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1 Introduction

In our recent work [1] which will be called I in the following, we studied the classical limit

(NS limit) [2] of Virasoro irregular conformal block (ICB) using the irregular matrix model

(IMM) [3]. IMM is a β-deformed one matrix model with a logarithmic as well as a finite

number of inverse power potentials. The finite number n of the inverse powers is called

the rank of irregular model. It is demonstrated that the classical ICB of rank n can be

obtained by using the generalized Mathieu equation. This equation is equivalent to the

loop equation of IMM and is solved on a unit circle with the Floquet exponent for the

rank 1. However, this method is not easy to generalize to the case with arbitrary rank n.

In this paper, we present a new systematic way to find ICB based on the loop equation.

In section 2 we present that the classical irregular conformal block F (m:n)
∆ , the inner

product between irregular modules of rank m and n has the exponential form:

F (m:n)
∆

gs→0∼ exp

{

1

g2s
fδ

}

, (1.1)

where gs → 0 corresponds to the classical limit and fδ is finite in this limit. This is suggested

in [4, 5] for the regular conformal block and extended to the ICB in [6]. We demonstrate

this exponential behavior for the regular and irregular case using the conformal property

of the loop equation. In section 3 we present a new systematic way to analyze the classical
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limit of IMM and give a non-trivial example for the rank 2 partition function Z(0:2). Further

in section 4 we evaluate the partition function Z(m:n) based on the same method, which is

sufficient to construct ICB. Section 5 is the conclusion and the appendix deals with the

normalization of the partition function and technical details.

2 Classical form of conformal block

2.1 Setup of the formalism

Regular matrix model [7, 8] related with the regular conformal block is defined as the

β-deformed Penner-type matrix model

Zβ =

∫
( N
∏

I=1

dλI

)

∏

I<J

(λI − λJ)
2βe

√
β

g

∑
I V (λI). (2.1)

V (λ) is the Penner-type potential

V (z) =
K
∑

a=0

α̂a log(z − za) . (2.2)

This potential is obtained from the correlation of K + 2 primary vertex operators (lying

at 0, z1, · · · , zK ,∞) and screening operators (lying at z). β is related with the Virasoro

screening charge b = i
√
β and the Virasoro charge α of the primary operator is rescaled as

α̂ = gsα. We introduce the small expansion parameter g which is related with g = igs/2

so that
√
β/g = −2b/gs.

Classical limit is obtained as gs → 0 so that α̂a is finite. On the other hand, b and

gs are related with the Ω deformation parameter ǫ1 = gsb and ǫ2 = gs/b of the Nekrasov

partition function [9–11] according to AGT conjecture [12]. Therefore, classical limit is

achieved either ǫ2 → 0 but ǫ1 finite which is the Nekrasov-Shatashvili (NS) limit or its dual

(ǫ1 → 0 but ǫ2 finite). The two pictures are equivalent since Liouville theory has b → 1/b

duality.

IMM is obtained in [13, 14] from the colliding limit [15, 16]. IMM has the same form

of (2.1) but the potential is different,

V (z) = ĉ0 log z −
n
∑

k=1

(

ĉk
kzk

)

+
m
∑

ℓ=1

(

ĉ−ℓ z
ℓ

ℓ

)

, (2.3)

where m + n = K and (m + 1) primary operators are put to ∞, and (n + 1) operators

to 0. The coefficients ĉk and ĉ−ℓ are given in terms of the moments; ĉk =
∑n

r=1 α̂r(zr)
k

with k ≥ 0 and ĉ−ℓ =
∑m

a=1 α̂a(za)
−ℓ with ℓ > 0. The irregular partition function with the

potential (2.3) will be denoted as Z(m;n)(ĉ0; {ĉk}, {ĉ−ℓ}) in the following.

The matrix model (regular or irregular) has the loop equation which presents the

symmetric property

4W (z)2 + 4V ′(z)W (z) + 2gsQW ′(z)− g2sW (z, z) = f(z) , (2.4)
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where Q = b+1/b is the background charge. W (z) and W (z, z) are the one and two point

resolvents, defined as W (z) = g
√
β
〈
∑

I
1

z−λI

〉

conn
and W (z, w) = β

〈
∑

I
1

(z−λI)(w−λI)

〉

conn
,

respectively. The bracket 〈O · · · 〉conn denotes the connected part of the expectation value

with respect to the matrix model (2.1). f(z) is the expectation value determined by the

potential V (z), f(z) = 4g
√
β
〈
∑

I
V ′(z)−V ′(λI)

z−λI

〉

conn
.

At the classical limit, the resolvents defined above remain finite [17]. Therefore, the

loop equation (2.4) is simplified as

x(z)2 + ǫx′(z) + U(z) = 0 , (2.5)

where x(z) = 2W (z) + V ′(z) and U(z) = −
(

V ′(z)
)2 − ǫV ′′(z) − f(z). ǫ = gsQ is a finite

parameter at the classical/NS limit. It should be noted that (2.5) is manifestly invariant

for both limits (NS and its dual). This loop equation turns into a second order differential

equation (Shrödinger-like equation) if one defines Ψ(z) = exp
(

1
ǫ

∫ z
x(z′)dz′

)

:

(

ǫ2
∂2

∂z2
+ U(z)

)

Ψ(z) = 0 . (2.6)

On the other hand, one may conveniently investigate the conformal block using a

degenerate primary operator. In [1, 18], an expectation value P (z) ≡ 〈∏I(z − λI)〉 is

introduced in relation with the degenerate operator. It should be noted that P (z) is a

polynomial of degree N ,

P (z) = P0 + P1z + P2z
2 + · · ·+ PN−1z

N−1 + PNzN , (2.7)

where N is the number of integration variables in (2.1) and PN is normalized to be 1.

The wave function Ψ(z) in (2.6) is closely related with P (z). This can be seen if one

notes that at the classical limit, one has [1]

log

(

P (z)

P (z0)

)

=
2

ǫ

∫ z

z0

dz′W (z′) . (2.8)

Taking derivatives one has W (z) = ǫ
2

(

logP (z)
)′
= ǫ

2
P ′(z)
P (z) and therefore, the wave-function

Ψ(z) is given as

Ψ(z) = P (z) exp

(

1

ǫ

∫ z

V ′(z′)dz′
)

. (2.9)

This shows that the polynomial function satisfies the second order differential equation

ǫ2P ′′(z) + 2ǫV ′(z)P ′(z) = f(z)P (z) , (2.10)

which can be check from (2.5) or equivalently from (2.6). We will use this equation to

investigate the partition function and conformal block.

2.2 Classical irregular conformal block

Let us investigate the exponential behavior of the classical conformal block. Note that (1.1)

is equivalent to that

lim
gs→0

g2s logF (m:n)
∆ → finite . (2.11)
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In this section we concentrate on the case of ICB. Regular conformal block is commented

in section 2.3.

The explicit form of ICB is given in tems of IMM Z(m;n) [3]:

F (m:n)
∆

(

{ĉ−ℓ : ĉk}
)

=
eζ(m:n)Z(m:n)

(

ĉ0; {ĉk}, {ĉ−ℓ}
)

Z(0:n)

(

ĉ0; {ĉk}
)

Z(0:m)

(

ĉ∞; {ĉ−ℓ}
) , (2.12)

where c0 is fixed by the neutrality condition c0 + c∞ + Nb = Q with N the number

of inserted screening operators. ICB has an extra factor eζ(m:n) which comes from the

limiting procedure za → ∞ and zb → 0. Explicitly ζ(m:n) = ζ̂(m:n)/g
2
s where ζ̂(m:n) =

∑min(m,n)
k 2ĉk ĉ−k/k.

One can confirm the exponential behavior (1.1) using the expression of ICB. We need

to confirm the classical behavior

lim
gs→0

g2s
{

ζ(m:n) + logZ(m:n) − logZ(0:n) − logZ(0:m)

}

→ finite . (2.13)

It is easy to show that the first term is finite since it is given as

lim
gs→0

g2s ζ(m:n) = ζ̂(m:n) . (2.14)

The contribution of Z(0:n) can be evaluated using f(z). Note that f(z) has a finite

number of inverse powers of z: f(z) =
∑n−1

k=0 dkz
−(k+2). Therefore, if one expands eq. (2.10)

in powers of z, one finds the equation has the terms running from zN−2 to z−n−1. This

provides N + n number of equations. Since there are N + n unknown variables: P0, P1,

. . . , PN−1 and d0, d1, . . . , dn−1, one can solve the equations to find dk as a function of ĉk’s,

which are finite at the classical limit gs → 0. Once the solution of dk is found, one can find

the partition function Z(0:n) using the differential equation [13]

− g2s vk(logZ(0:n)) = dk for 0 ≤ k ≤ n− 1 , (2.15)

where vk is the differential operator related with the Virasoro generator representation:

vk≥0 =
∑

ℓ>0

ℓ ĉℓ+k
∂

∂ĉℓ
. (2.16)

Here we use the convention ĉℓ = 0 when cℓ does not belong to {ĉ0, · · · , ĉn}. Once dk is

known, one may rearrange (2.15) to put

− g2s
∂

∂ĉℓ
logZ(0:n) = Fℓ

(

{ĉk}
)

for 1 ≤ ℓ ≤ n . (2.17)

Since Z(0:n) only depends on ĉ0, ĉ1, . . . , ĉn, (2.17) is sufficient to determine Z(0:n) completely,

up to the normalization factor N(0:n) which is independent of ĉℓ>0:

− g2s log

(

Z(0:n)

N(0:n)

)

= H(0:n)

(

ĉ0, {ĉk}
)

, (2.18)

with finite H(0:n) at the classical/NS limit.
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In a similar way, one has f(z) =
∑n−1

k=−m dkz
−(k+2) for Z(m:n). By identifying each

coefficient of zℓ in (2.10), there are N +m+ n equations, running from zN+m−2 to z−n−1.

The number of unknown variables are also N +m + n: P0, P1, . . . , PN−1 and d−m, . . . ,

d−1, d0, d1, . . . , dn−1. Thus solutions of dk exist as functions of ĉk. Furthermore this

coefficients allows to find Z(m:n) through the differential equation [14]

−g2s vk(logZ(m:n)) = dk for 0 ≤ k ≤ n− 1 ,

−g2s uk(logZ(m:n)) = d−k − 2ǫNĉ−k for 1 ≤ k < m− 1 , (2.19)

where uk is the differential operator corresponding to ĉ−ℓ

uk>0 =
∑

ℓ>0

ℓ ĉ−ℓ−k
∂

∂ĉ−ℓ
. (2.20)

The solution is found similar to (2.18),

− g2s log

(

Z(m:n)

N(m:n)

)

= H(m:n)

(

ĉ0, {ĉk}, {ĉ−ℓ}
)

, (2.21)

with finite H(m:n) at the classical/NS limit.

In addition, the conformal block (2.12) is defined as 1 if ĉk = ĉ−ℓ = 0 for k, ℓ > 0.

Therefore, the conformal block is independent of the normalization. (In appendix A we

present how the normalization behaves at the classical/NS limit). Collecting all the terms,

one has the classical ICB in the form of

lim
gs→0

g2s logF (m:n)
∆ = ζ̂(m:n) −H(m:n) +H(0:n) +H(0:m) (2.22)

which is finite and thus, (1.1) is proved. In the following sections, we present explicit form

of H(0:n) and H(m:n) which is indeed finite.

2.3 Classical regular conformal block

We may demonstrate that (1.1) holds for the classical regular conformal block too. For the

regular case, we still have (2.10), but with V ′(z) =
∑K

a=0
α̂a

z−za
and

f(z) =
K
∑

a=0

da
z − za

, da = −g2s
∂ logZβ

∂za
. (2.23)

We start with the equation of P (z) in (2.10). If one takes the residue of (2.10) around

each za, one obtains K + 1 equations for a = 0, 1, . . . ,K:

2ǫα̂aP
′(za) = daP (za) . (2.24)

Equivalently,

2ǫα̂a
∂ logP (za)

∂za
= −g2s

∂ logZβ

∂za
. (2.25)

– 5 –



J
H
E
P
0
9
(
2
0
1
5
)
0
9
7

Thus, one has

Zβ = Nβ

n
∏

a=0

P (za)
−2ǫα̂a/g2s , (2.26)

where Nβ is the normalization factor independent on za and is discussed in the appendix.

One may also normalize the conformal block so that the za-independent factor as 1.

P (z) is given as the solution of (2.10). If the solution exists, the solution should be

finite. There is no singularity forbidding z → za since P (z) is the polynomial with degree

N . Thus, one may conclude for the regular conformal block Zβ
gs→0∼ exp{ζ/g2s} where

ζ = −2ǫ
n
∑

a=0

α̂a lnP (za) . (2.27)

3 Explicit evaluation of the partition function Z(0:n)

One may find the explicit form of the partition function using (2.10). In this section we

present how to obtain the partition function in a systematic way.

To obtain Z(0:n), we compare each coefficient of order zl in (2.10). For the power

zN−2−k with 0 ≤ k ≤ N + n− 1, one has

PNdk+PN−1dk−1+ · · ·+PN−kd0 = ǫ2 (N −k)(N −k−1)PN−k+2ǫ
k

∑

l=0

(

ĉk−l(N − l)PN−l

)

.

(3.1)

Here we use the notation that Pa vanishes when a < 0 or a > N . The highest power zN−2

shows that

d0 = ǫ2N(N − 1) + 2ǫĉ0N , (3.2)

which is independent of ĉk>0. Finding dk>0 needs algebraic manipulation.

We present the case rank 2 (n = 2) explicitly, which has d1 only. First note that the

partition function is given in terms of differential equation (2.15),

−g2s

(

ĉ1
∂

∂ĉ1
+ 2ĉ2

∂

∂ĉ2

)

logZ(0:2) = d0 , (3.3)

−g2s ĉ2
∂

∂ĉ1
logZ(0:2) = d1 . (3.4)

Eq. (3.3) is solved to get

g2s logZ(0:2) = −d0
2

log ĉ2 + h(τ) , (3.5)

where h(τ) is any function of τ ≡ ĉ2/ĉ
2
1 which satisfies automatically v0

(

h(τ)
)

= 0. It

is noted that the right hand side of eq. (3.5) is equivalent to H(0:2) given in (2.18) up to

normalization. Eq. (3.4) requires h(τ) to satisfy

d1 = 2g2s ĉ1τ
2∂ logZ

∂τ
= 2ĉ1τ

2h′(τ) . (3.6)
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This hints that d̃1 = d1/ĉ1 should be a function of τ only and one has h′(τ) = d̃1
2τ2

which

can be solved as

h(τ) =
1

2

∫ τ

dτ d̃1/τ
2. (3.7)

Therefore it is enough to find d̃1 as a function τ . As described in appendix B we find

d̃1 = 2ǫN + τaN + τ2
aN (aN − aN−1)

2ǫ

+ τ3
(aN − aN−1)

2 − aN−1(aN − aN−1)/2 + aN (aN − aN−1)

(2ǫ)2
+O(τ4) . (3.8)

Once d̃1 is known, one can put h(τ) in (3.7) as

h(τ) =
1

2

(

− d̃
(0)
1

τ
+ d̃

(1)
1 ln τ +

∑

ℓ≥2

d̃
(ℓ)
1

ℓ− 1
τ ℓ−1

)

, (3.9)

where we neglect the τ -independent term which will be absorbed into the normalization

N(0:2). This provides the explicit partition function of rank 2:

Z(0:2) = N(0:2)(ĉ2)
−

ǫ2 N(N−1)+2ǫĉ0N

2g2s

(

ĉ2
ĉ21

)

−ǫN(ǫ(N−1)+ĉ0)

g2s
e
−

ǫNĉ21
g2s ĉ2

+ 1

g2s
O
(

ĉ2
ĉ21

)

. (3.10)

N(0:2) is the normalization factor independent of τ . This procedure demonstrates that

finding Z(0:n) with n > 2 is straight-forward. On the other hand, it is to be noted that

Z(0:n) has no filling fraction except N . This shows that Z(0:n) provides the solution of the

one-cut case. In addition, it will be nice to find P (z) and dk in a more compact form.

4 Explicit evaluation of the partition function Z(m:n)

In this section we evaluate Z(m:n). Its potential derivative is given as V ′(z) =
∑n

k=−m
ĉk

zk+1

and therefore, f(z) =
∑

k dk/z
2+k where k runs from −m to n− 1.

Power expansion of eq. (2.10) provides N+m+n equations corresponding to N+m+n

variables. Explicitly, for the power of zN−k−2 with −m ≤ k ≤ N + n − 1 one has the

algebraic equation

2ǫ(N−k+n)ĉnPN−k+n+
n−1
∑

s=−m

(

(

2ǫ(N−k+s)ĉs−ds
)

PN−k+s

)

+ǫ2(N−k)(N−k−1)PN−k=0 .

(4.1)

We use the same convention in the previous section: PN = 1 and Pa vanishes when a < 0

or a > N . In addition, the coefficient ĉℓ = 0 when ℓ ≥ n+ 1 or ℓ < −m.

One has the simple relation for the highest power zN+m−2 (k = −m)

d−m = 2ǫNĉ−m , (4.2)

and for the lowest power z−(n+1) (k = N + n− 1)

P0dn−1 = 2ǫĉnP1 . (4.3)

– 7 –
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Let us consider the case (m,n) = (2, 2) for concreteness. In this situation we need

d−1, d0 and d1 to find the partition function Z(2:2). The flow equations in (2.19) read

−g2s ĉ−2
∂

∂ĉ−1
logZ(2:2) = d−1 − 2ǫNĉ−1 , (4.4)

−g2s

(

ĉ1
∂

∂ĉ1
+ 2ĉ2

∂

∂ĉ2

)

logZ(2:2) = d0 , (4.5)

−g2s ĉ2
∂

∂ĉ1
logZ(2:2) = d1 . (4.6)

Appendix C shows that

d−1 = 2ǫĉ−1N − 2ǫNĉ−2η +O(η2) , (4.7)

d0 = 2ǫĉ0N + ǫ2N(N − 1)− 2ǫNĉ−1η +O(η2) , (4.8)

d1 = 2ǫĉ1N − 2ǫN
(

ǫ1(N − 1) + ĉ0
)

η (4.9)

+ 2

[

ǫĉ−1Nη2 − ǫ

ĉ1
N
(

ǫ(N − 1) + ĉ0
)(

3ǫ(N − 1) + 2ĉ0
)

]

η2 +O(η3) , (4.10)

where η = ĉ2/ĉ1. Using the linear combination (4.5) − 1
η×(4.6), we have

−g2s

(

ĉ2
∂

∂ĉ2

)

logZ(2:2) = 2ǫĉ0N +
3

2
ǫ2N(N − 1)− ǫN

ĉ1
η

(4.11)

−
[

ǫĉ−1N +
(

ǫ(N − 1) + ĉ0
)(

3ǫ(N − 1) + 2ĉ0
) ǫN

2ĉ1

]

η +O(η2) .

Since (4.4), (4.6) and (4.11) are just simple derivative equations for ĉ−1, ĉ1 and ĉ2, we can

easily find H(2:2) given in (2.18).

H(2:2) = −2ǫN
(

ǫ(N − 1) + ĉ0
)

log ĉ1 +

(

2ǫĉ0N +
3

2
ǫ2N(N − 1)

)

log ĉ2 + ǫN
ĉ21
ĉ2

−
(

2ǫNĉ−1 −
ǫ

2ĉ1
N
(

ǫ(N − 1) + ĉ0
)(

3ǫ(N − 1) + 2ĉ0
)

)

ĉ2
ĉ1

+O(η2) . (4.12)

Thus, one has the partition function

Z(2:2) = N(2:2) × (ĉ1)

2ǫN

(

ǫ(N−1)+ĉ0

)

g2s (ĉ2)
−

2ǫĉ0N+3
2 ǫ2 N(N−1)

g2s

× e
1

g2s

{

2ǫNĉ−1
ĉ2
ĉ1

−ǫN
ĉ21
ĉ2

− ǫ
2
N(ǫ(N−1)+ĉ0)(3ǫ(N−1)+2ĉ0) ĉ2

ĉ21
+O(η2)

}

. (4.13)

Here, N(2:2) is the normalization factor1. O(ηk) are polynomials of η, and they satisfy the

following conditions:

1. They can be determined completely by the group of equations (C.5) with given N ,

using the perturbation method;

2. They are independent of gs, i.e., they are finite because all the coefficients in the

group of equations are independent of gs.

In this way, (4.12) leads directly to the fact lim
gs→0

g2s log(Z(2:2)/N(2:2)) → finite.

1The normalization factor can be a function of ĉ0 and ĉ−2 since their derivatives are not given by the

flow equations. However, there is no evidence for this parameter to be divergent.
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5 Conclusion

Using the second order differential equation (2.10) of the polynomial P (z), we find a

straightforward method to calculate classical ICB, by assuming a hierarchical ordering

in ĉk so that Pk can be treated perturbatively. Compare to known methods, this new ap-

proach is efficient since P (z) is a polynomial with a finite degree N , which leads to a finite

number of equations with exact solutions. This property allows us to give a rigorous proof

for the classical behavior of conformal blocks. Besides, the classical limit for Nekrasov

partition function is proposed in [2] as ZNek
ǫ2→0∼ exp

{

1
ǫ2
WNek

}

, with WNek finite. This

is naturally equivalent to classical ICB’s exponential behavior, through the connection of

AGT conjecture. We also expect that similar discussions can be applied to W-symmetry

in future.

Acknowledgments

This work is supported by the National Research Foundation of Korea (NRF) grant funded

by the Korea government (MSIP) (NRF-2014R1A2A2A01004951).

A Normalization

In the text, we skip the normalization factor N(0:n) when the conformal block F (m:n)
∆ is

considered since normalization does not contribute. It is noted that the duality b → 1/b

holds for F (m:n)
∆ . The duality is obvious since the loop equation (2.4) is manifestly dual

(Q is dual in b → 1/b).

On the other hand, the partition function (2.1) does not look invariant. However, as

gs → 0 and b → ∞ (NS limit), the partition function allows the perturbation expansion,

and the normalization can be taken with ĉk 6=0 → 0,

N(0:n)(ĉ0) =

∫
( N
∏

I=1

dλI

)

∏

I<J

(λI − λJ)
2βe

√
β

g

∑
I ĉ0 log λI . (A.1)

This is given in terms of the Selberg integral [19]

SN (α, δ, β) ≡
∫ 1

0
· · ·

∫ 1

0

N
∏

i=1

tα−1
i (1− ti)

δ−1
∏

1≤i<j≤n

|ti − tj |2β t1 · · · tn (A.2)

=
N−1
∏

j=0

Γ(α+ jβ)Γ(δ + jβ)Γ
(

1 + (j + 1)β
)

Γ
(

α+ δ + (N + j − 1)β
)

Γ(1 + β)
,

with α = 1 +
√
βĉ0/g and δ = 1, one has2

N(0:n)(ĉ0) =
N−1
∏

j=0

Γ(1 +Aβ + jβ)Γ(1 + jβ)Γ
(

1 + (j + 1)β
)

Γ
(

2 +Aβ + (N + j − 1)β
)

Γ(1 + β)
, (A.3)

where A = 2ĉ0/ǫ.

2There is some ambiguity in the integration range for IMM, which could be adjusted by rescaling λI ,

and does not effect our result shown here.

– 9 –



J
H
E
P
0
9
(
2
0
1
5
)
0
9
7

Obversely lim
gs→0

g2s logN(0:n) is equivalent to lim
β→∞

(logN(0:n))/β. Then using the prop-

erty of Gamma function log Γ(a+ Z) = z log(z) − z +O
(

log(z)
)

when z is large and a is

small, and making use of

N−1
∑

j=0

{

(A+ j) + j + (j + 1)
}

=
N−1
∑

j=0

{

(A+N + j − 1) + 1
}

, (A.4)

we find

lim
β→∞

logN(0:n)(ĉ0)

β
= lim

β→∞

N−1
∑

j=0

(A+ j) log(Aβ + jβ) + j log(jβ) + (j + 1) log
(

(j + 1)β
)

− (A+N + j − 1) log
(

Aβ + (N + j − 1)β
)

− log(β)

=
N−1
∑

j=0

(A+ j) log(A+ j) + j log(j) + (j + 1) log
(

(j + 1)
)

− (A+N + j − 1) log
(

A+ (N + j − 1)
)

= const . (A.5)

This means lim
gs→0

g2s logN(0:n)(ĉ0) = const.

For the regular case, Nβ is the normalization factor independent on za, which means

it can be achieved by setting all the za = 0. Actually

Nβ =

∫
( N
∏

I=1

dλI

)

∏

I<J

(λI − λJ)
2βe

√
β

g

∑
I

∑n
a=0 α̂a log λI

=

∫
( N
∏

I=1

dλI

)

∏

I<J

(λI − λJ)
2βe

√
β

g

∑
I ĉ0 log λI (A.6)

= N(0:n)(ĉ0) .

According to the previous discussion we know lim
gs→0

g2s logNβ = const.

B Method to obtain d1

The eq. (3.1) for rank 2 can be written as

(d1 − 2ǫĉ1t)Pt = ãtPt−1 + 2ǫĉ2(t+ 1)Pt+1 , (B.1)

where we put N − k + 1 = t and ãt =
(

ǫ2(t− 2) + 2ǫĉ0
)

(t− 1)− d0. One can simplify this

if one puts rt = Pt/Pt−1,

d1 = 2ǫĉ1t+ 2ǫĉ2(t+ 1)rt+1 + ãt/rt , (B.2)

where t runs from 0 to N . From the definition, one has rN+1 = 0 and r0 = ∞.
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When t = 0, one finds d1 = 2ǫĉ2 r1 in a very compact notation. However, explicit form

of r1 as the function of ĉ1, ĉ2 is not easy to put. One way to find d1 is to use perturbation.

One may rescale rt = ĉ1(N + 1− t)ξt/(ĉ2t) in (B.1) to get

d1/ĉ1 = 2ǫ
(

t+ (N − t)ξt+1

)

+ τ at/ξt , (B.3)

where at = ãt t/(N + 1− t) and τ = ĉ2/ĉ
2
1 as defined in (3.5). Eq. (B.3) shows that d1/ĉ1

is indeed a function of τ .

To the lowest order in τ , ξt = 1 and d1/ĉ1 = 2ǫN . Therefore, one may find d1/ĉ1 and

ξt in powers of τ

d̃1 := d1/ĉ1 =
∑

ℓ≥0

d̃
(ℓ)
1 τ ℓ, ξt =

∑

ℓ≥0

ξ
(ℓ)
t τ ℓ, (B.4)

where d̃
(0)
1 = 2ǫN and ξ

(0)
t = 1.

In addition, the solution of d̃1 is t-independent. Therefore, the perturbative expansion

is more facilitated if the equation is set into the form

d̃1 = d̃
(0)
1 + τaN +

[

2ǫĉ1(N − t)(ξk+1 − 1) + η(at − aN )
]

+ τat(1− ξt)/ξt , (B.5)

where decomposition 1/ξt = 1+(1− ξt)/ξt is used to put 1/ξt perturbatively in t. To make

d̃1 t-independent, one has d̃
(1)
1 = aN and the term in the squared bracket need to vanish at

the order η,

2ǫĉ1(N − t)ξ
(1)
t+1 − at − aN = 0 , (B.6)

which fixes the ξ
(1)
t . In this way one can find d̃1 order by oder

d̃1 = 2ǫN + τaN + τ2
aN (aN − aN−1)

2ǫ

+ τ3
(aN − aN−1)

2 − aN−1(aN − aN−1)/2 + aN (aN − aN−1)

(2ǫ)2
+O(τ4) , (B.7)

which provides the explicit d̃
(ℓ)
1 with ℓ = 0, 1, 2, 3.

C Method to obtain d
−1, d0 and d1

For the case (m,n) = (2, 2), explicitly expanding eq. (2.10) in powers of z, we have

zN : d−2 = 2ǫNĉ−2 , (C.1)

zN−1 : d−1 = 2ǫNĉ−1 − 2ǫĉ−2PN−1 , (C.2)

zN−2 : d0 = 2ǫNĉ0 + ǫ2N(N−1) +
(

2ǫ(N−1)ĉ−1 − d−1

)

PN−1 − 4ǫĉ−2PN−2 , (C.3)

zN−3 : d1 = 2ǫĉ1N +
(

2ǫ(N−1)ĉ0 + ǫ2 (N−1)(N−2)− d0
)

PN−1 , (C.4)

+
(

2ǫ(N−2)ĉ−1 − d−1

)

PN−2 − 6ǫĉ−2PN−3 .

And in general for the power of zN−k−2 with −1 ≤ k ≤ N + 1 we have

2ǫ(N − k + 2)ĉ2PN−k+2 +
(

2ǫ(N − k + 1)ĉ1 − d1
)

PN−k+1

+
(

2ǫ(N − k)ĉ0 + ǫ2 (N − k)(N − k − 1)− d0
)

PN−k (C.5)

+
(

2ǫ(N − k − 1)ĉ−1 − d−1

)

PN−k−1 − 2ǫ(k + 2)ĉ−2PN−k−2 = 0 .
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To find the di’s, one may use perturbation in (C.5). First note that PN−1 = −
〈
∑

I λI

〉

while P0 =
〈
∏

I(−λI)
〉

. Therefore, PN−k can grow as k-powers of the expectation values.

One may assume PN−t = O(ηt) with |η| ≪ 1. Indeed, the equation (C.5) has the solution

to the lowest order,

zN−1 : d−1 = 2ǫĉ−1N +O(η) , (C.6)

zN−2 : d0 = 2ǫĉ0N + ǫ1
2N(N − 1) +O(η) , (C.7)

zN−3 : d1 = 2ǫĉ1N +O(η) , (C.8)

zN−4 : PN−1 =
ĉ2
ĉ1
N +O(η2) , (C.9)

zN−5 : PN−2 =
N − 1

2

ĉ2
ĉ1
PN−1 +O(η3) , (C.10)

zN−t−3 : PN−t =
N − t+ 1

t

ĉ2
ĉ1
PN−t+1 +O(ηt+1) . (C.11)

Obviously given the condition |ĉ2/ĉ1| ≪ 1, while keeping c1, c0, c−1 and c−2 in the same

order, we can choose η ≡ ĉ2/ĉ1, consistent with PN−t = O(ηt).

Next order is given as follows:

zN−1 : d
(1)
−1 = −2ǫĉ−2N ,

zN−2 : d
(1)
0 = −2ǫĉ−1N ,

zN−3 : d
(1)
1 = −2ǫN

(

ǫ(N − 1) + ĉ0
)

. (C.12)

To calculate the partition function up to O(η), for a technical reason which will be clear

soon below, we need the η2 expansion of d1, which could be obtained from the third order

perturbation:

zN−3 : d
(2)
1 = 2ǫĉ−1N − ǫ

ĉ1
N
(

ǫ(N − 1) + ĉ0
)(

3ǫ(N − 1) + 2ĉ0
)

(C.13)

so that

d−1 = 2ǫĉ−1N − 2ǫNĉ−2η +O(η2) , (C.14)

d0 = 2ǫĉ0N + ǫ2N(N − 1)− 2ǫNĉ−1η +O(η2) , (C.15)

d1 = 2ǫĉ1N − 2ǫN
(

ǫ(N − 1) + ĉ0
)

η + d
(2)
1 η2 +O(η3) . (C.16)
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