivative corrections to minimal coupling can only
affect the sub-leading term that is fixed by gauge invariance w.r.t. the soft gluon starting
from the low-derivative terms coded in the OPE. The latter requires more attention. For
open superstrings, as we have seen, already at the first massive level one finds two kinds of
particles in the Neveu-Schwarz sector: Cy,, (3-index anti-symmetric tensor, 84 d.o.f.) and
H,, (2-index symmetric traceless tensor, 44 d.o.f.). In addition to the ‘diagonal’ couplings
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V-C-C and V-H-H (and SUSY related) one should consider the mixed coupling V-H-C
~ o Mps1-Hy-Cs:[aip12] that exposes the singular soft factor 1/kp since Mo = My but
gets suppressed by an extra power of the soft momentum in the numerator. Lacking the
leading 6! term that fixes also the sub-leading ¢° term, thanks to gauge invariance, this
kind of higher derivative non-diagonal couplings can at most affect the sub-sub-leading
§t1 (and higher) terms which are not expected to be universal. Although the situation
gets exponentially more intricate the higher the mass level and spin, we conclude that no
correction are to be expected w.r.t. the standard YM case in the soft behaviour for open
string amplitudes involving massive states.

For illustrative purposes, we will explicitly check the above statements in the soft limit
of some 4-point amplitudes with massive string states at the first level. Differently to the
case of amplitudes with only mass-less external states that factorise on 3-point amplitudes,
that would vanish for real momenta due to collinearity, when some of the external states
are massive, the soft limit can produce physical 3-point amplitudes e.g. widths or decay
rates of massive states into lower mass ones.

4.2 Soft limit of .A(Al, Tz, T3, T4)

In this case the limit k; — 0 is straightforward. Consider first the expansion of the factor

D(1+2a'kip2)T'(1 4 20'k1ps) (1 + 20/ kipayp(1)) (1 + 20 kipatp(1)) 2
I'(1 —2a/k1ps) N 1 — 20/k1p3ip(1) =1+0(6%). (414

The expansion of the full amplitude reads

aip2  a1p4
kipz  kipa

A(A1,T5,T5,Ty) < > AT, T3, Ty) + O(0), (4.15)

showing the expected singular behavior in both the s and the ¢ channels, whereas the term
of order O(8°) vanishes because

1
§f{‘”JZ-,Wat(TQ, T5,Ty) =0, i=2,4. (4.16)
being the 3-tachyon amplitude a constant independent from the momenta.

4.3 Soft limit of .A(Al, AQ, T3, T4)

Consider the amplitude in eq. (B.4) once we have expressed the Euler beta function in

terms of Euler gamma functions

F(l s 2a’k1p4)f‘(1 - 2a/k1k2) ! <k1p3 (*amz + 2a'(a1p3 asp3 + aip4 a2P4)

F(l — 20/]{51]93) 1— 2(1//{1]{,‘2 k?lk‘Q
1+ 20/]{31])4 1+ 20/]{21]?3
— - = . ) 4.17
a1Ps azpa—— a1ps aaps = ks (4.17)

As already verified, the combination of FEuler gamma functions in the above expression
contributes in the limit § — 0 as 1 + O(6?), thus can be neglected. We have two terms of
order 6~ 1:

_aips agpy  aips azp3 kips

4.18
k1ko k1k1 kipa (4.18)
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Using the identity

kaps 1 1 (4.19)
k1ko k1pa kiky  kips’
eq. (4.18) can be written as
A1P4 2P3 — A1P3 2P (1P4 2Py _ 1. A 1 b_anp 1
fe1 ko k1pa D D D [
| P+ —p— py) 1
+<a12 a2 + m—y T a2 >k1p4
k 1 _ agk 1 k
:<_a1 2 a1p4>a2p34 laip— azk1 laipg az 1, (4.20)
kika  kipa 2 2 Kk 2 kips
where
P+ =Dp3+Ps DP-=pP3— P (4.21)
The leading soft contribution is, as expected,
(— ks W‘)A(AQ, T3,Ty). (4.22)
k1ko  kipa

The order O(3°) contribution to the amplitude reads

kips | Laip—agkr  1aips ask 5 ,(klp?,

ALY ity y s R e i Fo (a1p3 agps 4 a1ps azps + a1ps azps3)
+ a1ps azps (Zizz + ZZ + 1> — a1p3 azpa (Z‘iﬁ + 1>) (4.23)
o LI 1 w2

In the above expression we recognize the expected behavior

1 v D34 P34 1
— L T3,Ty) = k1— —a1— agky | —— 4.2
2kyﬂ,@nflu Jy A(Va, T3, Ty) (alaz 1Yy~ a2 1) ks’ (4.26)
1 , 1 1
Tlmfmm]f A(Az, T3, Ty) =<2a1a2 k1ps — a1ps a2k1> e (4.27)

4.4 Soft limit of A(Tl, TQ, Ag, H4)

Consider the amplitude in eq. (B.6). Let us first discuss the soft limit of the kinematical

factor
(=14 2a'k3ps)T'(1 + 2a'p3k3)  T(1+ 2a’kaps)T'(1 4 2a'p3ks) k3p1
['(—2a'p1k3) (1 — 2a/p1ks) k3pa(1 — 2a'k3py)
k 1
= (1+ O(s2)) 2L (4.28)

ksps 1 —2a'kspy”
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It is then convenient to multiply the tensorial part of the amplitude for the above expansion
in order to identify more easily the contributions up to O(&9):

asps aspa p12 ,, P12 0 0y 3P4 P12
Hpy = SPE PR L 0(0),  0(0") = PPk T2 4.29
k3p4 [ k3ps 2 (9°) (0) = ksps (429)
aspa aspa p12 p12 0 0 asp2 plz
———poHpy = —-—"—"H—4+0("), O©")=——"k3H—; 4.30
k3p2p2 P2 ksps 2 2 (9°) (9°) k3p2 2 (4.:30)
p1ks3 agpo agpo
2a, HEk = -2 Hks — 2——=psHks; 4.31
3P2 P2 3 poks kapa poks b2 kapa P2 3 ( )
k k ksp
—2a3 Hpo P32 o Hopy + 25202 4 Hpy. (4.32)
k3pa p2ks k3p4

The leading order O(§~1) behaves as expected

51 asps  azp2\ P12 ., P12
T, 1o, Aq, Hy) = 2= — 22| —=H—= 4.33
A% (T, T, As, Hy) <k3p4 k3p2> 5 5 (4.33)

being A(T1, Tz, Hy) = P2 HP2. Look at the subleading contribution:

1
— < — asps k‘3H@ — 2a3p2 p3Hk3 + a3Hps kspz)
k3p2 2
1 P12
Tamn <a3p4 kgHT — 2a3ps psHks + azHpa(2ksps + k3p4)> (4.34)
1 1
_ <a3p2 kgH— ~ kapo anglz) _ < P12 kgH@ - 2k3p12 3HP12)
kspa k3pa 579

It is easy to verify that the above expressions coincide with:

% f3WJ A(T1, Ty, Hy), i=2,4. (4.35)
We recall that the angular momentum for a spin-2 particle takes the form
0 0 0 0
Juw = 2H \w—— — 2H, \—. 4.36
w = Pua apY pua m + 72 8HK AaH/;\L ( )

4.5 Soft limit of .A(Al, AQ, A3, 04)

The amplitude is given in Eq. (3.36). Let us study the soft behaviour when k3 — 0. Recall
that s+t +u=1/d
The Veneziano factor B(1,1) yields

M1—as)I'(1—a't) T(2dkspa)T(1 4 2/ ksks) 1 9
B(1,1) = = R 1+0(6
( ’ ) F(l —|—o/u) F(l —QO/kgkl) 2a’k3p4 . [ * ( )]
(4.37)
To leading order the polarisation dependent factor yields
ks-k
P = —a1-04:f2 ag-kl - 3 1a3 kQ (4.38)
)

combining the two one gets, as expected

- as as-k as- as-k
A5 (Ay, Ay, A3, Cy) = ( kz;’j - kz‘kz)al.C@fg: ( k;fj . kiki) As(Ay, As, Cy) (4.39)
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To sub-leading order 6°, one gets

AiO(A1,A2,A3,C4) = <2a1'C4'f3.f2 mLiAL B 2a1.04‘f3'f2>

k3pa kg-ko
f3:J4 fgiJQ
= — A, Ay, C 4.40

( kspa  ksz-ko As(A1, Az, Ca) (4.40)

as expected, where
kEho  KbO 0 0 0 0 0 0

Joh, = 22— 22 IS _g* Jgt, = ph " 3OHAP _30
T T ok ok oy aay T Papy Mapy T aop T pop

Actually 0/0py4 acts trivially in this case].
With little more effort one would get the same result for k&1 — 0, while for ko — 0 the
only contributions come from ‘standard’ soft behaviour of gluons hitting adjacent gluons.
This gives support to our general conclusion that superstring amplitudes with n mass-
less and m massive external legs on the boundary of the disk behave universally in the
soft limit.

4.6 Soft limit of A(Al, AQ, A3, H4)

The amplitude is given in Eq. (3.43). Let us study the soft behaviour when k3 — 0. Recall
that s + ¢t +u = 1/a’ as for A(Ay, Ag, A3, Cy). Following the same steps one finds to
leading order

51 k3]{71 a3]€2 a3k1 1 2
Ay, Ay, Ag, Hy) = — — H kia1Hky — Hky| =
Al (A1, Az, A3, Hy) Fapa <k3k2 eaky 5MuHas + azky ar Hks ay foHks
aska  asps aska  asps
— — H o) = - A1, Ay H 4.41
(20 50 ) furr g+ 000 = (242 = 1224 ) Aa(r, A ) (1.41)
where use of m?%, = —p3 = —2k1ks + O(J) has been made.
At subleading order one finds several terms i.e.
m? m?
ok [a2a3 (k3p4 a1Hky — alHk32H) + alHa3a2k3TH + a1 Hks asks asky (4.42)
3R2

— a1 Hk3z asky asks — ai fofsHko + a1 f3 foka — k3ps a1 Hag azks + azps asHao kaks

+ asas CL1H/<Z2 kgk‘g + agkl alHag k2k3:|

2 2

1
+ U[GQG:’; a1Hk3%+a1Ha3 a2k3%+a1ﬂa3 aoky k3ko—ay foHas k3k1—a1 fsHao
3P4

— a1 Hks asky azks — a1 foHks asky — a1 faHko acky — ay fo faHka — azps ay foHE3)

Summing the terms within squared parenthesis everything can be written in terms of
f1, fa, f3 (as dictated by gauge invariance at this order) finding

AT (A1, As, A, Hy) = <f R~ lefoQ)

ksko k3p4
f3Ja f3J4>
_ (B2 SN A A H 4.43
<k3k2 k3pa4 3(A1, 4z, Hy) (443)
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with Jo*, given above and

0 0
= +2HM — o[
4 v =Dy 3])4 apz 4 aHZ)‘ 4 8Hf/\

As above 0/0p4 acts trivially in this case. This gives further support to our general
arguments on the soft limit.

5 Holomorphic soft limit

In this section we verify that open string amplitudes with massive external states enjoy
the same universal behaviour as YM amplitudes in the holomorphic soft limit [12]. In this
limit the holomorphic spinor us of a positive helicity gluon (inserted between leg 1 and
leg n) is scaled to zero u = §ils. In SYM the leading behaviour as 62 is governed by the

operator
0o _ (nl)
Sym = (ns)(sl)

the sub-leading behaviour as 6! is governd by the operator

1 (nl) <3n>ﬂa 0 <31>ﬂa 0
M= Tasy(s) {<1n> *oug " (nl) Saaz}

For MHV amplitude the sub-leading term vanishes and the procedure exponentiates [12].
In general it is convenient to use momentum conservation to express two u’s in terms of
the remaining ones and the w’s. In our case, an obvious choice is to express uy4 and us
that appear in the definition of the massive momentum p = k4 + ks = uqtig + ustis. When
taking derivatives one has to take into account the mass constraint m? = —(ky + k5)? as

we will see momentarily.

5.1 A(A*, A+ AT, C)

Consider the amplitude

13]m¢

17,27, 3" :Bl—’l—’[i 1

A( ) 73 700) ( s, @ t) (12> <23> (5 )

and take the limit for us — dus, with 6 — 0. It is straightforward to show that
B(l1—ad/s,1—d't) = (1+0(52)). (5.2)

o/ (13)[13]

The momentum of the massive particle is the sum of two massless momenta p = k4 + ks
with the constraint (45)[54] = m2,. This constraint implies

mé, = (45)[54] = (13)[13] + 5((12)[12] + (23)[23]), (5.3)
B B 1_/12)[12] = (23)[23]
me = me(6 = 0) <1 + 50 <<13>[13] + <13>[13]>) + O(6%). (5.4)
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Expanding the amplitude, one finds

1 mC [13]me
&2 (31)[13] (12)(23)
)

At 2% 3% Cp) =

= — (14 6((12)[12] + (23)[23 [13] g; <1 o <12>[12] + <23>[23])> + 0(8?)
1 [13]me 3.(( >[ <23 23
“sia 0+ (o <13>[13]>) 29
The leading contribution to the holomorphic soft limit is easily identified to be
_ B (31) 131 [132  [13lmc
ATHAT, 20,37, G) = 57<32><21>A(1+’3+’C°) T 52 (32)(21) me | 62(12)(23)°
(5.6)

that meets our expectations.
The sub-leading contribution is expected to be

ACD(1+ 2% 3% Cy) = (1”3;?;2” (gg;uza?_“ 4 giiuza;) A(F,35,C). (5.7)

In the presence of the mass constraint, the derivatives w.r.t. 41 3 are replaced by

0 d & ome 0

0uy 3 ” diing  Ourg Otz Ome’ (5:8)
with ome (13) . Ome  (13)
0y B 2me 3] Ous - " 2me 1] (5:9)
Writing the three-point function A(17,3%,Cp) in a slightly different way
[ijf = &f +0(6), (5.10)

we need to evaluate only the derivative of the tri-linear coupling respect to m¢. Finally
we find

(13)[23] _ (13)[2 9

AQ*,2°,8%,Co) ™) = % <2<21>mc T 2(32)m > ) ach(1+’3+’C°)
13 [3lme ((23)23) . (12)12)
= 52 (12)(23 ><<13>[ 3" >[131> (5:11)

that exposes the expected behaviour, too.
In order to complete our analysis, we consider the case in which the soft momentum
is k3. Let’s first expand the amplitude in eq. (5.1) up to the order 6!

A(1+,2+,3+,Co):1 [13]m3 ( 3 (13)[13] + (23)[23]

22k (1223 \' 20 (1902 )*O(éo)‘ (512

At leading order, the soft operator is simply

a}k‘g B a?{p4
2ksky  ksps’

(5.13)
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which in the spinor helicity formalism becomes

(¢2)  (g4)[43] + (¢5)[53] _ (12)[13] (5.14)
(32)(3q) 2k3pa(3q) (23) 2k3ps’ .

with the help of Schouten’s identity. The expected leading order behavior looks like

_ 1 (12)[13] 1 [13]m]
(=2)(1+ o+ g+ — ALY + ot — =g
A2 (1t 2737 () 5 <23>2k3p4,4(1 .21, Co) 52 (12)(23) 2kapy (5.15)

where we exploited the fact that

A(1F,2%,Cy) = 2, (5.16)
mo

At sub-leading order we expect the soft operator to be

fe f 1 d 1 _d _d
- - = 4|tz — — . 1
2koks 2kspy - (23> s dus 2kspy [3 ]U3dfb4 + [35]U3d’17,5 (5 7)
Noticing that
9 N dmg 0\ [12]* _ 3[12)u
us dug Omy mo 2 mo
9 Omg 0\ 127 (45)[12]%as
0y Oty Omyg mo N 2m8
a N Omg 0 \ [12]* (45127
8115 8@5 8m0 mo - Qm% ’
we find 3 12113
(=1t 9t 3t _ 2 1
A ( ) 73 )CO) 25 <23>m07 (5 8)

which is compatible with eq. (5.15) after noticing that the sub-leading term in the expansion
can be written as

3 [13)23)[12] , 3 [13][23][12 ( 1 1 )Z 3 [12][13] (5.19)

20 2kspy 20 mo _2k3p4+<23)[23] 26 (23Ymg

5.2 A(A= AT, A.0)
Consider now the amplitude

T(1+ 20 k1ko)T(1 + 2a'koks)  (13)3

— ot o— _
./4(1 ;27,3 aCO)_ 1"(1—20/162104) <12><23>m0

(5.20)

Taking the limit in which uo — 0, we have

A(17,27.37,C)) = 1 (13)° 0) <1 —

5 ((12)[12]  (23)[23]
52 (12)(23)mc (6 = ( * )) (5:21)

2 \ (13)[13] " (13)[13]
For the leading term one finds

2
A2 (17 27 37,C)) = 512<1§:23> <717§)c>* 7

(5.22)
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for the sub-leading term

A 2 = L (98 gy 109 197

_5<12><23> me  \ (13)2mc (31)2m¢ m%' (5.23)

that behaves as expected in the holomorphic soft limit.
In this case we will not consider the limit in which k3 — 0 since the three-point
amplitude A(17,2%,Cp) = 0 vanishes.

5.3 A(A-, AT AT Ht)

Consider finally the amplitude

4
A1, 20,37 HT) = B(1 — s, 1 — a’t)mH<<11;>><2[?1)§245>2. (5.24)
Expanding for ug — 0, one finds
N 1 (14)4 1 (14)4[45)?
A(L7,27, 87, ) = 52 (12)(23) <31><45>2mH(5) T 02 (12)(23)(31)ym3, () (5:25)
Using
(14)[45] = (13)[35] + 6(12)[25], (5.26)
we have

A(™,27,37, 7)) =

52 (12)(23)mu (0)? <1+25<13>[35] 2

1 (14)%[35]*(31) (12)[25] §5 (12)[12] N (23)[23]
13)[13 13)[13] ) )
<< )[13]  (13)] ]22

At this stage the soft limit appears straightforward. The leading term reads
(31)  (14)*(35)?

A (1~ 2t 3t g = (5.28)
(1223 mf
Using the expressions for the two derivatives
d 3
—A3(17,37, HtH) = ———(14)*[35]*(13)us (5.29)
duq 2my;
d - o+ g+t 2 213514 3 213512 i
——A3(17,37, H"") = —-(14)[35)us + ——=(14)7[35]*(13)1uy (5.30)
dusg My 2myy;

into the soft sub-leading term

2 2
ACD (1 2t 3 B = <1§’23> <<23> 4 2, d ><147>n:§ d (5.31)

@) 2 e P,

we reproduce exactly eq. (5.27).
Let’s consider the limit in which k3 — 0. Expanding the amplitude in eq. (5.24) up to
the order 6! we find

B 1 (14)2(12)[13][25)2 3 (13)[13] + (23)[23] (13)[35]
A(17,2%,35, H) = 02 2k3py (23)m3 (1 B 56 (12)[12] + 25<12>[25]> ’
(5.32)
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Using the leading order soft operator we derived in section 5.1, we find that

A2 (1= 2t 3T g = ;mA(l—,2+,H++) = 512“?;3;}422%?]5;2, (5.33)

using
2[9K]2
A, 27 HTH) = %. (5.34)
Mg
The sub-leading soft behavior of the amplitude is determined by
[32] . d (14)%[25]* 3 (14)*[13][25]?
2koks 3d’L_LQ m% 20 (23>m8 ’
1 _d _d )\ (14)%[25])7 _(14)%[23][35]
34|us— + [35]us— =2 . 5.35
2kspy <[ ]U3da4 +[ }ugdﬂ5) m% 2k:3p4m8 ( )

Following the same algebraic manipulations as in section 5.1 it can be shown that these
two terms reproduce the sub-leading soft term of the expansion in eq. (5.24).

6 Conclusions

We have computed several open bosonic and super- string scattering amplitudes on the
disk with massive and tachyonic external states in critical dimension as well as in D = 4
(for the superstring, using the spinor helicity basis).

We have then checked their universal behaviour when massless gluons go soft, despite
the presence of higher derivative couplings, and offered a general argument to this effect
based on world-sheet OPE. We have also checked consistency of the factorisation on the first
massive pole of the MSS formula obtained in [35, 36] relating open superstring amplitudes
on the disk to tree-level SYM amplitudes.

We have only briefly considered closed strings. For gravitons, even in the presence of

massive external legs, one would expect a universal soft behaviour up to sub-sub-leading
order (611) [8-10, 47-49]

My (1,2,...,8,...,n) = (6.1)
Z ki-hs-k; n 2ki-hg-Jiks N kg-Jihs-J; ks
ks k; ks-k; sk

Mp_1(1,2,...5...,n)+ 0%  (6.2)
i#£s

This should hold true at tree-level and with the understanding that interactions be governed
by minimal couplings. While in closed Type II superstrings on the sphere the soft limit of
amplitudes with massless states is the same as in gravity at tree level, for bosonic strings
— and in fact for the heterotic string, too — the presence of a ¢ R? vertex with the dilaton
spoils the universal behave even at leading order, in that a soft graviton attached to a hard
graviton can produce a hard dilaton thus producing a mixed amplitude?

9As suggested in [46], one may be tempted to propose a generalisation of the soft theorem whereby
dilatons and gravitons are ‘unified’ into a gravi-dilaton with symmetric transverse but non-traceless polar-
isation tensor e,, = hu,+¢u with ¢, = nw—kul%,,—k,,l;u and k> = 0 kk = 1. Yet for the Kalb-Ramond
anti-symmetric tensor b,, which is odd under world-sheet parity €2, one expects a vanishing behaviour at
leading order [14].
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Using KLT relations [41] one can efficiently compute closed amplitudes with massive
external states as ‘squares’ of open string amplitudes with massive external states, like the
ones we have considered in the present investigation. We plan to carry out this analysis in
simple cases and study the soft behaviour at tree level confirming universality, respectively
lack of it, in the case of the closed superstring (both Type IIA and Type IIB), respectively
in the case of the bosonic or heterotic string due to the presence of the ¢R? terms [52]. We
hope to shed further light on the soft behaviour of the Kalb-Ramond field, the dilaton [50]
and the other moduli fields [51]. It would also be interesting to investigate the soft be-
haviour of loop amplitudes and to test the validity of the new proposal [53, 54] of getting
the graviton from the collinear limit of two gluons beyond tree level and in the presence of
massive external states.
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A Open bosonic string 3-point amplitudes

For the sake of completeness we summarize all the possible three point functions involving
open bosonic string states up to the first massive level, egs. (2.1), (2.2), (2.3). Kinematics
of three point on-shell amplitudes is fixed in terms of the masses of the particles involved
in the process. This property will be used repeatedly and stressed wherever necessary. In
the following formulas a factor (2m)P6P (37, p;), with D < 26, resulting from integration
over the zero mode of the coordinate fields X*#, is always understood. We will also drop a

D/2=3)/2 which is g, (a/)® for the bosonic string in critical dimension, but,

factor of g, (o)
following the discussion in section 2.2, we will explicitly include the relevant Chan-Paton

factors fupe or dgpe. that make the full ‘amplitude’ Bose symmetric.

e TTT vertex

A(T1, To, T5) = dgpe (ceP X (21) cePX(22) ce*¥(23))
20/ 20/ 20/
= dape 212213223 219 2205 PP 208 PP =d e, (A1)
where we used the identity (pi+pj)2:—2m%—|—2pipj:—m2T, so that 2a’pipj:m%:—$ for
all 7, j. The symbol z;; stands for z;—z;. In order to simplify the notation, from now on
we will introduce the notation

PH= p?
=y (A2)

i T
In general, P; is contracted always with the i-th polarization vector/tensor. Exploiting
‘transversality’ i.e. p' tflm:(), we will always replace the sum in eq. (A.2) with:
z z z
poPm m p PnAn p s (A3)
2 zi27213 2 zi2293 2 zi13223
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e TTA vertex

1 . . ,
A(A1, T, T5) = — fabe <ca1u 10X+ elle(zl) cepoX(zg) ce’st(Z3)>

V2!
20/pip; 1
= V2 fape 212213223 a1, P}’ H Zija PPI=N20 fape 501P23. (A.4)
i<j

e TAA vertex

1 . ) )
A(Aq, Ay, T3) = @dabc <c a110X e’le(zl) cagi0 X elkzX(ZQ) ceszX(z3)>

= dype (20/ al% CLQ%-{— alag) . (A.5)
The amplitude can be rewritten in a manifestly gauge invariant form:
1

A(A1, Ay, T3) = 20/ dape (al% a2%+a1a2 k1k2) =20 dgpc §f1uuf§m- (A.6)

e AAA vertex

A(A1, Ay, Ag) = ca1idX e®1X (1) caxidX e"2X (z5) cazidX eiksx(23)>

k k k k k k
=V 2 fape (alag a;;%—kalag a2§+a2a3 al %—i—?a’al% ag% a3;2>.

(A7)

1
Wfabc <

e TAH vertex
1

A(A1, Ty, Hs) = W fabe <ca1iaX eile(zl) C€ip2X(22) ci0X H3i0X eip3X(23)>
o
= V2 fape (2(11[‘]3%4—20/&1p2ﬁ %Hg%) . (AS)

e AAH vertex

da C . ; . ; . . ;
A(Aq, Ag, H3) = b <c a1i0Xe™ X (2)) cazid X e*2X (z9) cz@XngﬁXeZp3X(23)>

(22/)?
= dabc 2&1H36L2+20/ 2(11@ CLQE’gpiQ—i-QQQPﬂ angw—l—alag @Hg,@
2 2 2 2 2 2
P23 P13 P12 ., D12
— (2a/)%a1 =2 —= —H3—=|. A9
(O‘)“12“22232> (4.9)

One can rewrite the above amplitude in the manifestly gauge invariant form

A(Al, AQ, Hg) == 20/ dabc <2 tr(legfg)—a/tI‘(flfg) legkz) . (AlO)

e AHH vertex

fabc
(20/)5/2

A(Aq, Hy, H3) = <ca1i8Xeik1X (21) ci0X Hyid X 2% (25) ci0X H3i0 X e'P3X (z3)>

= V20 fape <2a1p;3 tr(Hy Hy)—4tx(fyHy Hy)+4a' 8 Ho f1 Hy P2
P23 P31 P12 n2 P23 P31 ., P31 P12 ., P12
8a/ay P2 B, P12 4 (o D25 Pst g D1 P12 P12 ) (A1
F8aar S Hy Hy S+ (20 a5 S 32) (A-11)
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e TTHH vertex

1 . . .
A(Ty, Hy, H3) = Wdabc <cew1X(zl) cidX Hyi0XeP*X (2) cidX Hs i@Xezp3X(23)>
«
= dabc (2 JCY(IJQI‘L;)—|-4(20/)ZEIJQ];I;;ZE—F(QCM’)ZZEPIQZE pﬁHP,@) .
2 2 2 2 2 2
(A.12)
e T'TH vertex
1 : ) )
A(Ty, Ty, Hs) = ?dabc <ce’p1X(z1) ce””QX(zg) ci0X Hs i@Xe’p3X(Z3)>
«
= dabc 212713723 szjalpipj 20/P3H3P3:20/ dabc %Hg;% (A13)
i<j
e HHH vertex
A(H17H27H3)
_ b o inx Hyiox e X [0X HyidX e2X i0X HyidX eP3X
= Q) (ci 110X P12 (z1) ci 210X eP?% (29) ci 310X €3 (23))
— dupe <8tr(H1H2H3)+2o/ <tr(H1H2) %Hg%%—tr(Hng) }%Hz%
—|—tr(H2H3) pﬁHl@+8@H1H2H3Z£+8@H1H3H2ZE+8@H2H1H3Z£
2 2 2 2 2 2 2 2
9002 ( P2 g, p, P31 P12 gy P12 | P23 pp g P12 P31 gy P31 P31 g gy P12 P23 pp D23
+(O‘)<2 2 sy s Ty Sy iy s
903023 pp P23 P31 g7 P31 P12 pp P12 ) A.14
2T S ey ST (A-14)

B Open bosonic string four-point amplitudes

In this appendix we sketch the computation of the open bosonic string amplitudes in-
volving massive and tachyonic states. For simplicity we consider color-ordered ampli-
tudes. Complete amplitudes arise after multiplying by the relevant Chan-Paton factors
tr(t'¢243t*) and summing over non-cyclic permutations. In fact, exploting ‘twist symme-
try’ i.e.  invariance, one can reduce the sum to three terms (instead of six). Exploit-
ing conformal invariance we choose to fix z; — 00, 29=1, z:% and z4=0. A factor
giap(o/)(D/z*‘l)/2 (2m)P 6P (32, pi) is always understood.

e Veneziano amplitude (TTTT)

ATy, T, T3, Ty)= <ceip1X(zl) ceP2X (29) /ng 3% (23) ceip4X(Z4)> (B.1)

Ioimy 1 / /
:2’12214224/dZ3 HZ?;I Png:/ dz (1_2)201 p2ps ,2a p3p4:B(1+2alp2p3’ 1—|—20/p3p4).
i<j 0
Introducing the Mandelstam variables (p1+p2)*=(p3+pa)’=—5, (p2+p3)°=(p1+ps)*=—t,
(p1+p3)2=(p2+p4)2:—u, we can rewrite the Veneziano amplitude as
[(—1-a/s)I'(—1-a't)
D(—2—a/(s+t))

ATy, To, T, Ty) = (B.2)
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o ATTT amplitude

1 , . . .
A(A1,T5,T5,Ty) = Ner <ca1i8XeZk1X(zl) ceP2X (z) /dzg eP3X (23) ceZp4X(Z4)>

1 <G1P2_a1p4> L(1420'kyp2)I' (1420 k1 pa)
V2a/ \kip2  kips I'(1-2a'k1ps3) ‘

o AATT amplitude

(B.3)

1 . A , ,
A(Al,Ag,Tg,T4):2—a/ <ca1i8XeZk1X(zl) cag 10X 2% (29) /d23e’p3X(23) ceZp4X(24)>

, 1420’ k1py 1+2a' k1 p3
=| araz—2a'(a1p3 azpz+ai1ps azps)+ai1ps agps—————+a1ps azp3—————
k1p3 k1pa

B(1—|—20/]{}1p4, —1—}—20/]{?1]{32). (B4)
e AAAT amplitude

A(Al,AQ,Tg,A4):/d23 <ca2i8Xeip1X(z1) ca1idX eP2X (z5) eP3X (23) casidX e (zy))

~ T(14+2d/p1p2)T (1420 p1ps) P1P3 14+2a/p1ps 1+2a'paps
= (190 S —ajas a4p12,7+a1a2 Y —
(1-2/p1p3) o’'pip2 p1p4 a'p3ps a’'p3pa
1+2a/p1p3 1+2a'p3py 1+2a'paps 1+2a'p3ps
+ajay ApP1—g 0104 G2P4—p 0204 a1p2—p————+ta2a4 Q1Ps—
o' paps 2a/pap3 2a/p1p3 2a'p1ps
/ 1420/ p1p3 14+2a/p1ps
+2a’ | a1pg azp1 aapa—aip2 A2ps A4p1+ai1p2 A2p1 G4P1—— ——— —A1P4 A2P1 A4P1—
20/ p3pa 20/ pap3
1+2a'p3ps 1+2a'pap3 1+2a'p3py
—Q1P4 A2P4 A4P2————— +A1P2 A2P4 A4P2— 5 +Q1P4 A2P4 A4P1—
2a/p1p3 2a/p1p3 2a/paps
14+2apaps
—@1p aap1 aspr— == | . (B.5)
Q'P3P4

e TTAH amplitude

A(Ty, Ty, As, Hy)= ! 3 <ceip1X(z1) ceisz(ZQ)/dz;g aidX e (23) ciaXHiaXeip4X(Z4)>

2a')2
14+2ak3py , 1—2a/k3py 14+2a’k3p1
=|—2a3Hpo—2a3Hks——— ——+2 Hpy————+ksHks————+2po H
< azHpa—2as 32—2a’k3p4+ o azpy | p211p2 20 kapy K3 32—2a’k3p4+ D213
ksps p2Hpo 14+2a/p1 k3 1—-20'k3py
—2a/ 2 S (1-2d k: —psH —2poHE
aa3p2<2a'p2k3p1k‘3( o kspa) —paHps 2/ pak: 2 20 poks
F(—1+2a’k3p4)P(1+2a’p2k3) (B 6)

F(—20/p1k3)
C Open superstring 3-point amplitudes

In this section we compute all the possible tri-linear couplings involving superstring states
up to the first massive level in the Neveu-Schwarz sector following the same conventions
as in appendix A.
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e AAC vertex
AAP, ATV cfY)
dabe . i . i . i
— ke <C(a1 10X +k1t a1)) €% (21) ce Pagy 2% (25) ce P Cypie p3X(Z3)>

V2a!
212213223 20/pip; . 0y C3yupal foe) kY
=V 2a/dabc —_— H Z]a Pip; 6%—6 dabc Qo C3uupal ;2 (C'l)

2
V4 ATV
23 i<j 13%23

e AAH vertex

AL, 4G, )
_dabc
2/
:—QO/dabc tr(leng). (02)

(¢ (a1 10X +k1v a1v) e®1X(21) ce™® agpe™™X (25) ce™? 10X Hz1h eP3X (23))

e AHC vertex

AACD 5O 0y

:J;abf <c(a1i8X+k1w a1)e®1X (21) ce™%i0X HarpeP*X (29) C€_¢ngw¢€ip3x(23)>
«
. Vk)\
:Qa/fabc M Hzfja bibs 6Pp H2p003,u1//\777—fabc 12« ,7H203 1p12. (03)
e AHH vertex
0 ~1 -1
AAY 1D HY) (C.4)
:<2fcjl)’§/2 <c(a1i8X+k1w a1h)e® X (21) ce ?i0X Hype?X (zy) ce %0 X Hzi) eip3X(23)>
«
=V20/ fane <2tr<f1H2H3>+a1?tr(H2H3)+2a (p L Hy i Hy P2y 2 ?Hﬁf’f))

e ACC vertex

A(AD D o))

= \j/c‘;%/ <c(a1i8X+k11/) a1¢)eik1X(21) C€7¢C2¢’l/11/}6ipzx(22) Cei(nglﬁ’(ﬁl/) eipSX(23)>
:\/ﬂfabcfi <a1p;3tr(CgC3)—3 tr(f1CQCg)>. (05)

e AAA vertex

A, 4570, A7)

= ‘L;Z, <c(21) (a110X +k11 aﬂﬁ)eiklx(zl) ce ¥ ag eikQX(zg) ce ¥agy eik3X(Z3)>
k k k
=V 2 fape (algg a2a3+a2% alag—l—ag% a1a2>. (C.6)
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e HHH vertex

— — da C . . v . 14 v 7
AH BV =)= (2a€)2<cHW(zaX~zaX 1 BHOXY 4O ) X (21)

ce™ % 10X Hotp P> (23) ce™?i0X Hzy eP*X (23))

—3tr(Hy HoHs)+20 <3p;3H1H2H3p;2+3p;‘°’H1H3H2p;1+31’;1H2H1H3p;2 (C.7)

D23 Pp23

7H17+tr(H1H3)p31 P31

'HJI‘(HQHg) 2H22+tr(H1H2)p;2H3p;2>

P31 gy, 31 P12 o
2 2 2 5 Ty M2y g T My o Hii

e CCC vertex
A, e ef )

+(2a/>2(P23H1P23 P g g P12 P81 PP g gy P12 P12 g P12 P28 1931)

—d; (¢ Crump(iOX M +pp pH) P P X (z1) ce™POopipnp €72 (29) ce™? gy P (23))
(67

Iz o Iz
=V2a/dgpe (pggclwpcgﬂcwau‘i‘p;lC2WpC§U/\CL\oV+p§2CBWpCfUAC?),\aV) : (C-S)

e CCH vertex
A, efY, miY)

:ij (v (10X +pip ) pP eI (21) ce ™% Corpipipe™> X (22) ce™¥i0X Hype™ X (23))

dabe 6tr(0102H3)—|—20/ <6tr(0102)p;2H3p;2+2?22z})01C2H3p;2+6p;2H30102p;1> . (Cg)

e CHH vertex

— — da C . v Z
Amp(C1 1YY, )= o (O 10X ) e (1)

ce”Pi0X Ho) €P2X () ce_wiﬁXH3¢eip3X(23)>

I o a
—\V2adyy, <2p;3Cluypﬂggﬂguzclwpﬂg”ﬂgap;l+201WH2W,H§;UP;2

A
P23 P31 P12
+4O/201uupHé/crH§>\22> : (C-10)

D Open superstring four-point amplitudes

Let us discuss the derivation of the 4-point amplitudes with one massive external state, i.e.
A(Alu AZ: AS: -H4) and A(A17 A27 A37 04)

D.1 Ajaac amplitude

With a judicious choice of super-ghost pictures and c-ghost insertion one has
1
AATY, AP 4D o)< lim / dzs (D.1)
(21,22,24)—(00,1,0) Jo

(ce™Pa1e™X(21)c(azd X +ikopag))e™*X(22) (a30 X +ikzpazih)e™3 X (23)cCyppipe’Pi™(2y)).
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There are only two kinds of non-vanishing contractions: (i(1):91:(2)0X (3):ppep:(4))
+(2 <> 3) and (¥ (1):91p:(2):1p:(3):9h1pep:(4)). The first kind of contractions yields

1 1
2721 [al-C4:f2a3-P3(:E)—|—ﬁa1'C4:f3a2'P2(x)], (D.2)

where setting z3=x we also have

P3(x):—é <k1+l€2> Py(w)=——k3—k1. (D.3)

1—x 11—z

It is convenient to define also
1
P4(1'):— <k‘2—|—$/{73> Pl(l'):kg—{—l‘k:g. (D.4)

The second kind of contractions yields

1 <a1'f2'041f3+a1'f3'041f2 a1C4'fa'fz>

2
22 x? x + z(1—x)

(D.5)

in a self-explanatory index-free notation. Including the momentum factor and the (super-
)ghost correlators yields (barring 6(Xp) etc)

_ _ 1 / 12 k
A(Ag 1)7‘450)7142(30)’04& 1)):/ drx™® S+1(1_$)_at |:—CL1-C4Zf2 <a3'k1+a3 2)
0

1—x

fay-Cyfs ayks axki) a1 f2:Cy f3+a1-f3-C4:f2+2a1 Cy f3: fo (D.6)

11—z T T 11—z

Perusing the factorial properties of I'(2), finally yields
U U U

Asaac=B(1, 1){—a1-042f2 [ag'kl—;a?yl@} —a1-Cy:f3 [;az'k:a—gaz'lﬁ]

u u R

+Sa1'f2'043f3a1'f3'042f2Qta1'04'f3'f2}- (D.7)

D.2 Ay aag amplitude

We can now embark for a long journey through the computation of Aspap. With a
judicious choice of super-ghost pictures and c-ghost insertions one has

AATD, AD AP 1Y)
1
= lim / dzg(cePa1e™ X (z1)c(aad X +ikarpagtp) e X (z5)
(21,22,24)—(00,1,0) Jq

(a30X +ikstpazt)e®sX (23)c0X - Hy-1peP+X (24)). (D.8)

Since (¢(1):9p11h:(4))=0, there are only three kinds of contractions:

(¥(1)0X(3)0X (3)p0X (4)), (D.9)
((1):p1p:(2)0X (3)Y0X (4))+(2 < 3), (D.10)
((1):09:(2):09:(3):00 X (4)). (D.11)
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Exploiting the P;(z) allows to identify 11 terms:

~av e (Lt ) ol b B D arkBL0] (D.12)
%al-[ﬂ-agag' <1f$k3—k1) — a1-Hy-aslag-ksB(1,1)—az-k1B(0,1) (D.13)
sy (k) —avas HylBR. D +RB(L-1)] (D19
ial‘f3'H4'a2 — ay-f3-Hy-a2B(1,1) (D.15)

%al'f2'H4‘a3 — ay-fa-Hy-a3B(0, 1) (D.16)

1 1
a1-Hy- | ko+—Fks | as- . ks—ky | as- k1+ ko | —
x 1—x z(1—x)

a1~H4~k2{a2'k3 [a3~k18(2, 0)—|—a3-k26(2, —1)]—0,2']{31 [a3~k18(1, 1)+CL3-]€QB(1, O)]}
+a1-H4-k3{a2-k3 [ag-k‘lB(l, 0)+a3-k28(1, —1)]—&2']{31 [ag-/ﬁB(O, 1)—1—&3']{528(0, 0)]} (D.17)

1 1
—a-f3-Hy: <k2+/€3> az: (xks—/ﬂ) -
x T 1-=

—al-f3‘H4‘k2[a2-kgB(2 O)—ag'le(l 1)]—al'fg-szkg[ag‘kgB(l,0)—(12-]{718(0,1)] (D18)

ar-fo-Hy (k2+ik3> ( K1+ (11 )kz)—> (D.19)

al'f2~H4-k2 [ag'le(l, 1)+a3-k26(1, 0)]+a1‘f2-H4'k3 [a3~k18(0, 1)+CL3-]€QB(O, O)] (DQO)

1 1
:a1~f3‘f2~H4- <k2+xk3) — a1 f3- fo-Ha-koBB(2,0)4aq- f3- fo-Ha-k3B(1,0) (D.21)

1
_ ! ai-fo-f3-Hy- </€2+1k3> — —ay-for f3-Hy-kaB(1,0)—ay - f3- fo- Hy-k3B(0,0)
z(1—x) x
(D.22)
—(1_196)2f22f3a1'H4' <k‘2+;/€3> — —faifslar-Ha-koB(2, —1)+a1-Hy-k3B(1,-1) (D.23)

Factoring out
I(1-d/s)I(1-a't)

B(1,1)= I(1+a’u)

finally yields

AAAAHZB(I, 1){—1;a2a3 |:(1—C¥/S) a1H4k2+(a'u—1) a1H4k3:| —a1H4a2 (agkl—a3k2?>

u u 1—a's u
—a1H4a3 (agk‘;gt—an'ls) +20/(I1H4/€2 [—a2k3 agk‘l ot —agkl <a3k1—a3k‘2t>]

u(a'u—1)

+20/01H4k3 |:—agk‘3 agklg—agkl <—a3k1u+a3k2 ;
t S a'st

u
>] +a1f2H4a3g—a1f3H4a2
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"u—1
—20/a1f2H4k2 <a3k‘1—a3k27:> —20/a1f2H4k:3 <—a3k1 Z—I—aggk,‘g%) (D.24)

1_ /
—|—2o/a1 faHyko (—a2k3 O;); i —agkl) +20/a1f3H4k:3 (—a2k31;+a2k1 Z)
, u , u(a'u—1) , 1—d's , u
2 a1f2f3H4/€2;—2a a1f2f3H4k3W—2a a1 f3 foHyko T a1f3f2H4k3¥ :

D.3 Ay sac in 4-dimensions

Let us first consider A(172131C).
. u u u
A(1T2F3TC) = iB(1, 1){aff2+p4 (a;k‘lta;kg) +ai 3 pa <a2+k:3ta§rk:1 s> (D.25)
u
+gafk2 a3 f3 patai ks a3 ff pa— [a;kg(a}fffrm—aff;m)—a;fkg(a;ff“m—aff;m)] }

The final result is

+otao+y_, 4 [13]f
A2 3YC)=iBL e (D.26)
Let us now consider A(172737C). Choosing
—u_ (o2 2le*[A] 4 (1o*]3]
a, "= 21] a,"= 12 as"'= ) (D.27)

the amplitude simplifies as follows

A(172737C) = z’<—a1-C:f§r azkgj—alf;-czfg—21;a1.0j;f2>3(1, 1) (D.28)

=iay ks ay kg af ko B(1,1) = z'gg’])<23>36(1, 1). (D.29)

D.4 Ay a4y in 4-dimensions

Expressing the 4-momentum of a H massive spin 2 state as p=kj+ko, with k%:kgzo and
2k1-ko=p?=—1/d/, it is possible to write its physical polarizations in the spinor helicity
formalism. If we define kinq=unts and kong=v,04, we have

H, 55 = co(Uauplialy+vaa0a05— (UaVstusva) (Uals+ialy))
+c1 (’U,auﬁ(ﬁdf}ﬁ'—i-ﬁﬁ'@@)—T)C'l’l_)ﬁ'(ua’l)/g—i-uy)a))
+C_1(Uavg(Edl_)ﬁ'—l—ﬂﬁ"l_}d)—ﬂdﬁﬂ'(uavg—l—um)a))
+C2UaURVV 5 F+C—20VaVplaUg- (D.30)

Recalling that A(A1, Ao, H) o tr(fi1H f2), we can express the coupling between two vector

bosons and each helicity component of H. As shown in table 1, H couples only to vector
bosons with opposite helicity.
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e ot | A i fy

co (u1)2[u2)?+(v1)?[v2] 0 0 (u2)?[ul]?+(v2)?[v1]
—4(ul)(v1)[u2][v2] —4(u2)(v2)[ul][v1]

cr || 2(ul)?*[u2][v2]—2(ul)(v])[v2]* | 0 0 | 2(u2)?[ul][vl]—2(u2)(v1)[v1]?

co1 || 2(v1)?[u2][u2]-2{(v1){ul)[u2]* | 0 0 | 2(v2)*[v1][ul]-2(v2)(ul)[ul]?

c2 (ul)?[v2]? 0 0 (u2)?[v1]?

c_o (v1)2[u2)? 0 0 (v2)?[ul]?

Table 1. In the table we list all couplings between a spin-2 massive state H and two vector bosons
Ay, As. The momentum of H i8S pag=uala+va0s. It is worth to notice that H couples only to
couple of vector bosons with opposite helicities.

Let us discuss the case in which only the scalar component of H (the trace of H
in 4 dimensions) couples to the three vector bosons and let us start with the amplitude
A(17273% Hp). Choosing

PSCILCTR [T ] (D.31)

some of the scalar products appearing in eq. (D.25) vanish: a2 a3 =0, al -ko=0, a2 -k1=0
and a;lﬁ =0, and the amplitude simplifies significantly

u u u
A(17273" Hy)=a1 Hoas a3k2*—alﬂoa3 a2k3*+a1f2Hoa3§—a1f3H0a2
u(s+t)

+2a'a1f2H0k2 agkg +2a/ alng()kg asgko o (D.32)
—2day fsHoks Ctzlfzai—QOZ a1 f3Hoks a2k3?
(S+t)

+2a a1f2f3H0k2 +2a a1f2f3H0/€3

u+t U
—20/a1f3f2Ho/<32T—2a'a1f3f2Hok3?

The scalar 4-dimensional polarization of H is Houyznuy+a’pupy. Let us consider the
diagonal part of the polarization of Hy.

@142 a3k2%_a1@3 az’%% = 2(s+t)<12[1:<)’]23>
a1f2a33—a1f3a2 = 4t<12[1:<)’]23>
20'ay faks astU(jt) - —2a't(s+t)ﬂgi)]2$
/ u . , [13]
m2alafafaksy = m200ut ey (D.33)
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Let us now consider the longitudinal part of the polarization: a'p,p,.

o' arp asp agkg%—o/alp asp agkg%zo (D.34a)
/ u- _ [13]

o’aq fop agps a'ay fap asp= t<12><23> (D.34b)

+t 13
20[ alf2p ka aSkQ —|—20é a1f2p ka ade ( ) ( +t) < 2[><]23> (D34C)

13]
202 by ashs "t — 20/ k kﬂ: )L D.34d
a'“ay f3p pka azks 2 ai fsp pks az 3y =0 (u+ )<12><23> (D.34d)

+t) [13]

2024y fofap Pk — 4202 ks M) sy 13 D.34
@ ar fofsp pky T +20 a1 fafsp phs = u(s+ )<12><23> (D.34e)
+t u [13]
—202ay f3 fop pha ot —20/? ks L= (54t) (utt) — . (D.34f
a’“ay f3 fap pke " a“ayfsfop p 3, =« (s+)(ut )<12><23> (D.34f)
Using the identity s+t+u=1/a’, the sum of the terms in egs. (D.33), (D.34) yields
1 [13]
A(1T273%Hp) oc — —— =t (D.35)
of (12)(23)
Let us consider the amplitude A(17273" Hy). Choosing
2[(1 1/(2 3[(1

B LT 11 R 1 D36

21 2Tz BT sy

we can enforce the conditions a;-a;=0 and ai-ko=as-k1=a3-k1=0. The resulting amplitude
looks like
t
A(1_2_3+H0) a1 Hopao agko— +a1H0a3 a2]€3 —i—alk‘g CL3H0(Z2—|—204 arks agHoko agkg%
+2d’ar1ks asHoks a2k3?—2a a1ks asks (IQH()kQT—2a ar1ks asks CLQH():IC;;?. (D.37)

The diagonal part of the polarization of Hy produces

20/ a1 ks asHoks agkguT—H—Qa'alkg asko agHok'g?:Q ’[13<]1<§>3>3 (D.38)
The longitudinal part of the polarization of Hy yields
o' arp asp a3k2 +d'a1p asp a2k3 +d’arks asp asp=3a’ [13<]1<§;))>3 (D.39)
Finally the result is
A(17273THy) a’ﬂ@?))?’. (D.40)

(12)
Let us consider the case in which the spin-2 tensor H with helicity
Ua (4)ua(4)v4(5)v4(5), with p=ks+ks the momentum of H, having helicity h=2 couples
to three vector bosons, i.e. A(172737H). Choosing the following parametrization for the
polarization vectors of the incoming gluons
2|(1 2)(1 1
BT T R i1 D)

MRy 2Ty f



_ - _ .+ _ .+ _
we have a;-a;=0 and a; -ka=a; -k1=a3 -k1=0.

A(172%3TH) = (D.42)
u+t
t
_ U _ u+t _ U
—2d/a; f;'Hkg a;kgz—Qa’al f;'f;HkgT—Qo/al ;‘f;Hk:gz

u u
ay Hay agkgi—afHa?{ a;kgi—aff;Ha;—Qa’aff;sz ag ks

u+t
t

t
+ 2a’a1_k:3 CL;’_Hkig a;'kg%—Za/al_kg a;kz a;HkQ%—2a/al_k3 a;kg a;Hk:gg.

U U
= al_HaéF ang?—al_Ha:}f a;kg?—l—afk‘;; a}Ha;—|—2a’a1_k3 a?{Hkg a;kg

So we have

u u 2
afHaér a;k‘Q;fafHa; (L;k’g; = 4A[25[]2[;L]5<]1<j>5>
[23][25][35](45)2(23)

L o F T
aj ks ag Hay =4A 21][13] (142

t
2o/al_kz3 angg a;k3%+2a'a1—k3 a}fHkg a;kg%

[23][35](13) (45)>
[21][13](14)3

t
— 2a’afk3 a;kQ ang2%72a/afk:3 agrkg aéerg%

[23][25](12) (45)2

=—4d' A

(t[25](24) —u[15](14))

= —4d'A RA[13] (14)? (t[25](24) —u[15](14)), (D.43)
where (14913
~(12)(23)(45)2" (D-44)

The sum of the terms in eq. (D.43), produces the amplitude

1Lt

A(17273TH) o (12)(23)(45)7°

(D.45)
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