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1 Introduction and summary

Two-dimensional N = (2, 2) gauged linear sigma models [1] are simple quantum field

theories that exhibit very rich structures. As such, they have a variety of applications.

When we put these theories on a surface with boundary, the boundary conditions describe

D-branes. A boundary condition in the product of two theories can be regarded as a

domain wall that connects two regions where the two theories live.

In this paper we study boundaries and domain walls in N = (2, 2) gauged linear sigma

models using supersymmetric localization. We focus on the hemisphere geometry, which

has a single boundary component. The resulting hemisphere partition function is roughly

a half of the S
2 partition function [2, 3] obtained by localization techniques similar to [4].

There are two broad motivations for studying the hemisphere partition function. The

first is the study of D-branes in Calabi-Yau manifolds, with applications to mirror sym-

metry, Gromov-Witten invariants, D-brane stability, string phenomenology, etc. In such

contexts the two dimensional theory describes the worldsheet of a superstring, and one is

especially interested in theories that flows to a non-linear sigma model with target space a

compact Calabi-Yau. Generically such a theory possesses no flavor symmetries. The hemi-

sphere partition function depends analytically on the complexified FI parameters, which

we collectively denote as t and use to parametrize the Kähler moduli space. The second

motivation, the main one for us, is to study the dynamics of the two-dimensional quantum

field theory in its own right. It is known that N = (2, 2) theories are closely related to

integrable models [5, 6]. Such a theory also arises as the defining theory for a surface op-

erator embedded in a four-dimensional theory [7]. It is natural to turn on twisted masses

m = (ma), or equivariant parameters for flavor symmetries, in these contexts. Boundaries

are interesting ingredients in the physics of the theory, while domain walls (≃ line oper-

ators in two dimensions) provide a natural example of non-local disorder operators, and
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are akin to ’t Hooft loops [8–11], vortex loops [12–14], surface operators [15], and domain

walls [16, 17] in higher dimensions.

The type of boundary conditions B we study preserve B-type supersymmetries [18].

For abelian gauge theories general B-type boundary conditions were formulated in [19] and

the references therein. We extend these boundary conditions, in a straightforward way,

to theories with non-abelian gauge groups and twisted masses. We will argue that the

hemisphere partition function Zhem(B; t;m) is the overlap 〈B|1〉 of two states, where both

the boundary state 〈B| and the state |1〉 created by a topological twist [20] are zero-energy

states in the Hilbert space for the Ramond-Ramond sector.

When the gauge theory flows to a non-linear sigma model with a smooth target space,

there are refined and coarse classifications of B-branes:

{B-branes} ≃ derived category of coherent sheaves

{topological charges} ≃ K theory

The latter amounts to classifying B-branes up to dynamical creation and annihilation

(tachyon condensation [21]) processes. For details and precise treatments on these math-

ematical concepts, see for example [22–24]. In type II string theory compactified on a

Calabi-Yau, such topological charges of branes determine the central charges [25] of the

extended supersymmetry algebra in non-compact dimensions. This central charge is given

precisely by the overlap 〈B|1〉 [26]. We will argue that the hemisphere partition function

Zhem(B) indeed depends only on the K theory class of the brane. The known formula

for the central charge, which is valid in the large volume limit and was obtained by an

anomaly inflow argument [27], provides a useful check of our result and is completed by

our exact formula.

More generally, our localization computation yields a pairing 〈B|f〉 between the bound-

ary state 〈B| and a state obtained by the path integral with the insertion of an operator

f annihilated by the supercharge used for localization. With twisted masses for the flavor

symmetry group GF turned on, the sheaves and K theories are replaced by their GF-

equivariant versions. Related works that emphasize GF-equivariance include [28, 29]. It

was found by Nekrasov and Shatashvili [5, 6] that the relations in the equivariant quantum

cohomology of certain models are precisely the Bethe ansatz equations of spin chains. Our

work is thus related to, and in fact most directly motivated by, the study of integrable

structures in supersymmetric gauge theories. Integrability suggests the presence of infi-

nite dimensional quantum group symmetries, whose generators are expected to be realized

as domain walls. As mentioned domain walls are D-branes in product theories, and the

quantum group symmetries are known to be realized geometrically as so-called convolu-

tion algebras in equivariant K theories and derived categories [24]. In this work we take

a modest step in this direction by realizing the sl(2) affine Hecke algebra as the domain

wall algebra.1

1The connection between the domain wall and convolution algebras was explained to us by N. Nekrasov

and S. Shatashvili, and had been discussed in the literature. Realization of the affine Hecke algebra in

two-dimensional field theory was also studied in [15].
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Relatedly, the 2d N = (2, 2) theories can also be embedded in a 4d N = 2 theory to

define a surface operator [7]. Domain walls in the 2d theory can then be regarded as 4d line

operators bound to the surface operator, and via the AGT correspondence [30] is related

to certain defects in Toda conformal field theories [31]. We use our results to identify the

precise domain walls that correspond to the defects.

We also study Seiberg-like dualities. In some dual pairs of theories, the hemisphere

partition functions are found to be identical, while in the others they turn out to differ by

a simple overall factor. Such dualities also serve as nice checks of our results.

Besides investigations (see e.g. [32]) directly relevant to the so-called class S theo-

ries [33, 34], we note and emphasize that the relation between supersymmetric field theories

and lower-dimensional models, regarding their integrable structures and symmetries, have

been studied in different but related lines of development (see e.g. [35–43]). This was called

BPS/CFT correspondence in [44], and the AGT correspondence [30] can be considered a

particular example. Our interest in domain walls arose directly in this context.

The paper is organized as follows. In section 2 we explain our set-up by specifying the

geometry and the physical actions. We analyze the symmetries of the set-up, and define

the boundary conditions that preserve B-type supersymmetries. In particular, we review

two basic sets of boundary conditions for a chiral multiplet, which we call Neumann and

Dirichlet conditions (for the entire multiplet). These elementary boundary conditions are

combined with the boundary interactions to provide more general boundary conditions.

In section 3 we perform localization and obtain the hemisphere partition function as an

integral over scalar zero-modes. We also provide its alternative expression as a linear com-

bination of certain blocks given as infinite power series. The geometric interpretation of the

hemisphere partition function is explained in section 4. In particular, we explain how to

compute the hemisphere partition function for a given object in the derived category. We

give examples of the hemisphere partition functions in section 5. We match the hemisphere

partition functions with the large-volume formula for the central charges of D-branes in

the quintic Calabi-Yau (and for more general complete intersection Calabi-Yau’s in ap-

pendix E). Section 6 is devoted to the study of Seiberg-like dualities. In section 7 we study

domain walls realized as D-branes in a product theory. Such domain walls can be regarded

as operators that act on a hemisphere partition function. The action of certain walls are

identified with monodromies of the partition function. We also show that they realize

certain defect operators of Toda theories in one case, and the sl(2) affine Hecke algebra in

another. Appendices collect useful formulas and detailed computations.

Note: we were informed by K. Hori and M. Romo of their overlapping project [45]. We

obtained our results independently, except calculations in appendices E and H motivated

by their results announced in several talks. We also learned of a related ongoing work [46]

by S. Sugishita and S. Terashima. The three groups coordinated the submission to the

arXiv.

2 N = (2, 2) theories on a hemisphere

In this section, we review the data for N = (2, 2) theories and their symmetries. We

also explain the curved 2d geometries to consider, and review the definition of N = (2, 2)
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theories on a two-sphere by specifying the physical Lagrangians [2, 3], and modify the set-

up by adding a boundary along the equator. We also describe the boundary conditions,

both for vector and chiral multiplets, with which we will perform localization. We then

review another ingredient, the boundary interactions that involve the Chan-Paton degrees

of freedom [19].

2.1 Bulk data for N = (2, 2) theories

An N = (2, 2) gauge theory in two dimensions can be thought of as a dimensional reduction

of an N = 1 gauge theory in four dimensions, and in particular contains gauge and chiral

multiplets. Such a theory on the curved geometries we study is specified by the data

(G, Vmat, t,W,m) .

The gauge group G is a compact Lie group, and Vmat is the space carrying the matter

representation Rmat; for each irreducible representation Ra in the decomposition

Rmat = ⊕Ra ,

we have a chiral multiplet whose scalar component we call φa. The symbol t denotes

a collection of complexified FI parameters. If the gauge group is U(N), it is given as

t = r− iθ, where r is the FI parameter and θ is the theta angle. The superpotential W (φ)

is a gauge invariant holomorphic function of φ = (φa) with R-charge −2, in our convention.

The complexified twisted masses m = (ma) are complex combinations of the real twisted

masses ma and the R-charges qa:

ma = −1

2
qa − iℓma .

Here ℓ is a length parameter of the geometry. The vector R-symmetry group2 U(1)R, more

precisely its Lie algebra u(1)R, acts on the fields φa according to the R-charges qa. If the

superpotential is zero, ma are arbitrary complex parameters. We can regard m as taking

values in the complexified Cartan subalgebra of the flavor symmetry group. When W is

non-zero, they are constrained by the condition that for each term in the expansion of

W (φ), ma for all the fields φa in the term sum to 1. Correspondingly, the flavor symmetry

group GF is smaller than in the W = 0 case. A relation between (ma) and the reduced

flavor symmetries will be given in (2.25).

2.2 Conformal Killing spinors in 2d geometries with boundary

Our aim is to compute the partition function of an N = (2, 2) theory on a hemisphere. We

will argue in section 3.4 that the hemisphere partition function computes the overlap of

the D-brane boundary state in the Ramond-Ramond sector and a closed string state corre-

sponding to the identity operator. For this purpose, it is useful to introduce a deformation

parameter (ℓ/ℓ̃ below) that interpolates between a hemisphere with a round metric and a

flat semi-infinite cylinder. Let us study the conformal Killing spinors in these geometries.

2The axial R-symmetry, which may or may not be anomalous, is broken explicitly by couplings in the

action defined on the curved geometries.
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Round hemisphere. We first consider the hemisphere with the round metric

ds2 = ℓ2(dϑ2 + sin2ϑ dϕ2) (2.1)

in the region 0 ≤ ϑ ≤ π/2, 0 ≤ ϕ ≤ 2π. The corresponding vielbein are given by e1̂ = ℓdϑ,

e2̂ = ℓ sinϑdϕ. We denote by

γ1̂ =

(
1

1

)
, γ2̂ =

(
−i

i

)
, γ3̂ = γ3 =

(
1

1

)

the usual Pauli matrices. The conformal Killing spinor equations3

∇µǫ = γµǫ̃

have four independent solutions

ǫ = e−s i
2
ϑγ2̂

(
e

i
2
ϕ

0

)
, e−s i

2
ϑγ2̂

(
0

e−
i
2
ϕ

)
, (2.2)

with s = ±1. The SUSY transformations on a round sphere were constructed in [2, 3].

In our convention, these are obtained by taking ℓ̃ = ℓ in (A.1) and (A.2). The SUSY

parameters ǫ and ǭ that appear there are conformal Killing spinors, each having four

independent solutions. They parametrize the superconformal algebra on round S
2, which

contains eight fermionic charges. The N = 2 SUSY algebra SU(2|1) on S
2, which does

not contain dilatation and is compatible with masses, is generated by the spinors ǫ with

s = 1 and ǭ with s = −1. Thus SU(2|1) contains four fermionic generators. The boundary

at ϑ = π/2, however, breaks the isometry from SU(2) to U(1). Thus we restrict to the

subalgebra SU(1|1) generated by two fermionic charges δǫ and δǭ given by

ǫ = e−
i
2
ϑγ2̂

(
e

i
2
ϕ

0

)
, ǭ = e

i
2
ϑγ2̂

(
0

e−
i
2
ϕ

)
. (2.3)

The isometry that appears in {δǫ, δǭ} shifts ϕ by a constant and preserves the boundary.

Note that the spinors in (2.3) are anti-periodic in ϕ. Since bosons are periodic, fermions

are all anti-periodic. We will see in section 2.5 that there is a natural field redefinition that

makes all the fields periodic in ϕ along the boundary.

Deformed hemisphere. We will also consider the deformed metric [47]

ds2 ≡ hµνdx
µdxν = f2(ϑ)dϑ2 + ℓ2 sin2 ϑdϕ2 , (2.4)

where f2(ϑ) = ℓ2 cos2 ϑ+ ℓ̃2 sin2 ϑ. If we introduce the non-dynamical gauge field

V R =
1

2

(
1− ℓ

f(ϑ)

)
dϕ (2.5)

3The non-zero component of the spin connection is ω1̂2̂ = − cosϑdϕ, and the covariant derivatives acting

on a spinor are given by ∇ϑ = ∂ϑ, ∇ϕ = ∂ϕ − i
2
cosϑγ3. Note that ǫ̃ = (1/2)γµ∇µǫ.
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for U(1)R, the spinors (2.3) satisfy

Dµǫ =
1

2f
γµγ3ǫ , Dµǭ = − 1

2f
γµγ3ǭ , (2.6)

where the covariant derivatives act asDµǫ = (∇µ−iV R
µ )ǫ, Dµǭ = (∇µ+iV R

µ )ǭ. We assigned

R-charges +1 and −1 to ǫ and ǭ respectively. These spinors generate the superalgebra

SU(1|1), which contains the isometry U(1) that is compatible both with the deformed

metric and the boundary ϑ = π/2. The corresponding fermionic transformations are listed

in (A.1) and (A.2).4

Half-infinite cylinder. In the limit ℓ̃ → ∞, the region near ϑ = π/2 becomes a half-

infinite cylinder; by replacing ϑ with x = −ℓ̃ cosϑ, the deformed metric becomes

ds2 = dx2 + ℓ2dϕ2

in the limit. This geometry is flat, and the SUSY algebra gets enhanced.

2.3 N = (2, 2) theories on a deformed hemisphere

We now give the precise construction of an N = (2, 2) theory on the deformed hemisphere

for the data (G, Vmat, t,W,m) defined in section 2.1.

The gauge multiplet for gauge group G consists of the gauge field Aµ, real scalars σ1,2,

gauginos λ, λ̄, and the real auxiliary field D. Let us define

δQ ≡ δǫ + δǭ ,

where the SUSY transformations δǫ and δǭ are given in (A.1) and (A.2). On a full deformed

sphere the physical Lagrangian for a vector multiplet is [47]

Lexact
vec ≡ 1

g2
δQδǭTr

(
1

2
λ̄γ3λ− 2iDσ2 +

i

f(ϑ)
σ2
2

)
. (2.7)

See appendix A for our spinor conventions. In general we can introduce a coupling g for

each simple or abelian factor in G. Noting that δ2Q is a bosonic symmetry one can show

that (2.7) is invariant under δQ. This Lagrangian can be written, up to total derivative

terms, as

Lbulk
vec ≡ 1

2g2
Tr

[(
F1̂2̂ +

σ1
f

)2

+Dµσ1D
µσ1 +Dµσ2D

µσ2 − [σ1, σ2]
2 +D2

− i

2
(Dµλ̄γ

µλ− λ̄γµDµλ) + iλ̄[σ1, λ] + λ̄γ3[σ2, λ]

]
.

Since we are interested in manifolds with boundary it is important to keep the total deriva-

tive terms. After some calculations, we obtain
∫

d2x
√
hLexact

vec =

∫
d2x

√
hLbulk

vec +

∮

ϑ=π
2

dϕLbdry
vec ,

4These formulas are essentially taken from [47] except that we flip the sign of q.
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where5

Lbdry
vec =

1

g2
Tr

[
− iℓ

ℓ̃
σ2D1σ2 + iℓ

(
F1̂2̂ +

1

ℓ̃
σ1

)
σ2 +

iℓ

4
(λ̄1λ2 − λ̄2λ1)

]
.

A chiral multiplet consists of a complex scalar φ, a fermion ψ, a complex auxiliary

field F, and their conjugate. If the R-charge of φ is q, those of ψ and F are q+1 and q+2

respectively. The Lagrangian

Lexact
chi ≡ δQδǭ

(
−ψ̄γ3ψ + 2φ̄

(
σ2 − i

q + 1

2f

)
φ

)
, (2.8)

has the structure
∫

d2x
√
hLexact

chi =

∫
d2x

√
hLbulk

chi +

∮

ϑ=π
2

dϕLbdry
chi ,

with

Lbulk
chi ≡

[
Dµφ̄D

µφ+ φ̄

(
σ2
1 + σ2

2 − i
q + 1

f
σ2 −

q2

4f2
− q

4
R
)
φ+ F̄F + iφ̄Dφ (2.9)

+
i

2
(Dµψ̄γ

µψ − ψ̄γµDµψ) + ψ̄
(
iσ1 −

(
σ2 −

iq

2f

)
γ3

)
ψ + iψ̄λφ− iφ̄λ̄ψ

]
,

and

Lbdry
chi = ℓ

[
φ̄ σ1φ+ iψ̄

(
1 +

γ1̂
2

)
ψ

]
,

where R is the scalar curvature. The twisted mass m can be introduced by the replacement

σ2 → σ2 + m. In general the action involves an arbitrary number of chiral fields φa with

R-charge qa and twisted mass ma.

If the gauge group G contains an abelian factor we should also include the topological

term. For G = U(N) this is −i(θ/2π)
∫
TrF , which on the hemisphere is a Wilson loop.

It should be supersymmetrized into

Sθ ≡ − θ

2π

∮

ϑ=π
2

Tr (iAϕ − ℓσ2) dϕ . (2.10)

This is further supplemented by the Fayet-Iliopoulos (FI) term

SFI ≡ −i
r

2π

∫
d2x

√
hTr

(
D− σ2

f

)
. (2.11)

Both Sθ and SFI are invariant under δQ by themselves.

Finally, if the superpotential W (φ) is non-zero we also have

LW = − i

2

(
Fi∂iW − 1

2
ψiψj∂i∂jW

)
− i

2

(
F̄i∂̄

iW̄ − 1

2
ψ̄iψ̄j ∂̄

i∂̄jW̄

)
. (2.12)

5For general values of ϑ, Lexact
vec = Lbulk

vec +(1/g2)DµTr
[

− iǭγµγmǫVmσ2+(i/2)(λ̄γ3ǫ)ǭγµλ+εµνσ1Dνσ2+

ǭγµǫDσ2 − (i/4)λ̄γµλ
]

and Lexact
chi = Lbulk

chi + Dµ

[

iεµν ǭǫφ̄Dνφ + ǭγ3γµǫφ̄σ1φ + ǭγµǫφ̄σ2φ−ǭγµǫ(q/2f)φ̄φ +

i(ǫψ̄)ǭγµγ3ψ − (i/2)ψ̄γµψ
]

.
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Here φi collectively denote the components of φ = (φa). Noting that W is gauge invariant

with R-charge −2, one can show that its variation is a total derivative

δQLW =
1

2
Dµ

(
ǫγµψi∂iW + ǭγµψ̄i∂̄

iW̄
)
, (2.13)

known as the Warner term [48]. This needs to be cancelled by the SUSY variation of the

boundary interaction that we will discuss in section 2.5.

We define our supersymmetric theory by the functional integral of

exp(−Sphys)× (boundary interaction)

with the total physical action

Sphys ≡
∫

d2x
√
h
(
Lbulk
vec + Lbulk

chi + LW

)
+ Sθ + SFI . (2.14)

For the theory to be supersymmetric, the total integrand has to be invariant under super-

symmetry transformations. We focus on the supercharge Q of our choice. For the vector

multiplet we need to impose such boundary conditions that annihilate δQ
∫ √

hLbulk
vec =

−δQ
∮
dϕLbdry

vec . Similarly δQ
∮
dϕLbdry

chi must vanish under the boundary conditions for

chiral multiplets. In section 2.4 we will see that the boundary conditions introduced in [19]

do the job. We will also see there, following [19], that the Warner term (2.13) can be

cancelled by a suitable boundary interaction.

2.4 Basic boundary conditions for vector and chiral multiplets

Let us introduce several basic boundary conditions that are compatible with the super-

charge Q. These are straightforward generalizations of the boundary conditions found

in [19] for abelian gauge groups.

Vector multiplets. The boundary condition for a vector multiplet we consider in

this paper6 consists of the following set of boundary conditions on the component

fields at ϑ = π/2:

σ1 = 0 , D1σ2 = 0 , A1 = 0 , F12 = 0 ,

ǭλ = ǫλ̄ = 0 , D1(ǭγ3λ) = D1(ǫγ3λ̄) = 0 , (2.15)

D1̂(D− iD1̂σ1) = 0 .

The term Lbdry
vec vanishes with this condition imposed. In particular we have δQ

∮
dϕLbdry

vec =

0, as needed for preserving Q.

6The boundary condition (2.4) preserves the full gauge symmetry G along the boundary. It should also

be possible to formulate a boundary condition that preserves a subgroup H, as in [16].
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Chiral multiplets. For a chiral multiplet, we study two sets of boundary conditions for

the component fields at ϑ = π/2. The Neumann boundary condition for a chiral multiplet

is given by

D1φ = D1φ̄ = 0 ,

ǭγ3ψ = ǫγ3ψ̄ = 0 , D1(ǭψ) = D1(ǫψ̄) = 0 , (2.16)

F = 0 .

Chiral multiplets with this boundary condition describe the target space directions tangent

to a submanifold wrapped by the D-brane. In particular, for space-filling D-branes all the

chiral multiplets obey the Neumann boundary condition. The Dirichlet boundary condition

for a chiral multiplet is given by7

φ = φ̄ = 0 ,

ǭψ = ǫψ̄ = 0 , D1(ǭγ3ψ) = D1(ǭγ3ψ̄) = 0 , (2.17)

D1(e
−iϕF + iD1̂φ) = 0 .

The complex scalar field φ parametrizes a direction normal to a submanifold. In either

case the boundary condition implies that Lbdry
chi = 0, ensuring that δQ

∮
dϕLbdry

chi = 0.

We will see in section 4.2, generalizing an argument in the abelian case studied by [19],

that any lower dimensional D-brane can be described as a bound state of space-filling

D-branes carrying Chan-Paton fluxes.

2.5 Boundary interactions

Following [19], we now introduce supersymmetric boundary interactions that will play an

important role. First we introduce the Chan-Paton vector space

V = Ve ⊕ Vo .

This is Z2-graded, and accordingly End(V) can be given the structure of a superalgebra.

The space of fields is also a superalgebra, and (by implicitly taking the tensor product of

superalgebras), we can make fermions anti-commute with odd linear operators acting on

V . The boundary interaction will be constructed using a conjugate pair of odd operators

Q(φ) and Q̄(φ̄), called a tachyon profile. These are respectively polynomials of φ and φ̄,

and must satisfy the conditions we describe below.

Gauge group G, flavor group GF, and the vector R-symmetry group U(1)R act on the

space V . In other words, there is a representation, or equivalently a homomorphism8

ρ : G×GF ×U(1)R → End(V) .
7After the field redefinition (2.26), the last line simply reads D1(F

new + iD1̂φ
new) = 0.

8More precisely, we allow ρ to be a projective representation. See sections 2.1 and 4.3. We denote the

induced representation of the Lie algebra by ρ∗.
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We demand that the tachyon profile is invariant under G and GF:

ρ(g)Q(g−1 · φ)ρ(g)−1 = Q(φ) , ρ(g)Q̄(φ̄ · g)ρ(g)−1 = Q(φ̄) (2.18)

for g ∈ G×GF. For the R-symmetry, let us denote the generator by R. It acts on a chiral

multiplet φa, in the notation of section 2.1, as

R · φa = qaφa , (2.19)

where qa is the R-charge. We require that the tachyon profile satisfies the conditions

ρ(eiαR)Q(e−iαR · φ)ρ(e−iαR) = eiαQ(φ) ,

ρ(eiαR)Q̄(φ̄ · eiαR)ρ(e−iαR) = e−iαQ̄(φ̄) . (2.20)

We can now define the boundary interaction [19, 49], an End(V)-valued 1-form along

the boundary circle at ϑ = π/2:

Aϕ̂ = ρ∗(Aϕ̂ + iσ2) +
ρ∗(R)

2ℓ
+ iρ∗(m)

+
i

2
{Q, Q̄}+ 1

2
(ψ1 − ψ2)

i∂iQ+
1

2
(ψ̄1 − ψ̄2)i∂

iQ̄ . (2.21)

Here the representation ρ∗ of the Lie algebra of G×GF ×U(1)R is induced from ρ. In the

path integral we include

StrV

[
P exp

(
i

∮
dϕAϕ

)]
. (2.22)

As in [19, 50], one can show with some calculations that the Q variation of the boundary

interaction Aϕ̂ cancels the Warner term δQLW in (2.13),

δQStrV
[
Pei

∮
dϕAϕe−

∫
d2x

√
hLW

]

= StrV

[
Pei

∮
dϕAϕe−

∫
d2x

√
hLW

(
i

∮
dϕ δQAϕ −

∫
d2x

√
h δQLW

)]

= 0 ,

if Q and Q̄ satisfy

Q2 = W · 1V , Q̄2 = W̄ · 1V . (2.23)

When the conditions (2.23) are satisfied, we say that the tachyon profile Q is a matrix fac-

torization of the superpotential W . The boundary interaction (2.21) allows us to construct

interesting supersymmetric theories on a hemisphere.

In order to compare (2.21) with [19], it is useful to introduce a version of vector R-

symmetry group (in general distinct from the original) and perform a field redefinition.

This will also be important to understand the target space interpretation in section 3.4.

Consider first the case W = 0. Because an R-symmetry mixed with flavor symmetries9

is also an R-symmetry, we can define a new R-symmetry by

Rdeg = R− qaF
a ,

9Mixing with gauge symmetries plays no role, so we exclude the possibility from discussion.
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where F a are the flavor generators (for W = 0) such that

F a · φb = δabφb .

The R-charges for the new R-symmetry for all φa vanish, and those of the superpartners ψa

and Fa are +1 and +2, respectively. The first condition in (2.20) applied to Rdeg implies

that the tachyon profile Q increases the eigenvalue of Rdeg by one: [ρ∗(Rdeg),Q] = Q. We

require that the eigenvalues of Rdeg in V are all integers. Then we can decompose V into

the eigenspaces V i of Rdeg with eigenvalue i. Since W = 0, Q defines a differential of the

cochain complex

. . . −→ V i −→ V i+1 −→ . . .

Whether W is zero or not, we will require that there is an R-symmetry generator

Rdeg that has only even (odd) integer eigenvalues in Ve (respectively Vo), and even in-

teger eigenvalues da on φa. Any such generator is related to the previous R-symmetry

generator R as

Rdeg = R− qαF
α , (2.24)

where Fα are the Cartan generators of the flavor group GF preserved by W , and qα take

real values. As we will see in section 4.3, there is a natural choice of Rdeg when the gauge

theory flows to a non-linear sigma model. Using da, we can parametrize the complexified

twisted masses by the Cartan of GF as ma = −(1/2)da +mα(F
α)a, where

10

mα = −1

2
qα − iℓmα . (2.25)

When the superpotentialW breaks all flavor symmetries, ma are simply R-charges rescaled,

ma = −da/2.

Let us consider the simultaneous redefinition

Φ(ϑ, ϕ) → Φnew(ϑ, ϕ) = e−
i
2
Rdegϕ · Φ(ϑ, ϕ) (2.26)

of all the bosonic and fermionic fields Φ in the theory. Since we demanded that Rdeg has

even integers as eigenvalues on the scalars φa, bosonic fields remain periodic while fermions

become periodic from anti-periodic.

In the new description, which is valid in the neighborhood of the boundary, the back-

ground gauge field (2.5) for (the original) U(1)R is shifted as

V R → V R,new = V R − 1

2
dϕ = − ℓ

2f(ϑ)
dϕ . (2.27)

In addition, the field redefinition induces an extra background gauge field for the flavor

symmetry:

V F =
1

2
qαF

αdϕ . (2.28)

10The symbols (qα, F
α,mα), labeled by the directions α in the Cartan of GF, should be distinguished

from (qa, F
a,ma) labeled by a parametrizing irreducible matter representations. The term −(1/2)da in ma

is analogous to a shift in the 4d mass on S
4 noticed in [51].
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The full covariant derivative

Dµ = ∇µ − iAµ − iVµR

becomes

Dnew
µ = ∇µ − iAµ − iV R,new

µ R− iV F
µ .

If we apply the redefinition to SUSY parameters, they become at ϑ = π/2

ǫflat =
1√
2

(
1

1

)
, ǭflat =

1√
2

(
1

1

)
. (2.29)

Each spinor gives rise to a linear combination of left- and right-moving, barred or unbarred,

supercharges. Thus they correspond to the B-type supersymmetries [18].

The field redefinition (2.26) removes from Aϕ̂ the R-symmetry background and induces

a flavor background (2.28), with Q and Q̄ redefined in a natural way:

Anew
ϕ̂ = ρ∗(Aϕ̂ + iσ2) + ρ∗(V

F
ϕ̂ + im) +

i

2
{Qnew, Q̄new}+ . . . . (2.30)

This expression agrees with the interaction found in [19] when the flavor part is taken into

account.

Let us summarize sections 2.4 and 2.5. Given a theory specified by the bulk data

(G, Vmat, t,W,m), we can define a boundary condition B, or a D-brane, by the data

B = (Neu,Dir,V ,Q) .

The vector multiplet obey the boundary condition (2.4). The symbols Neu and Dir

denote that set of chiral multiplets that obey the Neumann and the Dirichlet boundary

conditions (2.4) and (2.4), respectively. We will often assume thatDir = ∅ and simply write

B = (V ,Q). The Chan-Paton space V = Ve ⊕Vo is Z2-graded and carries a representation

of G×GF ×U(1)R. It must admit a new R-symmetry generator Rdeg that is a mixture of

the original R-symmetry (encoded in m) and flavor symmetries, and has integer eigenvalues

on V that descend to the Z2-grading. The tachyon profile Q is a matrix factorization of

W , i.e., an odd linear operator on V that squares to W · 1V .

3 Localization on a hemisphere

3.1 Localization action and locus

In a supersymmetric quantum field theory, we know a priori that the path integral receives

contributions from the field configurations that are annihilated by the supercharges.11

Moreover, if the locus of such invariant configurations is finite dimensional, the path integral

can be exactly performed by evaluating the one-loop determinant in the normal directions.

This statement holds for any action that preserves supersymmetry as long as its behavior

for large values of fields is reasonable.

11One of the early references that discusses this explicitly is [52].
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Though the one-loop determinant depends on the choice of the action, there is still

redundancy; if the action is modified by adding an exact term, the one-loop determinant

does not change by the standard argument. In the following, we will use (2.7) and (2.8) to

define the localization action

Sloc ≡
∫

d2x
√
h(Lexact

vec + Lexact
chi ) . (3.1)

Namely, we will consider the path integral

Zhem ≡
∫
[DAµ . . . Dφ . . .] StrV

[
P exp

(
i

∮
dϕAϕ

)]
exp (−Sphys − tSloc) ,

where the boundary interaction Aϕ and the physical action Sphys are defined in (2.21)

and (2.14), respectively. Since Sloc is Q-exact, the path integral is independent of t. We

evaluate the path integral in the limit t → +∞; the one-loop determinant can be obtained

from the quadratic part of Sloc.

For a generic assignment of R-charges, the localization locus for the theory on a (de-

formed) two-sphere was determined in [2, 3, 47]. On the hemisphere with the symmetry-

preserving boundary condition (2.4), we have a further simplification that the flux B van-

ishes. Then the only non-vanishing field in the locus is

σ2 = const . (3.2)

In this locus, the physical action Sphys contributes to the path integral

e−iℓtTrσ2 , (3.3)

which comes from Sθ in (2.10) and SFI in (2.11). Here we have set t = r − iθ. As part of

the classical contribution, we also need to evaluate the supertrace (2.22). It is most cleanly

evaluated using the expression (2.30) after the field redefinition (2.26). In the localization

locus (3.2), the supertrace becomes

StrV
[
e−2πℓρ∗(σ2)e−2πiρ∗(− 1

2
qαFα−iℓm)

]
= StrV

[
e−2πiρ∗(σ+mαFα)

]
. (3.4)

where we defined σ = −iℓσ2. In most of the paper we will simply write (3.4) as

StrV
[
e−2πi(σ+m)

]
.

3.2 One-loop determinants

In this section we compute the one-loop determinant for the saddle point configura-

tion (3.2). Because the computations are easier for chiral multiplets than for vector mul-

tiplets, we first treat the former. For simplicity we work with the round metric (2.1) and

suppress ℓ during computations.

Let us consider a chiral multiplet in a representation R of the gauge group. Around

the localization locus (3.2), the chiral multiplet part of the localization action (3.1) reads,

to the quadratic order,

S
(2)
chi =

∫
d2x

√
h

[
φ̄

(
M2 − i(q + 1)σ2 −

q2 + 2q

4

)
φ+ F̄F− ψ̄γ3

(
iγ3γµDµ + σ2 −

iq

2

)
ψ

]
,
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where

M2 ≡ −DµDµ + σ2
2 .

The Gaussian integral over F and F̄ does not depend on any parameter and will be ignored.

As we show in appendix C, the Dirac operator in the particular combination γ3γµDµ is

self-adjoint on the hemisphere — the naive one iγµDµ is not — when the relevant boundary

conditions are imposed on the spinors.

Let us denote the weights of R by w. To avoid clutter we assume that each weight w

has multiplicity 1; it is trivial to drop the assumption. Each field can be expanded in an

orthonormal basis consisting of weight vectors ew such that σ2 · ew = w(σ2)ew. We write

ēw ≡ (ew)
†. Using the scalar spherical harmonics Yjm and the spinor harmonics χ±

jm(ϑ, ϕ)

reviewed in appendix B, we expand

φ =
∑

w

∞∑

j=0

j∑ ′

m=−j

φw
jmYjm(ϑ, ϕ)ew , φ̄ =

∑

w

∞∑

j=0

j∑ ′

m=−j

(φw
jm)∗Yjm(ϑ, ϕ)∗ēw ,

ψ =
∑

w

∑

s=±

∞∑

j= 1
2

j∑ ′

m=−j

ψws
jmχs

jm(ϑ, ϕ)ew , ψ̄ =
∑

w

∑

s=±

∞∑

j= 1
2

j∑ ′

m=−j

ψ̄s
wjmχs

jm(ϑ, ϕ)ēw . (3.5)

The symbol Σ′ indicates that the sum is restricted to such m that

j −m =





even for φ and φ̄ ,

odd for s = + in ψ and ψ̄ ,

even for s = − in ψ and ψ̄ .

for the Neumann-type boundary conditions (2.4), and

j −m =





odd for φ and φ̄ ,

even for s = + in ψ and ψ̄ ,

odd for s = − in ψ and ψ̄ .

for the Dirichlet-type boundary conditions (2.4). Using the mode expansions, the eigen-

values, and the orthogonality relations reviewed in appendix B, we obtain

S
(2)
chi =

1

2

∑

w

∞∑

j=0

j∑ ′

m=−j

(φw
jm)∗

[(
j +

1

2

)2

+

(
w · σ2 − i

q + 1

2

)2
]
φw
jm

+
1

2

∑

w

∞∑

j=1/2

j∑ ′

m=−j

∑

s=±
(−1)m+ 1

2 s ψ̄−s
wj,−m

[
s i

(
j +

1

2

)
+ w · σ2 − i

q

2

]
ψws
jm . (3.6)

– 14 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
0

From this we can calculate the one-loop determinant.

Zchi
1-loop =

∏

w

∞∏

j=1/2

[(
j +

1

2

)2

+
(
w · σ2 − i

q

2

)2
]j+1/2

∞∏

j=0

[(
j +

1

2

)2

+

(
w · σ2 − i

q + 1

2

)2
](j+1 or j)

=
∏

w





1

/ ∞∏

j=0

[
j − i

(
w · σ2 − i

q

2

)]
(Neumann) ,

∞∏

j=0

(
j + 1 + i

(
w · σ2 − i

q

2

))
(Dirichlet) .

(3.7)

The twisted mass m can be introduced by replacing w · σ2 → w · σ2 +m. The infinite

products can be regularized by the gamma function Γ(1+ z) = e−γz
∏∞

k=1 e
z/k(1+ z/k)−1,

where γ is the Euler constant. Even if we use the gamma function so that we get the

required zeros and poles, there are ambiguities in the overall z-dependent normalizations.

For reasons we explain in sections 3.3 and 5.1, we choose the relative factor between the

Neumann and the Dirichlet cases such that12

Zchi
1-loop(σ;m) =





Zchi,Neu
1-loop ≡

∏

w∈R
Γ(w · σ +m) (Neumann) ,

Zchi,Dir
1-loop ≡ −2πi eπi(w·σ+m)

∏
w∈R Γ(1− w · σ −m)

(Dirichlet) ,

(3.8)

where the product is over all the weights in the representation R, and

σ ≡ −iℓσ2 , m ≡ −q

2
− iℓm .

We have recovered ℓ for the definition of σ.

The infinite products require UV regularization and result in the running of the effective

FI parameters. As in [3], we take into account the effect of renormalization by replacing

the UV complexified FI parameter t with its renormalized value tren. For each abelian

factor in the gauge group G, this gives

t → tren = t−
∑

a

Qa ln(ℓMUV) , (3.9)

where Qa are the charges of the chiral multiplets, and MUV is the UV cut-off.13 In the

Calabi-Yau case
∑

aQa = 0, we have tren = t.

We turn to the vector multiplet for the gauge groupG. In the Rξ gauge, the localization

action Sloc augmented by the ghost action [3], around the locus (3.2), reads

S(2)
vec =

∫
d2x

√
hTr

[
Aµ

(
M2 + 1

)
Aµ + 2σ̃1ε

µν∇µAν + σ̃1
(
M2 + 1

)
σ̃1

+σ̃2M
2σ̃2 +D2 + λ̄γ3

(
iγ3γµDµ + σ2

)
λ+ cM2c

]
(3.10)

12Determining the overall factor requires a more careful treatment to be discussed elsewhere.
13By the same mechanism, effective FI parameters are generated for flavor symmetries [2]. The partition

function is then multiplied by the factor e−m ln(ℓMUV) for each twisted mass m.
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up to the quadratic order, where σ̃r are the fluctuations of the fields σr, and

M2 := −DµDµ + σ2
2.

The Gaussian integral over D is trivial and will be neglected.

On the vector multiplet we impose the boundary condition (2.4). Let us denote the

basis of gC by Hi (i = 1, . . . , rkG) and Eα, where Hi span the Cartan subalgebra, and α

are the roots of G: [Hi, Eα] = α(Hi)Eα, E
†
α = E−α. We choose a decomposition of the

root system into the positive and the negative roots. For r = 1, 2, we expand

σ̃r =
∑

α>0

∞∑

j=0

j∑ ′

m=−j

σ̃α
rjmYjm(ϑ, ϕ)Eα + h.c.+ . . .

The ellipses indicate terms in the Cartan subalgebra, whose contributions are independent

of physical parameters and will be dropped. Ghosts (c, c̄) are expanded in a way similar

to (φ, φ̄) with coefficients (cαjm, c̄αjm), respectively. The expansions of the gauginos (λ, λ̄)

are similar to those of (ψ, ψ̄), and have respectively the coefficients (λsα
jm, λ̄s

αjm). For the

gauge field,

Aµ =
∑

α>0

2∑

λ=1

∞∑

j=1

j∑ ′

m=−j

Aαλ
jm(Cλ

jm)µEα + h.c.+ . . . ,

where (Cλ
jm)µ are the vector spherical harmonics reviewed in appendix B. The sums

∑′
m

are restricted to those m which satisfy

j −m =





even(odd) for λ = 1(2) in Aµ ,

odd for σ̃1, c, c̄ ,

even for σ̃2 ,

even(odd) for s = +(−) in λ and λ̄ .

The eigenvalues of the kinetic operators as well as the pairings of the eigenmodes can

be found by using the properties of the spherical harmonics reviewed in appendix B. Let

us split the quadratic action (3.10) into the bosonic and the fermionic parts. The bosonic

part S
(2)b
vec reads

S(2)b
vec =

∑

α>0

(
2∑

λ=1

∞∑

j=1

j∑ ′

m=−j

(Aαλ
jm)∗

[
j(j + 1) + (α · σ2)2

]
Aαλ

jm

−
∞∑

j=1

j∑ ′

m=−j

[
(σ̃α

1jm)∗
√
j(j + 1)Aα2

jm + c.c.
]

(3.11)

+
2∑

r=1

∞∑

j=0

j∑ ′

m=−j

(σ̃α
rjm)∗

[
j(j + 1) + (α · σ2)2 + 2− r

]
σ̃α
rjm

)
.

The gaugino part is similar to the fermionic part in the chiral multiplet action (3.6). The

ghost part is
∑

α

∞∑

j=0

j∑ ′

m=−j

c̄−α,j,−m

[
j(j + 1) + (α · σ2)2

]
cαjm .

– 16 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
0

Let us now calculate the one-loop determinant Zvec
1-loop for the vector multiplet. The

combined contribution from Aα2
jm and σ̃1 to Zvec

1-loop is

∏

α>0

∞∏

j=1

∣∣∣∣∣
j(j + 1) + (α · σ2)2

√
j(j + 1)

√
j(j + 1) j(j + 1) + (α · σ2)2 + 1

∣∣∣∣∣

−j

=
∏

α>0

∞∏

j=1

[
j2 + (α · σ2)2

]−j [
(j + 1)2 + (α · σ2)2

]−j
. (3.12)

The contributions from the other modes can be computed straightforwardly. Combining

everything together, we have

Zvec
1-loop ∼

∏

α>0

∞∏

j=0

[
j2 + (α · σ2)2

]
.

Recall the notation σ = −iℓσ2. After regularization, we obtain14

Zvec
1-loop =

∏

α>0

α · σ sin(πα · σ) . (3.13)

3.3 Results for the hemisphere partition function

We now write down the partition function of the N = (2, 2) theory (G, Vmat, t,W,m)

on a hemisphere with boundary condition B = (Neu,Dir,V ,Q). Putting together the

calculations in sections 3.1 and 3.2, we obtain the partition function15

Zhem(B; tren;m) =
1

|W (G)|

∫

σ∈it

drk(G)σ

(2πi)rk(G)
StrV [e

−2πi(σ+m)]etren·σZ1-loop(B;σ;m) , (3.14)

where the one-loop determinant is

Z1-loop(B;σ;m) =

(
∏

α>0

α · σ sin(πα · σ)
−π

)
∏

a∈Neu

∏

w∈Ra

Γ(w · σ +ma)

×
∏

a∈Dir

∏

w∈Ra

−2πieπi(w·σ+ma)

Γ(1− w · σ −ma)
, (3.15)

Here W (G) is the Weyl group, t = t(G) is the Cartan subalgebra, and rk denotes the rank.

Recall also that tren ·σ with tren = rren− iθ denotes the renormalized FI and the topological

couplings (3.9) for the abelian factors in the gauge group G.16 The complexified twisted

masses m = (ma) are defined as the combinations ma = −1
2qa − iℓma of the R-charges qa

and the real twisted masses ma. In the rest of the paper, we will refer to ma simply as

twisted masses.

14An analogous factor appears in an integral representation of a vortex partition function [53].
15We divided each sine by −π, so that the hemisphere partition functions behave better under dualities

discusses in section 6.
16If G = U(N), tren · σ = trenTrσ.
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In the special case G = U(1), the partition function becomes

Zhem =

∫
dσ

2πi
etrenσStrV [e

−2πi(σ+m)]
∏

a∈Neu

Γ(Qaσ +ma)
∏

a∈Dir

−2πi eπi(Qaσ+ma)

Γ(1−Qaσ −ma)
, (3.16)

where Qa is the U(1) charge for the a-th chiral multiplet.

Depending on the representations in which the chiral fields transform, it may be neces-

sary to deform the contour in the asymptotic region so that the integral is convergent. For

r deep inside the Kähler cone of a geometric phase, the integral (3.14) can be evaluated

explicitly by the residue theorem.

In particular for theories whose axial R-symmetry is non-anomalous in flat space,17 we

can write down a general formula for Zhem using multi-dimensional residues, as in the case

of the S
2 partition function [54]. Let Hi, i = 1, . . . rk(G), be the simple coroots, which we

treat as a basis of tC. Let us expand

σ =
∑

j

σjHj , w · σ =
∑

j

wjσ
j , t · σ =

∑

j

tjσ
j (3.17)

and write ~σ = (σj), ~w = (wj), ~t = ~r − i~θ = (tj = rj − iθj). When G is non-abelian, tj
in (3.17) are not all independent. Let I be a subset of {(a, w)|a ∈ Neu, w ∈ Ra} with

|I| = rk(G) such that the weights w that appear are linearly independent. Denote by I

the set of such subsets I. Each I is associated with gamma function factors Γ(w · σ+ma),

(a, w) ∈ I. We denote by PI the set of the points p with σ(p) ∈ tC satisfying

(w · σ(p) +ma)(a,w)∈I ∈ Z
rk(G)
≤0 . (3.18)

Following [54], define

C(I) :=

{
~r =

∑

(a,w)∈I
raw ~w

∣∣∣∣ raw > 0 for all (a, w) ∈ I

}
. (3.19)

The hemisphere partition function (3.15) is then given as

Zhem(B) =
1

|W (G)|
∑

I∈I:
~r∈C(I)

∑

p∈PI

Res
σ=σ(p)

(
StrV [e

−2πi(σ+m)]etren·σZ1-loop(B;σ;m)
)
. (3.20)

The definition of Res, the multi-dimensional residue [55], will be apparent from the next

paragraph.

An elementary way to understand the formula (3.20) goes as follows. For given FI

parameters ~r, (3.14) can be evaluated in principle by successive integrations over σ1, σ2, etc.

There are many gamma function factors of which we pick poles, and the combinatorics in

such a calculation becomes quite complicated. The combinatorics for the total contribution

from the set of factors specified by I, however, is not affected by the presence of other

17This is equivalent to the condition
∑

a

∑

w∈Ra
w = 0, which makes the asymptotic behavior of the

integrand to be determined by et·σ.
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factors, and is in fact captured by a simple change of integration variables. Namely we

take {w · σ + ma|(a, w) ∈ I} as new variables to be integrated over along the imaginary

axis and compute the residues of the chosen factors. Unless raw > 0 for all (a, w) ∈ I, the

contribution vanishes.

Although we do not do this explicitly, it should be possible to obtain the infinite sum

expression (3.20) by localization with a different Q-exact action [2, 3]. In such a com-

putation, the saddle point configurations correspond to the discrete Higgs vacua, namely

the solutions to the D-term and F-term equations satisfying (w · σ + ma)φa = 0 for all

a. The label I specifies the chiral fields that take non-zero vevs. Indeed the decompo-

sition ~r =
∑

(a,w)∈I raw ~w implies that the D-term equations18 can be solved by setting

φw
a = (raw/2π)

1/2 for (a, w) ∈ I with other φw
a = 0. The value of σ is fixed by the condi-

tion w ·σ+ma = 0 for (a, w) ∈ I, corresponding to the tip of the cone determined by (3.18).

Each infinite sum specified by I is a power series in the exponentiated FI-parameters, and

defines an analog of the 3d holomorphic block [56].

The results above were obtained by explicit localization calculations on a hemisphere

with the round metric (2.1). We now argue that they should also be valid for the deformed

metric (2.4) by interpreting the one-loop determinants (3.8) and (3.13) using the equivariant

index theorem as in [2, 4, 10]. With an appropriate choice of localization action Sloc = δQV,

the one-loop determinant should be given from the equivariant index by converting a sum

into a product according to

indD =
∑

j

cje
λj → Z1-loop =

∏

j

λ
−cj/2
j ,

where D is a differential operator in V, j parametrize the eigenmodes of the bosonic sym-

metry generator δ2Q, cj = ±1, and λj are the eigenvalues of δ
2
Q. When the geometry has no

boundary, the index indD is given as a sum of contributions from the fixed points of δ2Q. In

the presence of boundary, at least with suitable boundary conditions such as those in [57],

the equivariant index is a sum of fixed point contributions and the boundary contributions.

Thus the one-loop determinant Z1-loop should also factorize into such local contributions.

For a chiral multiplet, it was shown in [2] that the combined contribution from the

north and the south poles (ϑ = 0 and π respectively) of the round two-sphere is

∏

w

Γ(w · σ +m)

Γ(1− w · σ −m)
∼ Zchi,S2

1-loop ∼ Zchi,Neu
1-loop Zchi,Dir

1-loop ,

where by ∼ we mean the match of zeros and poles. It was also shown in [47] that the full

sphere one-loop determinant is independent of the metric deformation (2.4). As in the four-

dimensional case [4, 10], we interpret the square-root (Zchi,S2

1-loop)
1/2 ∼ (Zchi,Neu

1-loop Zchi,Dir
1-loop )1/2 as

the local contribution from each of the north and the south poles.19 Then (3.8) implies,

in the case of the round sphere, that the single-boundary contribution to the one-loop

determinant is

(sin[π(w · σ +m)])−1/2 (3.21)

18The D-term equations read DI ∝ µI = 0, where µI are given in (4.1).
19In [2], Zchi,Neu

1-loop and Zchi,Dir
1-loop were assigned to distinct poles.
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for the Neumann boundary condition, and

(sin[π(w · σ +m)])1/2 (3.22)

for the Dirichlet boundary condition (up to ambiguities in the overall factors). On the

other hand, the local approximate form of D and the action of δ2Q near the boundary is

essentially independent of deformation. Thus we expect that the single-boundary contri-

bution to the one-loop determinant is given by the same formulas (3.21) and (3.22), even

after deformation.20 Then, the formula (3.8) for the one-loop determinant on a hemisphere

should also be valid for the deformed metric (2.4). We can apply the same logic to the

vector multiplet, recalling that the full sphere one-loop determinant is
∏

α>0(α · σ)2 [2, 3].

It follows that the single-boundary contribution to one-loop determinant is

∏

α>0

sin(πα · σ) .

The local contributions to the one-loop determinant from the poles and the boundary

are determined by δ2Q, and cannot be affected by the deformation parameter ℓ̃. The classical

contributions computed in 3.1 are also independent of ℓ̃. These arguments suggest that the

expression of the hemisphere partition function (3.14) should also be valid for the deformed

metric (2.4).

3.4 Hilbert space interpretation

We argued above that the partition function on the deformed sphere is independent of the

parameter ℓ̃. In the limit that ℓ̃ → ∞, the geometry near the boundary ϑ = π/2 becomes

flat, and the non-dynamical gauge field V R,new in (2.27) for U(1)R vanishes in the frame

where all the fields are periodic.

The boundary condition B on a hemisphere 0 ≤ ϑ ≤ π/2 defines the boundary state

〈B| in the Hilbert space of the theory on a spatial circle. Since all the fields are periodic

in the frame with V R,new(ℓ̃ → ∞) = 0, 〈B| is in the Ramond-Ramond sector. The hemi-

sphere partition function (3.14) is the overlap 〈B|1〉 between 〈B| and a state |1〉 created

by the path integral on the hemisphere with no operator insertion. Let f(σ) be a gauge

invariant polynomial of σ. The result (3.14) can be generalized to include a twisted chiral

operator f(σ1 − iσ2):

〈B|f〉 =

∫

B
DA . . . e−SphysStrV

[
P exp

(
i

∮
dϕAϕ

)]
f(σ1 − iσ2)

=
1

|W (G)|

∫

σ∈it

drkGσ

(2πi)rkG
StrV [e

−2πi(σ+m)]etren·σZ1-loop(B;σ;m)f(σ) , (3.23)

where
∫
B indicates functional integration with the boundary condition B. The Ramond-

Ramond state |f〉 is created by the path integral, defined using the physical action (2.14),

20As a check, one can compute the one-loop determinant on S
1 × (interval) by mode expansion and

confirm that it is the product of two boundary contributions, for any pair of boundary conditions on the

two boundaries.
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with the insertion of f(σ1 − iσ2) at ϑ = 0. The argument in [47] suggests that it is closely

related to the state defined by the path integral of the A-twisted theory [20].21 We will

identify the boundary state 〈B| with its projection to the BPS subspace.

The partition function on the full sphere 0 ≤ ϑ ≤ π, as computed in [2, 3], is the overlap

ZS2 = 〈1|1〉. By generalizing to include O1 ≡ f(σ1 − iσ2) at ϑ = 0, and O2 ≡ g(−σ1 − iσ2)

at ϑ = π, we obtain

〈g|f〉 = 〈O2(ϑ = π)O1(ϑ = 0)〉 =
∫

DA . . . e−Sphysg(−σ1 − iσ2)f(σ1 − iσ2)

=
c

|W (G)|
∑

B∈Λcochar

∫

σ∈it

drk(G)σ

(2πi)rk(G)
etren·(σ−B/2)et̄ren·(σ+B/2)(−1)w0·Bg

(
σ +

B

2

)

×f
(
σ − B

2

) ∏

α>0

[
(α ·B)2

4
− (α · σ)2

]∏

a

∏

w∈R

Γ(w · (σ −B/2) +ma)

Γ(1− w · (σ +B/2)−ma)
.

(3.24)

We have included a normalization constant c and used a weight w0 to parametrize the ambi-

guity in the normalization of the flux sectors labeled by GNO charges [59] B ∈ Λcochar(G).22

The path integral on the other half of the sphere (π/2 ≤ ϑ ≤ π) gives

〈g|B〉 =

∫

B
DA . . . e−SphysStrV

[
P exp

(
+i

∮
dϕÃϕ

)]
g(−σ1 − iσ2)

=
1

|W (G)|

∫

σ∈it

drkGσ

(2πi)rkG
StrV [e

2πi(σ+m)]et̄ren·σZ1-loop(B;σ;m)g(σ) , (3.25)

where

Ãϕ̂ = ρ∗(Aϕ̂ + iσ2) +
ρ∗(R)

2ℓ
+ iρ∗(m)− i

2
{Q, Q̄}+ i

2

(
(ψ1 − ψ2)

i∂iQ+ (ψ̄1 − ψ̄2)i∂
iQ̄

)
.

It is also natural to consider the partition function on a cylinder with boundary conditions

B1,2 along the two boundaries

〈B1|B2〉 =
∫

B1,B2

DA . . . e−SphysStrV1

[
P exp

(
i

∮
dϕA+

ϕ

)]
StrV2

[
P exp

(
i

∮
dϕA−

ϕ

)]
, (3.26)

with

A±
ϕ = ρ∗(Aϕ̂+ iσ2)+ρ∗(V

F
ϕ̂ + im)± i

2
{Q, Q̄}+ 1

2
e

πi
4
(1∓1)

(
(ψ1−ψ2)

i∂iQ+ (ψ̄1−ψ̄2)i∂
iQ̄

)
.

This is a supersymmetric index of the theory on a spatial interval. Since it is independent

of the width, this quantity can be computed by a supersymmetric quantum mechanics or

classical formulas involving characteristic classes, as we will see in section 4.2. In particular

there is no ambiguity in this quantity.

21The argument was used to justify the proposal that the S
2 partition function is related to the Kähler

potential on the Kähler moduli space [58].
22The lattice Λcochar(G) consists of the elements of the Cartan subalgebra which have integer pairings

with the weights that appear in all the representations of the group G (rather than g).
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〈B|

f

|f〉
(a)

f

|f〉

g

〈g|
(b)

〈B1| |B2〉
(c)

Figure 1. (a) Hemisphere with an operator insertion. (b) Twisted chiral/twisted anti-chiral 2-point

function. (c) Cylinder partition function.

The Hilbert space interpretation implies that the S
2 partition function (or its general-

ization (3.24)) is determined by the hemisphere partition functions (or their generalizations)

and the cylinder partition function (3.26). Namely, by choosing boundary states |Ba〉 that
form a basis of the BPS Hilbert space, we set

χab = 〈Ba|Bb〉

and denote the inverse matrix by χab. Then

〈g|f〉 = 〈g|Ba〉χab〈Bb|f〉 .

In some examples with twisted masses, we will introduce another basis {|v〉} that is or-

thonormal. In that case we can write 〈g|f〉 = ∑
v
〈g|v〉〈v|f〉. In section 5.4 we will demon-

strate such factorizations, and see how they allow us to fix the parameters c and w0 that

parametrize the ambiguities in the S
2 partition function of the T ∗Gr(N,NF) model stud-

ied there.

4 Hemisphere partition functions and geometry

4.1 Target space interpretation of the gauge theory

In this paper we are concerned with the geometric phases in which the theory reduces to

a non-linear sigma model with a smooth target space. We consider two cases.

Case 1: W = 0, target space X. This is the setup where the gauge theory has no

superpotential, and flows in the IR to a non-linear sigma model with target space X, which

takes the form of a Kähler quotient

X = µ−1(0)/G .

The moment map µ = (µI)dimG
I=1 : Vmat → g∗ is given by

µI ≡





φ̄T Iφ for I non-abelian ,

φ̄T Iφ− rI
2π

for I abelian ,
(4.1)
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where T I are the generators of G which we split into abelian and non-abelian simple factors.

The complex structure of X can also be specified by viewing it as a holomorphic quotient:

X = (Vmat\deleted set)/GC . (4.2)

Here GC is the complexification of G, and the deleted set consists of those points whose

GC-orbits do not intersect with µ−1(0). If the gauge group G is abelian, X is a toric variety.

Case 2: W = P · G(x), target space M . In the second situation we consider, the

theory has a superpotential of the form

W = P ·G(x) = PαG
α(x) ,

where we split the chiral fields φ into two groups as φ = (x, Pα). Assuming that the space

M = µ−1(0) ∩G−1(0)/G

is smooth, the F-term equations ∂
∂φiW (φ) = 0 reduce to

Pα = 0 , Gα(x) = 0 .

Thus M is the target space of the low-energy theory, and is a submanifold of X =

µ−1(0)|P=0/G. If we focus on the complex structure, M is given as

M = (Vmat\deleted set) ∩G−1(0) ∩ {Pα = 0}/GC . (4.3)

Let us now consider the target space interpretation of the boundary interaction A.

For simplicity we turn off the twisted masses, work in the flat limit (ℓ̃ → ∞ with finite

x = −ℓ̃ cosϑ), and assume that the gauge group is G = U(N), for which the D-term

equations take the form

φ̄T Iφ− r

2π
δI0 = 0 (4.4)

with T I=0 = (1/N)1 corresponding to the abelian part. We take the FI parameter

to be large and positive r ≫ 0. In the IR limit g2 → ∞, the gauge theory flows to the

non-linear sigma model with the target space X in Case 1 and M in Case 2. We assume

that the target space is smooth. The equations of motion that follow from (2.9) imply that

in the present limit [19],

Aµ = M−1
IJ

(
iφ̄T I(

←
∂ −

→
∂ )µφ+ ψ̄T Iγµψ

)
T J ,

σ1 = −iM−1
IJ (ψ̄T Iψ)T J , σ2 = M−1

IJ

(
i
1+q

f
φ̄T Iφ+ ψ̄γ3T

Iψ

)
T J ,

where the derivatives
←
∂ and

→
∂ act on φ̄ and φ respectively, and M−1

IJ is the inverse of the

matrix M IJ = φ̄{T I , T J}φ. Under φ(x) → g(x)φ(x), we get the correct transformation

d− iA → g(x)(d− iA)g−1(x), etc. Let R be a representation of G. As noted in the context

of an abelian gauge theory in [19], the expression M−1
IJ

(
iφ̄T I(

←
∂ −

→
∂ )µφ

)
, contracted with
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the generators T J acting on a vector space V , is the pull-back of a connection on the

natural holomorphic vector bundle constructed from V . This bundle is defined as

((solutions of the D-term and F-term equations)× V )/G . (4.5)

Thus the Chan-Paton space V descends to a collection of holomorphic vector bundles.

We can also see that how the theta angle θ and the FI-parameter r are related to the

B-field and the Kähler form of the target space, respectively. Since the theta term involves

only the abelian part I = 0, the discussion is essentially the same as in the abelian case.

(See for example [60].) First note that the matrix M IJ is block-diagonal; the entries with

(I = 0, J 6= 0) or (I 6= 0, J = 0) vanish because of the D-term equations (4.4). Thus the

U(1) part of the gauge field is given, in the current approximation, by

TrA =
2πi

r
(dφ̄ · φ− φ̄ · dφ) .

The θ-term (2.10) gives a factor exp(−2θ
r

∫
dφ ∧ dφ̄) in the path integral. This should be

identified with the B-field coupling exp(2πi
∫
B). Thus

B =
iθ

πr
dφ ∧ dφ̄ ,

where φ and φ̄ are constrained by the D-term equations (4.4). On the other hand the

Kähler form of the target space is given, in the large volume limit, by

ω =
i

2π
dφ ∧ dφ̄ .

In order to understand the natural combinations of parameters, let us temporarily consider

the A-model where φ is holomorphic on the world-sheet and the kinetic term in (2.9) gives

a factor exp(−2π
∫
ω) for a world-sheet instanton. By combining it with the B-field and

the boundary interaction for bundle, we get

TrP exp

(
i

∮

∂Σ
ι∗Atarget

)
exp

(
2πi

∫

Σ
ι∗(B + iω)

)
(4.6)

where Atarget is a connection on the bundle and ι∗ is the pullback by the embedding

ι : Σ →֒ X or M .

4.2 Hemisphere partition function, derived category of coherent sheaves, and

K theory

In (3.14) we derived an expression of the hemisphere partition function for arbitrary bound-

ary data B = (Neu,Dir,V ,Q). We assumed that the whole gauge multiplet satisfies the

symmetry preserving boundary condition (2.4). The collections of chiral multiplets satis-

fying the Neumann condition (2.4) and the Dirichlet boundary condition (2.4) are denoted

by Neu and Dir, respectively. The Chan-Paton vector space V is a representation of

G×GF ×U(1)R, and its Z2-grading is given by the U(1)R charge (weight) modulo 2. The

tachyon profile Q is an odd linear transformation on V .
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Suppose that an N = (2, 2) non-linear sigma model has as target space a non-singular

algebraic variety. In this paper we are interested in an N = (2, 2) gauge theory that flows

at low energy to such a non-linear sigma model. As in section 4.1, we denote the target

space as X if it is the quotient of a linear space minus a deleted set, and as M if it is

the zero-locus of some section on such X. Two high-energy boundary conditions that give

rise to the same boundary condition (D-brane) at low energy should be considered as the

same. It is believed that the low-energy branes that preserve B-type supersymmetry form

a category equivalent to what is known as the (bounded) derived category of coherent

sheaves, which we denote by D(X) or D(M). We argue that the hemisphere partition

function gives a well-defined map

Zhem : D(X or M) → {functions of (t,m)} . (4.7)

Let us discuss what this means and how to show it.

Physically, a coherent sheaf is a D-brane whose world-volume does not necessarily

wrap the whole target space. An object of the derived category is a complex of coherent

sheaves, up to an equivalence relation called quasi-isomorphism. An important point is that

any object in the derived category of (non-equivariant) coherent sheaves on a reasonable

space X or M is quasi-isomorphic to a complex of holomorphic vector bundles.23 Thus an

arbitrary D-brane, even one with lower dimensions, can be represented as a bound state of

space-filling branes.

Indeed there is an operation to bind D-branes. Given two complexes E ,F defined

respectively as

. . .
di−1
E−→E i diE−→E i+1 di+1

E−→ . . . , di+1
E diE = 0 ,

. . .
di−1
F−→F i diF−→F i+1 di+1

F−→ . . . , di+1
F diF = 0 ,

and a collection f of homomorphisms f i : E i → F i such that f i+1 · diE = diF · f i,24 the

mapping cone of f , denoted as C(f), is the complex whose i-th term is C(f)i = E i+1 ⊕F i

with differential diC(f)(x, y) = (−di+1
E (x), f i+1(x) + diF (y)). The brane C(f) is the bound

state of E and the anti-brane of F . It is known that f : E → F is a quasi-isomorphism if

and only if C(f) is exact.

Thus in order to show that (4.7) is well-defined, we need to i) define a map25

complex of holomorphic vector bundles 7−→ boundary condition B (4.8)

and then ii) show that an exact complex of vector bundles has a vanishing hemisphere

partition function. Part i) will be done in section 4.3. Part ii) will be discussed in section 4.3

23Any equivariant coherent sheaf has a locally free resolution, i.e., a representative of the quasi-

isomorphism class by a complex of equivariant holomorphic vector bundles. (Proposition 5.1.28 of [24]).

Though we personally do not know that every object in the derived category has the property, this seems

likely and will be assumed.
24Such a collection of homomorphisms is called a cochain map.
25In Case 2, i.e., for target space M ⊂ X, our construction, given in section 4.3, of Zhem for an object

of D(M) involves resolving the pushforward of the object to X by a complex of vector bundles. Thus the

relevant bundles in (4.8) are those on X, not M .
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and appendix D. Since vector bundles are carried by space-filling branes, we can assume

that all chiral multiplets obey the Neumann boundary condition in (3.14).

The Grothendieck group of the derived category, which is isomorphic to the K theory

of the target space, is an additive group generated by [E ] for any complex E of holomorphic

vector bundles, with the relation

[C(f)] = [E ]− [F ]

for any f : E → F . The relation is clearly respected by Zhem. Thus Zhem depends only on

the K theory class.

4.3 From complexes of vector bundles to boundary conditions

The aim here is to define the map (4.8) that yields a boundary condition for a given complex

of holomorphic vector bundles. We will treat separately Cases 1 and 2.

Case 1. When the target space is a quotient space X of the form (4.2), we have a natural

GF-equivariant holomorphic vector bundle for each representation of (G×GF)C as in (4.5);

if V is the representation space, focusing on the holomorphic structure, the bundle is

given as26

((Vmat\deleted set)× V) /GC . (4.9)

We will assume that any object in D(X) can be represented as a complex of holomorphic

vector bundles constructed in this way.

Given a complex E of vector bundles of the form (4.9), one can construct the cor-

responding boundary condition B using a straightforward generalization of a procedure

in [19]. Suppose that the i-th term E i in the complex arises from the representation V i of

(G×GF)C. Then we simply take as the Chan-Paton space V = Ve⊕Vo with Ve = ⊕i:evenV
i,

Vo = ⊕i:oddV
i. Since the chiral fields serve as target space coordinates, it is natural to

choose an R-symmetry Rdeg, introduced in section 2.5, so that Rdeg · φa = 0. We let Rdeg

have eigenvalue i ∈ Z on V i. The differential27 dE = (diE) naturally pulls back to the

tachyon profile Q that squares to zero. Thus we obtain the map

E 7−→ B = (V ,Q) . (4.10)

In the case that G is abelian and GF is trivial, many examples of this construction were

studied in [19]. Non-abelian and equivariant examples will be given in section 5.

In order to show that the map (4.7) is well-defined, we need to show that the hemisphere

partition function for an exact complex vanishes. The proof that (4.7) is well-defined

amounts to showing that the supertrace in the integrand cancels all the poles that could

potentially contribute in (3.20). This is explained in appendix D, by using the resolved

conifold as an example.

26If G = U(N), Vmat = {(Qi
f )} = N

⊕NF , deleted set = {Q : rk(Q) < N}, the anti-fundamental

representation N̄ gives the tautological bundle over the Grassmannian Gr(N,NF).
27It is a differential in the sense of homological algebra, and is an algebraic operation.
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Case 2. The construction of the map (4.8) for target space M in (4.3) is also a general-

ization of the procedure in the abelian, non-equivariant setting introduced in [19].28 This

is a little more involved than in Case 1.

Recall that the chiral fields x parametrize the ambient space X. The superpotential is

W = P ·G = PαG
α(x) ,

where G = (Gα) represents a section s of a vector bundle E and the field P takes values

in the dual E∗ by the construction in (4.9). Given an object E of the derived category

D(M), we first push it forward by the inclusion i : M → X. The resulting object of D(X)

is quasi-isomorphic to a complex Ê of vector bundles over X

. . .
d−→Êj d−→Êj+1 d−→ . . . . (4.11)

In the present case, we define the new R-symmetry Rdeg in section 2.5 so that

Rdeg · x = 0 , Rdeg · Pα = −2Pα .

As in Case 1, Ê and d naturally lifts to a Chan-Paton space V and an odd operator Q(0) on

V , which squares to zero: Q2
(0) = 0. Since we have a superpotential W, we need a matrix

factorization as the boundary interaction in order to cancel the Warner term (2.13) and

preserve supersymmetry. This can be constructed by the ansatz

Q = Q(0) +
∑

α

PαQα
(1) +

1

2!

∑

α,β

PαPβQαβ
(1) + . . . (4.12)

The equationQ2 = W ·1 can be used recursively to findQα1...αk

(k) . The existence of a solution

to the equation was shown in [19]. Thus the boundary interaction is purely determined by

the geometric consideration, except a subtlety that we now discuss.

In Case 2 we need to shift the assignment, to V , of overall charges for the abelian part

of G × GF. The shift is from the charges specified by the representations V i. We now

argue for the necessity of the shift by generalizing an argument in [19]. First note that

if we know the overall charge assignment for one D-brane on M , then the relative charge

assignment for other D-branes is automatically determined. Thus we focus on the simplest

D-brane, the space-filling brane carrying no gauge flux. This corresponds to the trivial line

bundle over M , or in other words to the structure sheaf OM . Its pushforward i∗OM to the

ambient space X is known to be quasi-isomorphic to the so-called Koszul complex

∧rE∗ −→ . . . −→ ∧2E∗ −→ E∗ −→ OX ,

where r = rkE and the last term has degree zero. The differential is the contraction by the

section s that defines M . The natural way to implement the Koszul complex in the gauge

theory is to quantize free fermions living along the boundary [61, 62]. After quantization we

28Though this construction was referred to as the “compact” case in [19], we adapt it to any manifold

M , such as T ∗Gr(N,NF), obtained as the zero-locus s−1(0) of a section s.
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obtain fermionic oscillators ηα, η̄
α satisfying the anti-commutation relations {ηα, η̄β} = δβα.

Let |0〉 be the Clifford vacuum: ηα|0〉 = 0. Then the Koszul complex is realized by

Cη̄1 . . . η̄r|0〉 −→ . . . −→
⊕

α

Cη̄α|0〉 −→ C|0〉

with the differentials given by Q(0) = ηαG
α(x). The recursive procedure above terminates

in one step, and simply gives

Q = ηαG
α(x) + η̄αPα . (4.13)

This is manifestly a matrix factorization: Q2 = W · 1.
The question is which amount of abelian charges we should assign to |0〉. Suppose that

the bundle E arises from representation ρE of G × GF. The trivial line bundle OX , and

hence the space C|0〉, corresponds to the trivial representation in the construction (4.9).

Physically, however, the canonical choice is to assign one-dimensional projective29 repre-

sentations to |0〉 and η̄1 . . . η̄r|0〉 symmetrically:

C|0〉 ↔ (det ρE)
1/2 , Cη̄1 . . . η̄r|0〉 ↔ (det ρE)

−1/2 . (4.14)

This suggests the map

E ∈ D(M) 7→ B = (V ,Q) (4.15)

defined as follows. For the complex (4.11) quasi-isomorphic to i∗E , suppose that the vector
bundle Ê i arises via (4.9) from a representation ρi of G×GF. Then we take

V =
⊕

i

V i , (4.16)

as the Chan-Paton space, where V i is the representation space of

ρi ⊗ (det ρE)
1/2 . (4.17)

The tachyon profile Q is determined by the procedure explained around in (4.12).

The validity of (4.15) will be checked by comparing the hemisphere partition function

with the large volume formula of the D-brane central charge in section 5.2, as well as by

showing that the resulting hemisphere partition functions for the structure sheaf in certain

target spaces are invariant under various dualities.

5 Examples

5.1 D0-brane on C
n

Let us consider the theory of n free chiral multiplets φi, i = 1, . . . , n, with target space

X = C
n. The flavor symmetry GF = U(n) allows us to consider equivariant sheaves. In

particular, the skyscraper sheaf at the origin, i.e., the D0-brane can be resolved by the

Koszul complex

Λn,0−→Λn−1,0−→ . . .−→Λ0,0 = O , (5.1)

29As in the worldsheet theory of a superstring these are representations of a covering of G×GF, and may

be interpreted as charge fractionalization introduced by hand.
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where Λp,q is the vector bundle of (p, q)-forms, and the differential is the contraction by

φi∂i. The map (4.10) can be described by fermionic oscillators obeying {ηi, η̄j} = δji with

i, j = 1, . . . , n, and the Clifford vacuum |0〉 such that ηi|0〉 = 0 for any i. The tachyon profile

Q(φ) = φiηi , Q̄(φ̄) = φ̄iη̄
i

gives a realization of the differential. The boundary contribution (3.4) is
∏

j(1 − e2πimj ).

The one-loop determinant should be computed for the Neumann conditions for all φi since

the D0-brane is constructed as a bound state of space-filling branes. It is simply
∏

j Γ(mj).

The hemisphere partition function of the model is therefore

Zhem(D0-brane) =
∏

j

Γ(mj)(1− e2πimj ) =
∏

j

−2πieπimj

Γ(1−mj)
. (5.2)

This gives the hemisphere partition function for the full Dirichlet condition.30

5.2 Quintic Calabi-Yau

Let us consider a G = U(1) theory with chiral fields (P, φ1, . . . , φ5) with charges

(−5, 1, 1, 1, 1, 1). We assign R-charges (qP , q1, . . . , q5) = (−2, 0, . . . , 0) respectively. If we

include the superpotential W = PG(φ), where G is a degree-five polynomial, the theory

with r ≫ 0 flows to the non-linear sigma model with target space the quintic M , which is

the hypersurface in P
4 given by G(φ) = 0. Let us consider the line bundle OM (n) obtained

by pulling OP4(n) back to M . We can apply the map (4.15) to construct the boundary

condition B = (V ,Q). The Chan-Paton space V is the fermionic Fock space spanned by

|0〉 and η̄|0〉 with {η, η̄} = 1, and the tachyon profile is given by

Q = G(φ)η + P η̄ .

Following (4.17) we assign gauge charge n+ 5/2 to |0〉. Thus

Zhem[OM (n)] =

∫

iR

dσ

2πi
e−2πinσ(e−5πiσ − e5πiσ)etσΓ(σ)5Γ(1− 5σ) . (5.3)

As mentioned after (3.16), convergence requires a deformation of the contour for large |σ|.
Specifically, we choose the contour to approach straight lines tilted to the left by angle δ > 0

from the imaginary axis, and demand that rδ > θ + 2πn. Deep in the geometric phase

where r ≫ 0, we can choose δ to be small. We also demand that the contour crosses the

real axis with positive Reσ.31 The integral can then be evaluated by the Cauchy theorem,

and is expressed as a power series in e−t, together with cubic polynomial terms in t:

Zhem[OM (n)] = −20

3
π4

(
t

2πi
− n

)(
2

(
t

2πi
− n

)2

+ 5

)
−400πiζ(3) +O(e−t) . (5.4)

30The zeros due to the gamma functions in the denominator of (5.2) coincide with the zeros in (3.7) for

the full Dirichlet condition. The relative normalization in (3.8) between the Neumann and the Dirichlet

conditions was chosen to agree with (5.2).
31One can also realize such a contour as a Lagrangian brane by a boundary condition [45].
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We can compare this with the large volume formula for the central charge

(see, e.g., [22, 27, 63])32 ∫

M
ch(OM (n))eB+iω

√
Â(TM) . (5.5)

Our conventions for B and ω can be found in section 4.1. Let e be the generator of

H2(M,Z) such that
∫
M e3 = 5. If we make the identification

B + iω =
it

2π
e+O(e−t)

in the large volume limit t → +∞, (5.5) becomes

∫

M
eneeite/2π

(
1 +

5

6
e2
)1/2

= − 5

12

(
t

2πi
− n

)(
2

(
t

2πi
− n

)2

+ 5

)
,

which agrees with the hemisphere partition function (5.4) up to an overall numerical factor,

as well as constant and exponentially suppressed terms. This is the most direct demonstra-

tion that our hemisphere partition function computes the central charge of the D-brane, or

more precisely the overlap of the D-brane boundary state in the Ramond-Ramond sector

and the identity closed string state. We see that the hemisphere partition function also

captures the constant term proportional to ζ(3); it is expected to arise at the four-loop

order in the non-linear sigma model [64, 65].

In appendix E, we generalize the results here and exhibit the agreement between the

hemisphere partition function and the large volume formula (5.5) for branes in an arbitrary

complete intersection Calabi-Yau in a product of projective spaces.

One can also show that Zhem satisfies a differential equation

(
∂4
t − 55e−t

4∏

j=1

(∂t − j/5)

)
Zhem[OM (n)] = 0 .

This is the well-known Picard-Fuchs equation obeyed by the periods of the mirror quintic.

5.3 Projective spaces and Grassmannians

Let us consider the theory with gauge group G = U(1), NF fundamental chiral multiplets

Qf (f = 1, . . . , NF), and without a superpotential. We denote the complexified twisted

masses by −mf . For r ≫ 0 and mf = 0, the classical space of vacua is the complex

projective spaceX = P
NF−1. This is the simplest example of Case 1 discussed in section 4.2;

the space Vmat = C
NF of matter fields carries charge +1 under G = U(1) and the anti-

fundamental representation N̄F of the flavor group GF = U(NF).

The D-brane carrying n units of the gauge flux is the line bundle O(n). The derived

category of coherent sheaves D(X), as well as the K theory K(X) and their GF-equivariant

32In our convention, chE = Tr exp (F/2π), B + iω = −(t/2πi)e, and F + 2πB is the gauge invariant

combination. See (4.6).
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versions, is known to be generated by the Beilinson basis, O(n) with 0 ≤ n ≤ NF − 1. The

hemisphere partition function of O(n) is given by

Zhem(O(n)) =

∫ i∞

−i∞

dσ

2πi
e−2πinσetrenσ

NF∏

f=1

Γ(σ −mf ) .

If r ≫ 0, for convergence we tilt the contour in the asymptotic region toward the negative

real direction as Imσ → ±∞. If Remf < 0 we simply close the contour along the imaginary

axis to the left and compute the integral by picking up the poles at σ = mf − k, k ∈ Z≥0.

For other values of mf we define the integral by analytic continuation, or equivalently by

choosing the contour in the intermediate region so that we pick the same poles.

Zhem(O(n)) =

NF∑

v=1

emv(tren−2πin)
∞∑

k=0

e−ktren (−1)k

k!

∏

f 6=v

Γ(mvf − k) ,

where mvf = mv −mf .

Next we consider the theory with gauge group G = U(N), NF fundamental chiral

multiplets Qi
f (i = 1, . . . , N and f = 1, . . . , NF), and with no superpotential. Again the

complexified twisted masses will be denoted by −mf . For r ≫ 0 and N ≤ NF the target

space of the low-energy theory is the Grassmannian X = Gr(N,NF) of N -dimensional

subspaces in C
NF . The flavor group GF = U(NF) acts on X naturally. Let V be a vector

space in some representation of G×GF. For the corresponding holomorphic vector bundle

E given by (4.9), the hemisphere partition function is given by

Zhem(O(E)) =
1

N !

∫

iRN

dNσ

(2πi)N
TrV

[
e−2πi(σ+m)

]
etrenTrσ

∏

i<j

σij
sinπσji

π

NF∏

f=1

N∏

j=1

Γ(σj −mf ) .

We take the traces by viewing σ as a diagonal matrix, and abbreviate symbols as σij =

σi − σj , mfg = mf −mg. Let us assume that r ≫ 0. The integral can be computed by the

residue theorem. We will frequently use the notation

v = {f1 < f2 < . . . < fN} ⊆ {1, . . . , NF} (5.6)

to label the sequences of poles. These should correspond to the classical Higgs vacua

that are the saddle points in a different localization scheme [2, 3]. We also denote the

complement sets as

v∨ = {1, . . . , NF}\v .

Let us define mv = (mv
j ) by

mv

j = mfj . (5.7)

Picking up the poles at

σj = mv

~k
≡ mv

j − kj , kj ∈ Z≥0 , (5.8)

and using the vortex partition function defined in (F.1), we obtain

Zhem(O(E)) =
∑

v

TrV
(
e−2πi(mv+m)

)
etrenTrm

v

(
∏

f∈v

∏

g∈v∨

Γ(mfg)

)
Zv

vortex(tren;m) . (5.9)
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5.4 Cotangent bundles of Grassmannians T ∗Gr(N,NF)

Let us consider the theory with gauge group G = U(N), NF fundamentals Qi
f and anti-

fundamentals Q̃f
i and one adjoint Φi

j (i, j = 1, . . . , N and f = 1, . . . , NF). We include the

superpotential

W = Tr Q̃ΦQ .

For r ≫ 0, the theory flows to the non-linear sigma model with target space the cotangent

bundle of the Grassmannian M = T ∗Gr(N,NF), with Φ playing the role of P in section 4.1.

We denote the twisted masses of (Qf , Q̃
f ,Φ) by (−mf , 1 +mf −mad,mad) respectively.

We illustrate the Hilbert space interpretation in section 3.4 using this model. We choose

w0 in the formula (3.24) for the two-point function 〈g|f〉 so that w0 · B = (N − 1)
∑

Bj .

The integral (3.24) can be evaluated as in [2]. It becomes

〈g|f〉 = c
∑

v

e(t+t̄)Trmv
∏

f∈v

∏

g∈v∨

Γ(mfg)Γ(1−mfg −mad)

Γ(1−mfg)Γ(mfg +mad)

×Zv

vortex(t̄;m; g)Zv

vortex(t;m; f) , (5.10)

where v and mv were defined in section 5.3, and Zv
vortex(t;m; f) is a generalization of the

vortex partition function (F.1)

Zv

vortex(t;m; f)

=
∑

~k∈ZN
≥0

e−|~k|tf(mv

~k
)
∏

i

(
∏

j

(mfifj +mad − ki)kj
(mfifj − ki)kj

∏

f∈v∨

(mfif +mad − ki)ki
(mfif − ki)ki

)
.

By defining

〈v|f〉 = c
1
2 etTrm

v

[
∏

f∈v

∏

g∈v∨

Γ(mfg)Γ(1−mfg −mad)

Γ(mfg +mad)Γ(1−mfg)

] 1
2

Zv

vortex(t;m; f) (5.11)

and

〈g|v〉 = c
1
2 et̄Trm

v

[
∏

f∈v

∏

g∈v∨

Γ(mfg)Γ(1−mfg −mad)

Γ(mfg +mad)Γ(1−mfg)

] 1
2

Zv

vortex(t̄;m; g)

we can write 〈g|f〉 = ∑
v
〈g|v〉〈v|f〉.

In order to justify our choice of w0 and relate c to the normalization of hemisphere par-

tition functions, let us compute the hemisphere partition function Zhem(OM ) = 〈B[OM ]|1〉
and more generally 〈B[OM ]|f〉 for the structure sheaf OM . We can use the matrix fac-

torization (4.13). In the present notation we introduce oscillators (ηij , η̄
i
j) satisfying

{ηij , η̄kl} = δilδ
k
j , and let |0〉 be the Clifford vacuum: ηij |0〉 = 0. Then

Q = QQ̃η +Φη̄

with the indices contracted. Assigning the abelian charges symmetrically between |0〉 and∏
i,j η̄

i
j |0〉 as in (4.14), we find the contribution

∏N
i,j=1 2i sinπ(σij+mad) from the boundary
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interaction. We will see in section 6.2 that for a geometrically expected duality to hold, we

need to multiply the hemisphere partition function (3.14) by an extra N -dependent overall

factor, e.g., (2πi)−N2
. We thus go ahead and include it. Then33

Zhem(OM ) =

∫ i∞

−i∞

dNσ

(2πi)NN !
etTrσ

∏

i<j

σij
sinπσji

π

N∏

i,j=1

sinπ(σij +mad)

π
(5.12)

×
N∏

i,j=1

Γ(σij +mad)
N∏

j=1

NF∏

f=1

Γ(σj −mf )Γ(1− σj +mf −mad) .

By applying (3.20) we find

Zhem(OM ) =
∑

v

etTrm
v

[
∏

f∈v

∏

g∈v∨

Γ(mfg)Γ(1−mfg −mad)

]
Zv

vortex(t;m) . (5.13)

Note that the same argument t as in (5.10) appears in the vortex partition function here;

this is only possible for our choice of w0. We can compute 〈B[OM ]|f〉 similarly. Comparing

with (5.11), we find that 〈B[OM ]|f〉 = ∑
v
〈B[OM ]|v〉〈v|f〉, where

〈B[OM ]|v〉 = c−1/2

[
∏

f∈v

∏

g∈v∨

π

sinπmfg

π

sinπ(mfg +mad)

]1/2

. (5.14)

A parallel consideration shows that 〈B[OM ]|v〉 = 〈v|B[OM ]〉, giving an expression for the

cylinder partition function. It is expected to coincide with the equivariant index of the

Dirac operator on M . Indeed 〈B[OM ]|B[OM ]〉 determined by (5.14) agrees with34

ind( 6D) =
∑

p: fixed points

1

detTMp(g
−1/2 − g1/2)

(5.15)

if we take c = (2π)2N(NF−N).

It is trivial to generalize these results to a holomorphic vector bundle E, or equivalently

the sheaf OM (E) of holomorphic sections of E. We assume that E arises via (4.9) from a

vector space V carrying a representation of (G×GF)C. We find

〈B[OM (E)]|v〉 = TrV e
−2πi(mv+m)

[
∏

f∈v

∏

g∈v∨

1

2 sinπmfg

1

2 sinπ(mfg +mad)

]1/2

.

Another class of natural D-branes are sheaves supported on the zero-section of

T ∗Gr(N,NF). Let us consider a vector bundle over Gr(N,NF) and call it E, abusing

notation slightly. We assume that E is constructed from a representation V of (G×GF)C.

We wish to compute the hemisphere partition function for the sheaf ι∗OGr(E), where ι is

33Compared with (3.15), we see that the boundary interaction has an effect of changing the boundary

condition for Φ from Neumann to Dirichlet.
34It is possible to show by localization that the equivariant Dirac index given by (5.15), or more generally

by (G.2), is indeed the corresponding partition function on the cylinder.
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the inclusion. Following the procedure for Case 2 in section 4.3, we further pushforward

ι∗OGr(E) by the inclusion i : M → X, where

X = {(Q, Q̃)|rkQ = N}/GL(N) . (5.16)

Since Gr is given in X simply by the equations Q̃f = 0, we have a locally-free resolution

of i∗ι∗OGr,

∧r F ∗ −→ . . . −→ ∧2F ∗ −→ F ∗ −→ OX , (5.17)

where r = NNF is the rank of the equivariant vector bundle F , of which (Q̃f ) defines a

section. A resolution of i∗ι∗OGr(E) is obtained by tensoring each term in (5.17) with the

bundle Ê over X that arises from V via (4.9). The complex (5.17) can be translated into

the boundary interaction by introducing oscillators satisfying {ηif , η̄gj} = δijδ
g
f . The Chan-

Paton space V is obtained by tensoring with V the Fock space built on the vacuum |0〉
annihilated by ηf j , and the tachyon profile is given by Q = Q̃f

iη
i
f+Φi

jQ
j
f η̄

f
i. According

to (4.17), we must assign the same abelian charges to |0〉 as in the OM case. Then |0〉
contributes the factor eN

2πimad . We find the integral representation

Zhem(ι∗OGr(E)) =

[
eπimad

2πi

]N2 ∫
dNσ

(2πi)NN !
etTrσ

∏

j,f

(
1− e−2πi(σj−mf+mad)

)

×
∏

i<j

σij
sinπσji

π
TrV (e

−2πi(σ+m))
∏

i,j

Γ(σij +mad) (5.18)

×
∏

j,f

Γ(σj −mf )Γ(1− σj +mf −mad) .

As we see by comparing with (3.15) an effect of the boundary interaction is to modify the

boundary condition for Q̃f from the Neumann to the Dirichlet condition, as we expect for

a brane supported on the zero-section. Only the sequences of poles (5.8) contribute, with

other combinations of apparent poles canceled.35 We then find

Zhem(ι∗OGr(E)) = eNπi
∑

f mf

∑

v

TrV
(
e−2πi(mv+m)

)
e(t−NFπi)Trm

v

×
(

∏

f∈v

∏

g∈v∨

2πie−πimadΓ(mfg)

Γ(mfg +mad)

)
Zvortex(t;m) . (5.19)

By identifying this with
∑

v
〈B[ι∗OGr(E)]|v〉〈v|1〉 and using (5.11), we obtain

〈B[ι∗OGr(E)]|v〉 = eNFπi(
∑

f mf−Trmv)e−N(NF−N)πimadiN(NF−N)

×TrV
(
e−2πi(mv+m)

) ∏

f∈v

∏

g∈v∨

[
sinπ(mfg +mad)

sinπmfg

]1/2
. (5.20)

The matrix element 〈v|B[ι∗OGr(E)]〉 is obtained by replacing i with −i in (5.20).

35Here ~r in (3.19) is given by ~r = (r, . . . , r). It is not possible to satisfy the conditions raw > 0 in (3.19)

if I involves an anti-fundamental. If I involves the adjoint and fundamentals, the zeros from the product

in the first line of (5.19) cancel the poles.
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6 Seiberg-like dualities

6.1 Grassmannian model and the (N,NF) ↔ (NF − N,NF) duality

Recall from section 5.3 that the U(N) theory with NF ≥ N fundamental chiral multiplets

Qf with r ≫ 0 is in the geometric phase with target space the Grassmannian Gr(N,NF).

To simplify equations we can take the flavor symmetry group to be SU(NF) since the overall

U(1) is part of the gauge group. Correspondingly, we require that the twisted masses −mf

of Qf sum to zero:
NF∑

f=1

mf = 0 . (6.1)

The hemisphere partition function was computed in (5.9). Let us focus on the structure

sheaf O and consider the map of parameters

(N,NF, tren,m) → (NF −N,NF, tren,−m) . (6.2)

The exponential factor in (5.9) is invariant because of (6.1). The one-loop determinant is

also manifestly invariant under (6.2) and v → v∨. As shown in [2] the vortex partition

function Zv
vortex is also invariant. Thus we have the equality

Zhem[Gr(N,NF);O; tren;m] = Zhem[Gr(NF −N,NF);O; tren;−m]

for the structure sheaf. This equality extends to D-branes carrying vector bundles

Zhem[Gr(N,NF);E; tren;m] = Zhem[Gr(NF −N,NF);E
∨; tren;−m]

if we define the map E 7→ E∨, in a way compatible with tensor product, by the assignments

tautological bundle 7−→ (ONF/tautological bundle)∗ ,

ONF/tautological bundle 7−→ (tautological bundle)∗ .

We denoted by ∗ the dual bundle (in the usual sense), whose fiber is the dual of the fiber

for the original bundle. (Somewhat confusingly, the quotient, ONF/tautological bundle, is

sometimes called the dual tautological bundle.) We also recall that the tautological bundle

is constructed from the anti-fundamental representation of GL(N) via (4.9).36

6.2 T ∗Gr(N,NF ) model

The hemisphere partition function for OT ∗Gr(N,NF) was computed in (5.13). We again

impose the condition (6.1) on the fundamental masses. Under the map

N → NF −N , t → t , mf → −mf , mad → mad , v → v∨ ,

36The assignment V 7→ TrV [diag(x−1
1 , . . . , x−1

N ) × diag(x−1
1 , . . . , x−1

NF
)] defines a map D(X) →

KGL(NF)(X) ≃ C[x±1
1 , . . . , x±1

N ;x±1
N+1, . . . , x

±1
NF

]SN×SNF−N for X = Gr(N,NF) [66].
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the exponential factor and the one-loop determinant are invariant. The vortex partition

functions Z
U(N),v
vortex (t;mf ,mad) ≡ Zv

vortex(t;mf ,mad) are not invariant, but we found the

relations

(1 + (−1)NF e−t)(NF−2N)(mad−1)Z
U(N),v
vortex (t;mf ,mad) = Z

U(NF−N),v∨

vortex (t;−mf ,mad) (6.3)

by comparing the power series expansions in e−t.37 Since the prefactor on the left hand side

is independent of v, we find a similar relation for the hemisphere partition functions.38 In

particular, in the limit Re t ≫ 0 the hemisphere partition function is invariant. The same

relation holds for the hemisphere partition functions of ι∗OGr. It can also be extended to

include vector bundles as we did for Grassmannians in section 6.1.

6.3 U(N) gauge group with fundamental and determinant matter fields

Let us consider the Grassmannian model with an extra chiral multiplet in the (−NF)-th

power of the determinant representation with twisted mass mdet. For simplicity we impose

the Dirichlet condition for the determinant matter and the Neumann condition for the

fundamentals. Then the hemisphere partition function is

Zhem(N,NF; t;mf ,mdet) =
∑

v

etTrm
v

Zv

1-loop(mf ,mdet)Z
v

vortex(t;mf ,mdet)

with the one-loop determinant given by

Zv

1-loop(mf ,mdet) =
−2πieπi(−NFTrm

v+mdet)

Γ (1 +NFTrmv −mdet)

∏

f∈v

∏

g∈v∨

Γ(mfg)

and the vortex partition function defined in (F.1). It was found in [28] that the supercon-

formal index of this model is invariant under

N → NF −N, t → t, mf → −mf , mdet → mdet, v → v∨ .

One can show that the vortex partition functions in this case are duality invariant, by noting

that they are simply related to those of the Grassmannian model. Thus the hemisphere

partition function is also invariant under the duality map.

6.4 SU(N) gauge theories

To study Seiberg-like dualities for SU(N) theories, we use a trick introduced in [2]; the

hemisphere partition function of the SU(N) gauge theory is related to that of the U(N)

gauge theory by

Z
SU(N)
hem (b) =

∫ ∞

−∞

dr

2π
e−rbZ

U(N)
hem (r, θ = 0).

Then the duality of the U(N) hemisphere partition function implies a duality of the SU(N)

hemisphere partition function.

37Similar relations hold between instanton partition functions computed in different schemes for ALE

spaces [67].
38A similar relation also holds for the sphere partition functions.
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The U(1) baryonic symmetry is defined by its action on the fundamentals Qi
f (i =

1, . . . N, f = 1, . . . , NF) and the anti-fundamentals Q̃f̃
i (i = 1, . . . N, f = 1, . . . , NA)

Qi
f → e2πib/NQi

f , Q̃f̃
i → e−2πib/N Q̃f̃

i .

It is the U(1) part of the U(N) gauge group that we ungauge. The baryonic and the

anti-baryonic operators

Bf1,...,fN = εi1...iNQ
i1
f1
· · ·QiN

fN
, B̃f̃1,...,f̃N = εi1...iN Q̃f̃1

i1
· · · Q̃f̃N

iN

in the SU(N) theory are charged under this U(1). The pure-imaginary parameter b, which

is dual to the FI parameter r, becomes the twisted mass for the baryonic symmetry. Indeed

starting with the Coulomb branch representation (3.14) of Z
U(N)
hem , the delta function given

by the r integral ∫ ∞

−∞

dr

2π
e−rberTrσ = δ(ib− iTrσ)

produces the hemisphere partition function for the SU(N) theory.

7 Monodromies and domain walls

7.1 Localization with domain walls

In this section we consider supersymmetric localization for theories with domain walls

preserving B-type supersymmetries. Let us assume that a domain wall is located along

the circle ϑ = π/2 of the sphere S
2. The domain wall connects theory T1 on the first

hemisphere 0 ≤ ϑ ≤ π/2 and another theory T2 on the second hemisphere π/2 ≤ ϑ ≤ π.

As we review below, the theory T2 can be mapped to another theory I[T2] on the first

hemisphere. A domain wall is then defined as a D-brane in the folded theory T1 × I[T2]
on the first hemisphere 0 ≤ ϑ ≤ π/2. When both T1 and T2 are in geometric phases, the

BPS domain walls, or line operators, are in a one-to-one correspondence with objects in

the derived category of equivariant coherent sheaves in the product of the target spaces.

Let us consider an involution39 I0 that acts on a chiral multiplet (φ, ψ, F ) as

I0 · φ(ϑ, ϕ) = φ(π − ϑ, ϕ) , I0 · ψ(ϑ, ϕ) = − γ1̂ψ(π − ϑ, ϕ) ,

I0 · ψ̄(ϑ, ϕ) = − γ1̂ψ̄(π − ϑ, ϕ) , I0 · F (ϑ, ϕ) = − F (π − ϑ, ϕ) .

On a vector multiplet (Aµ, σ1,2, λ,D), we define

I0 ·Aϑ(ϑ, ϕ) = −Aϑ(π − ϑ, ϕ) , I0 ·Aϕ(ϑ, ϕ) = Aϕ(π − ϑ, ϕ) ,

I0 · σ1(ϑ, ϕ) = − σ1(π − ϑ, ϕ) , I0 · σ2(ϑ, ϕ) = σ2(π − ϑ, ϕ) ,

I0 · λ(ϑ, ϕ) = γ1̂λ(π − ϑ, ϕ) , I0 · λ̄(ϑ, ϕ) = γ1̂λ̄(π − ϑ, ϕ) ,

I0 ·D(ϑ, ϕ) = D(π − ϑ, ϕ) .

39If we regard 2d N = (2, 2) supermultiplets as 4d N = 1 multiplets independent of two coordinates

(x3, x4), the involution I0 acts as a reflection (ϑ, ϕ, x3, x4) 7→ (π − ϑ, ϕ, x3,−x4) followed by a U(1)R
transformation. The SUSY parameters transform as I0 · ǫ(ϑ, ϕ) = γ1̂ǫ(π−ϑ, ϕ), I0 · ǭ(ϑ, ϕ) = γ1̂ǭ(π−ϑ, ϕ).

Invariant parameters give the supercharges that commute with I0.
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W: domain wall

ϑ =
π

2

ϑ = 0ϑ = π

(a)

×

(b)

Figure 2. (a) A sphere with a domain wall W. (b) Folding the full sphere.

One can define a more general involution I ≡ I1 ◦ I0 by composing I0 with a discrete

flavor+gauge symmetry transformation I1 that acts on each chiral multiplet as multipli-

cation by +1 or −1. If the theory has superpotential W , the signs need to be chosen so

that W (I ·φ) = +W (φ). Then LW in (2.12) changes sign and the action is invariant under

I. The theory I[T ] is obtained from the original theory T by mapping the fields using I.,
and by replacing the sign of the theta angle θ.

The trivial domain wall, which we will call the identity domain wall W[1], corresponds

to a single theory T with gauge group G on the full sphere 0 ≤ ϑ ≤ π. If we apply I to

the part of the theory on π/2 ≤ ϑ ≤ π, then we get the product theory T × I[T ] with

gauge group G×G on the hemisphere 0 ≤ ϑ ≤ π/2. If T has gauge group G, the product

theory has gauge group G × G. Thus the identity domain wall provides an example of

a supersymmetric boundary condition that reduces gauge symmetry; along the boundary

the unbroken gauge group is the diagonal subgroup (G×G)diag ≃ G.

If T is in a geometric phase with low-energy target space X and if we take I = I0, the
identity domain wall is realized by the boundary condition corresponding to the diagonal

∆X of X ×X:

B[W(1)] = B[O∆X ] .

The general pairing (3.24) between the (twisted) chiral and anti-chiral operators can be

written as

〈g|f〉 = 〈g|W(1)|f〉 = 〈B[O∆X ]| · |f〉1 ⊗ |g〉2 .

In the rest of the section, we will be studying the expectation values of more general

domain walls W on S
2

〈W〉S2 = 〈1|W|1〉 = 〈B[W]| · |1〉1 ⊗ |1〉2 (7.1)

or more generally the matrix elements (see figure 2)

〈g|W|f〉 = 〈B[W]| · |f〉1 ⊗ |g〉2 .
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7.2 Monodromy domain walls, 4d line operators, and Toda theories

We now apply the machinery we have developed to find a 2d gauge theory realization of

certain 4d line operators bound to a surface operator [15, 31, 68]. To avoid clutter, details

of calculations are relegated to appendix G.

The relevant 4d theory is the N = 2 theory with gauge group U(NF) with 2NF

fundamental hypermultiplets. Some of its physical observables are captured by two-

dimensional ANF−1 Toda conformal field theories on a sphere with four punctures of specific

types [30, 69], via the AGT relation. In particular the basic surface operator of the 4d the-

ory corresponds to a fully degenerate field of the Toda theory [31, 70]. It was argued

in [31] that 4d line operators bound to a surface operator correspond to monodromies of

the conformal blocks, with the insertion point of the degenerate field varied along closed

paths. In the limit where the four-dimensional gauge coupling becomes weak, the cor-

relation function of the Toda theory with the degenerate insertion coincides with the S
2

partition function of an N = (2, 2) gauge theory described below [3]. In this limit, the 4d

line operator becomes a 2d line operator, or equivalently a domain wall. Our aim is to find

its intrinsic description within the 2d gauge theory.

The 2d theory in question has gauge group G = U(1), NF chirals φf of charge +1,

and NF chirals φ̃f of charge −1, with no superpotential. We denote the twisted masses

of the chirals by m = (mf , m̃f )
NF
f=1. Correspondingly the flavor symmetry group is GF =

U(NF)1×U(NF)2, under which (φf ) and (φ̃f ) are in (NF,1) and (1,NF), respectively. For

r ≫ 0, the IR theory has as the target space a toric Calabi-Yau that we denote by X.

There are NF classical vacua σ = −mv labeled by v = 1, . . . , NF.

As we show in appendix G the S
2 partition function takes the form 〈1|1〉 =∑

v〈1|v〉〈v|1〉, where

〈v|1〉 = (2πi)NF−1/2e−tmv

[
∏

f 6=v

Γ(mfv)

Γ(1−mfv)

∏

f

Γ(mv + m̃f )

Γ(1−mv − m̃f )

]1/2

Zv
vortex(t,m) ,

and 〈1|v〉 = 〈v|1〉|t→t̄. The vortex partition functions as defined in (F.1) are given in (G.1).

Their explicit expressions imply that the matrix elements 〈v|1〉 as functions of e−t obey

the differential equation
[
e−t

∏

f

(∂t − m̃f ) + (−1)NF−1
∏

f

(∂t +mf )

]
〈v|1〉 = 0 , (7.2)

which has regular singularities at e−t = 0, (−1)NF ,∞.40 The monodromy along a path

γ on MK = P
1\{0, (−1)NF ,∞} is given in the form

〈v|1〉 →
NF∑

w=1

M(γ)vw〈w|1〉 . (7.3)

40These are the singularities in the quantum Kähler moduli space MK of the non-compact Calabi-Yau

X, and the equation (G.5) with m → 0 can be identified with the Picard-Fuchs equation for the periods

of the mirror Calabi-Yau manifold, and can be easily obtained from the period integrals of the mirror

Langdau-Ginzburg model [71].
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e−t

10

γ0 γ1

γ∞

NF: even

e−t

0−1

γ−1 γ0

γ∞

NF: odd

Figure 3. Paths for monodromies.

When z moves along γ and then along γ′, the corresponding modnoromy matrix is

M(γ′)M(γ).

Let us consider the three paths (γ0, γ±1, γ∞) depicted in figure 3, where we have γ1 for

NF even and γ−1 for NF odd. In appendix G we derive the monodromy matrices

M(γ0)vw = δvwe
2πimv ,

M(γ±1)vw = δvw−e−πi
∑

f (mf+m̃f )Svw , (7.4)

M(γ∞)vw = δvwe
−2πimv + eπi

∑
f (mf+m̃f )e−2πimwSvw ,

where

Svw =

[∏
f 2i sinπ(mv + m̃f )2i sinπ(mw + m̃f )∏

f 6=v 2i sinπmfv
∏

f 6=w 2i sinπmfw

]1/2

×
{
(−1) for NF even ,

eπimwv for NF odd .

Because of the relation M(γ0)M(γ±1)M(γ∞) = 1, only M(γ0) and M(γ±1) are indepen-

dent. In view of (7.1) and 〈g|v〉 = 〈v|g〉|t→t̄, the monodromy for each path γ should be

realized as a domain wall W(γ) such that

〈B[W(γ)]| · |w〉1 ⊗ |v〉2 = 〈v|W(γ)|w〉 = M(γ)vw .

It is clear from (7.4) that the domain wall W(γ0) is simply the gauge Wilson loop with

charge +1. Geometrically it corresponds to a sheaf supported on the diagonal ∆X.

Denote by L and L̃ the topologically trivial equivariant line bundles constructed from

the representations (det,1) and (1,det) of GF = U(NF)1 × U(NF)2, respectively. By

comparing (7.4) with (G.3) and (G.4), we find for γ±1,
41

〈1|W(γ±1)|1〉 =
∑

v,w

〈1|v〉M(γ±1)vw〈w|1〉

= 〈1|1〉+ (−1)NF−1〈B(L−1/2 ⊗ L̃1/2

⊗OY (⌊−NF/2⌋))|1〉〈B(OY (−⌊NF/2⌋))|1〉t→t̄ ,

where ⌊x⌋ denotes the largest integer not more than x. Thus
〈
B[W(γ±1)]

∣∣ =
〈
B[O∆]

∣∣+ (−1)NF−1
〈
B
[
OY (⌊NF/2⌋)⊗ (L−1 ⊗ L̃)

1
2 ⊠OY (−⌊NF/2⌋)

]∣∣ .
(7.5)

Here ⊠ denotes the external tensor product [24].42

41By the tensor product (⊗) of two sheaves, we mean the tensor product of the complexes corresponding

to the sheaves.
42If pi : X1×X2 → Xi are the projections and Ei are complexes of holomorphic vector bundles (i = 1, 2),

E1 ⊠ E2 is the complex p∗1E1 ⊗ p∗2E2 over X1 ×X2, where p∗i are the pullbacks by pi.
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We expect that a monodromy in the Kähler moduli space acts on the derived category

as a Fourier-Mukai transform. It would be interesting to compare (7.5) with the kernel of

the corresponding Fourier-Mukai transform.

We computed the monodromies by first decomposing the hemisphere partition function

into the vortex partition functions, and then by computing their monodromies. It is also

possible to compute monodromies, or more generally perform analytic continuation from

one region to another, using the integral representation (3.14). We give an example of such

analytic continuation in appendix H.

7.3 Monodromy domain walls and the affine Hecke algebra

Next let us consider the theory realizing M = T ∗
P
1 = T ∗Gr(1, 2), a special case of the

model studied in section 5.4. This is almost identical to the model with NF = 2 considered

in section 7.2, but it includes a neutral chiral multiplet Φ with twisted massmad, interacting

via the superpotential W = Q̃fΦQf . Since the superpotential affects the hemisphere

partition function only by constraining the twisted masses, we can recycle the computations

there. The difference in the conventions in sections 5.4 (and here) and 7.2 (there) requires a

replacementmthere
f = −mhere

f , m̃there
f = 1+mhere

f −mhere
ad . We also demand thatm1+m2 = 0.

We are interested in the monodromy of the matrix element 〈v|1〉 in the T ∗
P
1 model,

computed in (5.11). Thus the monodromy matrices are identical to (7.4) with the replace-

ment above:

M(γ0)vw = δvwe
−2πimv ,

M(γ1)vw = δvw−e2πimadSvw , (7.6)

M(γ∞)vw = δvwe
2πimw + e−2πimade2πimwSvw ,

with

Svw = −
[∏

f 2i sinπ(mvf +mad)2i sinπ(mwf +mad)∏
f 6=v 2i sinπmvf

∏
f 6=w 2i sinπmwf

]1/2
. (7.7)

Let us set

q = e2πimad , X = M(γ0)
−1 , T = −1 +

q

1− q
S .

The relation M(γ0)M(γ1)M(γ∞) = 1 implies that

(T + 1)(T − q) = 0 . (7.8)

The explicit expression (7.7) can be used to show another relation

TX−1 −XT = (1− q)X . (7.9)

The two relations (7.8) and (7.9) define the so-called sl2 affine Hecke algebra, and we

have followed the notation in [24]. We used the monodromies to motivate and derive the

relations, but we can study the domain wall realization of the algebra on its own right. The

generator X is simply the gauge charge −1 Wilson loop, and corresponds geometrically to

– 41 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
0

the sheaf π∗
∆O(−1), where π∆ is the projection from the diagonal of T ∗

P
1 × T ∗

P
1 to the

diagonal of the base P
1 × P

1:

Xvw = 〈B(π∗
∆O(−1))| · |w〉1 ⊗ |v〉2 .

For T , or a related operator c = −T − 1 = − q
1−qS, we find from (5.20) and (7.7)

cvw = −q1/2〈v|B(ι∗OP1(−1)〉〈B(ι∗OP1(−1)|w〉
= q−1/2〈B(ι∗OP1(−1)⊠ ι∗OP1(−1))| · |w〉1 ⊗ |v〉2 . (7.10)

The sl2 affine Hecke algebra is a basic example of an algebra that can be constructed

geometrically as a convolution algebra [24]. The sheaf we found for X is precisely what

appears in the construction. On the other hand, our sheaf for c = −1−T is slightly different

from the one in the convolution algebra, though their supports coincide. It is desirable to

understand in more generality the relation between the algebras realized by domain walls

and convolution.
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A Spinor conventions and supersymmetry transformations

By default we think of a spinor ψ = (ψα)α=1,2 as a column vector. The indices are raised

and lowered by the charge conjugation matrix

C = (Cαβ) =

(
0 1

−1 0

)
, C−1 = (Cαβ) =

(
0 −1

1 0

)

as ψα = Cαβψβ, ψα = Cαβψ
β . When the upper index of ψ is contracted with the lower

index of λ, we write

ψλ = ψαλα = ψTCTλ ,

where T indicates the transpose. The gamma matrices γm (m = 1, 2, 3) have the index

structure γm = (γmα
β). A spinor bilinear is defined as

ψγm1 . . . γmnλ = ψTCTγm1 . . . γmnλ .
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We always take the SUSY parameters ǫ and ǭ to be bosonic. We assume that they are

conformal Killing spinors satisfying (2.6). In this convention fields in a vector multiplet

transform under SUSY as

δλ = (iVmγm −D)ǫ , δλ̄ = (iV̄mγm +D)ǭ,

δAµ = − i

2

(
ǭγµλ+ λ̄γµǫ

)
, δσ1 =

1

2

(
ǭλ+ λ̄ǫ

)
, δσ2 = − i

2

(
ǭγ3λ+ λ̄γ3ǫ

)
,

δD = − i

2
ǭ 6Dλ− i

2
[σ1, ǭλ]−

1

2
[σ2, ǭγ

3λ] +
i

2
ǫ 6Dλ̄+

i

2
[σ1, λ̄ǫ] +

1

2
[σ2, λ̄γ

3ǫ], (A.1)

where

Vm =

(
D1σ1 +

f(ϑ)

ℓ sinϑ
D2σ2 , D2σ1 −

ℓ sinϑ

f(ϑ)
D1σ2 , F1̂2̂ + i[σ1, σ2] +

1

f(ϑ)
σ1

)
,

V̄m =

(
−D1σ1 +

f(ϑ)

ℓ sinϑ
D2σ2 , −D2σ1 −

ℓ sinϑ

f(ϑ)
D1σ2 , F1̂2̂ − i[σ1, σ2] +

1

f(ϑ)
σ1

)
.

For a chiral multiplet of R-charge q, the SUSY transformation laws are given by

δφ = ǭψ , δφ̄ = ǫψ̄ ,

δψ = +iγµǫDµφ+ iǫσ1φ+ γ3ǫσ2φ− i
q

2f(ϑ)
γ3ǫφ+ ǭF

δψ̄ = −iǭγµDµφ̄+ iǭφ̄σ1 + ǭγ3φ̄σ2 − i
q

2f(ϑ)
ǭγ3φ̄+ ǫF̄

δF = ǫ
(
iγµDµψ − iσ1ψ + γ3σ2ψ − iλφ

)
− i

q

2
ψγµDµǫ

δF̄ = ǭ
(
iγµDµψ̄ − iψ̄σ1 − γ3ψ̄σ2 + iφ̄λ

)
− i

q

2
ψ̄γµDµǭ . (A.2)

The twisted mass m can be introduced by replacing σ2 → σ2 +m.

B Spherical harmonics

We will first review the Jacobi polynomials that appear in the scalar monopole harmonics.

Although we only deal with the situations with vanishing fluxes, a special case of monopole

harmonics will appear in the construction of spinor spherical harmonics. We will also review

the vector spherical harmonics. In this appendix, we take the metric to be that of the round

unit sphere

ds2 = dϑ2 + sin2 ϑdϕ2 . (B.1)

The symbol q ∈ (1/2)Z denotes the monopole charge and should not be confused with the

R-charge of a chiral multiplet.

B.1 Jacobi polynomials and scalar monopole harmonics

Jacobi polynomials are defined as [72]

Pαβ
n (x) :=

(α+ 1)n
n!

2F1

(
−n, 1 + α+ β + n;α+ 1;

1− x

2

)
,
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where 2F1 is the hypergeometric function and (x)n is the Pochhammer symbol

(a)n := a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

The variable x takes values in [−1, 1]. An alternative definition is known as

Rodrigues’ formula:

Pαβ
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
{(1− x)α+n(1 + x)β+n},

where n, n+ α, n+ β, n+ α+ β ∈ Z≥0. When n, n+ α, n+ β, n+ α+ β ∈ Z≥0 and x ∈ R,

we can also write

Pαβ
n (x) =

min{n,n+α}∑

s=max{0,−β}

(n+ α)!(n+ β)!

s!(n+ α− s)!(β + s)!(n− s)!

(
x− 1

2

)n−s(x+ 1

2

)s

.

For α, β > −1, they satisfy the orthogonality relations
∫ 1

−1
(1− x)α(1 + x)βPαβ

n (x)Pαβ
m (x)dx =

2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
δnm .

The polynomials {Pα,β
n (x)}∞n=0 form a complete orthogonal system in L2

α,β([−1, 1]), i.e.,

the space of functions which are square integrable with weight (1− x)α(1 + x)β .

Let us review the basic properties of the monopole scalar harmonics [73]. When the

monopole charge q is non-zero, the scalar harmonics consist of sections of a topologically

non-trivial line bundleO(2q). Since we are most interested in the boundary of a hemisphere,

we work in the patch 0 < ϑ < π.

We define

Yqjm(ϑ, ϕ) := Mqjm(1− x)α/2(1 + x)β/2Pαβ
n (x)eimϕ,

Mqjm := 2m

√
2j + 1

4π

(j −m)!(j +m)!

(j − q)!(j + q)!
,

x := cosϑ, α := −q −m, β := q −m, n := j +m.

For q = 0, Yjm := Y0jm give the usual spherical harmonics. For given q ∈ Z/2, j and m

take values

j = |q|, |q|+ 1, |q|+ 2, . . . , m = −j,−j + 1, . . . , j .

{Yqjm}j,m form a complete orthonormal system in the space of square integrable sections

of the line bundle O(2q).

The covariant derivative for the sections of O(2q) is given by Dµ = ∂µ − iqωµ, where

ωµ = (0,− cosϑ) is the spin connection. The monopole scalar harmonics are the eigenfunc-

tions of the Laplacian:

−DµDµYqjm ≡
[
− 1

sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
− 1

sin2 ϑ

(
∂2

∂ϕ2
+ 2iq cosϑ

∂

∂ϕ
− q2 cos2 ϑ

)]
Yqjm

= [j(j + 1)− q2]Yqjm.
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The monopole harmonics provide an orthonormal basis with respect to the natural

inner product: ∫

S2

Yqjm(ϑ, ϕ)∗ Yqj′m′(ϑ, ϕ) = δjj′δmm′ , (B.2)

where the measure is dϑdϕ sinϑ and the complex conjugate is related to the original har-

monics as

Y ∗
qjm = (−1)q+mY−q,j,−m . (B.3)

Under ϑ → π − ϑ, Yjm is even for j +m even, and is odd for j +m odd. In particular

∂ϑYjm|ϑ=π/2 = 0 if j +m is even ,

Yjm|ϑ=π/2 = 0 if j +m is odd .

The orthogonality relations on the hemisphere can be obtained from (B.2) by doubling the

integration region to the full sphere.

B.2 Spinor and vector spherical harmonics

We write 6D ≡ γµDµ. Let us consider the spectral problem with respect to the modified

Dirac operator

γ3 6D =




∂ϑ − i

sinϑ
∂ϕ +

1

2
cotϑ

−∂ϑ − i

sinϑ
∂ϕ − 1

2
cotϑ


 =:

(
D†

D

)

on S
2. One can check that the eigenspinors are given by

χ±
jm(ϑ, ϕ) :=

1

2

(
(1∓ i)Y−1/2,jm(ϑ, ϕ)

(j + 1/2)−1(−i± 1)DY−1/2,jm(ϑ, ϕ)

)
, (B.4)

which satisfy

γ3 6Dχ±
jm = ±(j + 1/2)χ±

jm .

The range of the quantum numbers is given by

j =
1

2
,
3

2
, . . . , m = −j,−j + 1, . . . , j .

The eigenspinors form an orthonormal basis on S
2:

∫

S2

(χs
jm)†χs′

j′m′ = δss′δjj′δmm′ .

Next let us review the vector spherical harmonics described e.g., in [74]. We define the

one-forms

(C1
jm)µ(ϑ, ϕ) :=

1√
j(j + 1)

(
∂ϑYjm(ϑ, ϕ)

imYjm(ϑ, ϕ)

)
,

(C2
jm)µ(ϑ, ϕ) :=

1√
j(j + 1)

(
−(im/ sinϑ)Yjm(ϑ, ϕ)

sinϑ∂ϑYjm(ϑ, ϕ)

)
. (B.5)
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With the quantum numbers taking values

j = 1, 2, 3, . . . , m = −j,−j + 1, . . . , j ,

the whole sequence {Cλ
jm}λ,j,m forms an orthonormal basis of one-forms on S

2. Moreover

they are eigenvectors of the vector Laplacian:

−DµDµC
1(2)
jm = [j(j + 1)− 1]C

1(2)
jm .

They also have the properties

Dµ(C
1
jm)µ = −

√
j(j + 1)Yjm , Dµ(C

2
jm)µ = 0 ,

εµνDµ(C
1
jm)ν = 0 , εµνDµ(C

2
jm)ν = −

√
j(j + 1)Yjm .

C Eigenvalue problems on a round hemisphere

In this appendix we study the eigenvalue problems and their solutions, which we use in

section 3.2 to compute the one-loop determinants.

We are interested in the Neumann and the Dirichlet boundary conditions at ϑ = π/2:

∂ϑΦ|ϑ=π/2 = 0 (Neumann) and Φ|ϑ=π/2 = 0 (Dirichlet) .

One can check that the Laplacian −DµDµ is self-adjoint on the hemisphere 0 ≤ ϑ ≤
π/2 with these boundary conditions. For the harmonics Yjm, the conditions respectively

reduce to

P−m,−m
j+m (0) = 0 , and ∂xP

−m,−m
j+m (x)|x=0 = 0.

The property Pα,β
n (−x) = (−1)nP β,α

n (x) implies that the eigenmodes that survive the

boundary conditions are given by

Yjm, j −m = even, eigenvalue = j(j + 1) (Neumann) ,

Yjm, j −m = odd, eigenvalue = j(j + 1) (Dirichlet) .

We have indicated the eigenvalues of the Laplacian −DµDµ. Since −DµDµ is self-adjoint

on the hemisphere when either boundary condition is imposed, the surviving modes form

an orthogonal system. The precise normalizations can be inferred from the relations among

such modes ∫

0≤ϑ≤π/2
Yjm(ϑ, ϕ)∗ Yj′m′(ϑ, ϕ) =

1

2
δjj′δmm′ , (C.1)

which can be obtained from (B.2) by doubling the integration region to 0 ≤ ϑ ≤ π.

Let us consider two types of boundary conditions for a spinor ψ = (ψ1, ψ2)
T :

(ψ1 + ψ2)|ϑ=π/2 = 0 (A) and (ψ1 − ψ2)|ϑ=π/2 = 0 (B) .

Suppose that another spinor λ obeys the same boundary condition as ψ. Then

〈ψ, γ3 6Dλ〉 ≡
∫

ϑ≤π/2
ψ†γ3 6Dλ = 〈γ3 6Dψ, λ〉 −

∫
dϕψ†γ1γ3λ|ϑ=π/2 .
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For both (A) and (B),

ψ†γ1γ3λ|ϑ=π/2 ∝
[
(ψ†)1λ2 − (ψ†)2λ1

]
|ϑ=π/2 = 0.

Thus the Dirac operator γ3 6D, together with the boundary condition either (A) or (B), is

self-adjoint on the hemisphere.

For χ±
jm the condition (A) reduces to

[(2j + 1)∓ (1− 2m)]P
1/2−m,−1/2−m
j+m (0)± (j −m+ 1)P

3/2−m,1/2−m
j+m−1 (0) = 0.

The modes that survive the condition are

χ+
jm , j −m = odd , eigenvalue = j + 1/2 ,

χ−
jm , j −m = even eigenvalue = −(j + 1/2) .

Similarly (B) reduces to

[(2j + 1)± (1− 2m)]P
1/2−m,−1/2−m
j+m (0)∓ (j −m+ 1)P

3/2−m,1/2−m
j+m−1 (0) = 0 ,

and the surviving modes are

χ+
jm , j −m = even , eigenvalue = j + 1/2 ,

χ−
jm , j −m = odd , eigenvalue = −(j + 1/2) .

Among the surviving modes we have
∫

ϑ≤π/2
χs
jm(ϑ, ϕ)†χs′

j′m′(ϑ, ϕ) =
1

2
δss′δjj′δmm′ , (C.2)

∫

ϑ≤π/2
χs
jm(ϑ, ϕ)γ3χ

s′

j′m′(ϑ, ϕ) =
s′(−1)m−1/2

2
δs,−s′δjj′δm,−m′ . (C.3)

Finally we consider the boundary condition

Aϑ|ϑ=π/2 = ∂ϑAϕ|ϑ=π/2 = 0 .

for vector harmonics (B.5). The modes that survive are

C1
jm, j −m = even, spectrum j(j + 1), degeneracy j + 1,

C2
jm, j −m = odd, spectrum j(j + 1), degeneracy j.

D Hemisphere partition functions for exact complexes

The aim of this appendix is to argue that the map (4.7) is well-defined. Namely we argue

that the hemisphere partition function for each object of the derived category D(X or M)

does not depend on the choice of a complex of vector bundles used in the construction.

As an example in Case 1, let us consider the resolved conifold. The gauge group is

G = U(1), and there are four chiral fields φ = (φ1, φ2, φ3, φ4) with gauge charges wa =
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(+1,+1,−1,−1). The flavor group is GF = U(1)4 =
∏r

a=1U(1)a, where φa has charge +1

for U(1)a and charge zero for U(1)b 6=a.

Let m = (ma) be the complexified twisted masses for φa. For r ≫ 0, the model is in

the geometric phase and flows to the non-linear sigma model with target space the resolved

conifold X. We want to show that for an exact equivariant complex (E , d) of vector bundles
given by

0 −→ E1 −→ . . . −→ En −→ 0 ,

the partition function Zhem(E) vanishes. Following the definition of (4.10) , we let V i be

the representation of G×GF from which the vector bundle E i arises via (4.9). We assume

that the values of ma are generic. Under this assumption, the integral

Zhem(E) =
∫ i∞

−i∞

dσ

2πi
StrV [e

−2πiρ(σ,m)]etσΓ(σ +m1)Γ(σ +m2)Γ(−σ +m3)Γ(−σ +m4) ,

where we wrote explicitly the representation ρ∗(σ,m) of Lie(G × GF), is evaluated by

residues to give

Zhem(E) =
2∑

v=1

StrV [e
−2πiρ∗(−mv ,m)]e−tmv

∞∑

k=0

(−1)k

k!

∏

a 6=v

Γ(wa(−mv − k) +ma) .

This involves two sequences of poles at σ = −mv,−mv−1, . . . (v = 1, 2). As noted in [2, 3],

the beginning of each sequence corresponds to a solution of the condition

(waσ +ma)φ
a = 0

with φa satisfying the D-term equation

∑

a

wa|φa|2 = r

2π
.

Such values of (σ, φ) describe a fixed point in X under the action of the flavor group GF.
43

We now recall that the tachyon profile Q has to satisfy the condition that ρ(g)Q(g−1 ·
φ)ρ(g)−1 = Q(φ) for any g ∈ G × GF. For g = (e−2πiσ, e−2πim) ∈ G × GF and φ under

consideration then,

ρ(g)Q(φ) = Q(φ)ρ(g) .

This relation together with Hodge decomposition shows that there are complete cancella-

tions between Im di and Ker di+1 so that StrV [e
−2πiρ∗(σ,m)] vanishes at all poles, and hence

Zhem = 0 for an exact complex E .
For more general X, if a given exact complex can be made equivariant with twisted

masses generic enough so that the poles become simple, the same argument can be applied

to show that Zhem vanishes.

Next let us consider the Fermat quinticM as an example of Case 2. The chiral fields are

(P, xa). The fields x
a, a = 1, . . . , 5, parametrizeX. The superpotentialW = P (x51+. . .+x55)

43For a more general X for which GF is non-abelian, we should consider a fixed point with respect to the

maximal torus of GF.
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does not allow us to introduce real twisted masses. Given an object in D(M), we push it

forward to D(X), where X = P
4 and resolve it there.

In order to argue that the map D(M) → C is well-defined, suppose that we have

two resolutions in X of the same object of D(M). For the resolutions, which are quasi-

isomorphic inX, we construct the boundary interactions according to (4.15). The difference

of their hemisphere partition functions is clearly the hemisphere partition function of their

mapping cone, which is exact. Thus if Zhem vanishes for any exact complex in X, then the

map Zhem : D(M) → C is well-defined.

We have not found such a proof yet. As an alternative, we offer an example of exact

complex for which Zhem indeed vanishes. Consider the following complex E of vector

bundles over X = P
4:

0 → O(n) → O(n+ 1)5 → O(n+ 2)10 → O(n+ 3)10 → O(n+ 4)5 → O(n+ 5) → 0 .

In terms of fermionic oscillators {ηa, η̄b} = δab, this complex is realized as the Fock space

V built on the vacuum |0〉 satisfying ηa|0〉 = 0. The differential is Q0 = xaηa, and the

tachyon profile is Q = Q0 +
∑

a Px4aη̄a. This is exact since {Q, Q̄} is everywhere positive.

The boundary interaction (V ,Q) then contributes

StrV(e
−2πiσ) ∝ sin5 πσ ,

which has order 5 zeros at σ ∈ Z. It then follows that the hemisphere partition function

vanishes,

Zhem(E) =
∫ i∞

−i∞
StrV(e

−2πiσ)etσΓ(σ)5Γ(1− 5σ) = 0 ,

when the integral is evaluated by closing the contour to the left.

Finally, let us consider another example of Case 2, M = T ∗Gr(N,NF) considered

in section 5.4. As in the previous example, we want to show that Zhem vanishes for

an exact complex on the ambient space X given as in (5.16). The general result (3.20)

with the definition (3.19) of C(I) implies that we need to find decompositions of the vector

~r = (r, . . . , r) by the weights of fundamental, anti-fundamental, and adjoint representations,

with positive coefficients. One can show that anti-fundamental weights can never appear

in such decompositions. The poles are associated with fixed points on T ∗Gr(N,NF) with

respect to the U(1)NF(⊂ GF) action. Indeed the decomposition ~r =
∑

(a,w)∈I raw ~w implies

that the D-term equations can be solved by setting φw
a = (raw/2π)

1/2 for (a, w) ∈ I (with

other φw
a = 0), and the poles σ satisfy e−2πi(w·σ+ma) = 1 for (a, w) ∈ I. Thus at the poles

ρ(g) and Q0(φ) commute with each other, and StrV [e
−2πiρ∗(σ,m)] vanishes, as in the case of

the resolved conifold. Since the poles are simple for generic twisted mass parameters, the

hemisphere partition function vanishes.

E Complete intersection CYs in a product of projective spaces

In this appendix we generalize the result for the quintic obtained in section 5.2. Let us

consider a direct product of projective spaces X =
∏m

r=1 P
Nr−1. We take sections sa of
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the line bundles O(l1a, . . . , l
m
a ) for a = 1, . . . , k and assume that the intersection M of their

zero-loci s−1
a (0) is a smooth manifold. For M to be Calabi-Yau, lra must satisfy

∑

a

lra = Nr .

This geometry is realized by a gauge theory with gauge group G = U(1)m =
∏m

r=1U(1)r
and the following matter content: the chiral multiplet fields

φr,1, . . . , φr,Nm

charged only under U(1)r with charge 1, and

Pa, a = 1, . . . , k

that have U(1)m charges (−l1a, . . . ,−lma ) and R-charge −2. We also include a superpotential

W =
∑k

a=1 PaGa(φ), where Ga(φ) are the polynomials that define the sections sa. For

r ≫ 0 the gauge theory flows to the nonlinear sigma model whose target space M .

Let us take as the Chan-Paton space V the fermionic Fock space generated by the

Clifford algebra {ηa, η̄b} = δab, a, b = 1, . . . , k and the Clifford vacuum |0〉 satisfying ηa|0〉 =
0. The tachyon profile is given by Q = Gaηa+Paη̄a and is a matrix factorization, Q2 = W .

Via (4.15) this corresponds to the Koszul resolution

∧kE
is−→· · · is−→∧2E

is−→E
is−→OX(n1, . . . , nm) ,

of the sheaf OM (n1, . . . , nm), where

E =

k⊕

a=1

OX(n1 − l1a, . . . , nm − lma )

and is is the contraction by the section s = (sa) of the vector bundle
⊕k

a=1OX(l1a, . . . , l
m
a ).

Following the rule (4.17) we assign gauge charges

(
n1 +

∑

a

l1a/2, . . . , nm +
∑

a

lma /2

)
=

(
n1 +N1/2, . . . , nm +Nm/2

)

to |0〉. Thus

Zhem[OM (n1, . . . , nm)]

=

∫

iR
m

dσm

(2πi)m
e−2πinrσr

[
k∏

a=1

2

i
sin(πlraσr)

]
etrσr

[
m∏

r=1

Γ(σr)
Nr

]
k∏

a=1

Γ (1− lraσr)

= (−2πi)k
∫

iR
m

dσm

(2πi)m
e(tr−2πinr)σr

∏
r Γ(σr)

Nr

∏
a Γ(l

r
aσr)

. (E.1)

This integral can be evaluated by residues, and is given by the coefficient of
∏

r σ
−1
r in the

Laurent expansion of the integrand, up to exponentially suppressed terms for Re t ≫ 0.
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We wish to compare this with the large volume formula
∫

M
ch(E)eB+iω

√
Â(TM) (E.2)

for the central charge of E ∈ D(M). The complexified Kähler form B+ iω depends linearly

on the complexified FI parameters t = (tr) in the large volume limit. Note the relation

∏

j

√
xj

exj/2 − e−xj/2
−
∏

j

Γ

(
1 +

ixj
2π

)
= O(x3j ) ,

which is valid when
∑

j xj = 0. This implies that the polynomial terms in t, appearing

in (E.2) with the first three highest orders, also appear in the integral
∫

M
ch(E)eB+iωΓ̂(TM) . (E.3)

Here Γ̂ is the multiplicative characteristic class44 defined via the splitting principle as

Γ̂(E) =
∏

j

Γ

(
1 +

ixj
2π

)
, (E.4)

where xj are the Chern roots of a vector bundle E. Using the exact sequence

0 −→ TM −→ TX|M −→
k⊕

a=1

O(l1a, . . . , l
m
a )|M −→ 0

and the Euler sequence

0 −→ O −→ O(1)⊕Nr −→ TPNr−1 → 0

for each r, we can write

Γ̂(TM) =
i∗Γ̂(TX)

i∗Γ̂(
⊕

aO(l1a, . . . , l
m
a ))

=
m∏

r=1

Γ

(
1 +

ier
2π

)Nr
/ k∏

a=1

Γ

(
1 +

∑
r l

r
aer

2πi

)
,

where er = i∗hr, and the hyperplane classes hr ∈ H2(PNr−1) satisfy
∫
X

∏
r h

Nr−1
r = 1.

Thus we can rewrite the large volume formula for the central charge as
∫

M
ch(OM (n1, . . . , nm))eB+iω

√
Â(TM)

∼
∫

M
e

i
2π

∑
r(tr−2πinr)er

∏
r Γ

(
1 + i

2πer
)Nr

∏
a Γ

(
1 + i

2π

∑
r l

r
aer

)

= (−2πi)k
∫

X

m∏

r=1

(
ihr
2π

)Nr

e
i
2π

∑
r(tr−2πinr)hr

∏
r Γ

(
i
2πhr

)Nr

∏
a Γ

(
i
2π

∑
r l

r
ahr

) . (E.5)

In the last line we used the fact that the Poincaré dual of the homology class [s−1
a (0)]

is c1(O(l1a, . . . , l
m
a )) =

∑
r l

r
ahr. Comparing (E.5) with (E.1), we see that the hemisphere

partition function agrees with the central charge in the large volume limit, up to an overall

numerical factor, for the polynomial terms in t with the first three highest orders.

44We learned of the relevance of the Gamma class Γ̂ to the hemisphere partition function in talks by

D. Morrison and K. Hori. Our use of the Gamma class was motivated by their talks.
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F Vortex partition functions

Basic building blocks of the hemisphere partition function for theories with gauge group

G = U(N) and NF ≥ N fundamental chiral multiplets are the vortex partition func-

tions [75]. Here we give certain expressions that arise in the sphere and the hemisphere

partition functions. We take them as definitions of the vortex partition functions in the

presence of other matter fields in various representations. Conceptually the vortex partition

functions are equivariant integrals on the moduli space of vortex solitons with appropri-

ate integrands, but the first principle derivations have been given only for some of the

representations. One may regard the definitions here as predictions.

Let −mf be the twisted masses of the fundamentals. We define the vortex partition

function specified by v ≡ {f1 < . . . < fN} ⊆ {1, . . . , NF } as

Zv

vortex(tren,m) ≡
∞∑

k1,...,kN=0

∏

j<l

(−1)kjl
(
1− kjl

mfjfl

)∏

a/∈v
Zv

Ra
(~k;ma; ~β)e

−|~k|tren . (F.1)

In the product, a runs over all chiral multiplets in irreducible representations Ra of U(N),

except the fundamentals corresponding to f ∈ v. Let (x)k = x(x+1) . . . (x+ k− 1) be the

Pochhammer symbol. For the fundamental representation Zv

fund appears in the form

Zv

fund(
~k;−mf ) =

(−1)
∑

j kj

∏N
j=1(1 +mf −mfj )kj

.

For anti-fundamental, adjoint, and detn representations, the Zv

R is given by

Zv

antifund(
~k;m) =

N∏

j=1

(m−mfj )kj , Zv

adj(
~k;m) =

N∏

i,j=1

(mfifj − ki +m)kj
(mfifj − ki +m)ki

,

Zv

detn(
~k;m) =

1

(1 +m+n
∑

j mfj )|~k|
.

More generally, each infinite sum specified by I in (3.20), normalized so that the series

starts with 1, defines an analog of the vortex partition function.

We study several Seiberg-like dualities in section 6. The vortex partition functions for

the T ∗Gr models are not duality invariant; rather, they satisfy a non-trivial relation (6.3).

We found numerically that similar relations45 hold for U(N) theories with NF fundamental

and NA anti-fundamental matter fields with NA = NF, NF − 1. By denoting the vortex

partition function as Z
(N,NF,NA),v
vortex (tren;mf , m̃a), for NA = NF we have

(1 + (−1)NF−N+1e−tren)−(NF−N)+
∑NF

f=1 mf+
∑NA

a=1 m̃aZ
(N,NF,NA),v
vortex (tren;mf , m̃a)

= Z
(NF−N,NF,NA),v∨

vortex (tren −NAπi;−mf − 1/2,−m̃a + 1/2) ,

and for NA = NF − 1,

exp((−1)NF−N+1e−tren)Z
U(N),v
vortex (tren;mf , m̃a)

= Z
U(NF−N),v∨

vortex (tren −NAπi;−mf − 1/2,−m̃a + 1/2) .
45For NA ≤ NF − 2, the vortex partition functions are invariant under the duality map N → NF −

N, tren → tren −NAπi, mf → −mf − 1/2, m̃a → −m̃a + 1/2, v → v
∨.
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G Detailed calculations for a U(1) theory

Let us consider the 2d gauge theory in section 7.2. The S
2 partition function is

ZS2(X) = c
∑

v

e−(t+t̄)mv
∏

f 6=v

Γ(mfv)

Γ(1−mfv)

∏

f

Γ(mv + m̃f )

Γ(1−mv − m̃f )
Zv
vortex(t,m)Zv

vortex(t̄, m) ,

where we chose w0 = 0 for the ambiguity w0 in (3.24), and c is a normalization constant

to be determined. The vortex partition function is as defined in (F.1):

Zv
vortex(t,m) =

∞∑

k=0

e−kt(−1)kNF

NF∏

f=1

(m̃f +mv)k
(1−mfv)k

. (G.1)

We can write ZS2 =
∑

v〈1|v〉〈v|1〉 if we set

〈v|1〉 = c1/2e−tmv

[
∏

f 6=v

Γ(mfv)

Γ(1−mfv)

∏

f

Γ(mv + m̃f )

Γ(1−mv − m̃f )

]1/2

Zv
vortex(t,m)

and

〈1|v〉 = c1/2e−t̄mv

[
∏

f 6=v

Γ(mfv)

Γ(1−mfv)

∏

f

Γ(mv + m̃f )

Γ(1−mv − m̃f )

]1/2

Zv
vortex(t̄, m) .

We can compute the cylinder partition function 〈B(OX(n2))|B(OX(n1))〉 by a gener-

alization of (5.15),

indF⊗E∗( 6D) =
∑

p: fixed points

1

detTXp(g
−1/2 − g1/2)

TrFp(g)TrEp(g
−1) . (G.2)

We find

〈B(OX(n2))|B(OX(n1))〉 =
∑

v

e2πin21mv

[
∏

f 6=v

2i sinπmfv

∏

f

2i sinπ(mv + m̃f )

]−1

,

where nab := na − nb. This can be written as
∑

v〈B(OX(n2))|v〉〈v|B(OX(n1))〉 by setting

〈B(OX(n))|v〉 = e2πinmv

[
∏

f 6=v

2i sinπmfv

∏

f

2i sinπ(mv + m̃f )

]−1/2

and

〈v|B(OX(n))〉 = e−2πinmv

[
∏

f 6=v

2i sinπmfv

∏

f

2i sinπ(mv + m̃f )

]−1/2

.

The hemisphere partition function for B(OX(n)) is

Zhem(B(OX(n))) =

∫
dσ

2πi
e−2πinσetσ

NF∏

f=1

Γ(σ +mf )Γ(−σ + m̃f )

=

NF∑

v=1

e2πinmvZv
cl(t,m)Zv

1-loop(m)Zv
vortex(t,m) .
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where

Zv
cl(t,m) = e−tmv , Zv

1-loop(m) =
∏

f 6=v

Γ(mfv)
∏

f

Γ(m̃f +mv) .

We can write

Zhem(B(OX(n))) =

NF∑

v=1

〈B(OX(n))|v〉〈v|1〉 = 〈B(OX(n))|1〉 .

if we set c = (2πi)2NF−1.

We will also be interested in the brane for the structure sheaf of Y , the submanifold

defined by setting to zero the chiral fields φ̃f . This corresponds to Case 1 of section 4.3.

Let us introduce fermionic oscillators satisfying {ηf , η̄g} = δfg, ηf |0〉 = 0. A locally free

resolution of OY is given by a complex of equivariant vector bundles which corresponds to

Cη̄1 . . . η̄NF
|0〉 → . . . →

⊕

f<g

Cη̄f η̄g|0〉 →
⊕

f

Cη̄f |0〉 → C|0〉

with the differential Q = φ̃fη
f . The underline indicates the degree-zero location. Including

the twist by OX(n), we find

〈B(OY (n))|v〉 =
∏

f

(1− e+2πi(mv+m̃f ))× 〈B(OX(n))|v〉

= (−1)NFe2πinmveNFπimveπi
∑

f m̃f

[∏
f 2i sinπ(mv + m̃f )∏

f 6=v 2i sinπmfv

]1/2

(G.3)

and

〈v|B(OY (n))〉 = e−2πinmve−NFπimve−πi
∑

f m̃f

[∏
f 2i sinπ(mv + m̃f )∏

f 6=v 2i sinπmfv

]1/2

. (G.4)

We wish to derive the monodromies of 〈v|1〉 along paths on the (e−t)-plane. To simplify

the computations let us set z = (−1)NFe−t. The differential equation (7.2) becomes

[
z

NF∏

f=1

(
z
d

dz
+ m̃f

)
−

NF∏

f=1

(
z
d

dz
−mf

)]
G(z) = 0 , (G.5)

which has NF basic solutions

Gv(z) = zmv
NF

FNF−1

(
{m̃f+mv}NF

f=1

{1−mf+mv}NF
f 6=v

∣∣∣∣∣z
)

(G.6)

analytic on the complex z-plane minus the branch cuts (−∞, 0] ∪ [1,∞). In terms of the

functions Gv and the coefficients

Av = (2πi)NF−1/2

[
∏

f 6=v

Γ(mfv)

Γ(1−mfv)

∏

f

Γ(mv + m̃w)

Γ(1−mv − m̃w)

]1/2

×
{
1 for NF even ,

e−πimv for NF odd ,
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we can write

〈v|1〉 = AvGv(z) . (G.7)

On Gv, the monodromy along a path γ̃ acts as

Gv(z) →
∑

w

M(γ̃)vwGw(z)

for some matrix M(γ̃)vw. If a path γ̃ on the z-plane corresponds to the path γ on the (e−t)-

plane, the matrix M(γ̃) is related to M(γ) in (7.3) by a diagonal similarity transformation

M(γ)vw = AvM(γ̃)vwA
−1
w . (G.8)

For the small loop γ̃0 going around z = 0 counterclockwise, the monodromy acts as

Gv(z) → e2πimvGv(z). Thus M(γ̃0)vw = e2πimvδvw.

In order to obtain monodromies along other paths, let us consider independent solu-

tions of (G.5) around z = ∞ [76]

G̃v(z) := z−m̃v
NF

FNF−1

(
{mf+m̃v}NF

f=1

{1+m̃vf}
NF
f 6=v

∣∣∣∣
1

z

)
, v = 1, . . . , NF .

They are analytic on C\(−∞, 1]. We can relate Gv(z) defined near z = 0 and G̃v(z) defined

near z = ∞ by analytic continuation upon choosing a path that connects the two regions.

The relation, the connection formula, depends on whether the path goes above (ǫ = +1)

or below (ǫ = −1) the singularity at z = 1:

Gv(z) =

NF∑

w=1

eiπǫ(mv+m̃w)
NF∏

f 6=v

Γ(1 +mvf )

Γ(1− m̃w −mf )

NF∏

f 6=w

Γ(m̃fw)

Γ(m̃f +mv)
G̃w(z) .

By exchanging z ↔ z−1 and m ↔ m̃ we obtain the inverse formula

G̃v(z) =

NF∑

w=1

eiπǫ(m̃v+mw)
NF∏

f 6=v

Γ(1 + m̃vf )

Γ(1−mw − m̃f )

NF∏

f 6=w

Γ(mfw)

Γ(mf + m̃v)
Gw(z) ,

where the two regions are connected along a path below (ǫ = +1) or above (ǫ = −1) z = 1.

Let us define a path γ̃ǫ1ǫ2ǫ3 as follows. It first goes from z = 0 to +∞ above or below

z = 1 for ǫ1 = +1 or ǫ1 = −1, respectively. Then for ǫ2 = +1(−1), it moves along a very

large circle clockwise(counterclockwise), and does not move for ǫ2 = 0. Finally ǫ3 = 1 or

ǫ3 = −1 if the path goes from z = +∞ back to 0 below or above z = 1. The monodromy
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along γ̃ǫ1ǫ2ǫ3 is46

Gv(z) →
∑

w

∑

g

eπiǫ1(mv+m̃g)
∏

f 6=v

Γ(1 +mvf )

Γ(1− m̃g −mf )

∏

f 6=g

Γ(m̃fg)

Γ(m̃f +mv)

×e2πiǫ2m̃geπiǫ3(m̃g+mw)
∏

f 6=g

Γ(1 + m̃gf )

Γ(1−mw − m̃f )

∏

f 6=w

Γ(mfw)

Γ(mf + m̃g)
Gw(z)

=
∑

w

eπi(ǫ1mv+ǫ3mw)

∏
f 6=v Γ(1 +mvf )

∏
f 6=w Γ(mfw)∏

f Γ(m̃f +mv)Γ(1−mw − m̃f )

×π
∑

g

eiπ(+ǫ1+2ǫ2+ǫ3)m̃g

∏
f 6=v,w sinπ(mf + m̃g)∏

f 6=g sinπm̃fg
Gw(z) .

If n = ǫ2+(ǫ1 + ǫ3)/2 satisfies |n| ≤ 1,47 we can rewrite the monodromy in the form

Gv(z) →
∑

w

Mǫ1ǫ2ǫ3
vw Gw(z) ,

where

Mǫ1ǫ2ǫ3
vw = πeπi(ǫ1mv+ǫ3mw)

∏
f 6=v Γ(1 +mvf )

∏
f 6=w Γ(mfw)∏

f Γ(m̃f +mv)Γ(1−mw − m̃f )

×
[
δvwe

−2πinmv

∏
f 6=v sinπmfv∏

f sinπ(m̃f +mv)
+ (−1)NF−12nienπi(

∑
f m̃f+

∑
f 6=v,w mf)

]

= δvwe
−2ǫ2πimv + 2nπieiπ[n

∑
f (mf+m̃f )+(ǫ1−n)mv+(ǫ3−n)mw]Svw .

The matrix

Svw ≡ (−1)NF−1

∏
f 6=v Γ(1 +mvf )

∏
f 6=w Γ(mfw)∏

f Γ(m̃f +mv)Γ(1−mw − m̃f )
.

satisfies the equations48

Svv =
(−1)NF−1

π

∏
f sinπ(m̃f +mv)∏

f 6=v sinπmfv
,

NF∑

g=1

SvgSgw =
1

2iπ

(
eiπ

∑
f (mf+m̃f ) − e−iπ

∑
f (mf+m̃f )

)
Svw .

46The expressions of the form
∏

f 6=v,w Cf mean (
∏

f Cf )/CvCw in this appendix.
47For such n we have the identity [76]

∑

g

e2πinm̃g

∏

f 6=v,w sinπ(mf + m̃g)
∏

f 6=g sinπm̃fg

= δvwe
−2πinmv

∏

f 6=v sinπmfv
∏

f sinπ(m̃f +mv)
+ (−1)NF−12nieniπ[

∑
f m̃f+

∑
f 6=v,w mf ] .

48The second equation can be proved by using the identity

∑

g

∏

f sin(m̃f +mg)
∏

f 6=g sin(mf −mg)
=

(−1)NF−1

2i

(

eiπ
∑

f (mf+m̃f ) − e−iπ
∑

f (mf+m̃f )
)

.
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In particular the monodromy matrices for the basic paths in figure 3 are

M(γ̃0)vw = δvwe
2πimv ,

M(γ̃1)vw = M−1,0,−1
vw = δvw−2πie−πi

∑
f (mf+m̃f )Svw ,

M(γ̃∞)vw = M1,1,−1
vw = δvwe

−2πimv + 2πieπi
∑

f (mf+m̃f )e−2πimwSvw.

One can check that M(γ̃0)M(γ̃1)M(γ̃∞) = 1 as expected.49 After the similarity transfor-

mation (G.8), we obtain the monodromy matrices (7.4).

H Grade restriction rule and analytic continuation

In this appendix we explain how to use the integral representation (3.14) to analytically

continue a hemisphere partition function from one region to another in the Kähler moduli

space. This involves choosing a complex of bundles representing a given object in the

derived category so that each bundle satisfies the so-called grade restriction rule [19]. We

will use a D2-brane on the resolved conifold as an example.

We first review a derivation of the grade restriction rule from the integral representation

of Zhem, as explained in a talk by K. Hori. Let us consider a general U(1) gauge theory

with NF chiral multiplets with gauge charges Qf and twisted masses mf , f = 1, . . . , NF ,

satisfying
∑

f Qf = 0. We impose the Neumann boundary condition on all chiral fields

and include a Wilson loop with gauge charge n. The hemisphere partition function is then

∫ i∞

−i∞

dσ

2πi
etσe−2πinσ

NF∏

f=1

Γ(Qfσ +mf ),

where t = r − iθ. In the limit σ → ±i∞, the absolute value of the integrand behaves as

exp
((

− πS ± (2πn+ θ)
)
|σ|

)
, where S =

∑
Qf>0Qf . When the grade restriction rule50

− S
2
< n+

θ

2π
<

S
2

(H.1)

is obeyed, the σ-integral along the imaginary axis is absolutely convergent, and the hemi-

sphere partition function can be analytically continued from r ≫ 0 to r ≪ 0.

Let us consider a U(1) gauge theory with chiral multiplet fields (φ1, φ2) with charge

+1, and (φ̃1, φ̃2) with charge −1. We denote their twisted masses as (m1,m2) and (m̃1, m̃2)

respectively. The theory flows to the nonlinear sigma model whose target spaceX is defined

by the equation |φ1|2 + |φ2|2 − |φ̃1|2 − |φ̃2|2 = r/2π and the U(1) quotient. In the phase

r ≫ 0, this is the resolved conifold, the total space of OP1(−1)⊕2 → P
1, where (φ1, φ2)

parametrize the base P
1 and (φ̃1, φ̃2) are the fiber coordinates. In the flopped phase r ≪ 0

the roles of (φ1, φ2) and (φ̃1, φ̃2) are exchanged. Let i± : P1 → X be the embeddings in

the ±r ≫ 0 phases respectively.

49We defined M(γ̃) for all γ̃ using a base point on a common Riemann sheet. For a discussion on the

choice of base point and relations satisfied by monodromy matrices, see [77].
50The energy for large |σ1 − iσ2| is bounded from below only if (H.1) is satisfied [19].
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We are interested in transporting the sheaf i+∗ OP1 from r ≫ 0 to r ≪ 0, through the

window −2π < θ < 0, for which the grade restriction rule is obeyed only by n = 0, 1. In

particular, we will perform an analytic continuation of its hemisphere partition function.

To study this problem, let us introduce fermionic oscillators satisfying {ηf , η̄g} =

{η̃f , ¯̃ηg} = δfg (f, g = 1, 2), with the corresponding Clifford vacua such that ηf |0〉 =

η̃g|0̃〉 = 0. We assume that |0̃〉 is neutral under gauge and flavor symmetries, and identify

|0̃〉 = η̃2η̃1|0〉. Consider the following two complexes of vector spaces

0 −→ Cη̄1η̄2|0〉 −→ Cη̄1|0〉 ⊕ Cη̄2|0〉 −→ C|0〉 −→ 0 , (H.2)

0 −→ C¯̃η1 ¯̃η2|0̃〉 −→ C¯̃η1|0̃〉 ⊕ C¯̃η2|0̃〉 −→ C|0̃〉 −→ 0 , (H.3)

with the underline indicating degree zero. The differentials are Q =
∑

f=1,2 φfηf , Q̃ =∑
f=1,2 φ̃f η̃f respectively. These represent complexes of equivariant vector bundles. In the

phase r ≫ 0, {Q, Q̄} is positive definite, implying that (H.2) is exact and represents the

zero object in the derived category. On the other hand, in the same phase, (H.3) is the

Koszul resolution [24] of i+∗ OP1 supported on {φ̃1 = φ̃2 = 0}, which is the D-brane we are

interested in. Again the roles of (H.2) and (H.3) are swapped for r ≪ 0.

The gauge charges of |0̃〉, ¯̃ηf |0̃〉, ¯̃η1 ¯̃η2|0̃〉 are 0, 1, 2 respectively. The last one is outside

the range (H.1). As a consequence, the hemisphere partition function for (H.3)

(−2πi)2eπi(m̃1+m̃2)

∫ i∞

−i∞

dσ

2πi
e(t−2πi)σ Γ(σ +m1)Γ(σ +m2)

Γ(1 + σ − m̃1)Γ(1 + σ − m̃2)
(H.4)

does not converge absolutely along the imaginary axis. For r ≫ 0, convergence requires us

to choose the σ contour so that asymptotically σ → ±i(1± ǫ)∞, and this gives

Zhem(i
+
∗ OP1) = (−2πi)2eπi(m̃1+m̃2)

2∑

v=1

e−mv(t−2πi)

∏2
f 6=v Γ(mf −mv)

∏2
f=1 Γ(1−mv − m̃f )

×2F1

(
{m̃f+mv}2f=1{1−mf+mv}2f 6=v

∣∣∣∣e
−t

)
. (H.5)

For r ≪ 0 we need σ → ±i(1 ∓ ǫ)∞, and (H.4) vanishes, as it should for the zero object.

The two functions are not related by analytic continuation.

In order to analytically continue Zhem(i∗OP1) from r ≫ 0 to r ≪ 0, we may evalu-

ate (H.4) by residues and apply the connection formula, as we did in appendix G. Here we

explain an alternative method found in [19].

The problematic term C¯̃η1 ¯̃η2|0̃〉 can be eliminated from the complex (H.3) by binding

the D-brane (H.3) with the other D-brane (H.2), which is empty for r ≫ 0. Let f be

the unique cochain map from (H.3) to (H.2), with degrees shifted for the latter, such that

C¯̃η1 ¯̃η2|0̃〉 in (H.3) is mapped to C|0〉 in (H.2) by the identity map. The bound state of the

two D-branes is the mapping cone C(f):

C¯̃η1 ¯̃η2|0̃〉 //

1

))
❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

⊕

C¯̃η1|0̃〉 ⊕ C¯̃η2|0̃〉 //

⊕

C|0̃〉

Cη̄1η̄2|0〉 // Cη̄1|0〉 ⊕ Cη̄2|0〉 // C|0〉
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The pair, which carries the gauge charge 2 and is connected by the identity map, can be

neglected in computing Zhem for C(f).51 The other terms carry gauge charges 0 or 1. The

hemisphere partition function can be written as

Zhem(C(f)) =

∫
dσ

2πi
etσ

[
1− e−2πiσ

(
e2πim̃1 + e2πim̃2

)
+ (e2πim1 + e2πim2)e2πi(m̃1+m̃2−σ)

−e2πi(m1+m2+m̃1+m̃2)

] 2∏

f=1

Γ(σ +mf )Γ(−σ + m̃f ) .

This integral along the imaginary axis is now absolutely convergent for −2π < θ < 0, and

interpolates the hemisphere partition functions in the two phases.

In the phase r ≫ 0, the contribution from (H.2) is trivial, and Zhem(C(f)) coincides

with Zhem(i
+
∗ OP1) in (H.5). In the phase r ≪ 0, the contribution from (H.3) becomes

trivial and Zhem(C(f)) coincides with the hemisphere partition function for (H.2)

Zhem(i
−
∗ OP1(2)[1]) = −(−2πi)2eπi(m1+m2+2m̃1+2m̃2)

×
∫

dσ

2πi
e(t−2πi)σ Γ(−σ + m̃1)Γ(−σ + m̃2)

Γ(1− σ −m1)Γ(1− σ −m2)

= −(−2πi)2eπi(m1+m2+2m̃1+2m̃2)

×
2∑

v=1

em̃v(t−2πi)

∏2
f 6=v Γ(m̃f − m̃v)

∏2
f=1 Γ(1− m̃v −mf )

2F1

( {mf+m̃v}2f=1

{1−m̃f+m̃v}2f 6=v

∣∣∣∣e
t

)
.

One can check that the relation between Zhem(i
+
∗ OP1) and Zhem(i

−
∗ OP1(2)[1]) is consistent

with the connection formulas in appendix G.
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