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1 Introduction

With the advent of RHIC and the LHC, the first experimental studies of Ultra-Peripheral

Collisions (UPC) have successfully been carried out. The STAR collaboration first mea-

sured the ρ0 production cross section in AuAu UPC [1], then they measured the di-electron

production cross section in UPC [2]. A little later the PHENIX collaboration released their

first study of the J/ψ cross section as well as high-mass di-electron production [3]. More re-

cently, further studies have been carried out at the LHC by the ALICE collaboration [4, 5].

Attempts to isolate UPC in InIn collisions in the fixed-target mode at the SPS have

been made.1 They were not conclusive, most probably because of the limited nucleon-

nucleon centre-of-mass (cms) energy, on the order of 20 GeV, resulting in typical photon-

nucleon cms energies below 3 GeV.

In this context, we investigate the possibility to study lepton-pair production in ultra-

peripheral collisions at a fixed-target experiment using the proton and ion LHC beams [6]

1P. Ramalhete, PhD. thesis, April 2009.
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— referred thereafter to as AFTER@LHC. In such collisions, one can investigate specific

reactions where one of the colliding particle serves as a (coherent) emitter of a photon

and the other serves as a target. Such photon-hadron collisions can be (semi-)exclusive,

resulting, for instance, in the sole production of a lepton pair. This process can be used

to monitor the experiment luminosity since it mainly comes from the Bethe-Heitler (BH)

process [7], whose cross section is well-known. By looking at the target rapidity region,

it can also serve to scan the domain of validity of the Equivalent-Photon Approximation

(EPA). Moreover it can also help to probe the inner structure of the target, through the

interference between the BH process and the Timelike Compton Scattering (TCS) [8–12].

Such an interference — measurable via the analysis of the azimuthal anisotropy — indeed

involves contributions from the Generalised Parton Distributions (GPD) [13–20].

The structure of this article is as follows. In section 2, we present the main charac-

teristics of the UPCs and the corresponding photon fluxes in a fixed-target mode on the

LHC beams. In section 3, we briefly discuss the cross sections for production of lepton

pair via the BH process. In section 4, we discuss how the contribution from TCS can be

extracted and how they can help to unravel information about the inner proton structure.

In section 5, we briefly discuss the potential competing hadronic process resulting from

photon-odderon fusion. Finally, we present our outlooks and conclusions.

2 Ultraperipheral collisions in a high-energy fixed-target experiment

2.1 Generalities on photon-induced reactions in ultraperipheral collisions

Relativistically moving charged hadrons are accompanied by electromagnetic fields which

can effectively be used as quasi-real-photon beams. At very high energies, these photons

are energetic enough to initiate hard reactions, just as in lepton-proton colliders.

The virtuality, q2 = −Q2, of these photons is small, Q2 . 1/R2, where R is the radius

of the charge. More precisely, Q . 0.28 GeV for protons (R ≈ 0.7 fm) and Q . 0.06 GeV for

nuclei (RA ≈ 1.2A1/3 fm) with a mass number A > 16. These photons, which are emitted

coherently, are almost on mass shell, and their emission can be theoretically treated in the

EPA (see e.g. [21]).

Seen from a target at rest, the energy of these photons can become significant if the

energy of the moving charge, i.e. the beam energy, becomes ultrarelativistic, as at the LHC.

At rest, the coherent photon cloud of an heavy ion is on the order of 30 MeV. Boosted a

few thousand times (γPb ' 2940), these photons have an energy close to 100 GeV in the

laboratory frame. It is of course much less than what can be achieved at the LHC in the

collider mode, but close to the experimental condition at RHIC with colliding beams of

100 GeV. It is anyhow enough to produce hard dileptons as well as vector mesons.

The energy spectrum of these photons depends on the boost with respect to the ob-

server as well as the impact parameter b — it is understood that the observer or the probe

is outside the charge distribution. Using the EPA method, one gets [22] that the flux as

function of the photon momentum k, of b and γ (the Lorentz factor of the hadron — or

– 2 –
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nucleus — in the frame where k is measured) reads

dn

dkd2b
=
Z2αemω(b, k)2

π2kb2

[
K2

1 (ω(b, k)) +
1

γ2
K2

0 (ω(b, k))

]
, (2.1)

where αem is the QED coupling, Z is the nucleus charge, ω(b, k) = kb/γ and K1,2 are

modified Bessel functions of the second kind.

One usually assume that b cannot be smaller than R. Otherwise, (i) one cannot

consider the entire nucleus charge Z, (ii) hadronic interactions may be more important

that the photon-induced ones, (iii) the probability for the colliding objects to break-up may

also be important. For b & R, the strong suppression of the flux by the Bessel functions

when ω gets of the order of unity implies that k should be smaller than inverse radius times

the Lorentz factor γ. The larger γ is and the smaller the emitter is, the harder the flux

is. We also note that the energy spectrum kdn/dk is constant for k/γ fixed. To fix the

idea, one usually considers a maximum photon momentum kmax ' ~c
Remitter

below which the

emission are likely coherent and therefore characterised by a flux proportional to Z2. This

quantity should not thus be considered as a sharp cut-off above which photon emissions

are forbidden. If the photon is considered in the hadron cms, one has γ =
√
sNN/(2mN )(≡

γcms). If the photon is considered in the target B rest frame, γ = sNN/(2m
2
N )(≡ γA→B).

Table 1 summarises the relevant parameters characterising ultra-peripheral collisions at

AFTER@LHC, at RHIC and a SPS in fixed-target mode.

For comparisons with photon-induced reactions in the more conventional lepton-hadron

collisions, it is usually more instructive to look at the maximum of the γN cms en-

ergy,
√
smax
γN . To do so, we “boost”2 kmax in the “target” nucleon rest frame, to obtain

EN rest
γ max = γA→Bkmax, where

√
sγp =

√
2Emax

N restmN =
√
sNNkmax/mN . We note that the

photon-energy “cut-off” obtained with these dimensional arguments for Pbp, i.e. 74 GeV, is

remarkably close to the peak in the energy spectrum obtained using a more realistic model

in a recent study of the Bremsstrahlung spectrum of ions in AFTER@LHC [26], i.e. 80 GeV.

2.2 Photon fluxes

Taking into account the smallest possible impact parameter for a given colliding system,

pp, pA or AB, as well as the charge distribution through a form factor in the proton case,

one obtains different formulae for the flux integrated in b. In fact, the photon fluxes do not

formally factorise since bmin depends on the radius of both colliding objects, except in ep

collisions, where one can reasonably neglect the electron radius.

Along these lines, one should normally have for pp collisions, bmin ' 2 × Rp; for pA

collisions, bmin ' Rp + RA; and for AB collisions bmin ' RA + RB. This is what we have

chosen in table 1. Whereas it is acceptable to approximate Rp + RA to RA, it does not

seem justifiable to use RPb for PbPb collisions, for instance. In addition, in pA collisions,

it is also problematic to use a different bmin when one considers the proton emission or the

ion emission. In both cases, one should use Rp +RA, or perhaps RA.

2In fact, the procedure looks more as if the emitter is Lorentz contracted as 1/γ, rather than the photon

momentum boosted. The results are however similar once one considers the emitted photon as slightly

off-shell, with a momentum, in the rest frame of the emitter, as (kmax, 0, 0, 0).

– 3 –
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System target

thick-

ness

√
sNN LAB3 Elab

A Elab
B γcms γA↔B ~c

bmin
E

A/B rest
γ max

√
smax
γN Ecms

γ max
√
smax
γ γ

(cm) (GeV) (pb−1yr−1) (GeV) (GeV)
(√s

NN
2mN

)( s
NN

2m2
N

)
(MeV) (GeV) (GeV) (GeV) (GeV)

AFTER@LHC

pp 100 115 2.0× 104 7000 mN 61.0 7450 141 1050 44 8.6 17

pPb 1 115 160 7000 mN 61.0 7450 25.3 188 19 1.5 3.1

pd 100 115 2.4× 104 7000 mN 61.0 7450 69.5 517 31 4.2 8.5

PbPb 1 72 7.× 10−3 2760 mN 38.3 2940 13.9 40.7 8.8 0.53 1.1

Pbp 100 72 1.1 2760 mN 38.3 2940 25.3 74.2 12 0.97 1.9

Arp 100 77 1.1 3150 mN 40.9 3350 41.1 138 16 1.7 3.4

Op 100 81 1.1 3500 mN 43.1 3720 53.0 197 19 2.3 4.6

RHIC

pp n/ap 200 12 100 100 106 22600 141 3190 77 15 30

AuAu n/ap 200 2.8× 10−3 100 100 106 22600 14.2 320 25 1.5 3.0

SPS

InIn n/av 17 n/av 160 mN 9.23 170 16.9 2.87 2.4 0.16 0.31

PbPb n/av 17 n/av 160 mN 9.23 170 13.9 2.36 2.1 0.13 0.26

Table 1. Relevant parameters for AB UPCs at AFTER@LHC, at RHIC and at SPS: (i) nucleon-

nucleon cms,
√
sNN (ii) luminosity, LAB , (iii-iv) colliding hadron energies, Elab

A,B , in the laboratory

frame, (v) Lorentz factor between the colliding-hadron rest frame and cms, γ =
√
sNN/(2mN ),

(vi) Lorentz factor between both colliding-hadron rest frames, γ = sNN /(2m
2
N ), (vii) inverse of the

colliding-hadron minimum impact parameter (giving the typical maximum photon cloud energy in

the emitter rest frame), (viii) photon “cutoff energy” in the target or projectile rest frame, EB rest
γ max

or EA rest
γ max, (ix) “maximum” photon-nucleon cms energy where A or B is the photon emitter,

√
smax
γN

or
√
smax
Nγ , (x) photon “cutoff energy” in the cms, Ecms

γ max, with both A and B emitting a photon

coherently, (xi) “maximum” photon-photon cms,
√
smax
γ γ .

Integrating eq. (2.1) over b, one has [22]

dn

dk
=

2Z2αem

πk

[
ω(bmin, k)K0

(
ω(bmin, k)

)
K1

(
ω(bmin, k)

)
−ω(bmin, k)2

2

(
K2

1

(
ω(bmin, k)

)
−K2

0

(
ω(bmin, k)

))]
. (2.2)

To avoid any confusion with the choice of the frame, it is useful to work with the

momentum fraction or light cone coordinate, xγ = k/ph ' k/(γMN ), where ph is the

momentum of the hadron emitting the photon. One trivially obtains

dn

dxγ
=

k

xγ

dn

dk

∣∣∣
ωpA=xγMpbmin

. (2.3)

The relation between the (differential) hadron-hadron cross section, (d)σhAhB , and the

(differential) cross section for a photo-hadron scattering (hA or hB), (d)σγhA,B , is naturally

3For Arp and Op luminosity with AFTER@LHC, we conservatively assumed the same extracted flux of

Ar and O as for Pb, i.e. 2× 105 Pb/s. See also [6, 23–25].
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RPb=7.1 fm

γ : Drees-Zeppenfeld for p
γ : bmin=Rp                        

γ : bmin=2 x Rp                   

γ : bmin=RPb                       

γ : bmin=RPb+Rp          
γ : bmin=2 x RPb                 

g: MSTW x 0.01 (Q2
=4 GeV)

uval: MSTW  (Q2
=4 GeV)      

Figure 1. dn
dx for photons from protons (blue dot for Drees-Zeppenfeld, green dash for bmin = Rp

and red solid for bmin = 2Rp) and from Pb (orange double dot dash for bmin = RPb, light blue

dot dash for bmin = RPb + Rp and black double dot for bmin = 2RPb ) divided by Z2
Pb. These are

compared to the gluon (thin pink long-dash, divided by 100) and u quark (thin purple dot-dash)

MSTW PDF in the proton.

given by the following convolution with the photon flux

dσhAhB =

∫
dkγ

(
dnhA

dkγ
dσγhB (sγhB (kγ)) +

dnhB

dkγ
dσγhA(sγhA(kγ))

)
=

∫
dxγ

(
dnhA

dxγ
dσγhB (sγhB (kγ(xγ)) +

dnhB

dxγ
dσγhA(sγhA(kγ(xγ)))

)
.

(2.4)

By analogy with the parton model formulae, one can thus write:

ϕγ(xγ) =
dn

dxγ
, (2.5)

and interpret the latter as an equivalent-photon PDFs off the hadron (or the ions) by

leaving the emitter intact.

In the case where the emitter is a proton, one could think that it is more accurate

to take into account the spatial distribution of the charges through a form factor, which

leads [27] to

dn

dxγ
=

α

2πxγ

(
1 + (1− xγ)2

) [
ln c− 11

6
+

3

c
− 3

2c2
+

1

3c2

]
, (2.6)

where c = 1 + 0.71 GeV2

Q2
min

, and Q2
min = M2

px
2
γ . This is only strictly relevant for ep collisions

and at rather large xγ . In pp or pA collisions, one indeed needs to take into account the

radius of the other colliding object. The impact parameter b is therefore not getting close

to Rp. We will refer to this choice by “Drees-Zeppenfeld”.

– 5 –
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Figure 1 shows a comparison (up to the charge factor Z2) between the equivalent flux

from a proton and from a lead ion. For xγ < 10−3, the spectra show a similar behaviour,

with a magnitude differing by less than a factor 2. At larger xγ , the proton spectrum is

clearly harder because of the smaller proton size. This is the expected behaviour.

One could also consider the case where the proton emitting the photon breaks apart.

In this situation, the photon is in fact radiated by the quarks and the corresponding photon

PDF can then approximated by [28]

ϕbreak−up
γ (x,Q2) =

α

2π
log

Q2

Q2
0

∑
q

∫ 1

x

dy

y
Pγq(x/y)

[
q(y,Q2) + q̄(y,Q2)

]
, (2.7)

with Pγq(z) = e2
q (1 + (1− z)2)/z, Q2

0 is an energy cut-off, and q(x,Q2) is the quark PDFs

in the proton. We will not consider this possibility further in this study, although such a

process could contribute to the semi-exclusive case with still a large rapidity gap between

the dilepton and the proton emitter. Another possibility, which we will discuss in section 5 is

to have an elastic hadronic reaction via the exchange of a pomeron (or possibly an odderon).

2.3 Fluxes and the rapidity dependence of the produced particles

2.3.1 Single-photon case

If we consider the total cross section, σγh, to photo-produce a particle of mass Q, we note

that it can only be function of sγh and Q2 since it is already integrated on the final state

variables. However, nothing prevents us to perform a change of variable in eq. (2.4) from kγ
to a final state variable of the γ-hadron process, for instance the rapidity y of the produced

particle, keeping the other fixed.4 By momentum conservation, y would enter5 via kγ(y)

in sγh
Indeed, in our case, it is clearly instructive, in order to understand where the produced

particle by photon-induced collisions fly, to consider the flux as a function of the particle

rapidity y. For instance, we anticipate [6] that rapidities (in the hadron-hadron cms frame)

from -4 to +1 should be accessible. A detector like LHCb, covering pseudorapidities from

2 to 5 would for instance approximately cover cms rapidities from -2.8 to 0.2 (see later the

discussion about the acceptance).

For fixed qT and Q2, kγ(y) is also fixed. From eq. (2.4), one trivially obtains

dσhh =

∫
dkγ

(
dnhA

dkγ
dσγhB (sγhB (kγ)) +

dnhB

dkγ
dσγhA(sγhA(kγ))

)

=

∫
dy

(
dnhA

dy
dσγhB (sAγhB (y)) +

dnhB

dy
dσγhA(sBγhA(y))

)
,

(2.8)

where s
(A,B)
γh(B,A)

(y) ≡ sγh(B,A)

(
kγ from (A,B)(y)

)
and therefore

dσhh

dy
=
dnhA

dy
dσγhB (sAγhB (y)) +

dnhB

dy
dσγhA(sBγhA(y)). (2.9)

4In the following, we denote the 4-momentum of this particle q = (q0, ~qT , qz) and qT = |~qT |.
5Defining xγ = sγh/s, one indeed gets xγ = xγ(y, q2T , Q, ε) where ε = ±1 when the projectile (target) is

the photon emitter. See the appendix A for details.
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Q 2
= 40 GeV2

Q 2
= 10 GeV2

Q 2
= 4 GeV2

(a) proton on Pb.

-4 -3 -2 -1 2

2.76 TeV Pb on p

Q 
=  

Q 
=  

Q 
=  





y 











(b) Pb on H.

-4 -2 0 2 4
0.0

0.005

0.01

0.015

0.02

0.025

0.03

dn

dy

                    7 TeV proton  on proton            

Drees-Zeppenfeld

                                            

 

                                                                                                                          Rp=0.7 fm; bmin=2 Rp

Q 2
= 4 GeV2

cmscms

ycms
(c) proton on H.

Figure 2. dn
dy for the proton run on Pb nucleon target (a), and for Pb run on H target (b), and

(c) for p-p run. The flux is calculated for the specified Q2 at qT = 0 (e.g. t = t0).
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We therefore find it instructive to plot dn
dy (for fixed qT and Q2) for different configura-

tions: figure 2a shows the case of 7 TeV protons on lead, the lead being the photon emitter;

figure 2b shows the case of 2.76 TeV lead on protons, the lead being the photon emitter;6

figure 2c shows the case of 7 TeV protons on proton (i.e. hydrogen), where both can be the

photon emitter (note that the corresponding fluxes cannot simply be summed).

In the first case (figure 2a), the flux is maximum in the forward region, which corre-

sponds to a soft (coherent) emission by the lead target. In general, the particle tends to

be emitted in the “hadron-receiver” region since the photon momentum is very small (here

yreceiver=beam = 4.8). To be more precise, the boost — or rapidity difference ∆y — between

the photon-hadron and hadron-hadron cms, ∆y
γhA,B
hAhB

= yhAhBcms − yγhA,Bcms , is simply related

to the photon momentum fraction via

∆y
γhA,B
hAhB

= −ε1

2
lnxγ , (2.10)

In order to produce a particle of mass Q at threshold7 in a photon-hadron collision at
√
sγh

resulting from a hadron-hadron UPC at
√
sNN , one approximately has xγ ' Q2/sNN . At

AFTER@LHC, for Q2 = 4 GeV2, xγ = 3× 10−4, which gives ∆y
γhA,B
hAhB

' −4. This explains

the maximum at ycms ' 4 of the solid line of figure 2a.

If the emission is too soft, there is simply not enough energy to create a particle of

a given mass, Q, — this explains why the curve for Q2 = 4(40) GeV2 drops sharply at

ycms ' 4(3). In the second case (figure 2b), the flux is the highest in the opposite direction

where soft photons are emitted by the lead projectile. Since the lead beam energy is lower

(ybeam = 4.2) and the energy cut-off smaller, the particle is less backward than it is forward

in the first case. In the third case (figure 2c), both proton can emit. The behaviour is

similar to (a) and (b), but for a lower value due to the absence of the factor Z2. It is

however harder in the forward (backward) region for a projectile (target) proton emitter

— note that the flux in the tail is still nonzero at y down to ±3. This mirrors the possibility

for harder photon (up to xγ ' 0.1) emission from a proton compared to a larger nucleus.

The solid and dashed curves on figure 2c refer to two different fluxes: Drees-Zeppenfeld as

in ep collisions (solid) and bmin = 2×Rp (dashed).

The advantage offered by the fixed-target mode is therefore obvious when the emitter

is the projectile. In such a case, the large rapidity differences between the photon-hadron

and hadron-hadron cms and that between the hadron-hadron cms and the laboratory frame

nearly cancel. This results in the production of the particle at slightly positive rapidities

which are easily covered by typical detectors.

2.3.2 Double-photon case

Obviously, one can also consider UPC where both colliding hadrons radiate a photon. This

is expected to be the dominant reaction at work in dilepton production, AA′ → A`+`−A′,

6In this case, as for (a), the photon emission by a lead ion can, in principle, be tagged with a neutron

emission. In addition, the probability for the proton to be the emitter is, in practice, negligible (Z2

suppressed at the same |ycms|). We therefore do not show the curve for this possibility.
7I.e. at rest in the photon-hadron cms.
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p1

p2

p′
1

ℓ+

ℓ−

(a) BH.

p1

p2 p′
2

p′
1

q

γ

GPD

(b) TCS with gluon

GPDs.

p1

p2 p′
2

p′
1

q

γ

(c) γP fusion.

p1

p2 p′
2

p′
1

q

(d) OP fusion.

Figure 3. Feynman graphs representing the scattering of two hadrons of momentum p1 and p2
remaining intact with final state momenta p′1 and p′2 producing a lepton pair via (a) the BH process

by photon-photon fusion, (b) via TCS described in terms of a GPD (here the gluon one), (c) via

photon-pomeron (γP) fusion represented by the minimal number of gluon exchanges and (d) via

odderon-pomeron (OP) fusion also represented with the minimal number of gluon exchanges.

PbH→Pb`+`− H, pPb→ p`+`− Pb or pp′ → p`+`−p′, via γ γ → `+`− (see figure 3a), that

is the BH process. Combining the fluxes from both hadrons, one can derive a joint photon

flux or γ γ luminosity as function of their invariant mass,
√
sγ γ or W , and rapidity Y , as it

is usually done for gg luminosity at the LHC to discuss H0 production rates, for instance.

Figure 5 shows the rapidity dependence of γ γ luminosity in the hadron-hadron cms at

a fixed W , obtained from of eqs. 42, 43, 50, 51 and 52 of [29] with numerical integrations

on the impact parameters. In the case of the BH process discussed in detail in the next

section, the invariant mass of the pair is that of the dilepton. One observes that the maxima

in the Pbp and pPb fluxes occur at respectively backward (forward) rapidities because the

photon spectrum from the proton is harder than that from the ion.

3 Lepton-pair production: energy, invariant-mass, rapidity and transverse-

momentum dependencies

We now discuss in more details the dominant process involved in lepton-pair production

that is BH from γ γ → `+`− (figure 3a) in hadron-hadron collisions.

3.1 Total cross section and for fixed Q

The total cross section for dimuon production by two heavy and charged particles is

well known and can readily be computed from the analytical formula of Racah [30]. At√
s = 115 GeV, one gets 15.0 nb for pp collisions, to be compared with 16.5 nb with the

Starlight Monte Carlo code.8 The corresponding cross section for pPb is simply obtained

by multiplying by Z2, i.e. 100 µb. In this case, it is assumed that the particle are point-like.

Starlight rather gives 36 µb.

We are however interested in the differential cross sections for particular values of the

dilepton invariant mass, Q; muon pairs produced at Q & 2mµ are usually difficult to study

8STARLIGHT website.
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System pp pPb Pbp PbPb
√
sNN [GeV] 115 115 72 72

BW SL BW SL BW SL BW S

dσ``(Q=2 GeV)
dQ [nb/GeV] 0.14 0.15 200 210 77 84 7000 7100

dσ``(Q=2 GeV,y`
+`−

cms =0)
dQdy``cms

[nb/GeV] 0.039 0.038 39 45 14 16 5500 5600

dσ``(Q=2.98 GeV)
dQ [nb/GeV] 0.03 0.031 32 34 9.7 11 230 250

dσ``(Q=2.98 GeV,y`
+`−

cms =0)
dQdy``cms

[nb/GeV] 0.009 0.009 5.7 6.5 1.3 1.6 200 210

Table 2. BH differential cross section for fixed dilepton masses integrated (or not) on y``cms. “BW”

denotes Breit-Wheeler and “SL” denotes Starlight.
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] 
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PbPb : LPbPb= 7 x 10
-3

 pb
-1
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-1

, √s=72 GeV

pp : Lpp=2 x 10
4
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-1
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-1
, √s=115 GeV

pPb : LpPb= 160 pb
-1
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-1

, √s=115 GeV
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-1

 yr
-1
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Figure 4. Lij× dLγ γ
dW from protons and from Pb in pp, pPb, PbH and PbPb collisions (see table 1)

as a function of the invariant mass of the photon pair, W , at Ycms=0 of the γ γ pair (or of the to-be

produced dilepton).

since the muons have small transverse momenta. Such a cross section can easily be obtained

by combining two EPA photon fluxes as done to obtain
dLγ γ
dWdY and then by integrating over

Y . One then convolve it with the Breit-Wheeler formula [31]:

σγ γ`` (Q2) =
4πα2

Q2

[(
2+

8m2
`

Q2
− 16m4

`

Q4

)
ln
Q+

√
Q2 − 4m2

`

2m`
−
√

1− 4m2
`

Q2

(
1+

4m2
`

Q2

)]
. (3.1)

We have checked that we obtained the same result as Starlight for dimuon produc-

tion, for instance for Q = (2, 2.98) GeV for pp and pPb collisions at
√
sNN = 115 GeV, as

well as for Pbp and PbPb collisions at
√
sNN = 72 GeV, up to the uncertainty attached to

the value taken for the nucleus radius, see the first and third rows of results on table 2.

9The reason why we took W = mηc = 2.98 GeV for this example will become clear in the next section.
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Figure 5.
dLγ γ
dWdY

∣∣∣
W=mηc

(and
dσηc
dY ) as a function of the rapidity, in the hadron-hadron cms (lower

x-axis) and in the laboratory frame (upper x-axis).9

One readily obtains the rapidity dependence of the differential cross section, by simply

using
dLγ γ
dWdY

∣∣
W=Q,Y=y``cms

. We already discussed it on figure 5. The γ γ luminosity at a fixed

cms rapidity of the photon pair, Ycms (or equivalently y``cms), is plotted as a function of W

on figure 4 namely at Ycms = 0 for pp, pPb, Pbp and PbPb collisions; it is multiplied by the

corresponding hadron yearly luminosity denoted Lij . Just as for the rapidity integrated

results, both methods agree for y``cms = 0 as it should be, see the second and fourth rows of

results on table 2.

Knowing
dLγ γ
dWdY , one can also obtain the production cross section for a scalar or tensor

quarkonium, Q provided that we know its partial width into a photon pair, Γγ γ :

dσhAhBQ
dYQ

γ γ→Q
= 8π2(2JQ + 1)

Γγ γ
2M2
Q

dLγ γ
dWdY

∣∣
W=MQ,Y=YQ

. (3.2)

From Γηcγ γ = 5.1 × 10−6 GeV and Γχc2γ γ = 5.3 × 10−7 GeV [32], one gets σηcγ γ = 8.8 nb and

σχc2γ γ = 3.2 nb. The rapidity dependence of this cross section is thus up to a constant factor

that of the joint flux at the corresponding10 W (see figure 5). In particular, for pp (pPb)

collisions at
√
sNN = 115 GeV, the ηc cross sections at y = 0 in the hadron-hadron cms are

0.5 pb (0.4 nb) and for Pbp (PbPb) collisions at
√
sNN = 72 GeV, 67 pb (11 nb). With

the yearly luminosities in table 1, one can respectively expect 104, 1.8× 106, 74 and 80 ηc
per year.

At this point, two remarks are in order. First, we stress that although, mηc is above

the energy “cut-off” showed in table 1 for the systems pPb, Pbp and PbPb, the rates are

nonzero using realistic photon fluxes. Second, our result for pp collisions is 2-3 times below

10Hence our choice of W = mηc = 2.98 GeV in figure 4.
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lepton plane lepton plane

hadron planehadron plane

photon-hadron cms
dilepton rest frame (cms)

θ

p

p'

q

k l

l'

q
T

p'

l
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φ φ

Figure 6. Definition of the kinematical variables in γ(k)h(p) → `+(l′)`−(l)p(p′) in particular the

angles θ and φ attached to the `−.

that recently derived by Goncalves and Sauter [33]. We attribute this difference to the fact

that they used the Drees and Zeppenfeld photon flux, which is precisely twice larger than

that derived with b > 2Rp at xγ '
√
s/mηc ' 0.025 (see figure 1). As we noted above, the

former should only strictly be used for ep collisions. Such a difference only arises at ‘low’

hadron-hadron cms energies which correspond to xγ on the order of 10−2 and above. A

measurement of the ηc or χc2 cross section in exclusive pp collisions at AFTER@LHC is

therefore ideal to tell which choice is the most appropriate.

3.2 Production at nonzero transverse momenta

If we prefer to look at dileptons produced in reactions characterised by a momentum

transfer squared of one emitter, |t|, up to 1 GeV2, which results in a measurable transverse

momentum, qT , of the dilepton, it may be more suitable to treat the photon emission

using a nucleon form factor.11 By construction, the off-shellness of this photon cannot be

neglected. This amounts to consider the process photoproduction, γp→ `+`−p, where the

beam12 photon flux is still treated in the EPA approximation and the effect of the form

factor embedded in the photoproduction cross section.

Following [8], this γh differential cross section for an unpolarised target to be convo-

luted with the beam photon flux (provided that sin θ � m`/Q) reads

dσγhBH
``

dQ2 dq2
T d cos θ dφ

(y``cms) ≈ J
α3
em

2πs2
γh

1

−t
1 + cos2 θ

sin2 θ
(3.3)

×
[(
F 2

1 (t)− t

4M2
N

F 2
2 (t)

)
2(sγh −M2

N )2

Q4

q2
T

−t + (F1(t) + F2(t))2

]∣∣∣∣
t=t(y``cms,q

2
T ,Q,ε)

,

where F1,2 are respectively the Dirac and Pauli form factors evaluated at t = (p − p′)2 =

(k − q)2, the quantity ε and procedure to obtain t(y``cms, q
2
T , Q, ε) and J (the Jacobian to

change from t to q2
T ) are explained in the appendix A. The θ and φ angles are defined

11In the nuclear case, such a configuration is admittedly much suppressed.
12The term “beam” may be improper in the fixed-target case since this photon can very well be emitted

by a nucleon or nucleus in the target; this is particularly true for pPb collisions.
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as on figure 6. The apparent divergence at θ → 0 is regulated when the lepton mass is

kept, just as in the Breit-Wheeler equation, eq. (3.1), which is logarithmically divergent

for m` → 0. We note that θ — the polar angle of the lepton — which is defined in the

rest frame of the dilepton, can only be approximately related to the (pseudo)-rapidity of

the lepton in the cms frame for y
(``)
cms ' 0 and qT � Q. In such a case, the particular

configuration θ → π/2 corresponds to y`cms ' η`cms ' 0 which falls into the acceptance

of a detector like LHCb and ALICE (with Pb beams). Using eq. (2.9), one then obtains

dσhhBH
`` /(dQ2 dq2

T d cos θ dφ dy``cms).

4 Timelike Compton scattering or exclusive photoproduction of a dilep-

ton

The process of the lepton-pair production in ultraperipheral collisions may also be used to

investigate hadron structure in terms of GPDs through the measurement of the contribution

of the TCS process, figure 3b, to the cross section. Although the BH amplitude squared

is much larger than the TCS one, it is possible to study the interference term between

TCS and BH processes, which may be projected out through the analysis of the angular

distribution of the produced leptons [8] and which depends on the GPDs. The interference

term of the differential cross section is given by:

dσγh INT
``

dQ2 dt d cos θ dφ
≈ − α3

em

4πs2
γh

√
t0 − t
−tQ

√
1− η2

η

(
cosφ

1 + cos2 θ

sin θ

)
(4.1)

× Re

[
F1(t)H(η, t)− η(F1(t) + F2(t)) H̃(η, t)− t

4M2
F2(t) E(η, t)

]
,

where we have neglected lepton mass and assumed that sγh, Q
2 � t,M2

N . The variable η

called skewedness is given by:

η =
Q2

2sγh −Q2
, (4.2)

and t0 is maximal value of squared momentum transfer t reached at qT = 0, and is equal

t0 = −4M2 η2

1−η2 up to corrections in 1/Q2. The functionsH(η, t), H̃(η, t) and E(η, t) are the

well known Compton form factors. These involve the GPD H, H̃ and E (as defined in [17])

respectively through a convolution with the hard-scattering kernels T q,g{H,H̃,E} computed at

a given order in αs:

{H, H̃, E}(η, t) = (4.3)∫ 1

−1
dx
[∑

q

T q{H,H̃,E}(x, η) {Hq, H̃q, Eq}(x, η, t) + T g{H,H̃,E}(x, η){Hg, H̃g, Eg}(x, η, t)
]
.

The expression for the kernels T{H,H̃,E} at LO are given in the appendix B. The Next-to-

Leading Order (NLO) hard-scattering kernel,13 which we use here, can be found in [10, 34].

13As done in [10], we set µR = µF = Q in the hard-scattering kernel and, as for other similar phenomeno-

logical analyses, the GPDs are not evolved. In the case of the G-MSTW model, the GPDs can be made µF
dependent through the evolution of the input PDFs.
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Figure 7. (left) dσINT

dy (δθ)/dσINT

dy (δθ = π/2), (right) dσINT

dy /dσBH

dy (δθ) for the model KG for Q2 =

4 GeV2, t = −0.1 GeV2, and φ = 0 for proton run on Pb, integrated over θ ∈ (π/4, 3π/4) and for

y = 0 at NLO.

To advocate that the TCS measurement is feasible in the AFTER kinematics, we

present phenomenological predictions making use of two GPD models through double dis-

tributions [15]: the first is based on the Goloskokov-Kroll (GK) model based on fits of

meson electroproduction data and the second is a model using MSTW8 parton distribu-

tion function with a simple factorised t dependence, referred to as G-MSTW (for a detailed

description see [11]).

Comparing the φ dependence in eq. (3.3) to that in eq. (4.1), one directly sees that

one can project out the interference term and eliminate the unwanted BH background by

integrating the differential cross section over φ with the weight cosφ. To avoid the limit

θ → 0 where the BH signal gets very large, one can integrate over θ symmetrically around

π/2 up to a value which depends on the size of the interference. Varying the limits of

integration in θ according to

θ ∈
(
π − δθ

2
,
π + δθ

2

)
, (4.4)

results in the change of the strength of the interference BH-TCS with respect to the BH

cross section shown on figure 7. On the left panel, we show the ratio of the integral of the

interference BH-TCS for a given δθ normalised to that for δθ = π/2. We see that for δθ

close to π the ratio of the integrals of the interference stops increasing. In any case, in this

limit, as we present on the right panel, the ratio of the integral of the interference term

to the BH one gets very small because the BH cross section gets large.14 In other words,

there is no specific reason to take δθ much larger than π/2; below this value the magnitude

of the interference term is close to 10 % of the BH term.

One can then combine the γh cross section with the photon flux as a function of the

dilepton rapidity at a fixed t to get the interference part of 5-fold hadron-hadron differential

cross section. Defining the integration region as∫
Ω
d5F ≡

∫ 3π/4

π/4
dθ

∫ 2π

0
dφ

∫ 0

−2.5
dy

∫ 0.25

0
dq2
T

∫ 3

1.5
dQ, (4.5)

14In one neglects the lepton mass, it even diverges.

– 14 –



J
H
E
P
0
9
(
2
0
1
5
)
0
8
7

the BH cross section from a 7 TeV proton beam on a Pb target is

σpPb
BH =

∫
Ω
d5F

dσBH

dQdq2
Tdydθdφ

= 1940 pb, (4.6)

which, for a luminosity of 0.16 fb−1yr −1, gives about 3 · 105 events per year. In the case

of a H target, one has

σpH
BH =

∫
Ω
d5F

dσBH

dQdq2
Tdydθdφ

= 7.1 pb, (4.7)

which, for a luminosity = 20 fb−1 yr−1, gives 1.4 · 105 events per year for a 100 cm liquid-

hydrogen target. Finally, for Pb on H, one has

σPbH
BH =

∫
Ω
d5F

dσBH

dQdq2
Tdydθdφ

= 5500 pb, (4.8)

which, for a luminosity = 11 nb−1 yr−1, gives 6 · 103 events per year for a 100 cm liquid-

hydrogen target. As aforementioned, we do not consider the case where the nucleus is

emitter with a |t| of a few hundred MeV2 which should be treated with nucleus form factors

and nuclear GPDs. With a magnitude of 10 % for the interference term, the azimuthal

modulation should be observable in the 3 cases.

Even in the last case of Pb beam on the H target, where we only expect 6000 events,

the interference effect with its azimuthal modulation should be visible on top of the pure

BH process. Assuming the same characteristics for muon detection as for the LHCb detec-

tor [37], one can proceed along the lines of [35] to evaluate the efficiency and the acceptance

which could further reduce the 6000 events. In terms of single muon efficiency, one can take

97% as for the lowest pT muons studied in [36]. As regards the acceptance, one can adopt

the same muon pT cut as in the exclusive J/ψ studies, that is pT,µ > 400 MeV. It follows

that, for the integration region Ω considered above, the acceptance is on the order of 80%.15

Overall, one can thus reasonnably expect 4500 out of the 6000 events to be detected.

On the figure 8, we show the magnitude of the 3 terms as function of the rapidity as

well as the relative magnitude of the interference term with respect to the BH one for three

cases of collisions (a) proton beam on a Pb target, (b) Pb beam on a H target, (c) proton

beam on a H target. On the left panels, we present the rapidity dependence of the BH,

TCS and BH-TCS terms of differential cross sections dσ
dydQ2dtdφ

evaluated at Q2 = 4 GeV2,

t = −0.35 GeV2 and φ = 0 and integrated over θ ∈ (π/4, 3π/4) for the GK model. On the

right panels, we show the ratio of the interference signal to the BH for the GK and G-MSTW

model. We see that for all cases the signal to the background ratio is around 10-15%.

The simplest way to extract the size of the cos φ azimuthal modulation, B, “defined”

such that dσ/dφ = A+B cosφ, would be to divide the sample in two bins in φ ([−π/2, π/2]

and [π/2, 3π/2]) and to measure the relative difference of the yield in these bins. The

statistical relative uncertainty on B is then trivially δB/B = π/2 × A/B × 1/
√
Nevents.

15This number is higher than the acceptance of J/ψ in the same conditions because the fiducial region Ω

contains a cut on θ which selects out muons at rather large angles which therefore pass the pT cut more easily.

– 15 –



J
H
E
P
0
9
(
2
0
1
5
)
0
8
7

✲ ✲   


















s





❢








❅




➄






❉

    ❍ �❂ 




❂   ❂✁

▲

✂





✲  ✲   















➄




     ❍ ❢❂ 

❂   ❂�

▲





(a) 7 TeV p on Pb target.

✲  ✲   














     ❍ ❢❂ 


❂   ❂�
▲

✁







s





✂








❅




➄






❉

✲  ✲   








y

S







      ❢❂ Q❂   ❂�





(b) 2.76 TeV Pb on H target.
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(c) 7 TeV p on H target.

Figure 8. (Left) Differential cross section dσ
dydtdφdQ2 for the KG model for Q2 = 4 GeV2, t =

−0.35 GeV2 and φ = 0 integrated over θ ∈ (π/4, 3π/4). Dotted line: B-H, dashed line: interference

term, solid line: TCS. (Right) Ratio of the interference to BH differential cross section dσ
dydtdφdQ2

calculated for Q2 = 4 GeV2, t = −0.35 GeV2 and φ = 0 for the GK (dashed) and G-MSTW (solid)

models at NLO.From (a) to (c) pPb, PbH and pH cases.
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With B/A on the order of 10% as illustrated on the figure 8 and 4500 recorded events in

the less favourable case, the coefficient of the modulation (i.e. the effect of the interference

which is connected to the GPDs) can be measured with a relative precision of 25 %.

5 Exclusive lepton-pair hadroproduction via odderon-pomeron fusion

Throughout this work, we have based our discussion on the idea that the (theoretical and

experimental) requirements for selecting UPC was de facto preventing hadronic interactions

to take place or at least that photon-induced processes would be dominant. This is a rather

safe assumption in nucleus-nucleus collisions where the coherent photon fluxes are enhanced

by a factor Z2 for each nucleus, whereas double-pomeron-induced reactions only scale like

A1/3. It also seems to be a reasonable assumption for pA collisions that electromagnetic

interactions dominate.

In the case of pp collisions, the Z2 factor is absent and the UPC requirements are also

very similar, if not identical, in practice, to that for an exclusive or diffractive process.

For instance, in order to impose b > 1/Rp, one can impose that the proton expected to

emit the photon is only deflected by a ∆pT of say maximum 100 MeV, which corresponds

to b & 2 fm. Such a requirement however may not be sufficient to prevent any scattering

by the exchange of a pomeron or an odderon, in more general terms a colourless QCD

scattering as opposed to a QED scattering via one (or two) photon exchange.

The production of a lepton pair in pp UPC via at least one photon exchange, which we

discussed so far, should thus be confronted to a potentially competing process leading to

the same final state, in which the virtual photon decaying into lepton pair is produced in an

Odderon-Pomeron (OP) fusion as depicted in figure 3d. In the case of the photon-pomeron

(γP) process depicted on figure 3c, such a scattering should in principle be encompassed

in the GPD description at high energies and it is not expected to qualitatively change our

predictions. It is rather a matter of a different modelling of the GPD.

In contrast, the production from an OP fusion cannot be recast into any kind of photon-

induced contribution. In the case of exclusive vector-meson production in pp collisions (see

below), the OP fusion can directly compete with the γP contribution. Strangely enough,

to the best of our knowledge, it has never considered before in the context of the exclusive

production of a dilepton pair. A reason why nobody looked at it previously is its likely

suppression with respect to the dominant BH contribution. However, in the context of

GPD studies, one in any case needs to study sub-dominant contributions giving rise to

azimuthal modulations, as the TCS QCD contribution. It thus makes perfect sense to

compare the TCS and OP fusion contributions.

Yet, as we will briefly discuss below, the evaluation of the latter is a non-trivial task —

equivalent to another one-loop computations — and which necessarily involves unknown

nonperturbative unintegrated parton distributions, the so-called proton impact factors,

which makes the predictions essentially model-dependent and probably precludes one to

draw any definite quantitative conclusions.
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ΦO

Φℓ+ℓ−

Figure 9. The lowest order diagram contributing to the non-factorised OP fusion for lepton-pair

production. The gluons with the momenta l⊥1, l⊥2 carry the colour indices λ1, λ2, respectively

and those with the momenta k⊥1, k⊥2, k⊥3 carry the colour indices κ1, κ2, κ3.

Indeed, the natural — and most tractable — framework to study OP fusion at high

energies is the kT -factorisation (see e.g. [40]) where the scattering amplitude, with the

momenta defined as depicted on figure 9, reads:

MOP =−is 2 · 3
2! 3!

4

(2π)8

∫
d2l⊥1

l2⊥1

d2l⊥2

l2⊥2

δ2(l⊥1+l⊥2−l⊥)
d2k⊥1

k2⊥1

d2k⊥2

k2⊥2

d2k⊥3

k2⊥3

δ2(k⊥1+k⊥2+k⊥3−k⊥)

×δ2(k⊥3 + l⊥1) k2⊥3 δ
λ1κ3 · Φλ1λ2

P (l⊥1, l⊥2) · Φκ1κ2κ3
O (k⊥1, k⊥2, k⊥3) · Φλ2κ1κ2

`+ `− (l⊥2, k⊥1, k⊥2) , (5.1)

where Φλ1λ2
P (l⊥1, l⊥2) denotes the impact factor of the proton, scattered via an (unfac-

torised) pomeron exchange and Φκ1κ2κ3
O (k⊥1, k⊥2, k⊥3) denotes the impact factor of the

proton, scattered via an (unfactorised) odderon exchange. Φλ2κ1κ2
`+ `− (l⊥2, k⊥1, k⊥2) is the

effective production vertex of the `+ `− pair. It results from the fusion of a gluon with the

transverse momentum and the colour index (l⊥2, λ2) from the pomeron with two gluons

(k⊥1, κ1) and (k⊥2, κ2) of the odderon. The factor 2·3
2! 3! = 1

2 is a combinatorial factor and
1
2! as well as 1

3! correct the over-counting of diagrams introduced by the factorisation in

the scattering amplitudes of the impact factor from the pomeron and odderon exchanges,

respectively. The factor 2 · 3 = 6 accounts for all the possibilities to build the spectator

gluon from the momenta l⊥i and k⊥j . Finally, the factor δ2(k⊥3 + l⊥1) k2
⊥3 δ

λ1κ3 comes

from an artificial vertex (denoted by the cross in figure 9) introduced to keep the notations

of the momenta l⊥i and k⊥j as symmetric as possible and which connects the spectator

gluons (l⊥1, λ1) and (k⊥3, κ3).

The effective vertex Φλ2κ1κ2
`+ `− (l⊥2, k⊥1, k⊥2) can be computed as the DIS impact fac-

tor, γ? → γ?, or the hard scattering for γ? g → γ g within the kT−factorisation ap-

proach [38, 39]. It effectively amounts to a non-trivial one-loop computation. Indeed,

it can be rewritten as the integration, over the Sudakov variable16 βk1 , of the S-matrix

element of the transition g(k⊥1)g(k⊥2)g(l⊥2)→ `+ `− with off-shell gluons,17

Φλ2κ1κ2
`+ `− (l⊥2, k⊥1, k⊥2) =

∫
dβk1Sλ2κ1κ2µ′2ν

′
1ν
′
2

(g(k⊥1)g(k⊥2)g(l⊥2)→ `+ `−)
p
µ′2
2 p

ν′1
1 p

ν′2
1

s
. (5.2)

16kµi ' βki p
µ
1 + kµ⊥ i and lµi ' βli p

µ
2 + lµ⊥ i with i = 1, 2, 3.

17With their longitudinal polarisation vectors expressed in terms of the incoming proton momenta.
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=
+ . . .

k⊥1

Φℓ+ℓ−

k⊥2

l⊥2

Figure 10. The hard vertex for the lepton-pair production in the non-factorised OP fusion. The

sum + . . . denotes the remaining 3 cut diagrams contributing at the lowest order in αs. The dotted

line denotes the s−channel cut expected to give the dominant contribution in the small-x regime.

This computation is not straightforward18 and beyond the scope of this discussion, but

one can emphasise some generic properties of the amplitude which are of specific relevance.

Although the impact factors ΦP and ΦO are essentially non-perturbative objects which have

to be modelled, we know that they should be real functions of the external momenta. In the

kinematical domain of small-x (high energies), Φλ2κ1κ2
`+ `− (l⊥2, k⊥1, k⊥2) develops a dominant

imaginary part determined by the Cutkosky cut (the dashed line on figure 10). One may

therefore think that the vertex is essentially a real function of the gluon momenta as in the

case of DIS or the electroproduction of charmonium [40]. Yet, due to the positive virtuality

of the photon (Q2 > 0), the quark propagator between γ? and the gluon with momentum

k⊥2 on figure 10 can also develop an additional absorptive part. As a consequence, we

have no reason to exclude that the present effective vertex is in fact a complex function of

the gluon momenta. As such, it can also generate, through its interference with the BH

contribution, azimuthal asymmetries. If the amplitude of the OP fusion contribution had

been purely real, it would have had de facto no impact on the extraction of the GPD in

the pp case. Unfortunately, only a dedicated study, well beyond the scope of this article,

could tell more on the impact of the OP fusion process.

Yet, further statements can be made, still on the qualitative level. In particular, the

evaluation of the OP fusion contribution to the central exclusive hadroproduction of a J/ψ

studied in [40] is similar and also involves the nonperturbative impact factors ΦP and ΦO.

Given that the quantum numbers of a J/ψ and a photon are the same, one can expect

a similar qualitative behaviour of the scattering amplitudes in both cases. In the J/ψ

case, the production can also result from the γP fusion — that is the one expected from

photon-induced UPC which could also be expressed in terms of gluon GPDs. In fact, it

was found in [40] that the cross sections for both processes are of similar magnitude at

the Tevatron.19 Both the OP and γP production mechanisms were however also found to

be characterised by a different J/ψ transverse-momentum (t) dependence. In particular,

if one imposes that the final state protons have |t| > 0.25 GeV2, the OP contribution can

be enhanced ten times with respect to the photon induced one (see table 1 of [40]).

18It involves for instance a double integral on Feynman variables.
19Note that owing to the increase of the gap survival probability for lower energies, it is reasonable to

believe that, at AFTER@LHC energies, i.e. around
√
sNN = 115 GeV, exclusive J/ψ production in pp

collisions would be dominated by OP fusion.
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In the case of the lepton-pair production in the conditions of UPC, we expect a similar

behaviour. Provided that the difference in the vertex function Φ`+ `− does not alter the

dominant momentum-transfer region in its convolution with the impact factors, the t de-

pendence of the OP fusion contribution should also follow from that of the impact factors,

ΦP and ΦO, which are common to both J/ψ and γ? production. Imposing a cut on t may

thus isolate the OP fusion contribution from the photon induced one and, in a sense, pro-

vide an unexpected path to the Odderon discovery via its interference with the pure QED

BH process in the same way as the TCS signal would be extracted in the region of low |t|.
As recently discussed in [33], the odderon could also contribute to the ηc production.

Due to its different quantum numbers with respect to the J/ψ, the ηc can be produced by

photon-odderon (γO) fusion. In the pp case, the cross section, which we obtained from γ γ

fusion, is slightly larger than that from γO fusion as obtained in [33], both on the order of

a picobarn or less. In the pPb and Pbp cases, the photon can be radiated by the ion and

the odderon by the proton. As we noted, although mηc is in principle above the so-called

energy “cut-off”, the photon flux is not zero, even when accounting from the minimum

impact parameter for a proton-lead UPC. In the Pbp case, the γO induced cross section

ranges from 30 up to 360 pb whereas the γ γ induced one is on the order of 440 pb. As

for the dilepton case, a study of the transverse-momentum dependence should be able to

discriminate between both processes.

6 Conclusion

We have theoretically investigated the feasibility of accessing the lepton-pair production

in ultraperipheral collisions at the proposed fixed-target experiment AFTER@LHC, which

takes advantages of the multi-TeV proton and ion beams of the LHC. To this aim, we

have first estimated the magnitude of the cross section for the lepton-pair production from

the fusion of two quasi-real photons emitted by the quasi-grazing hadrons. This purely

electromagnetic BH process can serve as an important tool for the determination of the lu-

minosities with nucleon or ion beams but it can also be used for an experimental verification

of the validity of the effective-photon approximation usually applied to estimate the flux of

quasi-real photons emitted by these relativistically moving charges. The lepton-pair pro-

duction also gives access to the proton GPDs via the TCS process. Another way to probe

the photon flux is to measure ηc production for which the production rate in pp collisions

at AFTER@LHC does depend on the minimal impact parameter used for the UPC.

The predictions which we obtained for the cross section for BH — using specific cuts

relevant for the GPD extraction — are on the order of few thousand of pb for the pPb and

Pbp cases and a slightly less than 10 pb for the pp case and we confirm the dominance of

BH over TCS. This dominance can partially be overcome by studying of the interference

— also sensitive on the GPDs — between TCS and BH which we evaluated at NLO. With

specific cuts on the lepton polar angle, the ratio of this interference over the BH amplitude

squared is on order of 10% with two models of GPDs, i.e. GK and G-MSTW. These are

quite promising values giving hope for the extraction of this interference by means of the

analysis of the azimuthal distribution of the produced leptons with, in the less favourable

– 20 –



J
H
E
P
0
9
(
2
0
1
5
)
0
8
7

case, a relative precision of 25%. Studying TCS in ultraperipheral collisions at a fixed-

target experiment can also give us opportunity to study target polarization asymmetries,

which are an useful tool to extract further information on GPDs [41].

We have also derived cross sections for ηc production by photon-pair fusion, which

happens, in particular in this energy range, to be sensitive on the method used to compute

the photon flux in the pp case. We found out that 104 ηc can be produced per year in

UPCs with AFTER@LHC.

Finally, we discussed possible competing hadronic processes via pomeron or odderon

exchanges which could interestingly be separated out by a careful analysis of the transverse-

momentum dependence of the produced particles. To our knowledge, this is the first time

that such a pomeron-odderon-fusion contribution to exclusive dilepton production has been

discussed, even qualitatively.

In conclusion, AFTER@LHC offers a realistic possibility to study lepton-pair produc-

tion in ultraperipheral collisions which opens the path to investigate features of the partonic

structure of hadrons which are complementary to those studied with lepton beams. The

use of hadron beams may, for instance, offer the opportunity study to odderon-sensitive

reactions.
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A Kinematics

We denote the momenta of incoming nucleons (in the nucleon-nucleon cms) as:

pA =

√
s

2
(1, 0, 0, α),

pB =

√
s

2
(1, 0, 0,−α), (A.1)

where the A is a nucleon from the beam, B is a nucleon from target and α =
√

1− 4M2

s .

The Weizsäcker - Williams photon is emitted from a beam (ε = −1) or a target nucleon

(ε = +1), and its momentum is given by:

k = xγ

√
s

2
(1, 0, 0,−ε). (A.2)

Momentum of outgoing lepton pair (or outgoing virtual photon decaying into heavy lepton

pair) reads:

q = (q0, qT , qz) ≡ (mT cosh y``, qT ,mT sinh y``), (A.3)
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where mT =
√
qT 2 +Q2 and y`` is the lepton-pair rapidity which can be expressed as

y`` =
1

2
ε log

(
(Q2 − t)(α+ 1)

Q2(α− 1)− t(α− 1− 2xγ) + sx2
γ(α+ 1)

)
, (A.4)

where:

t ≡ (k − q)2 = Q2 −mT

√
sxγe

εy`` . (A.5)

Inverting eq. (A.4), we can express xγ as a function of y``:

xγ(y``, t, Q, ε) =
−2t+

√
4t2 − 4s(Q2 − t)(α+ 1)[(α− 1)− (α+ 1)e−2εy`` ]

2s(α+ 1)
. (A.6)

or combining eq. (A.5) with eq. (A.6) we easily get:

t = t(y``, q2
T , Q, ε), (A.7)

xγ = xγ(y``, q2
T , Q, ε), (A.8)

J =
dt

dq2
T

. (A.9)

B Compton form factors and generalised parton distributions

In this appendix, we give the expressions of the LO hard-scattering kernel Ti appearing in

the expression of the Compton form factor H, H̃ and Ẽ . At Born order, the hard-scattering

kernel associated to the quark GPDs are given by

T qH(x, η) = e2
q

(
1

−η − x− iε −
1

−η + x− iε

)
,

T q
H̃

(x, η) = e2
q

(
1

−η − x− iε +
1

−η + x− iε

)
,

T qE(x, η) = e2
q

(
1

−η − x− iε −
1

−η + x− iε

)
, (B.1)

and those associated to the gluon GPDs are zero. The NLO hard-scattering kernels can

be found in [10, 34].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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