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The remarkable phenomenon of fluid turbulence is one of the major unsolved problems

of physics [1]. Most fluid motions in nature at all scales are turbulent. Aircraft motions,

river flows, atmospheric phenomena, astrophysical flows and even blood flows are some

examples of set-ups where turbulent flows occur. Despite centuries of research, we still lack

an analytical description and understanding of fluid flows in the non-linear regime. Insights

into turbulence hold a key to understanding the principles and dynamics of non-linear

systems with a large number of strongly interacting degrees of freedom far from equilibrium.

In addition to being a major challenge to basic science, understanding turbulence is likely

to have an important impact on diverse practical problems ranging from environmental

issues such as pollution and concentration of chemicals to cardiovascular physiology.

In this paper we will mainly consider incompressible fluid flows in d ≥ 2 space di-

mensions. They are the relevant flows when the velocities are much smaller than the

speed of sound. The incompressible Navier-Stokes (NS) equations provide a mathematical

formulation of the fluid flow evolution. They read

∂tv
i + vj∂jv

i = −∂ip+ ν∂jjv
i, ∂iv

i = 0 , i = 1, . . . , d , (0.1)

where vi is the fluid velocity and p is the fluid pressure. An important dimensionless param-

eter in the study of fluid flows is the Reynolds number Re = lv
ν , where l is a characteristic

length scale, v is the velocity difference at that scale, and ν is the kinematic viscosity. The
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Reynolds number quantifies the relative strength of the non-linear interaction compared to

the viscous term. When the Reynolds number is of order a thousand or more, one observes

numerically and experimentally a turbulent structure of the flow. This phenomenological

observation is general, and fluid details are of no importance. The turbulent velocity field

exhibits highly complex spatial and temporal structures and appears to be a random pro-

cess. Thus, even though the NS equations are deterministic (in the absence of a random

force), a single realization of a solution to the NS equations is unpredictable.

Instead of studying individual solutions to the NS equations, one is led to consider

the statistics of the solutions. The statistics can be defined in various ways. One can use

an ensemble average by averaging over initial conditions. Turbulence that is reached in

this way is a decaying one. Alternatively, one can introduce a random force. This allows

reaching a sustained steady state turbulence with an energy source and a viscous sink.

The statistical properties of turbulent flows are remarkable. Numerical and experimental

data show that the statistical average properties exhibit a universal structure shared by

all turbulent flows, independently of the details of the flow excitations. One defines the

inertial range to be the range of distance scales LV � r � LF , where the scales LV and

LF are determined by the viscosity and forcing, respectively. Turbulence at the inertial

range of scales reaches a steady state that exhibits statistical homogeneity and isotropy.

One defines the longitudinal velocity difference between points separated by a fixed

distance r = |~r|

δv(r) =
(
~v(~r, t)− ~v(0, t)

)
· ~r
r
. (0.2)

The structure functions Sn(r) = 〈
(
δv(r)

)n〉 exhibit in the inertial range a scaling

Sn(r) ∼ rξn .

The exponents ξn are universal, and depend only on the number of space dimensions.

In 1941 Kolmogorov [2, 3] argued that in three space dimensions the incompressible non-

relativistic fluid dynamics in the inertial range follows a cascade breaking of large eddies

to smaller eddies, called a direct cascade, where energy flux is being transferred from large

eddies to small eddies without dissipation. He further assumed scale invariant statistics,

that is

P
(
δv(r)

)
δv(r) = F

(
δv(r)

rh

)
, (0.3)

where P
(
δv(r)

)
is the probability density function, and h is a real parameter. Treating

the mean viscous energy dissipation rate ε as a constant in the limit of infinite Reynolds

number, he deduced a linear scaling of the exponents ξn = n/3.

All direct cascades are known numerically and experimentally to break scale invari-

ance and do not simply follow Kolomogorov scaling. Note, that in two space dimensions

the energy cascade is inverse, that is the energy flux is instead transferred to large scales.

Kolmogorov’s assumption that the random velocity field is self-similar is incorrect in di-

rect cascades, but it seems to hold in the inverse cascade. The self-similarity assumption

misses the intermittency of the turbulent flows. Thus, in order to calculate the scaling

exponents one has to quantify the inertial range intermittency effects. The calculation of
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the anomalous exponents and their deviation from the Kolmogorov scaling is a major open

problem.

Since 1941 many multifractal models of turbulence have been proposed [1]. These

express multifractality directly in terms of fluctuations of the velocity increments or of

the energy dissipation. For example, Kolmogorov and Obukhov [4, 5] proposed to replace

the constant global average ε with local averages εr over a volume of dimension r. One

then considers εr as a lognormally distributed random variable with variance σ2 ∼ −ln(r).

Later, Mandelbrot [6, 7] argued that one should think about the energy cascade as a random

multiplicative process. In this case a random measure can be formalised mathematically

as a limit of a “Gaussian multiplicative cascade” (see [8]).The lognormal model assumes

“refined self-similarity”

P
(
δv(r)

)
δv(r) = F

(
δv(r)

(〈εr〉r)1/3

)
, (0.4)

which leads to a formula for ξn producing physically inconsistent supersonic velocities at

large n and a violation of the convexity inequality [1].

Our proposal in this paper is different. We propose that in intermittent turbulence,

Kolmogorov linear scaling itself is evaluated with respect to a lognormal random measure.

This is a “gravitational” dressing of Kolmogorov scaling which is inspired by the relation of

fluid dynamics and black hole horizon dynamics in one higher space dimension [9]. We pro-

pose the dressing of Kolmogorov scaling is via a KPZ (Knizhnik-Polyakov-Zamolodchikov)-

type relation [10]. This gives an analytical formula for the scaling exponents of incompress-

ible fluid turbulence in any number of space dimensions d ≥ 2. It reads

ξn −
n

3
= γ2(d)ξn(1− ξn) , (0.5)

where γ(d) is a numerical real parameter that depends on the number of space dimensions d.

A major part of the paper will be devoted to checking our proposed formula (0.5).

We will first verify that the scaling exponents ξn obtained from (0.5) satisfy the convexity

inequality and the supersonic bound constraint. We will then show that they agree with the

experimental and numerical data in two and three space dimensions, and with the numerical

data in four space dimensions. Intermittency increases with γ, and in the infinite γ limit

the scaling exponents approach the value one, as in Burgers turbulence. At large n the nth

order exponent scales as
√
n.

We will show that the formula does not apply to the Kraichnan model for passive scalar

advection by a random velocity field [11, 12]. This may have been expected since physics

of passive scalar turbulence is different from the incompressible Navier-Stokes system. On

the other hand, it is possible that the more general type of random measure can describe

passive scalar turbulence.

The paper is organized as follows. In section 2 we will explain the coupling to a

random geometry, discuss the proposed formula and its properties, and perform analytical

checks and comparison to experimental and numerical data. While we will establish certain

properties of the function γ(d), we will not calculate its precise form in the paper. In

section 3 we will apply the formula to the passive scalar model. In section 4 we will
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discuss the relation between fluid flows and black hole geometry that inspired our proposal.

Section 4 is devoted to a discussion and open problems.

1 Exact formula for the scaling exponents

1.1 Coupling to a random geometry

Coupling to a random geometry means changing the Euclidean measure dx on a Rd to

a random measure dµγ(x) = eγφ(x)− γ
2

2 dx, where the Gaussian random field φ(x) has co-

variance φ(x)φ(y) ∼ − log |x − y| when |x − y| is small (but still in the inertial range).

Physically, the notion of distance r is modified in the new measure. Consider a set of

scaling exponents (Hausdorff dimensions in the mathematical setup) ξ0 with respect to the

Euclidean measure. Denote the same set of exponents, but now with respect to the random

measure, by ξ. Then ξ and ξ0 are related by the KPZ relation

ξ − ξ0 = γ2(d)ξ(1− ξ) . (1.1)

Mathematically, this is a known method to obtain a multifractal structure from a fractal one

(for a review see [8] and references therein). Our proposal is that one can incorporate the

effect of intermittency at the inertial of range of scales by coupling to a random geometry

in this way and evaluating the Kolmogorov linear scaling exponents ξ0 = n
3 with respect

to the random measure.

Physically, it is highly nontrivial that the steady state statistics of turbulence can be

viewed as such a combination of the scale invariant statistics and intermittency. Note,

that intermittent features appear at short length scales, and this is when the effects of the

random field φ are prominent. We conjecture that the eγφ(x)− γ
2

2 is proportional to local

energy flux field ε(x),

ε(x) =
ν

2
(∂ivj + ∂jvi)

2, (1.2)

in the direct cascade of the turbulent fluid. This has some similarities to the Kolmogorov-

Obukhov lognormal model. In that case, refined self-similarity implies the following simple

dressing of Kolmogorov scaling

〈
(
δv(r)

)n〉 ∼ rξn ∼ 〈(εr)n/3〉rn/3. (1.3)

Evaluating the expectation of the lognormal energy dissipation, one finds

ξn −
n

3
= γ2n

3

(
1− n

3

)
. (1.4)

As noted in [1] this formula fails as it implies ξn is a decreasing function for large enough

n, which violates basic physical inequalities. The Kolmogorov-Obukhov formula (1.4) con-

sists of the leading terms in the expansion at small intermittency γ of the KPZ formula (0.5).

The two formulas agree up to order γ2. The KPZ formula is different for high intermittency

and may be viewed as a completion/generalization of the Kolmogorov-Obukhov formula

to the strong intermittency regime.1

1Note also, that the KPZ formula (1.1) can be mapped into the lognormal model by exchanging ξ and

ξ0 and multiplying by an overall minus sign.
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Here we assume instead that the fluctuating dissipation field ε(x), acts as a random

measure. Let us make a few comments on the mathematical structure of this coupling to a

random geometry. First, note that there are numerical factors that depend on the number

of space dimensions, between γ appearing in the random measure and γ in (1.1) [8]. Since

what is relevant for us is the formula (1.1), we will keep for simplicity the notation where

γ2 appears in (1.1).

The KPZ relation was first derived by coupling a two-dimensional conformal field the-

ory (CFT) to gravity and analyzing the effect of quantum gravity on the scaling dimensions

of the CFT [10]. This has been dubbed “gravitational dressing”. The KPZ relation has

been generalized in various directions. First, it has been extended to an arbitrary number

of dimensions without reference to a conformal field theory structure [8]. The KPZ formula

is then viewed as a relation between a set of Hausdorff dimensions measured with respect

to a Euclidean (Lebesgue) measure and a random measure. Second, one can consider a

more general random field than the lognormally distributed one [13, 14]. In this case there

is the generalized relation

ξ0 = ξ − log2E
[
W ξ
]
, (1.5)

where E is the expectation and W is the random variable associated with the measure (not

necessarily a lognormal one). We will not use this generalization in this paper, but it may

be valuable in the study of steady state statistics of other non-linear dynamical systems

out of equilibrium.

We will consider the formula (1.1), where γ takes values in the range [0,∞). However,

when γ > 1, the mathematical construction of the random measure changes. In the two-

dimensional quantum gravity language, γ is related to the central charge of the matter

system c, and the critical value γ = 1 is the c = 1 barrier. The regime γ > 1 is a different

phase of the theory, dubbed a “dual phase”. There may be a duality relation between

two phases parametrized by γ and γ′ that satisfy γγ′ = 1. This could have an interesting

impact on the study of turbulence in diverse dimensions.

1.2 An exact formula

We propose that the scaling exponents of incompressible fluid turbulence ξn in any number

of space dimensions d satisfy the KPZ-type relation (0.5). Solving for ξn we get

ξn =

(
(1 + γ2)2 + 4γ2(n3 − 1)

) 1
2 + γ2 − 1

2γ2
, (1.6)

where in choosing the branch we required finite exponents ξn. γ(d) is a numerical real

parameter that depends on the number of space dimensions d. It can be determined from

any moment, for instance, from the energy spectrum.

There are several immediate properties of the formula (1.6) that we can see. First,

using n = 3 in (1.6) one gets the exponent ξ3 = 1 in any dimension, an exact result derived

by Kolmogorov which agrees with numerical simulations and experiments. In [15] this

scaling was derived without employing the cascade picture, but simply from the fact that
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the NS equations are conservation laws. Second, the scaling exponent ξ2 is a monotoni-

cally increasing function of γ, while the exponents ξn, n > 3 are monotonically decreasing

functions of γ. Third, in the limit n→ 0 we get that ξn → 0, as expected. Fourth, in the

limit γ → 0 we have ξn → n
3 , that is scale invariant statistics with no intermittency. Fifth,

in the limit γ →∞, we have ξn → 1, as in Burgers turbulence. The scaling exponents take

values in the range 2
3 ≤ ξ2 ≤ 1, and 1 ≤ ξn ≤ n

3 for n ≥ 3. We will propose that the limit

γ → ∞, is the limit of infinite number of space dimensions d. The subleading correction,

relevant for developing a systematic 1
d expansion reads

ξn = 1 +
1

γ2

(
n

3
− 1

)
+O

(
1

γ4

)
. (1.7)

Sixth, in the limit n→∞ for fixed γ, we have

ξn →
1

γ

(
n

3

)1
2

, (1.8)

thus growing as
√
n. Seventh, at the “critical” value γ = 1 we get ξn =

(
n
3

) 1
2 .

1.3 Analytical constraints on the scaling exponents

If there exist two consecutive even numbers 2n and 2n + 2 such that ξ2n > ξ2n+2, then

the velocity of the flow cannot be bounded. Using (1.6) it is straightforward to show that

ξ2n ≤ ξ2n+2 for any γ, thus (1.6) satisfies the absence of supersonic velocity requirement.

The second condition is that of convexity. For any three positive integers n1 ≤ n2 ≤ n3,

the scaling exponents satisfy the convexity inequality that follows from Hölder inequality

(n3 − n1)ξ2n2 ≥ (n3 − n2)ξ2n1 + (n2 − n1)ξ2n3 . (1.9)

Using (1.6) it is straightforward to show that the Hölder inequality holds. Equality is

achieved when γ = 0, when γ →∞ and when ni = nj for some i 6= j and arbitrary γ.

1.4 The energy spectrum

The structure function S2(r) ∼ rξ2 gives the energy spectrum of the fluid. Using (1.6) we

see that ξ2 is a monotonic function of γ that takes values in the range 2
3 ≤ ξ2 ≤ 1 when γ

goes from zero to infinity. In momentum space a deviation from the Kolmogorov spectrum

for small γ (small d) reads

E(k) ∼ k−
5
3
− 2γ2

9 . (1.10)

For large γ (large d) we have

E(k) ∼ k−2+ 1
3γ2 . (1.11)

1.5 Comparison to experimental and numerical data

The anomalous scaling exponents (1.6) depend on the parameter γ, which is a function of

d. We do not know the exact expression of γ, but it can be calculated knowing one of the

structure functions, such as the energy spectrum γ =
(

ξ2− 2
3

ξ2(ξ2−1)

)1
2
. With this knowledge
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Figure 1. Fit of (0.5) (blue) to experimental data [16] (table 2). The dashed line represents

Kolmogorov scaling. The best fit value of the free parameter γ2 is about 0.161. The error on the

data is about ±1 percent.

we can then make an infinite number of predictions. In the following we will compare

the analytical expression (1.6) to the available numerical and experimental data in various

dimensions.

1.5.1 Two space dimensions

In two space dimensions the energy cascade is an inverse cascade, where the energy flux

flows to scales larger than the injection scale. In this case, one has the energy spectrum

agreeing with the Kolmogorov scaling ξ2 = 2
3 . Using (1.6), this implies that γ(2) = 0, and

that all the other scaling exponents follow the Kolmogorov scaling ξn = n
3 .

1.5.2 Three space dimensions

In three space dimensions we first use the data for the anomalous scaling exponents quoted

in [16] from wind tunnel experiments at Reynolds number ∼ 104. This experimental data

is consistent with numerical data from simulations of the Navier-Stokes equations, see

e.g. [17]. We fit (0.5) to this data using a least squares fit with the function FindFit in

Mathematica. We see in figure 1 an excellent agreement, finding that γ2 is about 0.161.

Next, we consider the numerical results for low order structure function exponents and

non-integer n given in [18]. The numerical data is consistent with experiment at Reynolds

number 104. For this data, the fitted value of γ2 is about 0.159 and in figure 2 we again see

excellent agreement. Note that if our conjectured relation between the random measure

and the local energy dissipation field is correct, one can determine γ2 independently by

measuring the scaling exponent of the two point function, 〈ε(x)ε(0)〉 ∼ x−γ
2
. This value

has been found to be ≈ 0.2, which in our formula is still consistent with the data.
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Figure 2. Fit of (0.5) (blue) to numerical data of low moments [18] (red). The dashed line

represents Kolmogorov scaling. The best fit value of the free parameter γ2 is about 0.159.

1.5.3 Four space dimensions

In four space dimensions, numerical simulations of the Navier-Stokes equations were per-

formed in [19]. The authors found an increase in intermittency, i.e. ξ
(4)
n > ξ

(3)
n for n < 3,

while ξ
(4)
n < ξ

(3)
n for n > 3. We took the data for the structure function exponents in 4d

given in [19] and performed a fit to (0.5). This is shown in figure 3. Although taken at a

relatively low Reynolds number, the results are in agreement with a simple increase in the

γ2 parameter in our formula (0.5). The value of γ2 in four space dimensions is fitted to

about 0.278. Note that their numerical data for same simulation in three space dimensions

predicts γ2 about 0.188, which is higher than the experimental data above. This could be

related to the relatively low Reynolds numbers involved.

1.5.4 Intermittency and the large d limit

In order to observe intermittency one has to study the short distance statistical properties

of the fluid flow. There are various measures for intermittency, such as Fn(r) = Sn(r)

S2(r)
n
2

,

n ≥ 3. Fn(r) are expected to grow as a power-law in the limit r → 0, while staying in the

inertial range of scales.

We can analyze the properties of Fn(r) using (1.6). They scale as ∼ rα, where α is a

decreasing function of γ. In the limit γ → 0 one has α → 0 and no intermittency, while

as γ → ∞ we get the maximal intermittency α = 2−n
2 . Numerically, one sees in [19] a

clear growth of Fn(r), n ≥ 4 in the limit r → 0, when as we increase the number of space

dimensions in the simulation. The data is not accurate enough to observe the growth

when n = 3.
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Figure 3. Fit of (0.5) to the 4d exponents given in [19]. The solid line is the 4d fit with γ2

about 0.278.

Another exponent that is used to quantify the intermittency is

µ = 2− ξ6 . (1.12)

Experimentally in three space dimensions it has been measured in the range 0.2 to 0.25.

Using (1.6) with γ2 = 0.161 we get µ = 0.222. Expanding around γ = 0 (d = 2) we have

µ = 2γ2 + o(γ4), while expanding around infinite γ we have µ = 1− 1
γ2

+ o
(

1
γ4

)
.

In [15], (also see [19]) it was conjectured that in the limit of infinite d all the exponents

ξn approach the same value, one, as in Burgers turbulence [20, 21]. With our formula (0.5)

this means that γ goes to infinity in the limit of infinite d, and therefore ξn = 1 for any n.

This suggests the interesting possibility of having a systematic 1
d expansion (1.7).

2 Passive scalar turbulence

It is natural to ask whether our proposed exact formula for the scaling exponents of incom-

pressible fluid turbulence is applicable for other systems that exhibit turbulent structure.

In the following we will consider the Kraichnan model for passive scalar advection by a

random Gaussian field of velocities vi, which is white-in-time [11, 12]. The statistics of the

velocities is determined by a zero mean vi(t, ~r) = 0, and by the covariance

〈vi(t, ~r)vi(t, ~r′)〉 = δ(t− t′)Dij(~r, ~r′) . (2.1)

In the inertial range Dij(~r)−Dij(0) ∼ |~r|ζ , where ζ takes values between 0 and 2.

Examples of passive scalar systems are smoke in the air, salinity in the water and

temperature when one can neglect thermal convection. The evolution equation describes

– 9 –
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a passively-advected scalar field T driven by the velocity field

∂tT + vi∂iT = κ∂jjT + f , (2.2)

where κ is the molecular diffusivity of T and f is an external force.

One defines the dimensionless Peclet number Pe as the ratio of the scale of fluctuations

of T produced f and the diffusion scale. When Pe � 1 there is a scalar turbulence with

a scalar cascade and constant flux of T 2. Similarly to the incompressible fluid turbulence,

one is interested here in the stationary statistics and the scaling properties of the scalar

structure functions in the inertial range of scales. Define δT (r) =
(
T (~r, t)− T (0, t)

)
as the

difference between the values of the scalar field at two points separated by a fixed distance

r = |~r|. Then,

Sn(r) = 〈
(
δT (r)

)2n〉 ∼ rξ2n . (2.3)

Here the scale invariant statistics is Gaussian with ξ2n = n(2−ζ). We can now attempt

to include the intermittency by the random geometry dressing and the KPZ-type equation

ξ2n − n(2− ζ) = γ2(d)ξ2n(1− ξ2n) . (2.4)

Solving for ξ2n we get

ξ2n =

(
(1 + γ2)2 + 4γ2

(
n(2− ζ)− 1

)) 1
2 + γ2 − 1

2γ2
. (2.5)

This formula is similar, but not exactly the one proposed by Kraichnan [12]. In the

limit n→∞ for fixed γ, we have ξ2n growing as
√
n. This is not the expected behaviour,

rather ξ2n should approach a constant. This is due to presence of solutions with fronts and

shock behaviour, which seems to be characteristic of compressible fluid systems [22]. While

the KPZ formula does not apply to the passive scalar, it is possible that intermittency in

this case ultimately can be described by other, more general types of random geometry,

e.g. via the formula (1.5) above.

3 Black hole horizon dynamics

In the following we will briefly review the relation between fluid flows and black hole

horizon geometry (for a review, see [9] and references therein), that inspired our proposal

to incorporate the intermittency at the inertial range of scales by a gravitational dressing

using a random geometry. Consider the Einstein equations with a negative cosmological

constant Λ in (d+ 2) space-time dimensions

EAB ≡ RAB −
1

2
gABR+ ΛgAB = 0 , A,B = 0, . . . , d+ 1 , (3.1)

where gAB is the Lorentzian metric, RAB the Ricci curvature and R = gABRAB the Ricci

scalar. Black holes are a classical solution of Einstein equations (3.1), and their hallmark is

– 10 –
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the existence of a horizon H. For example, a black hole solution to the Einstein equations

has the form

ds2 = gABdX
AdXB = −r2f(r)dt2 + 2dtdr + r2

d∑
i=1

dxidx
i, (3.2)

where the coordinates are XA = (t, r, xi). The function f(r) = 1−
(

4πT
(d+1)r

)d+1
. The horizon

is defined as the surface where f(r) vanishes. It is a (d+ 1)-dimensional null hypersurface,

forming a causal boundary preventing any light and particles that cross it from returning.

Hence, it effectively introduces dissipation. One can associate with the black hole horizon

a temperature T (appearing in f(r)), and an entropy proportional to its cross-sectional

area A. In Planck units ~ = GN = c = 1, the relation between the area and the entropy is

SBH = A
4 . This structure is called black hole thermodynamics.

Black hole hydrodynamics is a generalization of black hole thermodynamics, similar

to the generalization of field theory thermodynamics to hydrodynamics. While black hole

thermodynamics quantifies the thermal equilibrium situation, black hole hydrodynamics

describes slow derivations from equilibrium. In particular, one can allow the black hole

temperature to be a slowly varying function T (t, xi) = const.
(
1 + p(t, xi)

)
, and consider

black hole itself to be moving at velocity vi(t, x) with respect to some rest frame. The per-

turbed solution to the Einstein equations in this setting will yield a slowly evolving curved

geometry, with the gravity variables providing a geometrical framework for studying the

dynamics of fluids. This can be made precise in the context of a holographic correspon-

dence, where the fluid system lives on a (d + 1) dimensional surface of r = const. in the

(d+ 2) dimensional bulk solution.

The motion of fluids translates to the evolution of the black hole horizon, and the

fluid variables to its geometrical data. The normal vector n to the horizon H satisfies

gABn
AnB = 0. The horizon hypersurface is defined by r = rH = const. and we have

nr = 0 , nt = 1 , ni = vi. (3.3)

Thus there is a geometrical representation of the fluid velocity in terms of the normal

to the black hole horizon hypersurface. As we perturb the black hole and get it out of equi-

librium, the horizon location changes, and up to an overall constant can be parametrized

by rH ∼ 1 + p(t, x). The variable p(t, x) quantifies the deviation from equilibrium and is

identified as the fluid pressure. The deviation of the horizon area measure from equilibrium

is parametrized by the pressure. One gets that the horizon area measure
√
γ scales like

dp(t, xi), where d is the number of space dimensions.

The set of the Einstein equations projected on the horizon

EABn
A = 0 , (3.4)

describe the evolution of the perturbed horizon geometry, and are equivalent to the incom-

pressible NS equations (0.1) [23, 24]. Note that since the Einstein equations are relativistic,

this amounts to taking a particular non-relativistic scaling limit of the fully relativistic fluid-

gravity equations [25, 26]. For example, one of the equations enforces the vanishing of the
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fractional rate of change of horizon area at lowest order and reduces to the incompressibility

condition ∂ivi = 0.

In the gravitational framework, every fluid configuration that solves the incompress-

ible NS equations corresponds to a particular dual bulk solution and corresponding horizon

hypersurface geometry. To describe forced turbulence holographically, one can introduce

a background matter term TAB into the Einstein field equations (3.1) [27]. This can be

used to model the large scale random force pumping energy into the fluid. The energy

injected by the pumping ultimately falls into the black hole, where it is dissipated as heat.

In the turbulent inertial range, the pressure and velocity are stochastic fields, implying

that the dual horizon geometry and measure itself are also random. Therefore, the statis-

tical properties of the random horizon hypersurface (characterized by a sum over surfaces)

may encode the universal statistical structure of turbulence. At the horizon, the energy

dissipation is related to the flux of matter across the surface,
∫

Σ TABn
AnBdΣ [28]. Since

the horizon itself is random, we were inspired to introduce the random measure in order

to quantify the intermittency effects.

4 Discussion

We proposed an analytical formula for the scaling exponents of inertial range incompressible

fluid turbulence in any number of space dimensions d ≥ 2. The idea is that intermittency

can be taken into account by a novel gravitational dressing of the scale invariant Kol-

mogorov spectrum. Mathematically, the coupling to a random geometry with a random

measure based on a log correlated field, maps the fractal structure of the scaling exponents

to a multifractal one.

There is one parameter that depends on the number of dimensions that we denoted

by γ(d). It can be deduced knowing one moment, for instance the energy spectrum. With

this knowledge one can make infinite number of predictions.

Our formula passes the standard analytical consistency checks, such as the convexity

inequality and the absence of a supersonic mode. Its predictions agree with experimental

and numerical data in two, three and four space dimensions. The main challenge is to

identify the origin of the random geometry in a more precise way and determine analytically

the function γ(d). We expect the holographic framework that inspired our formula —

the relation between fluid dynamics and black hole horizon geometry — to provide a

clean calculational scheme. One may also try to calculate γ using some physical models

for the anomalous scaling, such as contributions from vortex filaments [29], or statistical

conservation laws [22].

While equilibrium statistics is characterized by the Gibbs measure, there is yet no

analog of this for non-equilibrium steady state statistics. We speculate that there is a

general principle that allows us to consider the steady state statistics of out of equilibrium

systems as a gravitationally dressed scale invariant one. If correct, this will shed much

light on out of equilibrium dynamics.

Finally, it will be interesting to use the gravitational dressing to study the intermit-

tency effects on the anomalous scaling of the transverse structure functions and multipoint
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correlation functions. Also, our proposed formula is valid for the inertial range of scales,

and most likely does not incorporate statistical signatures of the dissipation range of scales.

It is of interest to know whether the latter can be parametrized by a random geometry,

since after all the Reynolds number is finite in nature.
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