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1 Introduction

In the absence of any signal for supersymmetry during Run 1 of the LHC [1, 2], it is

natural to ask how and where supersymmetry may be hiding. Perhaps it is hiding in plain

sight with a compressed spectrum [3, 4] that the conventional missing-energy searches at

the LHC have been unable to resolve? Or perhaps R parity is violated, in which case

supersymmetry may be hiding among the jets and leptons produced by Standard Model

processes? Or perhaps R parity is conserved, but supersymmetric particles are too heavy

to have been detected during Run 1 of the LHC?

There are two issues with this last possibility. One is the accentuation of the problem

of the naturalness (or fine-tuning) of the electroweak scale that low-scale supersymmetry

was postulated to mitigate, and the other is the cosmological cold dark matter density.

The cold dark matter may well not consist only, or even predominantly, of the lightest

supersymmetric particle (LSP). However, even if the cold dark matter density is considered

only as an upper limit on the relic LSP density, it imposes an upper bound on the LSP

mass that depends on the specific LSP candidate under consideration.
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If R parity is conserved and the LSP is present in the Universe today as a relic from

the Big Bang, it is expected to be electromagnetically neutral and have only weak inter-

actions. In the minimal supersymmetric extension of the Standard Model (MSSM), the

most plausible candidates are the lightest neutralino χ and the gravitino [5, 6]. Here we

consider the neutralino case, and the cosmological upper bound on its mass.

The relic LSP density depends not only on the LSP mass, but also on the rates at which

it annihilated with itself and coannihilated with other sparticles in the early Universe [7].

Other things being equal, the largest LSP mass is allowed when such coannihilation rates

are maximised, which happens when the LSP is (nearly) degenerate with other particles. If

there is only one such coannihilating sparticle species, the coannihilation rate will in general

be maximised for a coloured sparticle. There have been analyses in the literature of the

cases where the coannihilating particle is a squark, specifically the lighter stop squark [8–

18], and also the case of the gluino [17, 19–29]. In general, one would expect that the

heaviest LSP will be allowed when it coannihilates with the particle with the largest colour

charge, namely the gluino.

We study here the question how heavy the neutralino LSP χ could be, if it is nearly

degenerate with, and coannihilates with, the gluino g̃. This is of relevance to assessing,

for example, what centre-of-mass energy would be needed for a proton-proton collider to

be ‘guaranteed’ to detect R-conserving supersymmetry. There can of course be no cast-

iron guarantee, even within the MSSM. For example, even in the gluino coannihilation

case studied here the neutralino LSP mass limit depends on the squark masses, and the

LSP mass limit could be substantially modified if the squarks were degenerate with the

neutralino LSP and the gluino. However, a complete analysis of this case lies beyond the

scope of this paper.

As already mentioned, there have been several previous analyses of neutralino-gluino

coannihilation [17, 19–29], and the main new elements here are in our discussions of the

effects of gluino-gluino bound states and of the issue whether coannihilations can be main-

tained in the presence of a large squark to gluino mass ratio. Here, we will restrict our

attention to the coannihilation processes and leave their application to more complete

models (with for example, radiative electroweak symmetry breaking) for future work [30].

As we discuss in detail, bound states can remove from the primordial plasma gluino pairs

that may subsequently annihilate into Standard Model particles, before they can decay

into the LSP as is usually assumed in discussions of coannihilation. We present numerical

estimates of the bound-state production rate, and find that, for fixed sparticle masses, the

relic dark matter density is substantially reduced compared with the cases where bound-

state formation is neglected. Conversely, the cosmological relic density may lie within the

cosmological range for substantially larger LSP masses than would have been estimated in

the absence of bound-state effects: this effect is ∼ 50% for mq̃/mg̃ = 1.1, falling to ∼ 20%

for mq̃/mg̃ ∼ 10 to 50. Another effect we discuss is that, if mq̃/mg̃ >∼ 100, the densities

of neutralinos and gluinos decouple and coannihilation effects freeze-out early, leaving a

significantly higher relic density, thereby reducing the possible LSP mass. There is also a

reduction in the possible LSP mass for small mq̃/mg̃ → 1, due to cancellations between s-,

t- and u-channel diagrams that tend to reduce annihilation rates.
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Taking these effects into account, we find a maximum LSP mass ∼ 8 TeV if it is the

Bino, which may be attained for 10 <∼ mq̃/mg̃ <∼ 100. If the LSP is the neutral Wino,

the upper limit is reduced to ∼ 7 TeV, and for a neutral Higgsino the upper limit it be-

comes ∼ 6 TeV.

The layout of this paper is as follows. In section 2, we review the Sommerfeld en-

hancement in the relevant gluino-gluino annihilation processes. In section 3, we discuss the

formation of gluino-gluino bound states, considering also dissociation processes in the early

Universe. In section 4, we consider the rates for conversion between gluinos and neutrali-

nos. In section 5, we present and discuss the coupled Boltzmann equations for neutralinos

χ, gluinos and gluino-gluino bound states. Section 6 contains some numerical results for

the gluino coannihilation strip and a discussion of its endpoint. Section 7 summarises our

conclusions and discusses their significance for future colliders. Finally, appendices present

technical aspects of the computation of the 2 → 2 cross sections needed for solving the

Boltzmann equations.

2 Sommerfeld enhancement

Before discussing the formation and effects of gluino-gluino bound states, we first discuss

briefly Sommerfeld effects in gluino-gluino annihilation, which may enhance annihilation

rates at low velocities, and are particularly relevant in the case of the strongly-interacting

gluino. As a general rule, initial-state interactions modify s-wave cross-sections by fac-

tors [31–35]

F (s) ≡ −πs
1− eπs

: s ≡ α

β
, (2.1)

where α is the coefficient of a Coulomb-like potential whose sign convention is such that

the attractive case has α < 0, and β is the velocity of one of the annihilating particles in

the centre-of-mass frame of the collision. In the cases of strongly-interacting particles, the

Coulomb-like potential has the form [36–38]

V =
αs
2r

[
Cf − Ci − C ′i

]
, (2.2)

where αs is the strong coupling strength, Cf is the quadratic Casimir coefficient of a specific

final-state colour representation, and Ci and C ′i are the quadratic Casimir coefficients of the

annihilating coloured particles. In the case of octet annihilating particles such as gluinos,

Ci = C ′i = C8 = 3. The relevant final states are in singlet, octet, or 27s representations,

for which Cf = 0, Cf = 3, or Cf = 8.

As discussed in [16], Sommerfeld effects such as these have been implemented in the

SSARD code1 for calculating the relic dark matter density. In the coannihilation region of

interest, this code uses a non-relativistic expansion for annihilation cross-sections:

〈σv〉 = a+ bx−1 + . . . , (2.3)

1Information about this code is available from K. A. Olive: it contains important contributions from

T. Falk, A. Ferstl, G. Ganis, F. Luo, A. Mustafayev, J. McDonald, K. A. Olive, P. Sandick, Y. Santoso, V.

Spanos, and M. Srednicki.

– 3 –



J
H
E
P
0
9
(
2
0
1
5
)
1
2
7

where 〈. . .〉 denotes an average over the thermal distributions of the annihilating particles,

the coefficient a and b represent the contributions of the s- and p-wave cross-sections,

x ≡ m/T , and the dots represent terms of higher order in 1/x. A Sommerfeld enhancement

occurs when α < 0 in (2.1), modifying the leading term in (2.3) so that it acquires a

singularity ∝
√
x. In this paper we have included these enhancements in the g̃g̃ → gg and

g̃g̃ → qq̄ cross sections. The procedure for obtaining a thermally averaged cross section

is given in appendix A. The expressions for the matrix elements for the coannihilation

processes are given in detail in appendix B.

3 Gluino-gluino bound-state formation

Gluino-neutralino coannihilations may increase the effective annihilation cross section and

thereby lower the final neutralino relic abundance. The Sommerfeld enhancement discussed

above further increases the cross section in specific channels and again lowers the abundance

of neutralinos allowing for larger masses at the tip of the coannihilation strip defined by

∆m = 0 where ∆m is the gluino-neutralino mass difference [28]. Gluino-gluino bound

states can further serve to remove gluinos from the thermal bath and thereby lower the

relic density by a factor that is non-negligible relative to the Sommerfeld enhancement,

and much larger than the uncertainty in the cosmological cold dark matter density.

The dominant process for the formation and dissociation of gluino-gluino bound states

R̃ in the thermal plasma is g̃ + g̃ ↔ R̃ + g. These processes become important when the

plasma temperature falls low enough for typical thermal energies to become comparable

to the binding energy of the R̃ state, namely T . EB ≡ 2mg̃ −mR̃. In principle, one may

form colour-octet states as well as singlets, but the latter are expected to be more deeply

bound with larger wave functions at the origin. Here we focus on the production of the

lightest colour-singlet state, 1s, with orbital angular momentum L = 0 and spin angular

momentum S = 0, which is expected to be the most copiously produced. Since we are

considering gluinos weighing several TeV, we expect the leading order of QCD perturbation

theory to be a useful approximation, and assume the Coulomb potential V (r) = −3αs/r

for the 1s state, with binding energy EB ' (3αs/2)2mg̃. The normalised spatial part of

the wave function for this 1s bound state is

φbs(r) =
(
πa3
)−1/2

e−r/a , (3.1)

where a ≡ 2/(3αsmg̃) is the Bohr radius. The 1s bound state decays predominantly to a

pair of gluons and the leading order decay rate is

ΓR̃ =
243

4
α5
smg̃. (3.2)

3.1 Dissociation

In order to calculate bound-state formation and dissociation via the dominant processes

g̃a+ g̃b ↔ R̃+gc, we first calculate the bound-state dissociation cross section, σdis following

section 56 of [39], where the photoelectric effect for an atom is calculated. The central part
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of the calculation is the evaluation of the transition amplitude given in eq. (56.2) of [39]:

Mfi =

∫
φ∗f

(
−i

~∇ · ~εc

(mg̃/2)

)
ei
~k·~rφid

3~r , (3.3)

where φf is the wave function of the free g̃a g̃b pair and φi ≡ φbs(r), and ~εc and ~k are the

polarisation and momentum vectors of the gluon, respectively.

We use the dipole approximation, ei
~k·~r ≈ 1, which is justified because the bound-

state wave function φbs(r) is exponentially suppressed for r > a, and because the gluon

momentum |~k| = ω, where its energy ω satisfies the conservation condition

ω +
ω2

2 (2mg̃ − EB)
=
|~p|2

mg̃
+ EB , (3.4)

where |~p| is the momentum of one of the annihilating gluinos. (Note that |~p| is the same

as the relative momentum, (mg̃/2)vrel, and the second term on the l.h.s. of (3.4) can be

neglected.) We find ωa ' EBa = (3αs)
2 � 1 for vrel = 0 and αs = 0.1, and more generally

ωa < 1 when vrel < 0.6, so that the dipole approximation should be sufficient for our

purposes.

The dipole approximation imposes a selection rule on φf , which needs to be in an

L = 1 state. Further, charge conjugation (C-parity) conservation requires that C(g̃ag̃b) =

C(R̃)C(gc), where the 1s ground state with L = 0 and S = 0 has JPC = 0−+. The C-

parity of the colour anti-symmetric 8A state is the same as that of the gluon [40], while the

C-parity of colour-symmetric 8s state is opposite of that of the gluon, for all color indices.

Therefore, the only possible state for φf is 8A, with L = 1 and S = 0. (Note also that

parity is conserved in this case, because P (φf ) = 1 and the gluon has P = −1.)

The normalised spatial part of the wave function for the free pair g̃ag̃b is

φf =
1

2|~p|

∞∑
L=0

iL(2L+ 1)e−iδLRpL(r)PL

(
~p · ~r
|~p|r

)
. (3.5)

Only the L = 1 term survives, due to the selection rule from the dipole approximation.

Since we wish to calculate |Mfi|2, we may discard the phase shift factor e−iδL (δL is real)

and the factor iL. Therefore we write

φf =
3

2|~p|
Rp1(r)P1

(
~p · ~r
|~p|r

)
. (3.6)

so that

dσ0
dis = αs

(mg̃/2)|~p|
2πω

|Mfi|2dΩ~p , (3.7)

where Mfi is calculated following section 56 of [39].

Since φf is the wave function for an 8A state, the Coulomb potential is Vf (r) = −3
2αs/r,

whereas φi is a wave function for the Coulomb potential V (r) = −3αs/r, the result is

different from eq. (56.12) of [39], namely

σ0
dis =

29π2

3
αsa

2

(
EB
ω

)4 (1 + ξ2)

[1 + (κξ)2]

e−4ξ arctan(1/κξ)

1− e−2πξ
κ−1 , (3.8)

– 5 –
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where ξ = 3
2αs/vrel and κ = 2. This equation is averaged over the gluon polarizations and

would reduce to eq. (56.12) if κ = 1.

The total wave functions for the free g̃a g̃b pair and the bound state R̃ are products of

the spin, colour and spatial parts of the wave functions. In view of the Majorana nature of

the gluinos, the total wave functions should be anti-symmetric. Concerning the spin part

of the wave function, since both the bound state and the free gluino pair are in an S = 0

state, the spin wave functions are both

(↑↓ − ↓↑)/
√

2 , (3.9)

and the spin parts of the wave functions do not introduce any extra factor in σdis. As

for the colour part of the wave function, according to [41, 42] φi,color = δde/
√

8, and

φf,color = fhae/
√

3 (the latter because fabcfabd = 3δcd).

The (−i ~∇·~εc
(mg̃/2))ei

~k·~r factor in the transition amplitude (3.3) is calculated from the

gluino-gluino-gluon interaction Lagrangian

L =
i

2
gsg

c
µfabc ¯̃g

aγµg̃b , (3.10)

which can be compared with the corresponding QED interaction Lagrangian

L = −eQfAµf̄γµf . (3.11)

We simply replace the electric charge factor Qf in the transition amplitude (3.3) by the

colour factor fabc, since the factor 1/2 in (3.10) is compensated by a factor of 2 due to the

Majorana nature of the gluino. Putting the above colour factors together, we obtain∣∣∣∣ 1√
8

fhad√
3
fcda

∣∣∣∣2 =

∣∣∣∣ 1√
8

1√
3

3δch

∣∣∣∣2 = 3 . (3.12)

Note that all color indices are summed over.

Concerning the spatial part of the wave function, we need to take into account the

fact that both the initial and final states contain two identical particles. In the case of the

bound state, they are in the symmetric L = 0 state, and the wave function needs to be

symmetrised as in eq. (2.14) of [41]:

1√
2

[φbs(r, θ, φ) + φbs(r, π − θ, φ+ π)] =
√

2× (πa3)−1/2e−r/a . (3.13)

On the other hand, the final free pair is in the antisymmetric L = 1 state, and the wave

function needs to be antisymmetrised:

1√
2

[
φf (r, θ, φ)− φf (r, π − θ, φ+ π)

]
=
√

2× 3

2|~p|
Rp1(r)P1

(
~p · ~r
|~p|r

)
. (3.14)

The coefficients in these two equations introduce an extra factor of |
√

2
√

2|2 = 4 into the

modulus-squared of the spatial wave function factors. Finally, recall that we have averaged

– 6 –
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over the polarisations of the gluon, but we also need to average over its colour. This gives

a factor of 1/8. Therefore, the final dissociation cross section is

σdis = 3× 4× 1

8
× 1

2
× σ0

dis , (3.15)

where the final factor of 1/2 is to avoid double counting of gluinos in the final-state phase-

space integration.

3.2 Formation

We come finally to the bound-state formation cross section, σbsf , which is related to σdis

through the Milne relation:

1

2
neq
g̃ n

eq
g̃ σbsfvrel

(
1 +

1

eω/T − 1

)
f(vrel)dvrel = neq

R̃
σdisdn

eq
g , (3.16)

where the 1
2 on the l.h.s. of the above equation is introduced to avoid double-counting

the number of bound-state formation reactions, and the factor 1
eω/T−1

comes from the

enhancement of bound-state formation due to the stimulated gluon emission in the thermal

background (similar to the stimulated recombination in e−p↔ Hγ). Using

dneq
g = gg

4π

(2π)3

ω2dω

eω/T − 1
,

f(vrel) =

(
mg̃/2

2πT

)3/2

4πv2
rele
−(mg̃/2)(v2

rel/2T ) (3.17)

and (3.4), we find

σbsf =
2gR̃ggω

2

g2
g̃ [(mg̃/2)vrel]2

σdis , (3.18)

where
gR̃gg

g2
g̃

=
1× (2× 8)

(2× 8)2
=

1

16
. (3.19)

For comparison, the Sommerfeld enhanced s-wave cross section for g̃ag̃b → gcgd is given in

eqs. (2.13) and (2.25) of [28]:

Sann(σannvrel) =

(
1

6

2π(2ξ)

1− e−2π(2ξ)
+

1

3

2πξ

1− e−2πξ
+

1

2

2π
(
−2

3ξ
)

1− e2π( 2
3
ξ)

)
(4παs)

2

m2
g̃

27

512π
, (3.20)

where ξ = 3
2αs/vrel. Therefore, in the vrel → 0 limit we find

σbsfvrel

Sann(σannvrel)
=

32

3e2
≈ 1.44 . (3.21)

Therefore, we see that the inclusion of g̃g̃ bound states is a non-negligible component in

determining the final neutralino relic density.
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4 Conversion rates

For coannihilation to be effective, the coannihilating species (in this case neutralinos and

gluinos) must be in thermal contact. That is, the rates for interconverting the LSP and

NLSP must be faster than the Hubble rate. In both the familiar cases of stop and stau

coannihilation, connectivity of the two species can be taken for granted, as the conversion

rates are mediated by light Standard Model particles and are always fast. This implies

that the ratio of densities (nNLSP/nLSP) is approximately equal to the equilibrium ratio

and allows for a simplification in the Boltzmann equations. However, the interconversion of

neutralinos and gluinos must proceed via squarks, leading to a suppression if the squarks

are heavy. The relevance of the coannihilation process relies on fast conversion rates,

and requires the ratio of squark masses to the gluino mass to be less than approximately

100 as we show below. For larger squark masses, the gluino and neutralino abundances

evolve separately, and coannihilation effects are essentially shut off independent of the mass

difference.

The interconversion processes we consider are χq ↔ g̃q, χq̄ ↔ g̃q̄, and the gluino decays

and the inverse decays g̃ ↔ χqq̄. When the neutralino is a Wino or Higgsino, the processes

involving a chargino, χ+d ↔ g̃u, χ+ū ↔ g̃d̄ and g̃ ↔ χ+dū, as well as the corresponding

processes for χ−, are also included. We note that q stands here for all six quark flavors,

and the u, d stand for all the three generations of up-type and down-type quarks. Also,

when χ is a Higgsino, the two lightest mass-degenerate neutralino components, H̃1,2, are

both taken into account. For each relevant process, we first calculate the transition matrix

element |T |2.

We calculate the gluino decay rates for g̃ → χqq̄, g̃ → χ+dū and its charge-conjugated

process.2 The squared transition matrix elements |T |2 are identical to the corresponding

ones for the coannihilation processes given in appendix B, except that the expressions in

appendix B should be multiplied by a factor of 2, because the statistical factor for the

initial spin averaging is 1
2 ×

1
2 = 1

4 for the coannihilation processes, whereas it is 1
2 for

the gluino decay processes. We note also that the definitions of the Mandelstam variables

should also be changed correspondingly as follows: for the coannihilations, s = (p1 + p2)2,

t = (p1 − p3)2 and u = (p1 − p4)2, whereas for the gluino decays, s = (p1 − p2)2, while t

and u do not change.

The gluino decay rates are then obtained by performing the standard 3-body phase

space integration. The inverse-decay processes do not have to be calculated separately,

because they are taken into account automatically by the Boltzmann equations given in

the next section.

2Since we treat quarks as massless, three-body decays will always occur as long as mg̃ > mχ. Due to

logarithmic corrections, the gluino two-body decay into a neutralino and a gluon becomes important when

the squark-to-gluino mass ratio is very large (� 100) [43–45]. However, as we show below in section 6,

gluino coannihilation becomes irrelevant for such a large squark-to-gluino mass ratio. On the other hand,

when the squark-to-gluino mass ratio is . 100, the gluino-neutralino conversion rate dominates over the

gluino two-body decay rate when the g̃ and χ are so close in mass that all the gluino three-body decays

would be kinematically forbidden, if quarks are not treated as massless.

– 8 –
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To calculate the conversion rates for χq → g̃q, χ+d→ g̃u, χ+ū→ g̃d̄ and their charge-

conjugated processes, we first calculate the cross sections. Again, the squared transition

matrix elements |T |2 are identical to the corresponding ones for the coannihilation processes

given in appendix B, except that the expressions in appendix B should be multiplied by a

factor of 8
3 , because the factor for the initial color averaging is 1

8 for the coannihilations,

whereas it is 1
3 for the conversions. Also, compared to the coannihilation processes, the

Mandelstam variables for the conversion processes are re-defined as s = (p1 − p2)2, t =

(p1 ± p3)2 and u = (p1 ∓ p4)2, where the upper signs in the definition of t and u apply if

q̄B or d̄B is brought into the initial state, while the lower signs apply if qA or uA is pulled

over to the initial state.

For each of the quark flavors, the thermally-averaged conversion rate is obtained by

integrating σcvq over the Fermi-Dirac distribution of the quark in the initial state,

〈Γc〉 =

∫
σcvqdnq =

∫ +∞

Eqmin

σcvq
3 · 2 · 4π

(2π)3

|~pq|2d|~pq|
eEq/T + 1

, (4.1)

where σc is the conversion cross section for any of the relevant processes discussed above. In

the initial neutralino or chargino rest frame, σc is a function of the incoming quark energy

Eq. In this reference frame, t or u is the squared center-of-mass energy, and is given by

m2
χ +m2

q + 2mχEq, where the lower limit of Eq is Eqmin = [(mg̃ +mq′)
2−m2

χ−m2
q ]/(2mχ),

where q′ represents the quark in the final state. Here vq is the velocity of the incoming

quark, and it is related to the energy and 3-momentum of the quark by vq = |~pq|/Eq. The

factors 3 and 2 in (4.1) count the quark color and spin degrees of freedom, respectively.

Again, the inverse conversion rates are taken into account automatically by the Boltzmann

equations.

5 Boltzmann equations

We are now in a position to put all of the components discussed above into a rate equation

(or set of equations) in order to solve for the relic density. To do so, we begin by considering

three separate density components: neutralinos, gluinos and bound states.

To set up a coupled set of Boltzmann equations, it is convenient to rescale the number

densities of neutralinos, gluinos and bound states by the entropy density,

Yχ ≡
nχ
s
, Yg̃ ≡

ng̃
s
, YR̃ ≡

nR̃
s
. (5.1)

These are governed by the following set of coupled Boltzmann equations:3

dYχ
dx

=
xs

H(mχ)

[
− 〈σv〉χχ

(
YχYχ − Y eq

χ Y eq
χ

)
− 〈σv〉χg̃

(
YχYg̃ − Y eq

χ Y eq
g̃

)
−
∑
q

〈Γc〉
1

s

(
Yχ − Y eq

χ

Yg̃
Y eq
g̃

)
+ 〈Γ〉g̃

1

s

(
Yg̃ − Y eq

g̃

Yχ
Y eq
χ

)]
, (5.2)

3A set of coupled Boltzmann equations for the photino and a gluino R-hadron was studied in [46]. In a

different context, Boltzmann equations involving a bound state can be found, for example, in [47, 48].
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dYg̃
dx

=
xs

H(mχ)

[
− 〈σv〉g̃g̃

(
Yg̃Yg̃ − Y eq

g̃ Y eq
g̃

)
− 〈σv〉χg̃

(
YχYg̃ − Y eq

χ Y eq
g̃

)
+
∑
q

〈Γc〉
1

s

(
Yχ − Y eq

χ

Yg̃
Y eq
g̃

)
− 〈Γ〉g̃

1

s

(
Yg̃ − Y eq

g̃

Yχ
Y eq
χ

)

−〈σv〉bsf

(
Yg̃Yg̃ − Y eq

g̃ Y eq
g̃

YR̃
Y eq

R̃

)]
, (5.3)

dYR̃
dx

=
xs

H(mχ)

[
− 〈Γ〉R̃

1

s

(
YR̃ − Y

eq

R̃

)
− 〈σv〉g̃R̃→g̃gYg̃

(
YR̃ − Y

eq

R̃

)
+

1

2
〈σv〉bsf

(
Yg̃Yg̃ − Y eq

g̃ Y eq
g̃

YR̃
Y eq

R̃

)]
, (5.4)

where

x ≡ mχ

T
, s =

2π2

45
g∗sT

3, H(mχ) ≡ H(T )x2 =

(
4π3GNg∗

45

) 1
2

m2
χ , (5.5)

and g∗s and g∗ are the total numbers of effectively massless degrees of freedom associated

with the entropy density and the energy density, respectively, 〈σv〉χχ is the relative velocity

times the total cross section for the channels for χχ annihilation into Standard Model

particles, and 〈σv〉χg̃ and 〈σv〉g̃g̃ are to be understood similarly,
∑

q 〈Γc〉 and 〈Γ〉g̃ are

the total conversion rate and gluino decay rate discussed in the previous section, and all

possible quark and anti-quark channels for the χ are summed over, 〈Γ〉R̃ is the decay rate

of the R̃, and 〈σv〉bsf is the bound-state formation cross section times the relative velocity

of the two incoming gluinos, taking into account the 1/(eω/T − 1) enhancement factor

as discussed in section 3.2. Finally, 〈σv〉g̃R̃→g̃gYg̃ has the same effect as 〈Γ〉R̃/s, namely,

it converts the bound states to gluons without altering the density of free gluinos. All

the quantities bracketed by 〈. . . 〉 are thermally averaged, and the superscript ‘eq’ denotes

equilibrium yields.

Eq. (5.4) can be written in a more intuitive form:

d lnYR̃
d lnx

= −
〈Γ〉R̃ + 〈σv〉g̃R̃→g̃gng̃

H(T )

(
1−

Y eq

R̃

YR̃

)
+

1
2〈σv〉bsfng̃

(
Yg̃
YR̃

)
H(T )

1−

(
Y eq
g̃

Yg̃

)2(
YR̃
Y eq

R̃

).
(5.6)

One can check that the l.h.s. of eq. (5.6) is of order -10, whereas each of the terms on the

r.h.s. of eq. (5.6) are of order α5
sMP /mχ, where MP = G

−1/2
N . Hence, to a good approxi-

mation, we can set the two terms on the r.h.s. equal to each other and solve for

(
YR̃
Y eq

R̃

)
:

YR̃
Y eq

R̃

=

〈Γ〉R̃ + 〈σv〉g̃R̃→g̃gng̃ + 〈Γ〉dis

(
Yg̃
Y eq
g̃

)2

〈Γ〉R̃ + 〈σv〉g̃R̃→g̃gng̃ + 〈Γ〉dis

, (5.7)

where

〈Γ〉dis =
1

2
〈σv〉bsf (neq

g̃ )2/neq

R̃
. (5.8)
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Therefore, we find that

d(Yχ + Yg̃)

dx
=

xs

H(mχ)

[
−
∑

i,j=χ,g̃

〈σv〉ij
(
YiYj − Y eq

i Y eq
j

)

−〈σv〉bsf
〈Γ〉R̃ + 〈σv〉g̃R̃→g̃gng̃

〈Γ〉R̃ + 〈σv〉g̃R̃→g̃gng̃ + 〈Γ〉dis

(
Yg̃Yg̃ − Y eq

g̃ Y eq
g̃

)]
.

(5.9)

Moreover, we note that 〈σv〉g̃R̃→g̃gng̃ is much smaller than 〈Γ〉R̃ for x & 10, due to the

fact that ng̃ decreases with the decrease of temperature while 〈Γ〉R̃ is nearly temperature

independent. Since the process g̃R̃ → g̃g is related to the bound-state formation process

by crossing, 〈σv〉g̃R̃→g̃g should be related to 〈σv〉bsf by a coefficient not too much different

from order 1.

If at least one of the
∑

q 〈Γc〉 and 〈Γ〉g̃ is sufficiently larger than H(T ) throughout the

period during which (Yχ + Yg̃) changes substantially, which is the case when the squark

mass appearing in the denominators of the matrix elements for these processes is not too

large, eq. (5.9) can be solved by using the very good approximation Yg̃/Yχ ≈ Y eq
g̃ /Y eq

χ . In

this case, eq. (5.9) can be recast in the familiar form suitable for coannihilation calculations,

and we can write

dY

dx
= − xs

H(mχ)

(
1− x

3g∗s

dg∗s
dx

)
〈σeffvrel〉

(
Y 2 − (Yeq)2

)
, (5.10)

where we have included the term x
3g∗s

dg∗s
dx which takes into account the evolution of g∗s

with temperature. As we will see, this approximation is valid so long as mq̃/mg̃ <∼ 20.

In eq. (5.10), Y = n/s, where n is interpreted as the total number density,

n ≡
∑
i

ni = nχ + ng̃ . (5.11)

and Yeq = neq/s, where neq is the total equilibrium number density,

neq ≡
∑
i

neq,i = neq
χ + neq

g̃ . (5.12)

The effective annihilation cross section is

〈σeffvrel〉 ≡
∑
ij

neq,ineq,j

n2
eq

〈σijvrel〉 . (5.13)

As one can see from eq. (5.9), the expression for 〈σv〉g̃g̃ is the ‘standard’ term in the first

line of (5.9) combined with the second line involving the bound states. We re-emphasise

that this simplification requires a fast interconversion rate as discussed in the previous

section, so that we can set (Yg̃/Yχ) = (Y eq
g̃ /Y eq

χ ), which is true only when mq̃/mg̃ <∼ 20.

For larger squark masses, we use the coupled set of Boltzmann equations to solve for the

relic density.
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When the LSP is a Wino or a Higgsino, we can still use all the above equations to

solve for the relic density. All we need to do is re-define the following quantities to include

the contributions from each of the χ components, χi, neutral or charged, as

nχ ≡
∑
χi

nχi ,

neq
χ ≡

∑
χi

neq
χi ,

〈σv〉χχ ≡
∑
χi,χj

〈σv〉χiχjrχirχj

〈σv〉χg̃ ≡
∑
χi

〈σv〉χig̃rχi ,

〈Γc〉 ≡
∑
χi

〈Γc〉χiq→g̃q′ rχi ,

〈Γ〉g̃ ≡
∑
χi

〈Γ〉g̃→χiqq̄′ , (5.14)

where q′ is the same as q when χi is a neutralino, and they are different when χi is a

chargino, and the q and q′ indicate all the possible quark and anti-quark channels for the

conversion rates and gluino decay rates. In eq. (5.14), rχi ≡ neq
χi/n

eq
χ = nχi/nχ, where the

latter ‘=’ is guaranteed by the fast conversion and/or decay rates among the different χi’s.

For later discussion, it is useful to define an effective number of degrees of freedom for χ:

gχeff
≡
∑
χi

gχi (1 + ∆χi)
3/2 exp(−∆χimχ1/T ) , (5.15)

where ∆χi ≡ (mχi/mχ1 − 1), and we assume χ1 is the lightest component (i.e., the LSP)

among the χi’s. We can then write rχi explicitly as

rχi =
gχi
gχeff

(1 + ∆χi)
3/2 exp(−∆χimχ1/T ) . (5.16)

In the limit that all the χ components have the same mass, gχeff
= 2, 6 and 8 for Bino,

Wino and Higgsino, respectively.

6 Numerical results

We now present some numerical results obtained using the above formalism. Our results

in this section are based on simplified supersymmetric spectra defined at the weak scale.

We assume degenerate squark masses, mq̃ and for the most part, our results do not depend

on supersymmetric parameters such as µ, A0, and tan β.4 We assume that the neutralino

is a pure state of either a Bino, Wino, or Higgsino. Thus our free parameters are simply

the neutralino mass, mχ, the gluino mass, mg̃ and the squark masses, mq̃. In future

work, we apply these results to more realistic CMSSM-like models (without gaugino mass

universality) and pure gravity mediation models with vector-like multiplets [30].

We begin with the case in which the lightest neutralino χ is the Bino.

4The exception is the case of Higgsino-gluino coannihilations for which the vertices do depend on tan β.
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Figure 1. Left panel: the evolution of the total supersymmetric particle abundance n/s as a

function of mχ/T for the representative case mχ = 7 TeV, ∆m ≡ mg̃−mχ = 40 GeV, and mq̃/mg̃ =

10 using the single Boltzmann equation (5.9). The dashed line exhibits the naive thermal equilibrium

abundance, and the solid line shows the numerical solution of equation (5.9) for the sum of the

neutralino and gluino densities, exhibiting the familiar freeze-out when m/T ∼ 30. Right panel: the

separate evolutions of the abundances (solid lines) using the full set of equations given by eqs. (5.2)–

(5.4) for the gluino (blue lines), Bino (red lines), gluino-gluino bound-state (green lines) and sum

of the Bino and gluino densities (black lines) as functions of mχ/T . Details of the evolutions of the

abundances are shown in the inset. The dashed lines again exhibit the naive thermal equilibrium

abundances.

6.1 Bino LSP

Figure 1 compares a naive calculation using a single Boltzmann equation for the total relic

abundance (left panel) with a treatment of the three coupled Boltzmann equations for the

gluino, Bino and gluino-gluino bound state abundances (right panel). These results are

for the representative case mχ = 7 TeV, ∆m ≡ mg̃ − mχ = 40 GeV and mq̃/mg̃ = 10.

The dashed line in the left panel shows the total relic abundance as would be given by

the Boltzmann distribution if thermal equilibrium were maintained, and we see a clear

departure for m/T & 30, as expected from a freeze-out calculation. In the right panel

of figure 1, the blue line shows the evolution of the gluino abundance, the red line that

of the Bino abundance, the green line that of the gluino-gluino bound states, and the

black line that of the sum of the gluino and Bino densities. The inset shows details of the

evolutions of the gluon, Bino and bound-state abundances. The dashed lines again show the

corresponding naive thermal equilibrium abundances. With the stated choices of mg̃, mχ

and mq̃, the relic dark matter density using the single Boltzmann equation is Ωχh
2 = 0.120,

and the full set of three Boltzmann equations yields Ωχh
2 = 0.119. Correspondingly, the

black lines in the right panel of figure 1 are indistinguishable from the lines in the left panel.

Figure 2 shows the effect of varying mq̃/mg̃ for the same representative values mχ =

7 TeV and ∆m ≡ mg̃−mχ = 40 GeV. The left panel is for mq̃/mg̃ = 1.1,5 in which case we

find that the relic cold dark matter density is higher than previously: Ωχh
2 = 0.21. This is

due to the fact that at a low squark to gluino mass ratio, there is a cancellation among the t

5We do not show results for smaller values of mq̃/mg̃, since then squark-Bino coannihilations should also

be taken into account.
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Figure 2. As in the right panel of figure 1, but for the choices mq̃/mg̃ = 1.1 (left), 120 (right).

and u channel annihilations with the s channel leading to a smaller gluino annihilation cross

section and hence a larger relic density. The results also change, even more significantly,

for large values of mq̃/mg̃, as shown in the right panel of figure 2, where mq̃/mg̃ = 120. In

this case, we find a much larger value of Ωχh
2 = 6.0. In both panels, the insets show details

of the evolutions of the gluino, Bino and bound-state abundances. At still larger values

of mq̃/mg̃ the relic density grows very sharply: for example, for mq̃/mg̃ = 150, we find

Ωχh
2 = 780, and for mq̃/mg̃ = 200 we find Ωχh

2 = 1.0 × 105 assuming the same gluino-

Bino mass difference of 40 GeV. These large numbers reflect the failure of gluino-neutralino

conversion to keep pace with the Hubble expansion for large mq̃/mg̃.

In order to summarize the effects of both the cancellations in the annihilation cross

section at low mq̃/mg̃ and the decoupling of the gluino coannihilations at high mq̃/mg̃,

we show in figure 3, the relic neutralino density as a function of mq̃/mg̃ for our nominal

value of mχ = 7 TeV, and ∆m ≡ mg̃ − mχ = 0, 40, and 120 GeV (black, red, and blue

lines, respectively). We see clearly the rise in Ωχh
2 at small mq̃/mg̃ as well as the very

rapid rise in Ωχh
2 at high mq̃/mg̃ & 100. In between there is a plateau with lower Ωχh

2,

as exemplified by the case mq̃/mg̃ = 10 shown in figure 1. In general, there is a shallow

minimum in Ωχh
2 around mq̃/mg̃ ∼ 50 whose location depends on ∆m. The horizontal

band indicates the 3-σ range for the Planck determination of the cold dark matter density

of Ωh2 = 0.1193± 0.0014 [49].

The panels of figure 4 display bands in the (mχ,∆m) plane where 0.1151 < Ωχh
2 <

0.1235 (3 σ below and above the current central value [49]) for a selection of values of

mq̃/mg̃, as calculated in various dynamical approximations. The red bands were calcu-

lated dropping both the Sommerfeld enhancement factor and the effect of gluino bound-

state formation. As was already noted in [16, 28] the Sommerfeld enhancement causes a

significant suppression of Ωχh
2 for fixed values of the model parameters, so long as the

gluino-Bino conversion rates are large enough that the gluino coannihilation is effective.

Correspondingly, the orange Ωχh
2 bands, calculated including the Sommerfeld factor, ap-

pear at larger values of ∆m and extend to larger values of mχ. The effect of including

bound-state effects is to suppress further the value of Ωχh
2 for fixed model parameters, so

that the corresponding black Ωχh
2 bands in figure 4 extend to even larger values of ∆m
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Figure 3. The relic cold dark matter density Ωχh
2 as a function of mq̃/mg̃ for mχ = 7 TeV and

the choics ∆m ≡ mg̃ −mχ = 0, 40, and 120 GeV (from bottom to top, black, red, and blue lines,

respectively). The rise at small mq̃/mg̃ is due to the cancellations between the s-, t- and u-channel

diagrams for gluino pair annihilation, and the rise at large mq̃/mg̃ is due to the decoupling of

the gluino and neutralino densities. The horizontal band indicates the 3-σ range for the Planck

determination of the cold dark matter density of Ωh2 = 0.1193± 0.0014 [49].

and mχ. We also show in figure 4 (coloured purple) the bands that would be found if the

bound-state formation rate were a factor 2 larger than our calculations, as might arise from

higher-order QCD or other effects.6

The upper left panel of figure 4 is for the case mq̃/mg̃ = 1.1, where the t and u channels

partially cancel the s-channel contributions to the gluino annihilation cross section. Here we

see that the black band calculated including both the Sommerfeld enhancement and gluino

bound-state effects extends to mχ ∼ 6.2 to 6.4 TeV. In this case, the numerical effects

of the Sommerfeld enhancement are similar to those of gluino bound-state formation, and

both effects are considerably larger than the current observational uncertainties in the

dark matter density represented by the breadths of the bands. The purple band, which

6We evaluate the αs appearing in the Sommerfeld enhancement factor at a scale βmg̃ that is typical

of the momentum transfer of the soft-gluon exchanges responsible for the Sommerfeld effect [50], and take

β = 0.3, which is comparable to the thermal velocities of the gluinos at the freeze-out temperature. Because

the Sommerfeld enhancement is a precursor to the formation of bound states, for simplicity we take the

same αs in evaluating the bound-state effects. The full QCD potential and the thermal mass of the gluon

were considered in computing the Sommerfeld enhancement in [28], and they should be relevant also to the

calculation of the bound-state effects. We estimate that these effects could result in a shift of our orange

bands inward by ∼ 10%, based on a comparison of the light green and dark green bands in the lower right

panel of figure 2 in [28], and we expect a similar shift for our black bands. However, these two additional

effects could be compensated by contributions from excited bound states that we do not include. We note

that it was estimated in [51] in the context of a hidden-sector stau that excited bound states can at most

introduce a factor of ∼ 1.6 in the thermally-averaged bound-state formation cross section, compared to

that obtained by considering only the ground state, but the color charge in the gluino case may change this

value. We therefore plot purple bands with an uncertainty of a factor 2 to allow for these uncertainties.
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Figure 4. The (mχ,∆m ≡ mg̃ − mχ) planes for a Bino LSP, exhibiting bands where 0.1151 <

Ωχh
2 < 0.1235 (3 σ below and above the current central value), for different values of mq̃/mg̃ = 1.1

(upper left), 10 (upper right), 50 (lower left) and 120 (lower right). These results are calculated

without the Sommerfeld enhancement factor and gluino bound-state formation (red bands), with

the Sommerfeld enhancement factor but without gluino bound-state formation (orange bands),

with both the Sommerfeld enhancement factor and gluino bound-state formation (black bands),

and allowing for the possibility that the bound-state formation rate is a factor 2 larger than our

calculations (purple bands).
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Figure 5. The locations of the endpoints of the gluino coannihilation strips for different values of

Ωχh
2, using the same colour conventions as in figure 4. As in that figure, the calculations assume

the different values mq̃/mg̃ = 1.1 (upper left), 10 (upper right), 50 (lower left) and 120 (lower right).

The horizontal green bands show the 3-σ band 0.1151 < Ωχh
2 < 0.1235.

includes an allowance of a factor 2 uncertainty in the bound-state effects, as might arise

from higher-order QCD, excited bound states, etc., extends to larger mχ ∼ 7.2 to 7.5 TeV.

In the case mq̃/mg̃ = 10 (upper right panel of figure 4), the effect of bound-state formation

is somewhat smaller than the Sommerfeld effect, and the black (purple) band extends to

mχ ∼ 8 (9) TeV. These trends are also seen in the case mq̃/mg̃ = 50 (lower left panel

of figure 4), where the black and purple bands also extend to mχ ∼ 8 (9) TeV. On the

other hand, the results for mq̃/mg̃ = 120 (lower right panel of figure 4) are quite different.

The Sommerfeld effect is much larger than the bound-state effect though the latter is still

slightly larger than the widths of the coloured bands corresponding to the 3-σ ranges for

the cold dark matter density. Also, the allowed range of the LSP mass is greatly reduced,

extending only to ∼ 6.1 TeV (∼ 6.3 TeV allowing for a factor 2 uncertainty in the bound-

state effects).

Figure 5 displays these effects differently, exhibiting the positions of the endpoints

(mg̃ = mχ) of the gluino coannihilation strips as functions of the assumed value of Ωχh
2,

again from calculations with neither the Sommerfeld enhancement nor gluino bound states

(red lines), with the Sommerfeld enhancement but without the bound states (orange lines),

with both effects included (black lines), and allowing for a factor 2 uncertainty in the
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Figure 6. The value ofmχ at the endpoint of the gluino coannihilation strip when ∆m = mg̃−mχ =

0 in the Bino LSP case, as a function of mq̃/mg̃. The drop at small mq̃/mg̃ is due to the cancellations

between the s-, t- and u-channel diagrams for gluino pair annihilation, and that at large mq̃/mg̃ is

due to the decoupling of the gluino and neutralino densities. The green band corresponds to the

current 3-σ range of the dark matter density: Ωχh
2 = 0.1193 ± 0.0042, and the brown and red

contours are for Ωχh
2 = 0.05 and 0.15, respectively.

bound-state effects (purple lines). The horizontal green bands again show the 3-σ band

0.1151 < Ωχh
2 < 0.1235. We recall that lower values of Ωχh

2 would be relevant if the

LSP provides only part of the dark matter density, e.g., if there is also a significant axion

component, and parameter choices yielding higher values of Ωχh
2 in conventional Big Bang

cosmology (as assumed here) could be relevant in models with non-standard cosmological

evolution.7 As was also seen in figure 4, the smallest value of mq̃/mg̃ = 1.1 (upper left)

leads to smaller values of mχ for any fixed value of Ωχh
2, as compared to the mq̃/mg̃ = 10

case (upper right). The choice mq̃/mg̃ = 50 (lower left) leads to a marginally smaller value

of mχ, and the choice mq̃/mg̃ = 120 (lower right) leads to significantly lower values of mχ

for any fixed value of Ωχh
2. The effect of including bound-state effects is to increase the

range of mχ compatible with the measured value of Ωχh
2 by ∼ 50% for mq̃/mg̃ = 1.1,

decreasing to ∼ 20% for mq̃/mg̃ = 10 to 50.

Finally, we show in figure 6 the value of mχ at the endpoint of the coannihilation strip

when ∆m = 0 and Ωχh
2 = 0.1193 ± 0.0042 (green band), as a function of mq̃/mg̃: the

brown and red contours are for Ωχh
2 = 0.05 and 0.15, respectively. The band and contours

7It is worth recalling that for mg̃ ∼ 5 TeV the bound-state binding energy is O(50) GeV and the freeze-

out temperature in conventional Big Bang cosmology is hundreds of GeV, so the assumption made in this

paper of standard cosmological evolution is rather different from that made in more conventional thermal

dark matter scenarios where the freeze-out temperature may be in the GeV range.
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Figure 7. As in figure 4 and 5, but for a Wino LSP.

exhibit the inverse of the behaviour of the relic density seen previously in figure 3. The

neutralino mass at low mq̃/mg̃ is below the maximum value of mχ, which has a shallow

maximum around mq̃/mg̃ = 10 to 50, and falls sharply when mq̃/mg̃ & 100, reflecting

the effect of a breakdown in g̃ − χ conversion. We conclude that, within the framework

studied here, mχ . 8 TeV (rising to ∼ 9 TeV when allowing for a factor 2 uncertainty in

the bound-state formation rate) in the Bino LSP case.

6.2 Wino LSP

We now consider the case of a Wino LSP. The left panel of figure 7 displays the gluino-Wino

coannihilation strips for Ωχh
2 = 0.1193 ± 0.0042 for mq̃/mg̃ = 10, using the same colour

codings as for the Bino case (red with neither the Sommerfeld enhancement nor gluino

bound states, orange including the QCD Sommerfeld enhancement but again no bound-

state effects, black with both effects included, and purple with the bound-state formation

rate enhanced by a factor 2). We see that in this case the black coannihilation strip

extends to mχ ∼ 7 TeV. Note that the curves appear to diverge at low mχ. The reason

is that even in the absence of coannihilation (large mg̃ − mχ), Wino-Wino annihilations

are strong enough to suppress the relic density below the density indicated by Planck and

other experiments when mχ <∼ 3 TeV.8 The right panel of figure 7 shows how Ωχh
2 at the

endpoints of the strips varies with mχ. As previously, the colours of the lines correspond

to the colours of the strips in the left panel of figure 7. We see that the black line crosses

the horizontal green band where Ωχh
2 = 0.1193± 0.0042 for mχ ∼ 7 TeV.

The left panel of figure 8 is the analogue of figure 6 for the case of a Wino LSP, with

the green band corresponding to Ωχh
2 = 0.1193± 0.0042 and the brown and red contours

8The Sommerfeld enhancements in the calculations of the thermal relic abundance of a Wino- or Higgsino-

like LSP were discussed in detail in [52–55]. We have included an estimate of the Sommerfeld enhancement

factor for the Wino-Wino annihilations, and we get a similar result as [27], namely mχ ∼ 3 TeV, in the

limit where the effect of gluino coannihilation is absent. We do not include the Sommerfeld enhancement

for the Higgsino-Higgsino annihilations, since its effect is much milder in the relic abundance calculations,

as shown in the literature.
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Figure 8. As in figure 6, but for a Wino LSP (left panel) and a Higgsino LSP (right panel).

to Ωχh
2 = 0.05 and 0.15. We see that Ωχh

2 is within the preferred range for mχ ∼ 7 TeV

over a broad range 5 . mq̃/mg̃ . 100. The percentage increase in the allowed range of

mχ due to bound-state effects, as a function of mq̃/mg̃, is similar to the Bino case. As

shown in figure 6 for the Bino case, the fall in the Ωχh
2 to lower values of mχ is due to the

breakdown of g̃−χ conversion. The curve hits a plateau for mq̃/mg̃ & 300 which represents

the decoupling limit at mχ ∼ 3 TeV.

6.3 Higgsino LSP

We now consider the case of a Higgsino LSP. The left panel of figure 9 displays the gluino-

Higgsino coannihilation strips for Ωχh
2 = 0.1193 ± 0.0042 and mq̃/mg̃ = 10 using the

same colour codings as for the Bino and Wino cases (red with neither the Sommerfeld

enhancement nor gluino bound states, orange including the QCD Sommerfeld enhancement

but again no bound-state effects, black with both effects included, and purple with the

bound-state formation rate enhanced by a factor 2). In this case the black strip extends to

mχ ∼ 6 TeV at the endpoint where ∆m = 0. The Higgsino couplings depend on tan β and

in our calculations we have taken tan β = 10. Our results are very weakly dependent on

this choice. Once again we see a divergence of the contours at low mχ. In this case, when

mχ <∼ 1.2 TeV, Higgsino-Hiiggsino annihilations are sufficient to reduce the relic density

below the Planck density. The right panel of figure 9 shows how Ωχh
2 at the endpoints

varies with mχ, with the colours of the lines corresponding again to the colours of the

strips in the left panel of figure 9. The black line crosses the horizontal green band where

Ωχh
2 = 0.1193 ± 0.0042 for mχ ∼ 6 TeV. As seen in the right panel of figure 8, similar

values of mχ are found for a range 5 . mq̃/mg̃ . 100, with the drops in the Ωχh
2 contours

to lower values of mχ again being due to cross section cancellations at low mq̃/mg̃ and due

to the breakdown of g̃ − χ conversion at high mq̃/mg̃. As in the case of the Wino, the

curves drop to a plateau for mq̃/mg̃ & 300 representing the decoupling limit. In this case,
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Figure 9. As in figure 4 and 5, but for a Higgsino LSP.

the asymptotic value of mχ is ∼ 1.2 TeV. The percentage increase in the allowed range of

mχ due to bound-state effects is again similar to the Bino case.

The decreases in the maximum values of mχ allowed in the Wino and Higgsino cases,

compared to the Bino case, are due to the effect noted in [56], namely that coannihilations

may, under some circumstances, increase the relic abundance by coupling ‘parasitic’ degrees

of freedom. In the Bino (Wino) (Higgsino) case, there are 2 (6) (8) electroweak degrees of

freedom, linked by coannihilation to the gluinos, that contribute incrementally to the relic

abundance. This effect is compensated by the decreases in the maximum values of mχ that

we find in the Wino and Higgsino cases.

7 Summary

We have studied in this paper MSSM scenarios in which the LSP is (almost) degenerate

with the gluino, exploring the characteristics and locating the endpoints of the gluino-LSP

coannihilation strip in the cases where the LSP is the Bino, the neutral Wino or a neutral

Higgsino. Important ingredients in our analysis are the Sommerfeld enhancement of gluino

annihilation rates, gluino-gluino bound-state formation and gluino-neutralino conversion.

As we show, these can affect significantly the preferred range of the gluino-LSP mass

difference along the coannihilation strip, and also the position of the endpoint.

In the Bino LSP case, we find that at the endpoint the LSP mass ∼ 8 TeV, increasing

to ∼ 9 TeV if we allow for a factor 2 increase in the bound-state formation rate above our

calculations. These values are decreased by ∼ 1 TeV if the LSP is a Wino, and by a further

∼ 1 TeV if it is a neutral Higgsino. The upper limit on the LSP mass of ∼ 8 TeV is weakly

sensitive to the squark mass for 10 <∼ mq̃/mg̃ <∼ 50, but is substantially reduced for either

smaller or larger values of mq̃/mg̃. In all cases, the percentage increase in the allowed range

of mχ due to bound-state effects may be as large as 50%.

We are loath to claim that our upper limit on the LSP is absolute, but we do note that

it is substantially higher than what is possible along the stop coannihilation strip, reflecting
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the larger annihilation rates that are possible for the gluino because of its larger colour

charge. However, these annihilation rates also depend on the masses of other sparticles,

notably the squarks in the gluino NLSP case studied here. As have shown, the decrease in

upper limit on the LSP mass for small mq̃/mg̃ is due to cancellations in the annihilation

matrix elements, whilst the decrease at large mq̃/mg̃ is due to the breakdown of gluino-

LSP conversion. However, we have not studied the limit mq̃/mg̃ → 1, where many more

coannihilation processes would come into play, as might also be the case in non-minimal

supersymmetric models.

Nevertheless, our analysis does show that a large mass reach to at least 8 TeV will be

necessary to explore conclusively the possibility of supersymmetric dark matter within the

MSSM and a conventional cosmological framework.
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A The procedure for obtaining a thermally averaged cross section

In this appendix, we first recall our procedure for computing the thermal-averaged velocity-

weighted cross-sections 〈σ12vrel〉 for the process 1 + 2 → 3 + 4 as is necessary for solving

the Boltzmann equations in section 5 in an efficient manner, extending the approach used

in SSARD.1 More details of our approach can be found in [12, 57].

We start with the squared transition matrix elements |T |2 (summed over final spins and

colors, averaged over initial spins and colors) for the coannihilation processes of interest,

which are given here in appendix B, expressed as functions of the Mandelstam variables s,

t, u. We then express |T |2 in terms of s and the scattering angle θCM in the centre-of-mass

frame, as described in [57]. Next we define

w(s) ≡ 1

4

∫
d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4) |T |2

=
1

32π

p3(s)

s1/2

∫ +1

−1
d cos θCM |T |2 . (A.1)

The total annihilation cross section σ12(s) is given in terms of w(s) by σ12(s) =

w(s)/s1/2p1(s).9

9Our w(s) is also the same as w(s) in [58–60], which is written as W/4 in [61].
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The usual partial-wave expansion can be obtained by expanding |T |2 in powers of

p1(s)/m1. The odd powers vanish upon integration over θCM, while the zeroth- and second-

order terms correspond to the usual s and p waves, respectively. We can therefore evaluate

the s- and p-wave contributions to w(s) simply by evaluating |T |2 at two different values

of cos θCM.

The proper procedure for thermal averaging has been discussed in [58, 62] for the case

m1 = m2, and in [59, 61] for the case m1 6= m2, so we do not discuss it in detail here. One

finds the coefficients a and b in the expansion (2.3) of the thermal-averaged cross-sections

for the processes of interest:

〈σ12vrel〉 = a12 + b12 x
−1 +O

(
x−2

)
, (A.2)

where x ≡ m1/T (assuming m1 < m2) by following the prescription given in [57], using the

transition amplitudes listed in appendix B for each final state. When the conversion rates

are large compared to the Hubble rate, these amplitudes can be used to compute the total

effective coefficients aeff and beff by performing the sum over initial states as in (5.13), and

we then integrate the rate equation (5.10) numerically to obtain the relic density.

B List of the transition amplitudes for the gluino (co)annihilation

processes

The 2 → 2 (co)annihilation processes relevant to the gluino-neutralino (and, in the Wino

and Higgsino cases, gluino-charginos) system are g̃g̃ → gg, g̃g̃ → qAq̄B, g̃χ0
i → qAq̄B and

g̃χ+
j → uAd̄B, where the indices A,B = 1, 2, 3 for three generations, the neutralino index

i = 1, ..., 4 and the chargino index j = 1, 2.

Here we list the |T |2 for each of these processes, separating the contributions from s-,

t- and u-channel diagrams. In the following expressions, final spins and colors are summed

over, and initial spins are averaged over. A factor cini is used to average over initial colors.

Therefore, |T |2 takes the form

|T |2 = cini(Ts×Ts + Tt×Tt + Tu×Tu + Ts×Tt + Ts×Tu + Tt×Tu) . (B.1)

We note that there is also the charge-conjugated process for the chargino, g̃χ−j → ūAdB,

which we do not list separately.

g̃g̃ → gg. There is an s-channel gluon-exchange diagram, and t- and u-channel gluino-

exchange diagrams. We note that, because there are two identical gluons in the final state,

an extra factor of 1/2 is needed when performing the momentum integration in (A.1).
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We find

cini =
1

64
,

Ts×Ts =
1152π2α2

s

s2

[
s2 − (t− u)2

]
,

Tt×Tt = − 2304π2α2
s

s2
(
m2
g̃ − t

)2

{
m2
g̃

[
s2(t+ 3u) + 2s

(
t2 + 2u2

)
+ 2(t+ u)3

]
+m4

g̃

[
s2 − 2s(t+ 2u)− 6(t+ u)2

]
+ 2m6

g̃ [s+ 4(t+ u)]

− 4m8
g̃ − tu

[
s2 + 2su+ 2

(
t2 + u2

)] }
,

Ts×Tt = − 576π2α2
s

s2
(
m2
g̃ − t

) [s(t− u)
(
4m2

g̃ − t+ u
)

+ s3 + s2(u− t) + (t− u)3
]
,

Tt×Tu = − 2304π2α2
s

s2
(
m2
g̃ − t

)(
m2
g̃ − u

) (m4
g̃ − tu

) [
−4(t+ u)m2

g̃ + 8m4
g̃ + (t− u)2

]
,

and Ts×Tu and Tu×Tu are related to Ts×Tt and Tt×Tt, respectively, by exchanging t↔ u

in the corresponding expressions.

g̃g̃ → qAq̄B, g̃χ
0
i → qAq̄B, g̃χ

+
j → uAd̄B. These three processes all have t- and u-channel

squark-exchange diagrams, and g̃g̃ → qAq̄B also has an s-channel gluon-exchange diagram,

whereas the other two processes do not (hence Ts×Ts = Ts×Tt = Ts×Tu = 0 for them).

Apart from the couplings, these three processes have the same structures as for Tt×Tt,
Tu×Tu and Tt×Tu. In the case of g̃χ+

j → uAd̄B, because the quark CKM matrix is involved

in the chargino-quark-squark vertex, the indices A and B can be different even if we restrict

to the case of no generation mixing with only left-right mixing in the third generation for

the up-type and down-type squarks. Therefore, it is convenient to write a 6 × 6 up-type

squark mixing matrix, ZŨ , which relates the interaction eigenstates and mass eigenstates

of the up-type squarks as follows:



ũL
c̃L
t̃L
ũR
c̃R
t̃R


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 cos θt̃ − sin θt̃
0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 sin θt̃ cos θt̃





ũ1

ũ2

c̃1

c̃2

t̃1
t̃2


, (B.2)

where θt̃ is the stop left-right mixing angle. The mass eigenvalues are correspondingly

defined as mŨ1
= mũ1 , mŨ2

= mũ2 , mŨ3
= mc̃1 , mŨ4

= mc̃2 , mŨ5
= mt̃1

and mŨ6
= mt̃2

.

A similar mixing matrix, ZD̃, is introduced for the down-type squarks, by changing θt̃
to the sbottom left-right mixing angle, θb̃. The mass eigenvalues mD̃1−6

are also defined

similarly.
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For g̃g̃ → qAq̄B we find

Ts×Ts =
384π2δABα

2
s

s2

[
2m2

1

(
2m2

3 + s− t− u
)

+ 2m2
3(s− t− u) + 2m4

1 + 2m4
3 + t2 + u2

]
,

Ts×Tt =

6∑
p=1

192π2δABα
2
s

s
(
t−m2

f̃p

){[m2
1

(
2m2

3 + s− 2t
)

+m2
3(s− 2t) +m4

1 +m4
3 + t2

](∣∣∣Z f̃(A+3)p

∣∣∣2 +
∣∣∣Z f̃Ap∣∣∣2)

− 2m1m3

(
3m2

1 + 3m2
3 − 2t− u

)[
Z f̃(A+3)p

(
Z f̃Ap

)
∗ + Z f̃Ap

(
Z f̃(A+3)p

)
∗
]}

,

where m1 = mg̃ and m3 = mfA . The index f̃ = Ũ , D̃, the index f = U,D. mU1,2,3 = mu,c,t,

mD1,2,3 = md,s,b, and Ts×Tu is related to Ts×Tt by exchanging t↔ u.

For all three processes, Tt×Tt, Tu×Tu and Tt×Tu take the following forms:

Tt×Tt =

6∑
p,q=1

π2cttα2
s(

t−m2
tp

)(
t−m2

tq

) [2m1m3

(
f tL(A, p)f tR(A, q)∗ + f tR(A, p)f tL(A, q)∗

)
+
(
m2

1 +m2
3 − t

) (
f tL(A, p)f tL(A, q)∗ + f tR(A, p)f tR(A, q)∗

)]
×
[
2m2m4

(
gtL(B, p)gtR(B, q)∗ + gtR(B, p)gtL(B, q)∗

)
+
(
m2

2 +m2
4 − t

) (
gtL(B, p)gtL(B, q)∗ + gtR(B, p)gtR(B, q)∗

)]
,

Tt×Tu = −
6∑

p,q=1

π2ctuα2
s

 1(
u−m2

up

)(
t−m2

tq

)
×

{(
f tL(A, q)∗fuL(A, p)

{
m2g

t
R(B, q)∗

[
m4

(
m2

1 +m2
3 − t

)
guL(B, p)

+m1

(
m2

1 +m2
2 − t− u

)
guR(B, p)

]
+ gtL(B, q)∗

[ (
m2

1m
2
2 +m2

3m
2
4 − tu

)
guL(B, p) +m1m4

(
m2

2 +m2
3 − u

)
guR(B, p)

]}
+m3f

t
L(A, q)∗fuR(A, p)

{
m2g

t
L(B, q)∗

[(
m2

1 +m2
4 − u

)
guL(B, p) + 2m1m4g

u
R(B, p)

]
+ gtR(B, q)∗

[
m4

(
m2

3 +m2
4 − t− u

)
guL(B, p) +m1

(
m2

2 +m2
4 − t

)
guR(B, p)

]})
+ (L↔ R)

}
+ (t↔ u,m1 ↔ m2)

}
,

where the (L ↔ R) in Tt×Tu applies to all the L and R in the indices, and the (t ↔ u)

applies to both the t and u in the indices and the Mandelstam variables. Again, Tu×Tu is

related to Tt×Tt by exchanging m1 ↔ m2 and t↔ u in both the indices and the Mandelstam

variables.

The couplings and masses involved in the above expressions are listed below.
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For g̃g̃ → qAq̄B:

cini =
1

64
,

ctt = cuu =
256

3
,

ctu = −32

3
,

m1 = m2 = mg̃ ,

m3 = m4 = mfA ,

mtp = mup = mf̃p
,

f tL(A, p) = fuL(A, p) = Z f̃(A+3)p ,

f tR(A, p) = fuR(A, p) = −Z f̃Ap ,

gtL(B, p) = guL(B, p) =
(
Z f̃Bp

)
∗ ,

gtR(B, p) = guR(B, p) = −
(
Z f̃(B+3)p

)
∗ ,

where the index f̃ = Ũ , D̃, and the index f = U,D.

For g̃χ0
i → qAq̄B:

cini =
1

8
,

ctt = cuu = −ctu =
8

παs
,

m1 = mg̃ ,

m2 = mχ0
i
,

mtp = mup = mf̃p
,

f tL(A, p) = Z f̃(A+3)p ,

f tR(A, p) = −Z f̃Ap ,

gtL(B, p) = −
ig2mfBc

t
L

(
Z f̃(B+3)p

)
∗

√
2mw

−i
√

2g2

(
Z f̃Bp

)
∗ [(Ni1) ∗ tan (θw)

(
QfB − T

3
fB

)
+ T 3

fB
(Ni2) ∗

]
,

gtR(B, p) = i
√

2g2Ni1QfB tan (θw)
(
Z f̃(B+3)p

)
∗ −

ig2mfBc
t
R

(
Z f̃Bp

)
∗

√
2mw

,

fuL(A, p) = i
√

2g2QfA (Ni1) ∗ tan (θw)Z f̃(A+3)p −
ig2mfAc

u
LZ

f̃
Ap√

2mw

,

fuR(A, p) = −
ig2mfAc

u
RZ

f̃
(A+3)p√

2mw

− i
√

2g2Z
f̃
Ap

[
Ni1 tan (θw)

(
QfA − T

3
fA

)
+Ni2T

3
fA

]
,

guL(B, p) =
(
Z f̃Bp

)
∗ ,

guR(B, p) = −
(
Z f̃(B+3)p

)
∗ ,
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where N is the 4×4 neutralino mixing matrix as defined in [63], and g2 is the Standard

Model SU(2)L coupling constant. For up-type quark final states, the index f̃ = Ũ , and

T 3
fA

= T 3
fB

=
1

2
,

QfA = QfB =
2

3
,

ctL = cuL =
(
ctR
) ∗ = (cuR) ∗ = csc(β) (Ni4) ∗ ,

m3 = mUA ,

m4 = mUB ,

mfA = mUA ,

mfB = mUB .

tanβ ≡ v2/v1, and the vacuum expectation values of the two Higgs doublets are defined as,

〈H1〉 ≡

(
v1

0

)
, 〈H2〉 ≡

(
0

v2

)
.

For down-type quark final states, the index f̃ = D̃, and

T 3
fA

= T 3
fB

= −1

2
,

QfA = QfB = −1

3
,

ctL = cuL =
(
ctR
) ∗ = (cuR) ∗ = sec(β) (Ni3) ∗ ,

m3 = mDA ,

m4 = mDB ,

mfA = mDA ,

mfB = mDB .

For g̃χ+
j → uAd̄B:

cini =
1

8
,

ctt = cuu = −ctu =
8

παs
,

m1 = mg̃ ,

m2 = mχ+
j
,

m3 = mUA ,

m4 = mDB ,

mtp = mŨp
,

mup = mD̃p
,

f tL(A, p) = ZŨ(A+3)p ,

f tR(A, p) = −ZŨAp ,
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gtL(B, p) =
3∑

C=1

 ig2 csc(β)KCBmUC (Vj2) ∗
(
ZŨ(C+3)p

)
∗

√
2mw

− ig2KCB (Vj1) ∗
(
ZŨCp

)
∗

 ,

gtR(B, p) =

3∑
C=1

 ig2 sec(β)KCBUj2mDB

(
ZŨCp

)
∗

√
2mw

 ,

fuL(A, p) =

3∑
C=1

(
ig2KAC csc(β)mUA (Vj2) ∗ZD̃Cp√

2mw

)
,

fuR(A, p) =
3∑

C=1

 ig2KAC sec(β)Uj2mDCZ
D̃
(C+3)p√

2mw

− ig2KACUj1Z
D̃
Cp

 ,

guL(B, p) =
(
ZD̃Bp

)
∗ ,

guR(B, p) = −
(
ZD̃(B+3)p

)
∗ ,

where the K matrix is the quark CKM matrix, and U and V are the 2×2 chargino mixing

matrices as defined in [63].

Finally, we give the s-wave result (i.e., the coefficient a in eq. (A.2)) for the g̃g̃ → qAq̄B
channel, in the limit of a common squark mass and massless quarks, with no generation or

left-right mixing in the squark mixing matrices (the case considered in the main body of

the text). In this limit, the contributions from each of the six quark flavor final states are

the same, and the result of putting all the six quark flavors together is

ag̃g̃→qAq̄B limit value =
9πα2

s

(
m2
g̃ −m2

q̃

)
2

8m2
g̃

(
m2
g̃ +m2

q̃

)
2
, (B.3)

where mq̃ is the common squark mass. When mq̃ � mg̃, only the s-channel gluon-exchange

diagram contributes, and the above expression is proportional to m−2
g̃ . On the other hand,

when mq̃ → mg̃, the above expression approaches zero. This cancellation of the s-, t- and

u-channel contributions results in the feature of the plots at small values of mq̃/mg̃ that

are commented upon in the main body of the text.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[17] S. Raza, Q. Shafi and C.S. Ün, NLSP Gluino and NLSP Stop Scenarios from b-tau Yukawa

Unification, arXiv:1412.7672 [INSPIRE].

[18] A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of Coannihilation with a Scalar Top

Partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].

[19] S. Profumo and C.E. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev.

D 69 (2004) 115009 [hep-ph/0402208] [INSPIRE].

[20] D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and

LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].

[21] N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low Mass Gluino within the Sparticle

Landscape, Implications for Dark Matter and Early Discovery Prospects at LHC-7, Phys.

Rev. D 83 (2011) 035005 [arXiv:1011.1246] [INSPIRE].

– 29 –

http://dx.doi.org/10.1103/PhysRevD.75.115005
http://arxiv.org/abs/hep-ph/0703097
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703097
http://dx.doi.org/10.1103/PhysRevD.89.037702
http://arxiv.org/abs/1308.1526
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1526
http://dx.doi.org/10.1103/PhysRevLett.50.1419
http://dx.doi.org/10.1103/PhysRevLett.50.1419
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,50,1419
http://dx.doi.org/10.1016/0550-3213(84)90461-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B238,453
http://dx.doi.org/10.1103/PhysRevD.43.3191
http://dx.doi.org/10.1103/PhysRevD.43.3191
http://inspirehep.net/search?p=find+J+Phys.Rev.,D43,3191
http://dx.doi.org/10.1103/PhysRevD.62.035012
http://arxiv.org/abs/hep-ph/9911496
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911496
http://dx.doi.org/10.1088/1475-7516/2003/04/001
http://arxiv.org/abs/hep-ph/0301106
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0301106
http://dx.doi.org/10.1016/j.physletb.2011.11.026
http://dx.doi.org/10.1016/j.physletb.2011.11.026
http://arxiv.org/abs/1104.3566
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3566
http://dx.doi.org/10.1103/PhysRevD.85.055021
http://dx.doi.org/10.1103/PhysRevD.85.055021
http://arxiv.org/abs/1111.4467
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4467
http://dx.doi.org/10.1016/S0927-6505(02)00151-2
http://arxiv.org/abs/hep-ph/0112113
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112113
http://dx.doi.org/10.1088/1126-6708/2007/05/003
http://arxiv.org/abs/hep-ph/0701229
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0701229
http://dx.doi.org/10.1103/PhysRevD.87.054031
http://dx.doi.org/10.1103/PhysRevD.87.054031
http://arxiv.org/abs/1212.5241
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5241
http://dx.doi.org/10.1103/PhysRevD.91.034028
http://arxiv.org/abs/1409.2898
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.2898
http://dx.doi.org/10.1140/epjc/s10052-014-2947-7
http://dx.doi.org/10.1140/epjc/s10052-014-2947-7
http://arxiv.org/abs/1404.5571
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5571
http://arxiv.org/abs/1412.7672
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7672
http://dx.doi.org/10.1103/PhysRevD.91.095018
http://arxiv.org/abs/1501.03164
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.03164
http://dx.doi.org/10.1103/PhysRevD.69.115009
http://dx.doi.org/10.1103/PhysRevD.69.115009
http://arxiv.org/abs/hep-ph/0402208
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0402208
http://dx.doi.org/10.1103/PhysRevD.80.015007
http://arxiv.org/abs/0905.1148
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1148
http://dx.doi.org/10.1103/PhysRevD.83.035005
http://dx.doi.org/10.1103/PhysRevD.83.035005
http://arxiv.org/abs/1011.1246
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1246


J
H
E
P
0
9
(
2
0
1
5
)
1
2
7

[22] I. Gogoladze, R. Khalid and Q. Shafi, Yukawa Unification and Neutralino Dark Matter in

SU(4)(c)× SU(2)(L)× SU(2)(R), Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204]

[INSPIRE].

[23] I. Gogoladze, R. Khalid and Q. Shafi, Coannihilation Scenarios and Particle Spectroscopy in

SU(4)(c)× SU(2)(L)× SU(2)(R), Phys. Rev. D 80 (2009) 095016 [arXiv:0908.0731]

[INSPIRE].

[24] M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP Gluino Search at the Tevatron and early

LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [INSPIRE].

[25] K. Harigaya, M. Ibe and T.T. Yanagida, A Closer Look at Gaugino Masses in Pure Gravity

Mediation Model/Minimal Split SUSY Model, JHEP 12 (2013) 016 [arXiv:1310.0643]

[INSPIRE].

[26] J.L. Evans and K.A. Olive, Universality in Pure Gravity Mediation with Vector Multiplets,

Phys. Rev. D 90 (2014) 115020 [arXiv:1408.5102] [INSPIRE].

[27] K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89

(2014) 115021 [arXiv:1403.0715] [INSPIRE].

[28] A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for Dark Matter Searches at the

LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].

[29] M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014)

161 [arXiv:1404.0682] [INSPIRE].

[30] J.R. Ellis, J.L. Evans, F. Luo and K.A. Olive, Scenarios for Gluino Coannihilation, in

preparation (2015).
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