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1 Introduction

It is a well-known fact that in a two-dimensional CFT the Casimir energy on the cylinder

is related to the conformal anomaly coefficient c. This is proven by performing a confor-

mal transformation to flat space accompanied by the transformation law of the energy-

momentum tensor. The Casimir energy can also be extracted from the partition function

Z on S1
β × S1 in the limit of infinite radius of the circle, β →∞,

Z → e−βE + · · · , E = − c

12
. (1.1)

There have been attempts to generalize these results to CFTs in higher dimensions, see for

example [1]. However, there may be no general universal relation between Casimir energies

and conformal anomalies in higher dimensions due to the existence of finite counterterms

that render the result scheme dependent [2].

The situation is more promising for SCFTs. For 4d N = 1 SCFTs with a Lagrangian

description, it was observed in [3, 4] that one can extract the conformal anomalies a and c

from the partition function on S1
β × S3. The latter may be computed by supersymmetric

localization. The result is

Z = e−βEI , (1.2)

where

E =
2

3
(a− c)(ω1 + ω2) +

2

27
(3c− 2a)

(ω1 + ω2)3

ω1ω2
, (1.3)

and I is the superconformal index [5, 6]. The parameters ω1 and ω2 determine the ge-

ometry of S3 and the background R-symmetry fields that must be turned on to preserve

supersymmetry.

The function E gives the leading behavior of the partition function in the β → ∞
limit, as in two dimensions. This result was further clarified in [2, 7] where it was shown

that there are no finite counterterms and E is scheme-independent. The relation (1.3)

was further studied in [8] where the authors discussed a holographic interpretation of this

result.1 We refer to the quantity E and its cousins for SCFTs in other even dimensions as

the supersymmetric Casimir energy.

The purpose of this paper is to propose a simple universal formula for the supersym-

metric Casimir energy E in terms of the ’t Hooft anomalies for continuous R-symmetry

and flavor symmetries. Since conformal anomalies are related to R-symmetry anomalies

by supersymmetry we will recover the result in (1.3) in a limit. Specifically, we propose

that the supersymmetric Casimir energy in D (even) dimensions is an equivariant integral

of the anomaly polynomial AD+2,2 which we write schematically

ED =

∫
AD+2 . (1.4)

1See also [9–15] for related work on how the superconformal index or partition function of 4d N = 1

theories encodes various anomalies.
2See [16] for a pedagogical exposition on anomalies and the anomaly polynomial.
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Here we work equivariantly with respect to a maximal torus of the global symmetry algebra

commuting with the supercharges preserved by the partition function Z. The equivariant

parameters are related to the expectation values of background vector multiplets for these

symmetries, or equivalently the chemical potentials of the superconformal index I. This

proposal is explained in more detail in section 2.

In sections 3, 4 and 5, we perform numerous checks of our proposal for SCFTs with

varying amounts of supersymmetry in two, four and six dimensions, with and without

Lagrangian descriptions. We believe this provides ample evidence for our conjecture. We

hope to return to proving the conjecture in future work.

We conclude in section 6 with a summary and a collection of open questions. In

appendix A we summarize some basic facts about equivariant differential forms and equiv-

ariant integration. Appendix B is devoted to a discussion of the properties of various

special functions that appear in our calculations.

2 Generalities

The superconformal index of an SCFT in D dimensions is defined as a trace over the

Hilbert space H in radial quantization,

I(βj) = TrH(−1)F e−γ{Q,Q
†}e−

∑
j βjtj , (2.1)

where F is the fermion number, Q is a supercharge, and tj are the generators of the Cartan

subalgebra of the superconformal and flavor symmetry algebra commuting with Q, see [5, 6].

The real parameters γ and βj are called chemical potentials. By a standard argument, the

superconformal index is independent of the parameter γ and can be expressed as a trace

over the subspace HQ ⊂ H of states saturating the unitarity bound {Q,Q†} ≥ 0, that is

I(βj) = TrHQ(−1)F e−
∑
j βjtj . (2.2)

The superconformal index therefore receives contributions from short representations of the

superconformal algebra that cannot combine into long representations. As a consequence,

it is invariant under all deformations of the theory that preserve the supercharge Q, and

in particular under marginal deformations of the fixed point.

If the superconformal fixed point appears at the endpoint of a renormalization group

flow triggered by a deformation of a free theory, the superconformal index can be evaluated

in the free theory as a Plethystic exponential of the single-letter index. The Plethystic

exponential of a function f(x) with a Taylor series expansion around x = 0, f(x) =∑∞
n=0 anx

n, is defined as

PE
[
f(x)

]
≡ exp

( ∞∑
n=1

f(xn)− f(0)

n

)
=

1∏∞
n=1(1− xn)an

, (2.3)

with an obvious generalization to functions of many variables. The single-letter index only

receives contributions from the elementary fields of the free theory and their derivatives.

The Plethystic exponential then sums the contributions from all “words” built out of the

– 3 –
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elementary fields. In a gauge theory, one should include only the contributions from gauge-

invariant states. This can be accomplished by introducing additional chemical potentials

for the gauge symmetry, which are then integrated over. The superconformal index can

thus be viewed as a series expansion in e−βi .

A closely related object is the partition function of the theory on S1×SD−1 preserving

the same supercharge Q. The details of the supersymmetric background will of course

depend on the dimension D and the amount of supersymmetry involved. Typically, the

partition function depends on the radius β of S1 and a number of parameters µj describing

the metric on SD−1 and expectation values of background R-symmetry and flavor vector

multiplets. The partition function Z(β, µj) can often be computed exactly by supersym-

metric localization using the supercharge Q and typically takes the form of a matrix integral

of 1-loop determinants and in some cases non-perturbative contributions.

It is intuitively clear by cutting the path integral on S1 that the supersymmetric

partition function Z(β, µj) should be closely related to the superconformal index I(βj).

Indeed, it has been demonstrated in a number of examples, that3

Z(β, µj) = e−βE(µj)I(βj) , (2.4)

where βj = βµj and E(µj) is a finite Laurent polynomial in the rescaled chemical potentials

µj . The extraction of this result often requires careful regularization of 1-loop determinants

and/or re-summation of infinite number of non-perturbative contributions to the localized

path integral Z(β, µj).

The function E(µj) can be interpreted as a supersymmetric Casimir energy and should

be physically meaningful. Indeed, given that the superconformal index I(βj) is a series

expansion in e−βµj , it can be extracted from the supersymmetric partition function in the

limit of infinite radius of S1,

E(µj) = − lim
β→∞

∂

∂β
logZ(β, µj) . (2.5)

The supersymmetric Casimir energy E(µj) is a finite Laurent polynomial in the µj , whose

coefficients are particular linear combinations of the anomaly coefficients for conformal,

R-symmetry, and flavor symmetries used in the construction of the partition function.4

The purpose of this paper is to propose that the supersymmetric Casimir energy in

even dimensions can be extracted directly from the anomaly polynomial of the theory.

We conjecture that E(µj) is an equivariant integral of the anomaly polynomial AD+2 over

RD. We work equivariantly with respect to the Abelian symmetry group generated by the

charges tj commuting with Q. The equivariant parameters are the corresponding chemical

3With 4d N = 1 supersymmetry, it was reported in [4] that there could be a physically meaningful

contribution to the exponential at order O(β−1). However, it was subsequently explained [2] that this is

absent when regularizing in a way that is compatible with the relevant supercharge Q. We expect similar

statements in two and six dimensions. In any case, the presence of such terms would not affect our conjecture

regarding the supersymmetric Casimir energy E, which is the coefficient of the O(β) term.
4In supersymmetric theories the conformal anomalies are related by supersymmetry to R-symmetry

anomalies.
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potentials µj . We can write this as

E(µj) =

∫
µj

AD+2 . (2.6)

Note that for this conjecture to make sense we must view the anomaly polynomial AD+2 as

an equivariant characteristic class on RD. In equivariant cohomology, it is quite natural to

have equivariant forms whose degrees are greater than the dimension of the manifold and

whose equivariant integrals are non-zero. We refer the reader to appendix A for a summary

of equivariant characteristic classes and equivariant integration. Numerous examples will

be considered below.

In the remaining sections, we will test this conjecture extensively for a number of

SCFTs with and without Lagrangian descriptions in two, four and six dimensions.

3 Six dimensions

3.1 N = (2, 0) supersymmetry

The six-dimensional (2, 0) superconformal algebra is osp(8∗|4). This superconformal alge-

bra has the maximal bosonic subalgebra so(2, 6)⊕usp(4). We denote the Cartan generators

of the six-dimensional conformal algebra so(2, 6) by (∆, h1, h2, h3). The generator ∆ cor-

responds to dilatations and (h1, h2, h3) to rotations in three orthogonal planes in R6. We

denote the Cartan generators of the R-symmetry algebra usp(4) = so(5) by (r1, r2).

The supersymmetry generators can be labelled Qr1,r2h1,h2,h3
with the indices taking the

values ±1
2 . To simplify notation we will write ± instead. There are sixteen Poincaré

supercharges consisting of the supercharges with h1h2h3 < 0. The remaining sixteen

supercharges with h1h2h3 > 0 are the conformal supercharges. In radial quantization,

conjugation reverses the sign of h1, h2, h3, r1, r2 and so interchanges Poincaré and conformal

supercharges.5

The superconformal index in six dimensions was introduced in [17]. Here, we will

define the superconformal index using the supercharge Q ≡ Q++
−−−. A different choice of

supercharge will lead to an equivalent superconformal index. This supercharge generates

an su(1|1) subalgebra with

{Q,Q†} = ∆− 2(r1 + r2)− (h1 + h2 + h3) . (3.1)

The superconformal index counts states in short representations of the superconformal

algebra annihilated by Q and Q†, which therefore saturate the unitarity bound

∆ ≥ 2(r1 + r2) + h1 + h2 + h3 . (3.2)

The superconformal index is defined by

I = TrHQ(−1)F
3∏
j=1

q
hj+

r1+r2
2

j pr2−r1 , (3.3)

5We work in Euclidean signature and thus the conformal algebra is so(1, 7).
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X h1 h2 h3 r1 r2

φ 0 0 0 1 0 p−1
√
q1q2q3

φ 0 0 0 0 1 p
√
q1q2q3

ψ++
++−

1
2

1
2 − 1

2
1
2

1
2 −q1q2

ψ++
+−+

1
2 − 1

2
1
2

1
2

1
2 −q1q3

ψ++
−++ − 1

2
1
2

1
2

1
2

1
2 −q2q3

∂ψ 1
2

1
2

1
2

1
2

1
2 q1q2q3

Table 1. The fields of the (2, 0) tensor multiplet saturating the bound (3.2) and their contributions

to the superconformal index. Note that there is a contribution from a fermionic equation of motion,

denoted schematically by ∂ψ. Recall also that ∆(φ) = 2, ∆(ψ) = 5/2 and ∆(H) = 3.

where HQ is the subspace of the Hilbert space in radial quantization that is annihilated

by Q and Q†. The four combinations hj + 1
2(r1 + r2) (with j = 1, 2, 3) and r2 − r1 form

a basis for the space of linear combinations of Cartan generators commuting with Q. The

corresponding fugacities are denoted q1, q2, q3 and p. For convergence we assume that |q1|,
|q2|, and |q3| < 1. F is the fermion number, which we can define by F = 2h1.

3.1.1 Tensor multiplet

The tensor multiplet is a free theory consisting of a 2-form gauge field B with self-dual

curvature H = dB = ?H, fermions ψr1r2h1h2h3
with the same quantum numbers as the Poincaré

supersymmetry generators with h1h2h3 < 0 (and unrestricted values of r1,2), and five real

scalars φ in the fundamental representation of so(5).

Since the tensor multiplet is a free theory, the superconformal index can be evaluated

by enumerating contributions to the single letter index and then summing contributions

from all words using the Plethystic exponential. Combining the contributions shown in

table 1, we find that the index is

I =

[
(p+ p−1)

√
q1q2q3 + q1q2q3 − (q1q2 + q2q3 + q1q3)

(1− q1)(1− q2)(1− q3)

]
. (3.4)

Note that the denominator factors in the single letter index arise from summing up the

action of holomorphic derivatives on the single letter contributions.

On the other hand, the supersymmetric partition function of the tensor multiplet on

S1 × S5 is conjectured to be captured exactly by the partition function of 5d N = 2 SYM

on S5 with gauge group U(1). In order to relate the parameters appearing in the two

partition functions, we define

qj = e−βωj , p = e−βm. (3.5)

The parameter β > 0 is the radius of the circle S1, which determines the 5d gauge coupling

by the formula g2 = 2πβ. The parameters ωj become squashing parameters for the metric

on S5 and m is a real mass parameter for the adjoint N = 1 hypermultiplet inside the

N = 2 tensor multiplet.

– 6 –
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The S5 partition function Z was computed in [18] using supersymmetric localization.

The result was found to be proportional to the superconformal index I given in equa-

tion (3.4) with a pre-factor that may be interpreted in terms of a supersymmetric Casimir

energy. The result is6

Z = e−βE(1)I , (3.6)

where

E(1) = − 1

48ω1ω2ω3

[
σ2

1σ
2
2 −

∑
i<j

ω2
i ω

2
j +

1

4

(∑
j

ω2
j − σ2

1 − σ2
2

)2]
, (3.7)

is the supersymmetric Casimir energy. In writing this expression, we defined new chemical

potentials σ1 ≡ 1
2

∑
j ωj−m and σ2 ≡ 1

2

∑
j ωj+m, which are the chemical potentials conju-

gate to the R-symmetry generators r1 and r2 in the definition of the superconformal index.

In other words, the superconformal index (3.3) is written as TrHQ(−1)F e−β(
∑
j ωjhj+

∑
σara)

together with the constraint σ1 + σ2 =
∑

j ωj . We use the notation E(1) since this is the

contribution to the supersymmetric Casimir energy from a single M5-brane.

Now let us compare the supersymmetric Casimir energy (3.7) with the anomaly poly-

nomial of the free tensor multiplet (one M5-brane) [19],

A8(1) =
1

48

[
p2(NM)− p2(TM) +

1

4

(
p1(NM)− p1(TM)

)2]
. (3.8)

In this expression, TM and NM denote respectively the tangent and normal bundles to

the six-manifold M where the brane is supported, and pj(V ) is the j-th Pontryagin class

of a real vector bundle V , which is a polynomial of degree 2j. It is clear that the structure

of the supersymmetric Casimir energy is mirrored in the anomaly polynomial.

To make the connection precise, we extend the anomaly polynomial (3.8) to an equiv-

ariant form on R6 with respect to the U(1)4 action generated by the combinations of

bosonic generators appearing in the superconformal index. There is a single fixed point

at the origin of R6. Therefore, the equivariant integral of the anomaly polynomial can be

computed using the fixed point theorem. This amounts to replacing the Chern roots of

TM with the chemical potentials ωj and those of NM with σa, and then dividing by the

equivariant Euler class at the origin. Explicitly, we have

p1(NM) −→ σ2
1 + σ2

2 , p1(TM) −→
∑
j

ω2
j , (3.9)

p2(NM) −→ σ2
1σ

2
2 , p2(TM) −→

∑
i<j

ω2
i ω

2
j . (3.10)

Making these replacements and dividing by the equivariant Euler class e(TM) = ω1ω2ω3,

we find

E(1) = −
∫
A8(1) , (3.11)

in agreement with our proposal (up to a conventional minus sign in the definition of the

anomaly polynomial).

6The notations here and in reference [18] are related by ω1 = 1+a, ω2 = 1+b, ω3 = 1+c and δ2 = 1
4
−m2.

We have relaxed the relation a+ b+ c = 0 imposed in [18].

– 7 –
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g rg dg h∨g `i

AN−1 N − 1 N2 − 1 N 2, 3, . . . , N

DN N N(2N − 1) 2N − 2 2, 4, . . . , 2N − 2 and N

E6 6 78 12 2, 5, 6, 8, 9, 12

E7 7 133 18 2, 6, 8, 10, 12, 14, 18

E8 8 248 30 2, 8, 12, 14, 18, 20, 24, 30

Table 2. The rank rg, dimension dg, dual Coxeter number h∨g and exponents {`i}i=1,...,rg of the

simply-laced Lie algebras.

3.1.2 Prediction for interacting theories

Having confirmed our proposal for the free tensor multiplet, we can now make a prediction

for the supersymmetric Casimir energy of the interacting 6d N = (2, 0) theories. The

interacting theories are classified by a choice of simply-laced Lie algebra g.7 The group

theoretic quantities associated to the simply-laced Lie algebras that we need in what follows

are summarized in table 2.

The anomaly polynomial of the interacting theory is [20–22]

A8(g) = rgA8(1) + dg h
∨
g

p2(NM)

24
, (3.12)

where rg, dg and h∨g are the rank, dimension and dual Coxeter number of the simply-laced

Lie algebra g, respectively. We should mention that, as far as we are aware, this formula

for the anomaly polynomial is conjectural for the E-type theories.

Performing the equivariant integral as explained above, we arrive at the conjecture

that the supersymmetric Casimir energy of an interacting (2, 0) theory is

E(g) = −
∫
A8(g) = rgE(1)− dg h∨g

σ2
1σ

2
2

24ω1ω2ω3
, (3.13)

where E(1) is the supersymmetric Casimir energy of the Abelian tensor multiplet theory

given in equation (3.7).

This prediction is very difficult to check because there is no Lagrangian construction in

six dimensions that could be used to evaluate the partition function. Instead, we will use

the conjecture that certain protected observable of the interacting 6d N = (2, 0) theories

on a circle are captured by computations in 5d maximal SYM [23, 24]. In particular, we

suppose that the supersymmetric partition function on S1×S5 is equivalent to the partition

function of 5d maximal SYM on S5 with an appropriate identification of parameters. The

latter can be computed by supersymmetric localization which reduces the path integral of

the theory to a matrix integral [3, 18, 25] (see also [26–30] for related work). In practice, the

resulting matrix integral cannot be evaluated explicitly for general values of the parameters,

at least with present technology. In what follows, we will consider two simplifications of

the problem that overcome this obstacle.

7One can of course also take direct sums of interacting theories and free tensor multiplets.

– 8 –
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3.1.3 Chiral algebra limit

We first consider a special limit of the superconformal index introduced in [18, 31] where the

matrix integral arising from localization of the S5 path integral can be evaluated explicitly.

This limit is

p→
√
q1q2/q3 , (3.14)

or equivalently

m→ 1

2
(ω1 + ω2 − ω3) . (3.15)

In this limit, the superconformal index and partition function preserve a second supercharge

Q+−
++−, which ensures additional cancellations in the matrix model and leads to a dramatic

simplification of the result. This limit plays an important role in the “chiral algebra”

construction of [32] and therefore we refer to it as the chiral algebra limit.

Let us first focus on the interacting theory of type AN−1. The S1 × S5 partition

function is captured by the S5 partition function of five-dimensional maximal SYM with

gauge group SU(N). In the limit (3.15) the partition function reduces to the matrix integral

1

(ω1ω2)
N−1

2

∫
dN−1a

N !

∏
i<j

[
4 sinh

π

ω1
(ai − aj) sinh

π

ω2
(ai − aj)

]
e
− 2π2

βω1ω2ω3

∑
i a

2
i

η(2πi/βω3)N−1
, (3.16)

where
∑

i ai = 0 and η(τ) is the Dedekind eta function. Since the instanton contributions

(the part of the integrand involving the Dedekind eta functions) are independent of ai, the

matrix integral is a sum of Gaussian integrals and can be evaluated explicitly. Remarkably,

the result is proportional to a Plethystic exponential

ZAN−1
= q−cAN−1

/24 PE

[
q2 + q3 + · · ·+ qN

1− q

]
, (3.17)

where

cAN−1
= (N − 1) +N(N2 − 1)

(ω1 + ω2)2

ω1ω2
. (3.18)

For a general simply-laced Lie algebra, the S1 × S5 partition function is expected to

be given the following generalization of equation (3.17)

Z = q−cg/24 PE

[
1

1− q
r∑
i=1

q`i
]
, (3.19)

where

cg = rg + dg h
∨
g

(ω1 + ω2)2

ω1ω2
, (3.20)

and {`i} are the exponents shown in table 2. This formula can be checked by explicit

computation which can be performed for the theories of type AN−1 and DN . The result

is conjectural for the E-type theories since the instanton contributions are unknown. This

expression is the vacuum character of the W-algebra of type g with central charge cg found

in [33]. In the limit ω1 = ω2 = 1, corresponding to a round five-sphere, this result can be

interpreted in terms of the “chiral algebra” construction [32].

– 9 –
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The supersymmetric Casimir energy extracted from the partition function (3.19) is thus

E(g) = −ω3

24
cg . (3.21)

It is simple to check that our prediction (3.13) for the general supersymmetric Casimir

reduces to this formula in the limit (3.15). It is also interesting to note that the super-

symmetric Casimir energy of the six-dimensional theory (3.21) is proportional to the usual

non-supersymmetric Casimir energy of a two-dimensional Toda CFT of type g with central

charge (3.20).

3.1.4 General parameters

The 6d supersymmetric Casimir energy can be extracted from the S1×S5 partition function

in the limit that the radius of S1 becomes large, β → ∞. Therefore it is not necessary

to compute the full partition function in order to extract the supersymmetric Casimir

energy. In this section, we will attempt to compute the supersymmetric Casimir energy

with general parameters turned on by focusing on the β →∞ limit.

We will focus exclusively on the 6d theory of type g = AN−1. We will assume that

the S1 × S5 partition function is captured exactly by the partition function of 5d SU(N)

maximal SYM theory on S5 with gauge coupling

g2 = 2πβ , (3.22)

and for convenience, we set the radius of S5 to 1. Then the supersymmetric Casimir energy

in 6d is identified with the strong coupling limit of the free energy in 5d. In 5d terminology,

the statement is

logZS5 → − g
2

2π
E + · · · as g2 →∞ . (3.23)

To compute the leading behavior at strong coupling, we will first include only the classical

and 1-loop contributions to the partition function, for a moment forgetting the contribu-

tions from instantons saddle points. Later, we will argue that instantons give a certain

correction to the free energy by comparing it with the conjectured free energy and with its

special limit considered in the previous subsection.

Similar computations have been performed before in the literature for the large N free

energy of the S5 partition function [25, 34, 35]. These references considered the parameter

regime where the instanton contributions are suppressed, and thus the partition function

becomes a simple matrix integral involving only classical and 1-loop contributions. We

will compare our result with their free energy and see a perfect agreement at large N . In

particular, the instanton corrections to the free energy in our result begin to appear at

order O(N), which is subleading in the large N expansion. This is therefore consistent

with the expectation that the instanton contributions are suppressed at large N .

The exact partition function ZS5 can be computed using the technique of supersym-

metric localization [3, 18, 27, 28, 30]. The path integral localizes to constant vacuum

expectation values for the scalar field 〈φ〉 = a in the N = 1 vector multiplet. In addition,

there are singular instanton saddle points localized at the three fixed circles of the Killing
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vector
∑3

j=1 ωj hj generated by Q2. As described above, we will first omit the instanton

contributions. The full perturbative partition function takes the form [18, 30, 36]

ZS5(m, ~ω, β) =
1

(ω1ω2)
N−1

2

∫
dN−1a

N !
e
− 2π2

βω1ω2ω3
(a,a)

3∏
i=1

Z
(i)
1-loop(a,m, ~ω) . (3.24)

The integration is over the scalar vev a in the Cartan subalgebra of SU(N) (in our conven-

tions a is real) and ( , ) denotes the inner product on the Cartan subalgebra normalized

such that the norm of all simple coroots is 2.

The 1-loop contributions factorize into three fixed point contributions Z
(i)
1-loop where i

labels one of three fixed points on the base of the Hopf fibration S5 → CP2. Collecting the

three 1-loop determinants, we obtain

3∏
i=1

Z(i) =

(
limx→0 S3(x)/x

S3(m̃)

)N−1 N∏
i>j

S3(iaij |~ω)S3(−iaij |~ω)

S3(m̃+ iaij |~ω)S3(m̃− iaij |~ω)
, (3.25)

where i ≡
√
−1, aij ≡ ai − aj , and m̃ ≡ m + ω1+ω2+ω3

2 . Here S3(z|~ω) is the triple-sine

function whose definition and properties we summarize in appendix B.

We will now evaluate the integral (3.24) in the strong coupling limit, β → ∞. If we

assume that the vector multiplet scalar vev a is very large while other parameters remain

of order one, we can approximate the triple sine function as

logS3(ia|~ω)
sgn(a)=±1
≈ − π

6ω1ω2ω3

(
|a|3 ± i

3

2
(ω1+ω2+ω3)|a|2

− 1

2
(ω2

1 +ω2
2 +ω2

3 +3ω1ω2+3ω2ω3+3ω3ω1)|a|

∓ i

4
(ω1+ω2+ω3)(ω1ω2+ω2ω3+ω3ω1)

)
.

(3.26)

If we further restrict the scalar ai to a Weyl chamber where ai > aj for i > j, then the

perturbative partition function can be approximated as

ZS5 =

∫
[da] e

− 2π
ω1ω2ω3

f(a,~ω,m)
, (3.27)

where

f(a, ~ω,m) ≈ π

β

N∑
i=1

a2
i +

1

12

∑
i>j

(
2(aij)

3 − (aij + im̃)3 − (aij − im̃)3
)

− m̃(ω1+ω2+ω3)

2

∑
i>j

aij +O(β0) =
π

β

N∑
i=1

a2
i −

σ1σ2

2

∑
i>j

aij +O(β0) .

(3.28)

One can evaluate this partition function using the saddle point approximation. Note that

the saddle point solution exists only when σ1σ2 > 0 since the scalar ai are already ordered.

Assuming σ1σ2 > 0, we find the solution

aj =
βσ1σ2

4π
(2j −N − 1) , (3.29)
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which is consistent with our assumption of large aj at large β. Plugging this into the

partition function, we finally obtain

− logZS5 = −β (N2 − 1)Nσ2
1σ

2
2

24ω1ω2ω3
+O(β0) , (3.30)

and hence

Epert(AN−1) = −(N2 − 1)Nσ2
1σ

2
2

24ω1ω2ω3
. (3.31)

We emphasize that this is the result for the supersymmetric Casimir energy we obtain by

removing the instanton contributions to the 5d partition function.

We can now compare this result with our conjecture for the general supersymmetric

Casimir energy (3.13). For type g = AN−1 equation (3.13) reduces to

E(AN−1) = (N − 1)E(1)− (N2 − 1)Nσ2
1σ

2
2

24ω1ω2ω3
. (3.32)

Clearly, we find agreement between our perturbative result (3.31) and the second term in

the right hand side of (3.32). The first term is (N−1) copies of the supersymmetric Casimir

energy of a free tensor multiplet. It is tempting to conjecture that this is the contributions

from instantons. More generally, we can conjecture the instantons in the 5d computation

to contribute rgE(1) to the supersymmetric Casimir energy E(g). Although we could not

perform a complete calculation including instantons, we view the harmony between the

general formula in (3.13) and the perturbative result in (3.31) as strong evidence in favor

of our conjecture.

Finally, we mention that our result is consistent with the large N free energy computed

in [25, 34]. The instanton corrections are indeed suppressed at large N , appearing at

O(N) compared to the leading perturbative contribution at O(N3). We also find that

the conjectured instanton correction, i.e. the first term on the right hand side of (3.32),

is consistent with the exact result in the special limit (3.15). In this limit, the instanton

correction to the free energy becomes

rgE(1) −→ − rg
ω3

24
. (3.33)

In the previous section, we saw that the instanton contribution in the special limit simplifies

to η(2πi/βω3)rg . After performing the modular transformation, one can easily check that

the exact instanton correction to the free energy in the limit β → ∞ is precisely the

formula (3.33). Furthermore, it also agrees with the exact instanton correction of the

abelian U(1) 5d SYM at strong coupling, computed in [18].

3.2 N = (1, 0) supersymmetry

The 6d N = (1, 0) superconformal algebra is osp(8∗|2) with bosonic subalgebra so(2, 6)⊕
usp(2). We denote the conformal generators as above and r is the Cartan generator of

the usp(2) = su(2) R-symmetry. There are eight chiral Poincaré supercharges in the two-

dimensional representation of usp(2), which we denote by Qrh1,h2,h3
with h1h2h3 < 0 and
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r = ±1
2 . In addition, there are eight conformal supercharges with the opposite chirality,

h1h2h3 > 0.

We will define the 6d N = (1, 0) superconformal index using the supercharge Q ≡
Q+
−−−. This generates the subalgebra

{Q,Q†} = ∆− 4r − (h1 + h2 + h3) . (3.34)

There are three Cartan generators hj + r commuting with this supercharge and we will

introduce fugacities qj for them. The superconformal index is defined as

I = TrHQ(−1)F
3∏
j=1

q
hj+r
j zf . (3.35)

Unlike N = (2, 0) supersymmetry, N = (1, 0) superconformal theories can have non-trivial

global (non-R) symmetries. The exponent f above stands for the Cartan generators of the

global symmetry algebra and z is the corresponding fugacity.

3.2.1 E-string theories

A large class of 6d N = (1, 0) SCFTs have been argued to exist using F-theory construc-

tions [37] as well as constraints from anomaly cancellations [38]. Here, we focus exclusively

on a simple class known as ‘E-string’ theories. In M-theory, they appear on the worldvol-

ume of N coincident M5-branes embedded in an end-of-the world brane with E8 symmetry.

As the transverse space is R4 ×R>0 we expect an internal symmetry so(4) ' su(2)1 ×
su(2)2 rotating the R4 directions. We identify the first factor su(2)1 with the usp(2) R-

symmetry in the superconformal algebra, while su(2)2 becomes an additional global sym-

metry. The E-string theories also correspond to small E8 instantons in E8 × E8 heterotic

string theory and are expected to have an E8 global symmetry [39–41].

The anomaly polynomials of E-string theories have been computed in [42] (see also [43]

for more general N = (1, 0) theories). Expanding in powers of N , the anomaly polynomial

takes the form8

AE8+free(N) =
N3

6
p2(NM) +

N2

2
e(NM)A4 +N

(
A2

4

2
− p2(NM)

24
+A8(1)

)
, (3.36)

where A8(1) is the anomaly polynomial of a free N = (2, 0) tensor multiplet (3.8), e(NM)

is the Euler class of the normal bundle, and A4 ≡ 1
4

(
p1(NM) + p1(TM) + TrF 2

)
. The

two-form F is the background curvature for the E8 global symmetry. The subscript “free”

implies that it involves the free hypermultiplet contribution.

We now compute the equivariant integral of this anomaly polynomial. We can recycle

computations involving TM and NM from the previous section, by the replacement

σ1 =
1

2

3∑
j=1

ωj − µ , σ2 =
1

2

3∑
j=1

ωj + µ , (3.37)

8The tensor multiplet anomaly polynomial A8(1) from equation (3.8) and I8 in reference [42] are related

by A8(1) = −I8 + p2(NM)
24

.
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where µ is the chemical potential for the su(2)2 global symmetry and
∑

j ωj is the chemical

potential for the R-symmetry su(2)1. In addition, we have chemical potentials m1, . . . ,m8

for the E8 global symmetry. The equivariant integral of the anomaly polynomial on R6 is

∫
AE8+free(N) =

N3σ2
1σ

2
2

6ω1ω2ω3
− N2σ1σ2

8ω1ω2ω3

[
σ2

1 + σ2
2 +

∑
j

ω2
j + 2

∑
a

m2
a

]

+
N

ω1ω2ω3

[
1

32

(
σ2

1 + σ2
2 +

∑
j

ω2
j + 2

∑
a

m2
a

)2

− σ2
1σ

2
2

24

+
1

4

(
σ2

1 + σ2
2 −

∑
j

ω2
j

)2

+ σ2
1σ

2
2 −

∑
i<j

ω2
i ω

2
j

]
.

(3.38)

The E-string theories do not have a Lagrangian construction in 6d. However, upon

circle compactification, it is believed that they have a low-energy description in terms of

5d N = 1 SYM with Sp(2N) gauge group, an antisymmetric hypermultiplet, and Nf = 8

fundamental hypermultiplets [44, 45]. The non-trivial Wilson line along the compactified

circle breaks the UV E8 global symmetry to SO(16) symmetry in 5d. It is expected that

the full E8 global symmetry is restored in the UV limit of the 5d gauge theory by strong

coupling dynamics involving non-perturbative effects.

We are not aware of a limit analogous to the one in section 3.1.3 for the E-string

SCFTs and thus we proceed as in section 3.1.4 and compute the free energy of the 5d

theory on a squashed S5 in the strong coupling limit and compare it with the anomaly

polynomial. As in section 3.1.4, we first compute the free energy contribution only from the

perturbative partition function and later make a conjecture for the instanton correction.

The perturbative partition function takes the following matrix integral expression:

ZE8

S5 (ma, ~ω, β) =

∫
[da]e

− 4π3r
g2ω1ω2ω3

(a,a) ×
∏
e∈root S3

(
i(e, a)|~ω

)′∏8+1
a=1

∏
ρ∈Ra S3

(
m̃a + i(ρ, a)|~ω

) , (3.39)

where the primed function is defined for zero modes such as S3(0)′ ≡ limx→0 S3(x)/x. This

theory has 8 fundamental hypermultiplets with mass m1, . . . ,m8 and an antisymmetric

tensor hypermultiplet with mass m9 ≡ µ. We have defined shifted masses m̃a ≡ ma +
ω1+ω2+ω3

2 . Ra stands for representations of the hypermultiplets.

We can evaluate the matrix integral in the strong coupling limit g →∞. If we assume

again that the scalar a takes a large saddle point expectation value, then the integral

reduces to

ZE8

S5 =

∫
[da] e

− 4π3

g2ω1ω2ω3
f(a,~ω,ma)

,

f(a, ~ω,ma) ≡
4π2

g2

N∑
i=1

a2
i + fV (a) + fanti(a, µ) +

8∑
b=1

ffund(a,mb) ,

(3.40)
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where,

fV (a) ≡ 1

6

N∑
i>j

[
|ai ± aj |3 −

E
2
|ai ± aj |

]
+

1

6

N∑
i=1

[
|2ai|3 −

E
2
|2ai|

]
+O(g0) ,

fanti(a, µ) ≡ −1

6

N∑
i>j

[
|ai ± aj |3 − 3

[
µ2 − 1

4

( 3∑
k=1

ωk

)2]
|ai ± aj | −

E
2
|ai ± aj |

]
+O(g0) ,

ffund(a,mb) ≡ −
1

6

N∑
i=1

[
|ai|3 − 3

[
m2
b −

1

4

( 3∑
k=1

ωk

)2]
|ai| −

E
2
|ai|
]

+O(g0) , (3.41)

are the contributions from the vector multiplet, the antisymmetric hypermultiplet, and the

fundamental hypermultiplets, respectively. To simplify the expression, we have defined

E ≡
3∑
i=1

ω2
i + 3

∑
i>j

ωiωj . (3.42)

We have also used the shorthand notation: |a ± b|n ≡ |a + b|n + |a − b|n. One can easily

see that the cubic terms cancel, while the remaining terms reduce to

f(a, ~ω,ma) =

4π2

g2

N∑
i=1

a2
i −

1

2
σ1σ2

N∑
i>j

|ai ± aj | −
1

2

N∑
i=1

8∑
b=1

[
1

4

( 3∑
k=1

ωk

)2

−m2
b

]
|ai|+

E
2

N∑
i=1

|ai|+O(g0) .

(3.43)

We now choose a Weyl chamber in which ai > aj for i > j and ai > 0. The solution of the

saddle point equation is

ai =
g2

16π2

[
2σ1σ2(i− 1)−

8∑
b=1

m2
b +

3∑
j=1

ω2
j +

3∑
j>k

ωjωk

]
. (3.44)

This solution makes sense only when all masses are much smaller than the ωj ’s.

Inserting this solution back into the partition function, we find the free energy of the

E-string theory when g2 →∞

− logZE8

S5 = − N3g2σ2
1σ

2
2

24πω1ω2ω3
− N2g2σ1σ2

32πω1ω2ω3

[
σ2

1 + σ2
2 +

3∑
j=1

ω2
j + 2

8∑
b=1

m2
b

]

− Ng2

96πω1ω2ω3

[
3

4

[
σ2

1 + σ2
2 +

3∑
j=1

ω2
j + 2

8∑
b=1

m2
b

]2

− σ2
1σ

2
2

]
+O(g0) .

(3.45)
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We now identify the 5d gauge coupling with the radius of the 6d circle by g2 = 4πβ.

Note that this differs by a factor 2 from the relation in the N = (2, 0) case. With this

identification, the perturbative contribution to the supersymmetric Casimir energy is

EE8
pert = − N3σ2

1σ
2
2

6ω1ω2ω3
− N2σ1σ2

8ω1ω2ω3

[
σ2

1 + σ2
2 +

3∑
j=1

ω2
j + 2

8∑
b=1

m2
b

]

− N

24ω1ω2ω3

[
3

4

[
σ2

1 + σ2
2 +

3∑
j=1

ω2
j + 2

8∑
b=1

m2
b

]2

− σ2
1σ

2
2

]
+O(g0) .

(3.46)

A comparison with the equivariant integral (3.38) shows that

EE8
pert(N)−N

∫
A8(1) = −

∫
AE8+free(N) . (3.47)

Therefore we find agreement of our perturbative computation with the prediction for the

full supersymmetric Casimir energy of the E-string theory up to a correction N
∫
A8(1),

which is −N times the contribution from a free tensor multiplet (3.7). We view this as

strong evidence in favor of our prediction. As in section 3.1.4, full consistency requires that

the correction

EE8
inst = −N

∫
A8(1) , (3.48)

is the contribution to the supersymmetric Casimir energy from instantons.

4 Four dimensions

4.1 N = 1 supersymmetry

The four-dimensional N = 1 superconformal algebra is su(2, 2|1), which has a maximal

bosonic subalgebra su(2, 2)⊕ u(1). We will denote the Cartan generators of the conformal

subalgebra su(2, 2) by (∆, h1, h2), where ∆ is the dilatation generator and (h1, h2) generate

rotations in two orthogonal planes. The u(1) R-symmetry generator is r.

We define the N = 1 superconformal index using the supercharge with quantum num-

bers h1 = h2 = −1
2 and r = 1. This supercharge generates the subalgebra

{Q,Q†} = ∆− h1 − h2 −
3

2
r , (4.1)

and the Cartan generators commuting with the supercharges Q and Q† are h1 + r
2 and

h2 + r
2 , together with the Cartan generators f of any flavor symmetry. The superconformal

index is defined by

I = TrHQ(−1)Fph1+ r
2 qh2+ r

2af , (4.2)

where HQ is the subspace of states in radial quantization that saturate the unitarity bound

∆−h1−h2− 3
2r ≥ 0. We have introduced fugacities p, q and a respectively for the Cartan

generators h1 + r
2 , h2 + r

2 and f . For convergence we assume that |p|, |q| < 1.
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4.1.1 Lagrangian theories

For an N = 1 SCFT that has a weakly-coupled Lagrangian description in the UV, the

superconformal index can be computed by enumerating gauge invariant operators in the

UV and then identifying the correct IR R-symmetry.

Let us consider a theory with a compact semi-simple gauge group G, flavor symmetry

F , and chiral multiplets transforming in a complex representation R of G×F . We introduce

an additional fugacity ζ valued in the maximal torus TG ⊂ G. The superconformal index

is then a matrix integral

I =

∫
[dζ] · ∆̂(ζ) · Ivm(ζ) · Icm(ζ) , (4.3)

where

∆̂(ζ) ≡ 1

|W |
∏
e∈∆̂+

(1− ζe)(1− ζ−e) (4.4)

is the Haar measure on G. The notation ∆̂+ denotes the set of positive roots and |W | is

the dimension of the Weyl group.

The integrand in (4.3) consists of contributions from vector multiplets and chiral mul-

tiplets, which may be computed as Plethystic exponentials of the single-letter indices. The

contributions are

Ivm = PE

[
2pq − p− q

(1− p)(1− q)χadj(ζ)

]
,

Icm = PE

[ ∑
(ρ,ρ′)∈R

(p q)
rρ,ρ′

2 ζρaρ
′ − (pq)1−

rρ,ρ′
2 ζ−ρa−ρ

′

(1− p)(1− q)

]
,

(4.5)

where χadj(ζ) is the character of the adjoint representation of G and (ρ, ρ′) are the weights

of the representation R of G× F . rρ,ρ′ is the u(1) charge of the chiral multiplet at the IR

fixed point, which can be determined in a given theory by anomaly cancellation and/or

a-maximization [46].

The partition function of a Lagrangian N = 1 theory on S1×S3 may also be computed

using supersymmetric localization [4]. The parameters of the S1 × S3 partition function

are related to the parameters of the superconformal index by

p = e−βω1 , q = e−βω2 , a = e−βm, (4.6)

where β > 0 is the radius of S1, (ω1, ω2) are squashing parameters for the geometry of

S3, and m are expectation values of background vector multiplets for flavor symmetries.

Similar to the superconformal index, the path integral on S1 × S3 reduces to a matrix

integral

Z =

∫
[dζ] · ∆̂(ζ) · Zvm(ζ) · Zcm(ζ) , (4.7)

where ζa = e−βza with za ∼ za + 2πi/β is the gauge holonomy around S1. The integrand

is a product of 1-loop determinants from the vector multiplets and chiral multiplets, which
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take the form of infinite products over KK-momenta around S1 and require careful regular-

ization. In reference [2] (see also [13]), a ζ-function regularization scheme compatible with

the supercharge Q used in localization was proposed and we will employ this regularization

scheme in what follows.

The regularized 1-loop determinants for the vector multiplets and chiral multiplets

take the form

Zvm = e−βE
vm
Ivm, Zcm = e−βE

cm
Icm, (4.8)

where Ivm and Icm are the contributions to the superconformal index given in (4.5). As

shown in reference [2], the functions appearing in the exponentials are9

Evm =
∑
e∈∆

f

(
〈z, e〉+

ω1 + ω2

2

)
,

Ecm =
∑

(ρ,ρ′)∈R

f

(
〈z, ρ〉+ 〈m, ρ′〉+ (rρ,ρ′ − 1)

ω1 + ω2

2

)
,

(4.9)

where

f(u) =
u3

6ω1ω2
− ω2

1 + ω2
2

24ω1ω2
u , (4.10)

and 〈 , 〉 denotes the canonical pairing between a Cartan subalgebra and its dual. In a

consistent theory, there are no cubic or mixed ’t Hooft anomalies for the gauge symmetry

G, meaning that the total contribution E = Evm+Ecm is independent of the gauge chemical

potential z. The prefactor e−βE can then can be pulled outside the matrix integral and the

S1×S3 partition function is directly proportional to the superconformal index, Z = e−βEI.

The function E is the supersymmetric Casimir energy on S1 × S3.

We shall now identify E with the equivariant integral of the anomaly polynomial of

the corresponding N = 1 SCFT. In four dimensions, anomalies arise from massless chiral

fermions coupled to background gauge fields. For a chiral fermion in a representation R of

the group K, the six-form anomaly polynomial is

A6 =
[
Â(TM) · Tr(eF )

]
6

=
Tr(F 3)

6
− p1(TM)

24
Tr(F ) , (4.11)

where Â(TM) is the A-roof genus of a four-dimensional manifold M , p1(TM) is the first

Pontryagin class, and F is the curvature of the associated K-bundle corresponding to

the representation R. The subscript |6 means we extract the six-form component in the

polynomial expansion in the curvatures.

We consider M = R4 and work equivariantly with respect to K × U(1)2 where U(1)2

are the rotations generated by (h1, h2). We introduce equivariant parameters m for K

and (ω1, ω2) for U(1)2 and evaluate the equivariant integral using the fixed point theorem.

There is a single fixed point at the origin of R4. Therefore, the equivariant integral amounts

to replacing the Chern roots of the characteristic classes by the corresponding equivariant

9In reference [4] there were additional contributions in the exponentials at order O(β−1), which are

absent in the regularization scheme introduced in [2].
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U(1)1 U(1)2 U(1)r F G

ω1 ω2
ω1+ω2

2 m z

Table 3. Equivariant parameters in the 4d N = 1 superconformal index.

parameters, and dividing by the equivariant Euler class at the origin, e(TM) = ω1 ω2. For

the characteristic classes appearing in (4.11) we have

p1(TM) −→ ω2
1 + ω2

2 Tr(Fn) −→
∑
ρ∈R
〈m, ρ〉n. (4.12)

Therefore the equivariant integral of the anomaly polynomial is∫
A6 =

∑
ρ∈R

[〈m, ρ〉3
6ω1ω2

− ω2
1 + ω2

2

24ω1ω2
〈m, ρ〉

]
=
∑
ρ∈R

f
(
〈m, ρ〉

)
(4.13)

where the function f(u) is defined in (4.10).

Now we consider the case relevant for the N = 1 superconformal index where we take

the K-bundle to be a product of the gauge group G, a global symmetry group F , and the

R-symmetry U(1)r, K = G × F × U(1)r. The corresponding equivariant parameters are

summarized in table 3. The contributions from fermions in vector and chiral multiplets are:

• A vector multiplet contains a chiral fermion in the adjoint representation of G with

U(1)r charge 1.

• A chiral multiplet whose lowest component has U(1)r charge r contains a chiral

fermion with charge r − 1.

Summing these contributions to the anomaly polynomial, we find that its equivariant

integral is∫
A6 =

∑
e∈∆

f

(
〈z, e〉+ ω1 + ω2

2

)
+
∑

(ρ,ρ′)∈R

f

(
〈z, ρ〉+〈m, ρ′〉+(rρ,ρ′−1)

ω1+ω2

2

)
. (4.14)

This is exactly the supersymmetric Casimir energy E, i.e. the sum of the two terms in (4.9).

We therefore conclude that for N = 1 SCFTs realized by Lagrangian theories in the UV,

the supersymmetric Casimir energy is an equivariant integral of the anomaly polynomial.

Note that the anomaly polynomial encodes potential contributions from cubic and

mixed ’t Hooft gauge anomalies, as well as global anomalies. If they were present, E

would contain terms cubic or quadratic in the gauge holonomy z, which would violate

the periodicity za ∼ za + 2πi/β and imply that the holonomy integral in the S1 × S3

partition function is ill defined. This is consistent with the fact that the superconformal

index computation for a theory with broken gauge or R-symmetry does not make sense.

For a consistent theory, E is independent of z.
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4.1.2 Example: N = 1 superconformal QCD

Before writing a general expression for the supersymmetric Casimir energy, we consider

a concrete example. Let us consider N = 1 SQCD with G = SU(Nc) gauge group and

F = SU(Nf )1 × SU(Nf )2 × U(1)B flavor symmetry. The theory has Nf chiral multiplets

Q in the fundamental representation and Nf chiral multiplets Q̃ in the anti-fundamental

representation of SU(Nc). The quarks Q and Q̃ have +1 and −1 baryon charge respectively,

and R-charge r = (Nf −Nc)/Nf .

To simplify our expressions, we find it convenient to introduce the notation

σ =
1

2
(ω1 + ω2) , (4.15)

for the chemical potential conjugate to U(1)r. With this notation, the supersymmetric

Casimir energy, or equivalently the equivariant integral of the anomaly polynomial, is

given by

E =

Nc∑
i 6=j

[
(zi − zj + σ)3

6ω1ω2
− ω2

1 + ω2
2

24ω1ω2
(zi − zj + σ)

]
+

(Nc − 1)σ

12
(4.16)

+

Nc∑
i=1

Nf∑
j=1

[
(zi +mj + b+ (r − 1)σ)3

6ω1ω2
− ω2

1 + ω2
2

24ω1ω2

(
zi +mj + b+ (r − 1)σ

)]

+

Nc∑
i=1

Nf∑
j=1

[
(m̃j − zi − b+ (r − 1)σ)3

6ω1ω2
− ω2

1 + ω2
2

24ω1ω2

(
m̃j − zi − b+ (r − 1)σ

)]
,

where mi and m̃j (subject to
∑

imi =
∑

j m̃j = 0) are the chemical potentials for the

flavor symmetries SU(Nf )1 and SU(Nf )2 and b is the chemical potential for U(1)B.

Let us now expand this formula and identify the contributions from the various anoma-

lies that can occur. It is straightforward to show that

ω1ω2E =
(
(r − 1)Nf +Nc

)
σ

N∑
i=1

z2
i +

k111

6

Nf∑
i=1

m3
i +

k222

6

Nf∑
i=1

m̃3
i

+ k11r σ

Nf∑
i=1

m2
i + k22r σ

Nf∑
i=1

m̃2
i + k11B b

Nf∑
i=1

m2
i + k22B b

Nf∑
i=1

m̃2
i +

kBBr
2

σ b2

+
krrr

6
σ3 − kr

24
(ω2

1 + ω2
2)σ , (4.17)

where

k111 = k222 = Nc , k11r = k22r = (r − 1)
Nc

2
,

k11B = k22B =
Nc

2
, kBBr = 2(r − 1)NfNc , (4.18)

krrr = 2(r − 1)3NfNc +N2
c − 1 , kr = 2(r − 1)NfNc +N2

c − 1 ,

are the cubic and linear ’t Hooft anomaly coefficients for currents labeled by the corre-

sponding subscript, i.e. k11B is the cubic anomaly coefficient from a triangle diagram with

– 20 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
2

two SU(Nf )1 and one U(1)B currents. The first term on the right hand side of (4.17) is

quadratic in z and corresponds to the quadratic gauge anomaly from the SU(Nc)
2×U(1)r

triangle diagram. Indeed, this term vanishes with the correct R-charge assignment r =

(Nf − Nc)/Nf . The remaining terms on the right-hand side of (4.17) encode all non-

vanishing global anomalies for this theory. Each anomaly is described by a triangle dia-

gram with a current at each vertex. The coefficient kr corresponds to the triangle diagram

involving a U(1)r current and two energy momentum tensors.

4.1.3 General formula

Suppose that we have a 4d N = 1 SCFT with U(1)R superconformal R-symmetry and

global symmetry F =
∏
a Fa ×

∏
I U(1)I where U(1)I are Abelian flavor symmetries, and∏

a Fa is a semi-simple flavor symmetry. Expanding the general expression (4.11), we find

that the supersymmetric Casimir energy is

E =

∫
A6 =

krrr
6ω1ω2

σ3 +
krrI

2ω1ω2
σ2mI +

krIJ
2ω1ω2

σmImJ +
kIJK
6ω1ω2

mImJmK

+
krab

2ω1ω2
σ〈ma,mb〉+

kIab
2ω1ω2

mI〈ma,mb〉

− kr
24ω1ω2

σ(ω2
1 + ω2

2)− kI
24ω1ω2

mI(ω
2
1 + ω2

2) , (4.19)

where kABC and kA are the cubic and linear ’t Hooft anomalies. When the theory has a

Lagrangian description one has kABC = Trf (ABC) and kA = Trf (A) where the trace is

over the chiral fermions f in the theory. Notice however that the anomaly polynomial is

also applicable and useful for interacting theories without a known Lagrangian description.

Note that if the flavor symmetry contains SU(N) factors, there may be additional cubic

anomaly terms which we have omitted from (4.19).

Note that the relation between the conformal and ’t Hooft anomalies in a 4d N = 1

theory is

a =
9

32
krrr −

3

32
kr , c =

9

32
krrr −

5

32
kr . (4.20)

In the absence of flavor symmetries, or after setting the chemical potentials for any flavor

symmetries to zero, one can use the relation (4.20) to reproduce the following result for

the supersymmetric Casimir energy10

E =
2

3
(a− c)(ω1 + ω2) +

2

27
(3c− 2a)

(ω1 + ω2)3

ω1ω2
, (4.21)

which was derived in reference [2, 13].

4.2 N = 2 supersymmetry

The 4d N = 2 superconformal algebra is su(2, 2|2), which has the maximal bosonic subal-

gebra su(2, 2) ⊕ su(2)R ⊕ u(1)r. The Cartan generators of the conformal algebra su(2, 2)

are denoted as in the previous section, while the R-symmetry generator in the Cartan of

su(2)R is denoted by R and the superconformal R-symmetry u(1)r by r.

10This result also agrees with the SUSY Casimir energy in [4], up to O(β−1) terms.
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We will define the superconformal index using the supercharge Q with quantum num-

bers h1 = h2 = −1
2 , R = 1

2 and r = −1
2 . This supercharge generates the commutator

{Q,Q†} = ∆− h1 − h2 − 2R+ r , (4.22)

and a linearly independent basis of Cartan generators commuting with Q are h1− r, h2− r
and r + R, together with the generators f of any flavor symmetry. The superconformal

index is defined as

I = TrHQ(−1)F ph1−rqh2−rtr+Raf , (4.23)

where HQ is the subspace of states in radial quantization that saturate the bound ∆−h1−
h2 − 2R + r ≥ 0. We have introduced fugacities p, q, t and a for the Cartan generators

commuting with Q. For convergence we assume that |p|, |q|, |t|, |pq/t| < 1.

4.2.1 Lagrangian theories

In this section, we will focus on 4d N = 2 SCFTs that have UV Lagrangian descriptions

constructed from N = 2 vector multiplets and hypermultiplets. We consider a theory

with semi-simple gauge group G, flavor symmetry F , and hypermultiplets in a complex

representation R of F × G. For simplicity, we will not consider the possibility of half-

hypermultiplets.

Introducing an additional fugacity ζ valued in the maximal torus TG ⊂ G, the super-

conformal index can be expressed as a matrix integral

I =

∫
[dζ] · ∆̂(ζ) · Ivm(ζ) · Ihm(ζ) , (4.24)

where the Haar measure was defined in equation (4.4). The contributions to the integrand

from vector multiplets and hypermultiplets are

Ivm = PE

[(
− p

1− p −
q

1− q +
pq/t− t

(1− p)(1− q)

)
χadj(ζ)

]
,

Ihm = PE

[ √
t− pq/

√
t

(1− p)(1− q)
∑

(ρ,ρ′)∈R

(ζρaρ
′
+ ζ−ρa−ρ

′
)

]
,

(4.25)

where χadj(ζ) is the character of the adjoint representation of the gauge group G and (ρ, ρ′)

are the weights of the representation R.

We now compare the superconformal index with the S1 × S3 partition function. To

make the connection, we introduce chemical potentials

p = e−βω1 , q = e−βω2 , t = e−βγ , a = e−βm. (4.26)

It is also convenient to define σ = γ −∑j ωj so that the superconformal index becomes

I = TrHQ(−1)F e−β(
∑
j ωjhj+γR+σr+mf). (4.27)

In the S1 × S3 partition function, ωj becomes squashing parameters, m are expectation

values for background flavor vector multiplets, and γ, σ are the background expectation

values of background R-symmetry vector multiplets.
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The partition function of a Lagrangian N = 2 theory can be computed by viewing it

as an N = 1 theory with distinguished flavor symmetries due to the extra R-symmetry.

The contributions to the integrand from the 1-loop determinants of vector multiplets and

hypermultiplets are

Zvm = e−βE
vmIvm, Zhm = e−βE

hmIhm, (4.28)

where

Evm = −σ
[ ∑
e∈∆+

〈e, z〉2 +
nV
12

(γ2 + γσ + ω1ω2)

]
,

Ehm = σ

[
1

2

∑
(ρ,ρ′)∈R

(
〈ρ, z〉+ 〈ρ′,m〉

)2
+
nH
24

(σ2 − ω2
1 − ω2

2)

]
,

(4.29)

where nV = dim(G) is the number of vector multiplets and nH = dim(R) is the number of

hypermultiplets. It is again illuminating to express the exponential contributions in terms

of the function f(z) defined in equation (4.10). We find that

Evm =
∑
λ∈adj

[
f

(
〈λ, z〉 − σ

2
+
γ

2

)
+ f

(
〈λ, z〉 − σ

2
− γ

2

)]
,

Ehm =
∑

(ρ,ρ′)∈R

[
f

(
〈ρ, z〉+ 〈ρ′,m〉+

σ

2

)
+ f

(
− 〈ρ, z〉 − 〈ρ′,m〉+

σ

2

)]
.

(4.30)

It is straightforward to identify the terms in (4.30) with the contributions from the

fermions in the hypermultiplets and the vector multiplets to the equivariant integral of

the anomaly polynomial. The contribution to the equivariant integral of the anomaly

polynomial from a single fermion in a 4d N = 2 supermultiplet is

f
(
〈ρ, z〉+ 〈ρ′,m〉+ r(γ − ω1 − ω2) +Rγ

)
, (4.31)

where ρ is the gauge weight, ρ′ the flavor weight, and (R, r) are the R-symmetry charges of

the fermion. The contributions from vector multiplets and hypermultiplets are as follows:

• From the vector multiplet, we have a pair of chiral fermions with (R, r) = (±1
2 ,−1

2)

for each weight λ of the adjoint representation.

• From the hypermultiplet, we have a pair of conjugate fermions with (R, r) = (0, 1
2)

for each weight (ρ, ρ′) of the complex representation R.

Summing the contributions from all fermions ψ, the supersymmetric Casimir energy

can be written

E =
σγ2

ω1ω2

Trψ(rR2)

2
+

σ3

ω1ω2

Trψ(r3)

6
−σ(ω2

1 + ω2
2)

ω1ω2

Trψ(r)

24
+

σ

ω1ω2

∑
ψ

rψ〈ρψ,m〉2
2

. (4.32)

This formula can be expressed in terms of the representation R of G× F as follows

E = −1

8
dim(R)

σ(σ + ω1 + ω2)2

ω1ω2
+

1

24

(
dim(R)− dim(G)

)σ(σ2 − ω2
1 − ω2

2)

ω1ω2

+
σ

2ω1ω2

∑
b

krbb〈mb,mb〉+
σ

2ω1ω2

∑
I,J

krIJ mImJ ,
(4.33)
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where, in order to express the flavor symmetry anomalies, we have unpackaged the flavor

symmetry as a product of simple and Abelian factors F =
∏
b Fb×

∏
I U(1)I . The numbers

kb and kIJ are the ’t Hooft anomaly coefficients for the triangle diagrams U(1)r × F 2
b and

U(1)r ×U(1)I ×U(1)J respectively. Explicitly, we have

• The U(1)r × F 2
b anomaly is

krbb =
∑
j

T
(
R(b)
j

)
, (4.34)

where we decompose R → ⊕jR(b)
j into irreducible representations of the simple factor

Fb, and T (R(b)
j ) is the index of the representation normalized so that the index of

the adjoint representation is the dual Coxeter number h∨.

• The U(1)r ×U(1)I ×U(1)J anomaly is

krIJ =
∑
j

q
(I)
j q

(J)
j , (4.35)

where the summation j is over hypermultiplets and q
(I)
j is the charge of the j-th

hypermultiplet under U(1)I .

4.2.2 General formula

Based on the Lagrangian computations, or the generic form of the anomaly polynomial

with 4d N = 2 superconformal symmetry, we can now make the following prediction for

the supersymmetric Casimir energy of a general 4d N = 2 SCFT,

E =
1

2
(c− 2a)

σ(σ + ω1 + ω2)2

ω1ω2
+ (c− a)

σ(σ2 − ω2
1 − ω2

2)

ω1ω2

+
σ

4ω1ω2

∑
b

krbb〈mb,mb〉+
σ

4ω1ω2

∑
I,J

krIJ mImJ ,
(4.36)

where, as above, the summation b is over simple factors and I is over Abelian factors of the

flavor symmetry group. The anomaly coefficients a, c, krbb and krIJ are defined directly in

the conformal field theory in terms of correlation functions of the R-symmetry and flavor

symmetry currents.

In a Lagrangian theory,

c− a =
1

24

(
dim(R)− dim(G)

)
,

c− 2a = −1

4
dim(R) ,

(4.37)

and krbb and krIJ are defined in equations (4.34) and (4.35) respectively, in which case we

reproduce (4.33).
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4.2.3 Example: N = 2 superconformal QCD

As an illustration of a Lagrangian theory, we briefly consider N = 2 superconformal QCD,

that is, SU(N) gauge theory with 2N fundamental hypermultiplets. This theory arises

in class S from a sphere with two maximal and two minimal punctures and has flavor

symmetry (at least) SU(N)× SU(N)×U(1)×U(1). We introduce corresponding chemical

potentials yi, zi, b1 and b2.

The supersymmetric Casimir energy is found to be

E(N) = −N
2 − 1

8

σ(σ + ω1 + ω2)2

ω1ω2
+
N2 + 1

24

σ(σ2 − ω2
1 − ω2

2)

ω1ω2

+
N

2

σ

ω1ω2

N∑
i=1

(y2
i + z2

i ) +
N2

2

σ

ω1ω2
(b21 + b22) ,

(4.38)

which agrees with (4.36) since

c =
1

6
(2N2 − 1) , a =

1

24
(7N2 − 5) , kSU(N) = N , kU(1) = N2. (4.39)

This agreement was of course guaranteed by the general construction of section 4.2.1. A

much more non-trivial check would be to compute the supersymmetric Casimir energy of

a theory without a known Lagrangian construction.

4.2.4 Example: T3

We now want to test our conjecture for the supersymmetric Casimir energy with a “non-

Lagrangian” example. We consider the T3 theory with E6 flavor symmetry discovered by

Minahan and Nemeschansky [47]. This theory arises in class S by compactifying the 6d

N = (2, 0) theory of type A2 on a sphere with three maximal punctures [48]. The flavor

symmetry manifest in this construction is SU(3)3 ⊂ E6.

The superconformal index of T3 has been computed by exploiting consistency with

S-duality in reference [49]. The same idea can be used to compute the supersymmetric

Casimir energy. In duality frame (1) we have SU(3) superconformal SQCD. In duality

frame (2) we have a fundamental hypermultiplet of SU(2) coupled to T3 by gauging an

SU(2) ⊂ SU(3) at one puncture. This is illustrated in figure 1.

We introduce chemical potentials a and b for the U(1) symmetries at the two minimal

punctures and zj and yj for the SU(3) symmetries at the two maximal punctures. In duality

frame (1), we further introduce chemical potentials xj for the SU(3) gauge symmetry. The
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SU(3)z SU(3)y

U(1)a U(1)b

SU(3)x

T3

SU(3)z SU(3)y

U(1)s

SU(2)e

⇢ SU(3)

(1) (2)

Figure 1. S-duality transformation relating SU(3) superconformal SQCD to a T3 coupled to a

fundamental SU(2) hypermultiplet. Subscripts correspond to chemical potentials in main text.

supersymmetric Casimir energy is

E(1) =

3∑
i=1

3∑
j=1

f

[
a+ zi − xj +

σ

2

]
+ f

[
− a− zi + xj +

σ

2

]

+
3∑
i=1

3∑
j=1

f

[
b+ yi + xj +

σ

2

]
+ f

[
− b− yi − xj +

σ

2

]

+

3∑
i=1

3∑
j=1

f

[
xi − xj +

σ

2
+
γ

2

]
+ f

[
xi − xj +

σ

2
− γ

2

]

− f
[
σ

2
+
γ

2

]
− f

[
σ

2
− γ

2

]
.

(4.40)

As a consistency check, it is straightforward to see that this expression is independent of

x1, x2 and x3 (here it is important that x1 + x2 + x3 = 0).

In duality frame (2), we introduce the chemical potential e for the SU(2) ⊂ SU(3)

being gauged and a chemical potential s for the U(1) symmetry of the hypermultiplet. The

supersymmetric Casimir energy in this frame is

E(2) = f

[
e+ s+

σ

2

]
+ f

[
e− s+

σ

2

]
+ f

[
− e+ s+

σ

2

]
+ f

[
− e− s+

σ

2

]
+ f

[
2e+

σ

2
+
γ

2

]
+ f

[
2e+

σ

2
− γ

2

]
+ f

[
− 2e+

σ

2
+
γ

2

]
+ f

[
− 2e+

σ

2
− γ

2

]
+ f

[
σ

2
+
γ

2

]
+ f

[
σ

2
− γ

2

]
+ ET3 , (4.41)

where ET3 is the supersymmetric Casimir energy of T3.

We now want to compute ET3 by setting E(1) = E(2). To compare the expressions,

we note that the non-manifest SU(3) chemical potentials of the T3 theory are given by

{w1, w2, w3} = {r+e, r−e,−2r} where r = −1
2(a+ b). Furthermore, we have s = 3

2(a− b).
With these identifications, we find

ET3 =
3

2

σ

ω1ω2

3∑
i=1

(w2
i + y2

i + z2
j )− 5

8

σ(σ + ω1 + ω2)2

ω1ω2
+

11

24

σ(σ2 − ω2
1 − ω2

2)

ω1ω2
. (4.42)
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Note that the dependence of the flavor parameters is∑
i<j

(w2
i + y2

i + z2
i ) = 〈m,m〉2, (4.43)

where m is the chemical potential for the E6 flavor symmetry. The expression in (4.42)

is in precise agreement with the conjecture (4.36) using the known conformal anomalies

c = 13
6 and a = 41

24 , and flavor anomaly kE6 = 3.

4.2.5 Schur limit and chiral algebras

Finally, we consider a particularly simple limit of the 4d N = 2 superconformal index in

order to make contact with the work [50] on chiral algebras. This limit may be reached

from our general construction by setting q = t. The combinations of Cartan generators

appearing in the definition of the superconformal index now commute with an additional

supercharge, leading to dramatic simplifications. In particular, the superconformal index

depends only on q.

It was shown in [50] that the superconformal index becomes the character of the

vacuum representation V0 of a 2d chiral algebra,

I(q) = TrV0(qL0) , (4.44)

whose 2d central charge is related to the 4d conformal anomaly by

c2d = −12c . (4.45)

Let us now consider the same limit of the supersymmetric Casimir energy, by setting

γ = ω2. From the general formula (4.36), we find that the supersymmetric Casimir energy

now depends only on c (we turn off chemical potentials for flavor symmetries in this section)

and in particular

e−βE = qc/2. (4.46)

Combining with the superconformal index, we find that the S1 × S3 partition function is

Z = TrV0

(
qL0−c2d/24

)
, (4.47)

which reproduces the character of the vacuum representation, but now including the con-

formal anomaly prefactor that is necessary for good modular properties. This may be a

hint towards interesting “modular” properties of the full S1 × S3 partition function of 4d

N = 2 theories with general fugacities.

4.3 N = 4 supersymmetry

As a final example in four dimensions, we consider N = 4 SYM with gauge group G. This

theory has su(2, 2|4) superconformal algebra whose bosonic subalgebra is so(2, 4)× so(6)R.

In this section, we denote the Cartan generators of the R-symmetry as (R1, R2, R3).

We will define a superconformal index with a supercharge QR1R2R3
h1h2

= Q−−−−− giving

the commutator {Q,Q†} = ∆ − h1 − h2 + R1 + R2 + R3. The superconformal index will

count the protected states commuting with this supercharge.
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The superconformal index is defined as

IN=4 = Tr(−1)F e−βω1h1−βω2h2−βm1R1−βm2R2−βm3R3 , (4.48)

where ω1,2,m1,2,3 are the chemical potentials for the four Cartan generators commuting

with Q and thus they are subject to the constraint ω1 + ω2 +m1 +m2 +m3 = 0.

The S1×S3 partition function of the N = 4 theory is computed in [6] from the UV free

theory Lagrangian using a localization argument. Taking into account the regularization

factors carefully, the partition function can be written as

ZN=4 = e−βE
N=4

IN=4, (4.49)

where

EN=4 = dG
m1m2m3

2ω1ω2
. (4.50)

The supersymmetric Casimir energy is again equivalent to the equivariant integral of

the anomaly polynomial. The N = 4 vector multiplet contains 4 chiral fermions carrying

the following R-charges:

R1 R2 R3

λ 1
2

1
2

1
2

χ1 −1
2 −1

2
1
2

χ2
1
2 −1

2 −1
2

χ3 −1
2

1
2 −1

2

The equivariant integral of the anomaly polynomial can be easily performed with these

R-charge data, and one obtains∫
AN=4

6 =
dG
ω1ω2

4∑
i=1

[
µ3
i

6
− (ω2

1 + ω2
2)µi

24

]
= dG

m1m2m3

2ω1ω2
, (4.51)

where µi are weights of the spinor representation of SO(6) R-symmetry, i.e. µ1 = m1+m2+m3
2 ,

µ2 = −m1−m2+m3
2 , µ3 = m1−m2−m3

2 , µ4 = −m1+m2−m3
2 . Indeed, this result agrees with the

supersymmetric Casimir energy in (4.50).

5 Two dimensions

5.1 N = (0, 2) supersymmetry

We consider the superconformal index (or “flavored” elliptic genus) of 2d N = (0, 2) SCFTs.

At the end of the day, we want to compute the superconformal index in the “NS sector”.

In this case, we define the superconformal index with respect to the supercharge Q (some-

times also denoted as G−− 1
2

in the super-Virasoro algebra, see for example [51]) in radial

quantization, which satisfies the algebra [2L̄0, Q] = [R,Q] = Q and

{Q,Q†} = 2L̄0 −R , (5.1)
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where 2L̄0 = ∆−J is a combination of the scaling dimension ∆ and the angular momentum

J , and R is the U(1)R R-charge.

The 2d N = (0, 2) superconformal algebra has a one-parameter family of automor-

phisms, parametrized by an element e2πiη ∈ C∗, where η is conventionally known as the

“spectral flow parameter”. The corresponding one-parameter family of generators are

L̄η0 = L̄0 +

(
η− 1

2

)
R+

cR
6

(
η − 1

2

)2

, Rη = R+
cR
3

(
η− 1

2

)
, Qη = G−−η , (5.2)

which form the subalgebra[
2L̄η0, Q

η
]

= 2ηQ ,
[
Rη, Qη

]
= Qη, (5.3)

and

{Qη, (Qη)†} = 2L̄η0 − 2ηRη +
cR
3

(
η2 − 1

4

)
, (5.4)

where cR is the right-moving central charge. We refer the reader to [51] and references

therein for full details of the N = 2 superconformal algebra.

The spectral flow parameter η interpolates between the “R sector” at η = 0, and the

“NS sector” at η = 1/2. Fermions in the R sector have periodic boundary conditions in the

J-direction in radial quantization, while those in the NS sector are anti-periodic. Clearly,

the Hilbert space in radial quantization depends on the parameter η. We find it informative

to keep the parameter η and specialize to the NS sector by setting η = 1/2 at the end of

the computation.

The superconformal index is defined as

I = TrHη(−1)F qL0af , (5.5)

where 2L0 = ∆ + J , and f are Cartan generators of any flavor symmetry, and q = e2πiτ

and a = e2πiu are the corresponding fugacities. The trace is taken over the subspace Hη of

the Hilbert space in radial quantization with spectral parameter η and annihilated by Qη.

Using the BPS condition, the index can be rephrased in a rather different form as

I = TrHη(−1)F qJ+R
2 af , (5.6)

which turns out to be useful to identify the equivariant parameters for the corresponding

symmetries.

In our definition of the superconformal index, we have parametrized the fugacities in

the way that is most commonly used in the literature. To conform with the notation used

throughout the rest of the paper, we can alternatively write 2πiτ = −β and 2πiu = −βu′.
This will become important when we make contact with the equivariant integral of the

anomaly polynomial.

5.2 Path integral evaluation

If the SCFT in question admits a UV Lagrangian, the superconformal index admits a path

integral formulation on a torus of complex structure τ , which has been evaluated using
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supersymmetric localization in [52, 53] (see also [54]). The torus is parametrized by a

holomorphic coordinate w = σ1 + τσ2 with two periodic real variables σ1 ∼ σ1 + 2π and

σ2 ∼ σ2 + 2π. Thus w is periodic with periodicity w ∼ w + 2π ∼ w + 2πτ . We regard the

σ1 and σ2 as “space” and “time” coordinates respectively.

The path integral is defined with boundary conditions of the fields along the spatial

circle σ1. As usual we give all bosonic fields ΨB periodic boundary condition. On the other

hand, the boundary conditiond for fermionic fields Ψ±F depend on the chirality ± and the

spectral parameter η:

ΨB(σ1 + 2π, σ2) = ΨB(σ1, σ2) ,

Ψ±F (σ1 + 2π, σ2) = e±2πiηΨ±F (σ1, σ2) . (5.7)

In addition the boundary conditions along the time circle σ2 are twisted by the flavor

chemical potentials.

Let us consider a 2d N = (0, 2) theory with gauge symmetry G and flavor symmetry

F together with chiral and Fermi multiplets transforming in representations Rcm and Rfm

respectively. In order to simplify the computation in what follows, we temporarily turn off

the chemical potentials for the flavor symmetry F . We will also set the R-charge of chiral

and Fermi multiplets to zero. Both of these parameters can easily be reinstated at the end

of the computation.

With these assumptions, the Lagrangians for the chiral and the Fermi multiplets are

given by (see for example [52])

Lcm = −4φ̄DwDw̄φ+ φ̄(F12 + iD)φ+ 2ψ̄−Dwψ
− − τ̄ η

τ2
ψ̄−ψ− − ψ̄−λ+φ+ φ̄λ̄+ψ−,

Lfm = −2ψ̄+Dw̄ψ
+ + ĒE + ḠG+ ψ̄+ψ−E − ψ̄−Eψ+, (5.8)

while the vector multiplet Lagrangian is

Lvm = Tr

[
F 2

12 +D2 − 2λ̄+Dw̄λ
+ − τη

τ2
λ̄+λ+

]
, (5.9)

where

Dw = ∂w − iAw +
u

2τ2
f . (5.10)

The full action is then invariant under the supersymmetry variation

δφ = −iε̄+ψ−, δψ− = 2iε+Dw̄φ ,

δφ̄ = −iε+ψ̄−, δψ̄− = 2iε̄+Dw̄φ̄ , (5.11)

for the chiral multiplet (φ, ψ−) and

δψ+ = ε̄+G+ iε+E , δG = 2ε+Dw̄ψ
+ − ε+ψ−E ,

δψ̄+ = ε+Ḡ+ iε̄+Ē , δḠ = 2ε̄+Dw̄ψ̄
+ − ε̄+ψ̄−E , (5.12)
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for the Fermi multiplet (ψ+, G), and

δAw=
1

2
(ε+λ̄+−ε̄+λ+) , δλ̄+ = −iε̄+(F12−iD) , δ(F12−iD) = 2iDw̄(ε+λ̄+) ,

δAw̄= 0 , δλ+ = iε+(F12+iD) , δ(F12+iD) = −2iDw̄(ε̄+λ+) (5.13)

for the vector multiplet (Aµ, λ
+, D). Here ψ−E =

∑
i ψ
−
i
∂E(φi)
∂φi

and the (φi, ψ
−
i )’s are chiral

multiplets. We should give the boundary conditions for the supersymmetry parameters

and the fermion λ+ in the vector multiplet as

ε±(σ1 + 2π, σ2) = e∓2πiηε±(σ1, σ2) , λ+(σ1 + 2π, σ2) = e−2πiηλ+(σ1, σ2) , (5.14)

so that they are compatible with the supersymmetry variation rules. Note that the chiral

multiplet has a nontrivial fermion mass term proportional to the parameter η in the above

Lagrangian, but this term can be absorbed by background gauge fields of U(1)R and flavor

symmetries.

The Lagrangian above is known to be Q-exact and therefore we can use it as a defor-

mation term for localization. The 1-loop determinant of this Lagrangian around the saddle

points will then yield the exact partition function. See [52, 53] for details.

To compute the 1-loop determinants we first expand the scalar and fermion fields in

terms of their Fourier modes as

φ(w, w̄) =
∑
m,n∈Z

cm,ne
imσ1−inσ2 =

∑
m,n∈Z

cm,ne
−n+τ̄m

2τ2
w+n+τm

2τ2
w̄
,

ψ+(w, w̄) =
∑
m,n∈Z

b+m,ne
iησ1eimσ1−inσ2 =

∑
m,n∈Z

b+m,ne
− τ̄w−τw̄

2τ2
η
e
−n+τ̄m

2τ2
w+n+τm

2τ2
w̄
,

ψ−(w, w̄) =
∑
m,n∈Z

b−m,ne
−iησ1eimσ1−inσ2 =

∑
m,n∈Z

b−m,ne
τ̄w−τw̄

2τ2
η
e
−n+τ̄m

2τ2
w+n+τm

2τ2
w̄
,

λ+(w, w̄) =
∑
m,n∈Z

b̃+m,ne
−iησ1eimσ1−inσ2 =

∑
m,n∈Z

b̃+m,ne
τ̄w−τw̄

2τ2
η
e
−n+τ̄m

2τ2
w+n+τm

2τ2
w̄
. (5.15)

One can easily check that this expansion respects the boundary conditions along σ1 and

σ2. The twisted boundary condition along the time coordinate σ2 can be implemented by

turning on the background holonomy for the flavor symmetry.

With this at hand the computation of the 1-loop determinant is straightforward. For

the chiral multiplet, we find

Zcm =
∏
ρ∈R

∏
m,n∈Z

n+ τ̄m− 〈z, ρ〉(
n+ τ̄m− 〈u, ρ〉

)(
n+ τm− 〈z, ρ〉

)
=
∏
ρ∈R

∏
m,n∈Z

(
n+ τm− 〈z, ρ〉

)−1
, (5.16)

where z denotes the gauge holonomy. For the Fermi and vector multiplets, we find

Z fm =
∏
ρ∈R

∏
m,n∈Z

(
n+ τm+ τη − 〈z, ρ〉

)
,

Zvm =
∏
e∈∆

∏
m,n∈Z

(
n+ τm− 〈z, e〉

)′
,

(5.17)
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where the prime on the infinite product in Zvm indicates that the zero modes at m = n = 0

for the Cartan elements are absent.

The results take the form of infinite products, which need to be regularized. We will

employ the two-step regularization scheme introduced for the 4d S1×S3 path integral in [2].

When applied to the 2d computation this regularization method treats the two Kaluza-

Klein towers of modes along σ1 and σ2 separately. Thus we expect that this regularization

is compatible with the supersymmetric localization, but we will not attempt to prove

this here.

We first regularize the infinite product over the KK-modes m along the spatial circle

using ζ-function regularization. The result for the chiral multiplet is simply

Zcm =
∏

ρ∈Rcm

∏
n∈Z

[
Γ1

(
n− 〈z, ρ〉

τ

∣∣∣1)Γ1

(
1− n− 〈z, ρ〉

τ

∣∣∣1) ∏
m∈Z

1

τ

]

=
∏

ρ∈Rcm

∏
n∈Z

e−πi
(

1
2
−n−〈z,ρ〉

τ

)
1− e2πi

n−〈z,ρ〉
τ

,

(5.18)

where the second equality is obtained from the identity in (B.12).11

Using the eta and theta functions defined in appendix B and their modular properties,

we can rewrite this 1-loop determinant as follows:

Zcm =
∏

ρ∈Rcm

eπi
(
− 1

2
−〈z,ρ〉2

)
/τ η(τ)

θ1

(
τ
∣∣〈z, ρ〉)

= e2πiτEcm
∏

ρ∈Rcm

∞∏
n≥1

(
1− e2πi〈z,ρ〉qn

)−1(
1− e−2πi〈z,ρ〉qn−1

)−1
, (5.20)

with

Ecm = −
∑

ρ∈Rcm

f

[
〈z/τ, ρ〉+

1

2

]
, (5.21)

where we define the function

f [z] =
z2

2
− 1

24
. (5.22)

Similarly, we regularize the Fermi multiplet 1-loop determinant as

Z fm = e2πiτE fm
∞∏
n≥1

∏
ρ∈Rfm

(
1− e2πi〈z,ρ〉qn−η

)(
1− e−2πi〈z,ρ〉qn−1+η

)
,

Efm =
∑
ρ∈Rfm

f

[
〈z/τ, ρ〉+

(
1

2
− η
)]
, (5.23)

11We also regularize the infinite product
∏
m,n∈Z 1/τ using ζ-function regularization such as

∏
m∈Z

x = x

( ∏
m>0

x

)2

= x e2 ln x·ζ(0) = x e− ln x = 1 , (5.19)

for any nonzero constant x.

– 32 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
2

and the vector multiplet determinant as

Zvm = e2πiτEvm
∞∏
n≥1

(1− qn)2rg
∏
e∈∆±

(
1− e2πi〈z,e〉qn

)(
1− e−2πi〈z,e〉qn−1

)
,

Evm =
∑
e∈∆

f

[
〈z/τ, e〉+

1

2

]
, (5.24)

where rg is the rank of the gauge group. The prefactors Ecm, E fm and Evm are the

contributions to the supersymmetric Casimir energies from the corresponding multiplets.

Note that the spectral parameter η does not appear in the results for the vector and chiral

multiplets, whereas it remains in the determinant for the Fermi multiplet, as expected.

As a preliminary observation, let us consider the supersymmetric Casimir energies of

a free chiral multiplet and a free Fermi multiplet. We find,

Ecm = − 1

12
, E fm(η) =

1

12
− η(1− η)

2
. (5.25)

The first equation reproduces the expected vacuum energy for a chiral multiplet. The

result for a Fermi multiplet depends on the spectral parameter η. For Ramond (η = 0)

and Neveu-Schwarz (η = 1
2) sectors, the expected vacuum energies are

R : E fm =
1

12
NS : E fm = − 1

24
, (5.26)

which agree with the second formula in (5.25) at η = 0 and η = 1/2.

Let us now return to our gauge theory and reinstate the flavor chemical potentials and

non-zero R-charges. At this point we restrict ourselves to the NS sector and so set η = 1/2.

The contributions from chiral, Fermi and vector multiplets, are then

Ecm = −
∑

(ρ,ρ′)∈Rcm

f

[
〈z/τ, ρ〉+ 〈u/τ, ρ′〉+

Rcm
ρ,ρ′ + 1

2

]
,

Efm =
∑

(ρ,ρ′)∈Rfm

f

[
〈z/τ, ρ〉+ 〈u/τ, ρ′〉+

Rfm
ρ,ρ′

2

]
,

Evm =
∑
e∈∆

f

[
〈z/τ, e〉+

1

2

]
.

(5.27)

As we discuss in more detail below, in a consistent theory the sum

E = Ecm + Efm + Evm, (5.28)

is independent of the gauge chemical potential z and gives the total supersymmetric Casimir

energy. We now want to compare this to the equivariant integral of the anomaly polynomial.

The anomalies in two dimensions are captured by a four-form anomaly polynomial A4.

For a complex left-moving Weyl fermion transforming in a representation R of the group

K, the anomaly four-form is given by

A4 =
[
Â(TM) · TrR(eF )

]
4

=
TrR(F 2)

2
− p1(TM)

24
, (5.29)
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U(1)J U(1)R K

ω = 1 ω
2 = 1

2 u′ = u
τ

Table 4. Equivariant parameters from 2d N = (0, 2) superconformal index.

where Â(TM) is the A-roof genus of a two-manifold M with a first Pontryagin class

p1(TM), and F is the field strength for the group K. A right-moving Weyl fermion comes

with the same anomaly four-form but with overall negative sign, i.e. AL4 = −AR4 = A4.

The non-compact scalar φ in the chiral multiplet minimally coupled to the gauge field as

in (5.8) has no holomorphic current, so that it does not contribute to the ’t Hooft anomaly.

Moreover, φ has equal central charges cL = cR and thus it does not contribute to the

gravitational anomaly. Therefore we only need to take into account fermion contributions

both for chiral and fermi as well as vector multiplets. They are

• From the chiral multiplets, we have a right-moving fermion with R-charge Rcm
ρρ′ + 1

for each weight (ρ, ρ′) ∈ Rcm.

• From the Fermi multiplets, we have a left-moving fermion with R-charge Rfm
ρ,ρ′ for

each weight (ρ, ρ′) ∈ Rcm.

• From the vector multiplet, we have a left-moving fermion with R-charge +1 for each

root of G.

We will evaluate the equivariant integral of the anomaly four-form on R2. One can

identify the equivariant parameters for the symmetries with the chemical potentials in the

superconformal index (5.6) as in table 4. Summing the contributions from the fermions

listed above, it is straightforward to reproduce the contributions to the supersymmetric

Casimir energy in equation (5.27).

The anomaly polynomial also encodes the quadratic and mixed gauge ’t Hooft anoma-

lies. Correspondingly, the putative supersymmetric Casimir energy can include quadratic

and linear terms in the holonomy z of the gauge fields. If these terms were present, the

periodicity z ∼ z+1 ∼ z+ τ will be violated and the path integral would be ill-defined. To

have a consistent theory, the quadratic and mixed gauge ’t Hooft anomalies should vanish.

This involves the correct assignment of R-charges for the matter multiplets, which can

be achieved by c-extremization [55, 56]. Then, in a consistent theory, the supersymmetric

Casimir energy depends only on the background flavor holonomy and can be pulled outside

of the gauge holonomy integral.

5.3 General formula

We now want to write a general expression for the supersymmetric Casimir energy of any

2d N = (0, 2) SCFT. Let us unpack the flavor symmetry into Abelian and simple factors,
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F =
∏
b Fb ×

∏
I U(1)I . Then the generic form of the four-form anomaly polynomial is

A4 =
kRR

2
c1(FR)2 +

∑
I

kRI
2
c1(FR)c1(FI) +

∑
I,J

kIJ
2
c1(FI)c1(FJ)

+
∑
a

ka ch2(Fa)−
k

24
p1(TM) .

(5.30)

The anomalies coefficients k, kRR, kRI and kIJ are defined directly in the SCFT by cor-

relation functions of the appropriate currents, see for example [55, 56]. The quadratic

gravitational and R-symmetry anomalies are related to the left and right-moving central

charges by k = cL − cR and kRR = −3cR respectively.

Let us denote the fugacities for the Abelian flavor symmetries U(1)I by e−2πiτmI and

those of the simple factors by e−2πiτma (valued in the Cartan subalgebra of F ). After

equivariant integration of A4, we find that the supersymmetric Casimir energy of a general

2d N = (0, 2) SCFT is

E =
1

8
kRR +

1

4

∑
I

kRImI +
1

2

∑
I,J

kIJmImJ +
1

2

∑
a

ka〈ma,ma〉 −
1

24
k . (5.31)

In a Lagrangian theory

k = Trf (γ) kRI = Trf (γR qI) kIJ = Trf (γqIqJ) ka = Trf (γTaTa) (5.32)

where R is the superconformal R-charge, qI are the charges with respect to U(1)I , Ta are

the Cartan generators of Fa, and the traces are over chiral fermions and γ is the chirality

operator: γ = +1 for a left-moving fermion and γ = −1 for a right-moving fermion. These

are the standard ’t Hooft anomalies from bubble diagrams. In a Lagrangian theory, it is

straightforward to show that the result in (5.31) agrees with the expression (5.28) we found

before for the supersymmetric Casimir energy.

6 Discussion

It seems that the most important question is to actually prove, on general grounds, that

the supersymmetric Casimir energy in even dimensions is equal to an equivariant integral

of the anomaly polynomial. We hope to return to this question in future work. It should

be noted that the equivariant integral seems similar to the “replacement rule” of [57–60].

It is tantalizing to explore this connection further.

Let us mention a few more questions that stem from our work:

1. We expect that there is a generalization of our results to supersymmetric Casimir

energies on manifolds S1 × M with M other than M = SD−1. Two prominent

examples for which this can be explored further are the 4d superconformal index on

the Lens spaces M = L(p, q), studied in [61–64], and the partition functions with M

some 5d Sasaki-Einstein manifold, analyzed in [65, 66].
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2. It is usually stated that there are no anomalies in odd dimensions. For three-

dimensional theories with at least N = 2 supersymmetry however there is a subtle

anomaly which was pointed out in [67, 68]. For these theories on S1 × S2 there are

also prefactors akin to e−βE , which appear to encode the aforementioned anomalies.

It would be interesting to understand whether there exist any characteristic classes

whose equivariant integrals reproduce these factors. A preliminary investigation sug-

gests that the Atiyah-Patodi-Singer η-invariant will play a role. A generalization

along these lines to supersymmetric theories in five dimensions will also be interesting.

3. In 2d, the contribution of the supersymmetric Casimir energy to the T 2 partition

function is crucial to ensure the correct modular properties. It is unclear what is the

generalization (if any) of modular invariance to theories in higher dimensions. There

are some tantalizing hints from the Cardy formula in four and six dimensions [69],

which involve the β → 0 limit of the partition function (whereas the supersymmetric

Casimir energy controls the β → ∞ limit).12 We hope our results may help to

elucidate the connection between these limits.

4. Cardy’s formula in 2d CFTs relates the leading free energy in the high temperature

limit, β → 0, to the Virasoro central charge. Analogously, high temperature limits of

the superconformal indices in 4d and 6d are conjectured to be fixed by anomalies of

SCFTs [69]. One may wonder if the β → 0 asymptotics of the partition function can

also be identified with an equivariant integral of characteristic classes. A suggestive

observation in this direction is that the leading term in the 4d superconformal index

in the limit β → 0, as presented in equation (4.5) in [69], can be written as the

equivariant integral of the 1st Chern classes of the global symmetries. There may

also be a similar formula in six dimensions. It is desirable to further understand these

results.

5. It is often interesting to study the supersymmetric Casimir energy in the presence of

superconformal defects. In the case of 6d N = (2, 0) SCFTs, the relevant calculations

in the “chiral algebra” limit are presented in [71]. For general parameters, it may

also be possible to extend the 5d partition function computations of section 3 to

include defects using results from [72, 73]. The 4d N = 2 superconformal index

in the presence of various kinds of defects has also been computed in [54, 74–76],

which may provide a starting point. Since superconformal defects have an associated

anomaly polynomial, there may be a natural extension of our conjecture to this case.

6. Given the relation between partition functions, indices and anomalies, it should be

possible to formulate a-maximization in four dimensions [46] and c-extremization

in two dimensions [55, 56] in terms of a statement about supersymmetric partition

functions. Since the superconformal R-symmetry in three dimensions is determined

by maximizing the partition function of the theory on S3 [77], this will put the

12See also [9, 70] for related work on the modular properties of the 4d superconformal index.
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“maximization” principles for SCFTs in two, three and four dimensions on a more

equal footing.

7. Since the supersymmetric Casimir energy has an N2 (in 4d) or N3 (in 6d) scaling with

the rank of the gauge group it is natural to expect that it should be also accessible

by a holographic calculation. This was already discussed to some extent in [2, 8]

in four dimensions, but the precise holographic interpretation is not yet clear and

deserves further study. It is tantalizing to speculate that there might be a connection

between the supersymmetric Casimir energy for N = 4 SYM computed in section 4

above and some physical quantity for the Gutowski-Reall black hole [78, 79] and its

generalizations [80, 81].
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A Equivariant characteristic classes and integrals

In this appendix, we will present a brief review on the equivariant characteristic classes and

equivariant integration. A more detailed review of this material can be found in [82–84].

First, consider a compact Lie group G acting on a manifold M and take the maximal torus

TG. The equivariant cohomology is then a cohomology defined with the twisted de Rham

differential

dε = d+ εaıXa , (A.1)

with the equivariant parameters εa and the torus elements Xa ∈ TG. Here a runs over the

dimension of the torus action TG. Unlike the ordinary de Rham differential, the twisted dif-

ferential dε is no longer nilpotent, but satisfies d2
ε = εaLXa , where LXa is the Lie derivative

by Xa. The G equivariant form α is a cohomology element given by dεα = 0.
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As an example, we will analyze the equivariant characteristic classes on a four manifold

R4 with a Lie group G = U(1). Extension to the other symplectic manifold and general

Lie groups would be straightforward. We will introduce equivariant parameters ω1,2 for

the U(1)2 rotations on two orthogonal planes in R4 and a for the U(1) action and define a

Lie vector field such as

X = ω1(z1∂z1 − z∗1∂z∗1 ) + ω2(z2∂z2 − z∗2∂z∗2 ) + aLU(1) . (A.2)

We then define the equivariant de Rham differential with this vector field as follows

dε = d+ ıX . (A.3)

The manifold R4 has a natural symplectic form

w = dz1 ∧ dz∗1 + dz2 ∧ dz∗2 , (A.4)

which is d-closed, i.e. dw = 0, but not equivariantly closed by dε. Using the moment map

µ = ω1|z1|2 + ω2|z2|2, we define the equivariant symplectic form

e−µ+w = e−µ
(

1 + w +
w2

2!
+
w3

3!
+ · · ·

)
. (A.5)

Since dε(µ+ w) = 0, this symplectic form is equivariantly closed.

One can construct the equivariant curvature 2-forms using this symplectic form. For

example the curvature for the U(1) group can be written as

F = a e−µ+ω. (A.6)

This is a equivariantly closed normalizable 2-form on R4 and vanishes when a → 0, as

desired. Similarly, the Riemann curvature 2-form associated with the tangent space TM

can be written as the following equivariant form

R = (ω1 e
1 ∧ e2 + ω2 e

3 ∧ e4)e−µ+w, (A.7)

where ei are the orthonormal basis on TM . This is a form-valued 4 × 4 antisymmetric

matrix.

We are now ready to perform the integral of differential forms using equivariant local-

ization. The Duistermaat-Heckman (DH) formula tells us that13

1

(2π)d

∫
M2d

α =
∑
p

α|p
e(TM)|p

, (A.8)

where p runs over all fixed points of X. α|p is the 0-form component of α evaluated at the

p’th fixed point and e(TM)|p is the 0-form component of the equivariant Euler class at p.

In the main text we are interested in evaluating equivariant integrals of anomaly poly-

nomials. Let us illustrate how this works for the anomaly 6-form on R4

1

(2π)2

∫
A6 =

1

(2π)2

∫ [
Â(R) · Ch(F )

]
6

=
1

(2π)2

∫ [
TrF 3

6
− p1(TM) TrF

24

]
, (A.9)

13In the main text, we will redefine integrals as 1
(2π)d

∫
→
∫

and omit the (2π)−d factors.
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where Â(R) is the equivariant A-roof genus associated with the curvature R and Ch(F )

is the equivariant Chern character of F . In our case, the vector field X has a single fixed

point p0 on R4 at z1 = z2 = 0. Hence, by the DH formula, the integral simply reduces to

1

(2π)2

∫
A6 =

1

e(TM)|p0

[
TrF 3

6
− p1(TM) TrF

24

]
p0

. (A.10)

The equivariant Euler class is the Pfaffian of the curvature 2-form R, and thus

e(TM)|p0 = ω1ω2 . (A.11)

From the curvature 2-forms F and R defined above, one obtains

TrF |p0 = a , TrF 3|p0 = a3, (A.12)

and

p1(TM)|p0 = −1

2
TrR2|p0 = ω2

1 + ω2
2 . (A.13)

Plugging these values into the DH formula, we compute the equivariant integral of the

anomaly 6-form as
1

(2π)2

∫
A6 =

a3

6ω1ω2
− (ω2

1 + ω2
2)a

24ω1ω2
. (A.14)

B Special functions

In this appendix, we will summarize several special functions used in the paper. The

Dedekind eta function is defined as

η(τ) = q1/24
∞∏
n=1

(1− qn) , (B.1)

where q = e2πτ . It has the following modular properties:

η(τ + 1) = eiπ/12η(τ) , η(−1/τ) =
√
−iτη(τ) . (B.2)

We define the Jacobi theta function as

θ1(τ |z) = −iq1/8y1/2
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qk−1) , (B.3)

with y = e2πz. The modular properties are

θ1(τ + 1|z) = eiπ/4θ1(τ |z) , θ1(−1/τ |z/τ) = −i
√
−iτ eπiz2/τθ1(τ |z) . (B.4)

The Barnes’ multiple zeta function is defined by the series [85]

ζr(s, u; ~ω) =

∞∑
n1,...,nr

1

(u+ n1ω1 + · · ·+ nrωr)s
, (B.5)
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for s, u ∈ C and Re(s) > r. Choose ωj ∈ C with j = 1, . . . , r that are linearly dependent

over Z. We will often use the notation ~ω = (ω1, . . . , ωr). We will assume that Re(ωj) ≥ 0

and Im(ωj) > 0. In the context of supersymmetric partition functions these quantities will

be complexified squashing parameters. The function obeys the recursion relation

ζr(s, u+ ωj ;ω1, . . . , ωr)− ζr(s, u;ω1, . . . , ωr) = −ζr−1(s, u;ω1, . . . , ω̂j , . . . , ωr) , (B.6)

with starting point ζ0(s, u;ω) = u−s which allows analytic continuation to Re(s) ≤ r except

for simple poles at the points s = 1, . . . , r.

The values of the multiple zeta function at s = 0 are given by the multiple Bernoulli

polynomials by the formula

ζr(0, u; ~ω) =
(−1)r

r!
Br,r(u, ~ω) , (B.7)

where
xreux∏r

j=1(eωjx − 1)
=
∞∑
n=0

Br,n(u, ω1, . . . , ωr)
xn

n!
. (B.8)

The Bernoulli polynomial Br,r(u, ω1, . . . , ωr) is a homogeneous polynomial in the variables

u, ω1, . . . , ωr of degree r, divided by the product ω1 . . . ωr. These polynomials play an

important role in the relationship between the superconformal index and the partition

function on S1 × SD−1.

Now we define the Barnes’ multiple gamma function by

Γr(u;ω) = exp
(
∂ζ(s, u;ω)/∂s

)
|s=0 . (B.9)

This obeys the finite difference equation

Γr(u+ ωj ;ω1, . . . , ωr) =
Γ(u;ω1, . . . , ωr)

Γr−1(u;ω1, . . . , ω̂j , . . . , ωr)
, (B.10)

with initial condition Γ0(u) = u−1. For example Γ1(u;ω) = ωu/ωΓ(u/ω)/
√

2πω is relevant

for the hemisphere partition function in two dimensions with radius ω = 1/r.

There are two kinds of infinite product formulae for the Barnes’ multiple gamma

function that are important for our purposes. Firstly

1

Γr(u; ~ω)
= e

∑r
j=1 γr,ju

j/j!u
∞∏

n1,...,nr=0

(
1 +

u

~n · ~ω

)
e
∑r
j=1(− u

~n·~ω )j/j , (B.11)

where we have used the shorthand notation ~n = (n1, . . . , nr) and γr,j are some constants

like the Euler gamma. The product is understood to omit the zero mode n1 = · · · = nr = 0.

This formula arises in evaluating one-loop determinants in the partition function on S1 ×
SD−1. There is an important formula involving infinite products

∞∏
n1,...,nr=0

(1− e2πi(u+n1ω1+···+nrωr)) =
e−iπζr+1(0,u;1,ω)

Γr+1(u; 1, ~ω)Γr+1(1− u; 1,−~ω)
, (B.12)
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which is relevant for relating the partition function on S1 × SD−1 for D even to the su-

perconformal index. The appearance of the Bernoulli polynomials in the exponential is of

fundamental importance here.

The multiple sine function is also defined as a regularized infinite product [86, 87]:

Sr(z|~ω) ∼
∏∞
n1,··· ,nr=0(z + ~ω · ~n)∏∞

n1,··· ,nr=1(−z + ~ω · ~n)(−1)r
. (B.13)

The multiplet sine functions have another infinite product representation which turns out

to be useful in the main text. If r ≥ 2 and Im(ωi/ωj) 6= 0 for i 6= j, we can write them as

Sr(z|~ω) = e(−1)r πi
r!
Brr(z|~ω)

r∏
k=1

(xk; ~qk)
(r−2)
∞

= e(−1)r−1 πi
r!
Brr(z|~ω)

r∏
k=1

(x−1
k ; ~q−1

k )(r−2)
∞ ,

where xk = e2πiz/ωk , ~qk = (e2πiω1/ωk , · · · , e2πiωk−1/ωk , e2πiωk+1/ωk , · · · , e2πiωr/ωk).
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