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1 Introduction

With the steadily increasing computing power multivariate methods are nowadays stan-

dard techniques in the experimental analysis. Initially introduced in experimental studies

where the event rates are small and signals are difficult to disentangle from overwhelming

backgrounds, multivariate methods have been proven useful also in a more general con-

text. Among these methods the Matrix Element Method represents a prominent example,
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since it allows a direct comparison of observed event samples with expectations within a

specific theoretical model. As originally introduced in refs. [1, 2] the method is based on

the assumption that the probability to observe a specific event can be calculated using the

corresponding matrix element together with so-called transfer functions which model the

probability for the observation of a given partonic event as a specific (hadronic) event at

the detector level. It has been argued that if all the ingredients in this procedure are known

with optimal accuracy, the event likelihood defined in this way represents an optimal statis-

tical test. The method thus makes maximal use of the information contained in the single

event. Based on this assumption the Matrix Element Method has been used for example to

measure the top-quark mass at the Tevatron (see for example refs. [3–5]). Alternatively the

Matrix Element Method can be used to distinguish different hypotheses like for example

background versus signal hypothesis or SM versus BSM physics hypothesis for a given event

sample (see for example refs. [6, 7]). Let us also mention that the Matrix Element Method

exists today in different flavors like for example the MELA approach as used for example

in refs. [8, 9]. The construction of optimal observables as used for example in refs. [10–12]

may also be seen as a variation of the same theme. So far in most cases the method is

only applied using leading-order (LO) matrix elements. To simplify the application of the

Matrix Element Method the automated calculation of the required event weights has been

studied recently in ref. [13]. Given the recent progress concerning the calculation of NLO

corrections it is natural to include also NLO corrections in the evaluation of the matrix

elements. A first attempt in this direction has been made in ref. [14] where the effect of

QCD radiation has been studied. In refs. [15, 16] the radiation pattern of boosted Higgs

bosons and top quarks is studied and compared with the radiation profile of QCD jets. In

ref. [17] the information from the hard matrix element and a parton shower is used for a

signal versus background discrimination for the signal process Z ′ decaying to boosted top

quarks. In refs. [18–20] the impact of NLO corrections including also the virtual correc-

tions is investigated and a possible extension of the Matrix Element Method beyond the

Born approximation is discussed. A first detailed application has been presented in ref. [21]

where Higgs production with subsequent decay into H → Zγ is investigated. So far the

method presented in refs. [18, 19] is restricted to the production of uncolored objects and

the extension to the production of colored particles like for example top-quark pairs is still

missing. In ref. [20] the extension to include hadronic production of jets is investigated by

means of a longitudinal boost along the beam axis to remove the unbalanced transverse

momentum and map NLO and LO jets.

The extension of the final state phase space encountered in the generalisation of the

Matrix Element Method beyond the Born approximation is an intrinsic problem which

makes the NLO extension non-trivial. Real corrections which appear as additional con-

tribution, when higher order corrections are taken into account, allow for the emission of

an additional parton. In addition to the 2 → n Born kinematics also contributions living

on an n + 1 parton phase space need thus to be considered. Restricting the attention to

jet physics, one may argue that only regions of the extended phase space in which the

additional parton is clustered/merged into a jet contribute to n-jet observables and we end

up again with a 2→ n configuration — now in terms of jets instead of partons. However,
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applying standard jet algorithms, the resulting jets typically do not satisfy the kinematical

constraints of the Born process. In particular, the clustering will in general create a non

vanishing mass for the jets even for massless partons. Also momentum conservation is not

necessarily required by all jet algorithms. It is thus not clear how the contribution from the

real corrections can be unambiguously combined with the virtual corrections which respect

the Born kinematics. Furthermore, the practical calculation of next-to-leading order event

weights — which must take into account virtual as well as real corrections — is non-trivial.

As we shall describe in more detail in the next section, the problem is related to the phase

space integration of real corrections which lead to an n-particle final state after clustering.

Defining event weights for ‘jet-events’ in NLO accuracy thus requires two aspects to be

addressed:

1. In the theoretical predictions a modified clustering may be used which guarantees

momentum conservation and keeps the clustered jets on-shell. More precisely, the

mass of a jet which is formed through a merging of a massless parton with another

parton should be equal to the mass of the radiating parton. Merging two massless

partons should result in a massless jet. It is worth stressing that also for established

jet algorithms, which rely on a 2 → 1 clustering, the jet masses created in the

perturbative calculation have very little to do (in case of massless partons) with

the jet masses observed in the experimentally measured jets in case of ‘light’ jets.1

The latter are mostly related to non-perturbative effects. In that sense, a modified

clustering as proposed here is equally well motivated as what is currently used. In

fact, one may even argue that a clustering fulfilling the above constraints may lead

to a better separation of perturbative and non-perturbative physics.

2. A method needs to be constructed allowing the efficient integration of the regions

in the n + 1-parton phase space contributing to the considered n-jet configuration.

(In principle an inclusive observable may also receive contributions from n + 1 jet

configurations requiring the evaluation of the corresponding weights. In this case the

problem is however very similar to the leading-order situation.)

In this article we illustrate that both aspects can be addressed by using an appropriate

jet clustering which is intimately related to a factorised parameterisation of the n + 1-

parton phase space into an n-particle phase space of the n jets times the phase space

related to the ‘clustered’ (unobserved) parton. The general idea is to extend the typical

2 → 1 clustering to a 3 → 2 clustering as it is well known for example from the dipole

subtraction method [22, 23]. This clustering satisfies momentum conservation as well as

on-shell conditions at the expense of introducing an additional spectator which allows to

guarantee momentum conservation which would be otherwise violated by enforcing the on-

shell condition. Some freedom exists how to choose the additional ‘spectator’. For example,

to minimise the difference to the traditional clustering, one may choose the spectator such

that the momentum reshuffling is minimised. Having chosen the spectator, a recombination

according to the Catani-Seymour phase space factorisation [22, 23] is applied. In this way,

1This statement does not apply to fat jets or highly boosted objects.
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the reduced kinematics appearing in the Catani-Seymour subtraction formalism can be

identified with the final state jets. At the same time, the factorised phase space can be

integrated over the unresolved regions to obtain the contributions from the real corrections

to the event weight. We will give more details in the next section.

It should be noted that using the four mappings given in the Catani-Seymour subtrac-

tion algorithm as clustering prescriptions in the proposed 3 → 2 jet algorithm is sufficient,

to construct appropriate jet algorithms covering most of the relevant collider experiments:

production of at least 2 jets at a lepton collider, deep inelastic scattering and hadronic

production of electroweak final states and/or jets. The respective final states can have

arbitrary masses.

Let us briefly compare the method outlined above with some existing work where

similar ideas have been applied in a different context. For example, the ideas presented

here share some features with ref. [24]. There are however important differences. In ref. [24]

an additional resolution parameter is introduced to define ‘resolved’ partons similar to

what is done in the phase space slicing method [25, 26]. Using the resolved partons in

an intermediate step any physical jet algorithm should in principle be applicable. Care

has to be taken that the two cuts — the artificial one to define resolved partons and

the physical one to define jets within a given jet algorithm — do not interfere. In the

approach described above we work directly with jets defined by the jet algorithm used in

the experimental analysis. In ref. [24] only final state singularities in e+e− annihilation are

considered. Here we include initial state singularities as well. Technically, only one phase

space mapping is required in ref. [24]. As we will see in the next section, in general more

mappings are required and the application of the Catani-Seymour subtraction method is

less obvious. In refs. [27, 28] the implementation of a parton shower based on the Catani-

Seymour subtraction method is studied. Although the aim of this work is rather different,

the parameterisation of the phase space is similar to what is used in this article and many

useful results which we collect in the following can be found also in refs. [27, 28].

In ref. [29] a method to generate the phase space of n+1 massless particles by forward

branching of configurations of n massless particles is presented. This method which is

applied in refs. [18–21] employs two 3→ 2 prescriptions to cluster three massless partons to

two massless jets. The method that we present in this article can be seen as a generalisation

of this approach with two further prescriptions for the clustering and the extension to

massive particles. As a proof of concept, especially for the aforementioned generalisations,

we apply the Matrix Element Method in NLO accuracy to a process with massive colored

particles in the final state.

The article is organised as follows. In section 3 we present the phase space parameter-

isation used in the numerical integration. Roughly speaking the Catani-Seymour mapping

is inverted. In section 4 we validate the approach by various cross checks. As a proof

of concept we illustrate in section 5 the Matrix Element Method including NLO correc-

tions applied to top-quark pair production in e+e− annihilation. We summarise our main

findings in the conclusion in section 6.
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2 Formalism

2.1 Matrix Element Method and event weights at next-to-leading order

The Matrix Element Method tries to make maximal use of the information provided by

an individual event. Instead of considering distributions, calculated for event samples, the

probability of the event in the context of a given theory is investigated. In what follows

we assume that all experimentally available information of the event is collected in the

variable ~x. In the ideal situation that all momenta have been reconstructed, one may think

of ~x as the collection of the observed momenta which we label with J1, . . . , Jn:

~x = (J1, . . . , Jn). (2.1)

However, since some particles may escape detection or are only partially reconstructed, the

experimentally accessible information may be in practice only a subset of this information.

Putting aside for the moment higher order corrections, one may interpret the partonic

cross section calculated for a specific model — for example the Standard Model — as the

probability distribution to observe a partonic event. A model-dependent likelihood, with

model parameters ~Ω, for observing an event ~x is than given schematically by

L(~x | ~Ω) =
1

σ

∫
dy1 . . . dyn

dnσ

dy1 . . . dyn
×W (~x, ~y), (2.2)

where the differential cross section is denoted by dnσ/dy1 . . . dyn and the so-called trans-

fer function W (~x, ~y) describes the probability that a partonic event ~y is measured in the

detector as the event ~x. In principle, the variables collected in ~y may be chosen indepen-

dently from the variables in ~x. Even the dimension of the two vectors does not need to

agree. However, it may prove beneficial to chose the two sets as closely related as possible.

Assuming that the two can be identified, an ideal detector would than correspond to the

situation in which the transfer function is given by a delta function: W (~x, ~y) = δ(~x− ~y).

Roughly speaking, maximising the likelihood with respect to ~Ω for a given event sample

gives an estimator for the model parameter. This is the essence of the so-called Matrix

Element Method (MEM). (More details can be found in refs. [1–3, 5, 7, 13, 30–35].) Since

all the information available in the single measurement is retained, this approach is believed

to make maximal use of the information content of the single event.

While in principle the integration over the transfer functions looks straightforward, in

practice it is not trivial due to the peak structure of the transfer functions. In addition, we

note that the transfer functions need to be determined within the experimental analysis,

which may also represent a non-trivial task. In the following we do not consider this

issue any further since current experimental analyses using the Matrix Element Method

are already used to this type of problem. The focus of this article is the extension of

the MEM beyond the Born approximation. To be specific we assume ~y in the following

to be the collection of final state momenta — which may be obtained in the case of the

real corrections through the merging of collinear or soft partons according to a specific

clustering procedure. To distinguish these momenta from the partonic momenta we call

them jet-momenta in what follows. They may be seen as the perturbative approximation
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of the jets observed in the experiments. (More details will be given in the next subsection.)

The motivation to use the jet-momenta is threefold:

1. Being differential in the jet-momenta all relevant information about the differential

cross section is kept, allowing in a second step also to use a different set of variables.

2. Using the jet momenta, identifying the transfer functions with delta-functions may

provide a reasonable first approximation.

3. Being able to calculate event weights for ‘jet events’ including higher order corrections

is interesting on its own right.

In the rest of this subsection we illustrate the main obstacle in the calculation of event

weights for jet events when higher order corrections are included. To start we consider first

the cross section in Born approximation. Although not useful in practice, we may write

the differential cross section in terms of jet-momenta by introducing delta-functions:

dσ

d4J1 . . . d4Jn
=

1

2s

∫
dRn(pa + pb, p1, . . . , pn)|M(pa, pb, p1, . . . , pn)|2

× δ(J1 − J̃1(p1, . . . , pn)) . . . δ(Jn − J̃n(p1, . . . , pn)), (2.3)

where s denotes the center of mass energy squared, |M|2 is the squared matrix element

and dRn is the Lorentz invariant phase space measure

dRn(P, p1, . . . , pn) = (2π)4δ

(
P −

∑
i

pi

)
n∏
i=1

d4pi
(2π)3

δ+(p2
i −m2

i ), (2.4)

where mi denotes the mass of the i-th parton. The incoming particles with momenta

pa and pb are assumed colorless. In case strongly interacting particles are considered in

the initial state additional convolutions with the parton distribution functions need to be

introduced. The momenta of the final state partons are given by p1, . . . , pn. The functions

J̃i(p1, . . . , pn) describe how the jet momenta are calculated from the parton momenta.

Since in leading-order no recombination is possible, the jet momenta are identified with

the parton momenta:

J̃i(p1, . . . , pn) = pi. (2.5)

Obviously, it is than straightforward to evaluate the delta-functions and obtain the differen-

tial cross section in terms of the jet-momenta. Including next-to-leading order corrections,

we need to consider the contribution from virtual corrections as well as real corrections.

Ignoring for the moment the fact that both contributions are individually divergent due to

soft and collinear singularities, we may apply the same argument as above to calculate the

virtual corrections to the differential cross section. For the real corrections, however, the

situation becomes more complicated. If we ask for precisely n jets in the final state, we

need to integrate over the regions of the n+ 1 parton phase space in which n+ 1 partons

are clustered to n jets. More precisely we need to evaluate integrals of the form∫
dRn+1(pa + pb, p1, . . . , pn+1)|M(pa, pb, p1, . . . , pn+1)|2

× δ(J1 − J̃1(p1, . . . , pn+1)) . . . δ(Jn − J̃n(p1, . . . , pn+1))Θn-jet (2.6)

– 6 –
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where the functions J̃n encode now how the n + 1 partons are clustered to n jets and

Θn-jet restricts the integration to the n jet region. (We note that the inclusion of the

n + 1 jet region is straightforward since no clustering occurs.) The functions J̃n depend

on the phase space region through the recombination procedure since in different phase

space regions different partons are merged to form a jet. Evidently, the delta functions

cannot be integrated numerically and an analytic approach is required. This is one facet

of the problem we address in the next subsection. There is, however, a further problem:

using the standard recombination procedure, which is often simply the sum of the four

momenta of the merged objects, we obtain in general massive jets even in case that we

started with massless objects. As mentioned in the introduction it is thus a priori not

clear how the contribution of the real corrections can be combined point-wise with the

virtual corrections where the jets may have different masses. This is, however, required to

define an event-weight with NLO accuracy. In the next section we will show how the two

issues are connected and can be addressed by a modification of the clustering prescription.

In particular, we show how — by using a modified recombination procedure — the ‘real’

phase space can be factorised into an n jet phase space and a remainder with the property

that the n jet phase space preserves the Born kinematics. As long as the transfer function

is not approximated by a δ-function one could in principle relax the requirement to map

the unresolved regions of the real corrections onto the Born kinematics, since eq. (2.2)

may be calculated for an arbitrary set of partonic variables used to describe virtual or real

corrections. However, using the aforementioned identification of the phase space for real

and virtual corrections allows to define point wise event weights in NLO accuracy. It is then

straightforward to generalise the Matrix Element Method to NLO: the set of ~y variables in

eq. (2.2) are just reinterpreted as describing ‘theory jets’ as introduced before. No further

extension of eq. (2.2) is required. Note that this approach is meant to be applied in fixed

order: parton shower corrections which partially resum higher order corrections would lead

to a double counting if naively included in this approach.

2.2 A modified recombination prescription and phase space factorisation

Using the resolution yij to define the jet function FnJ1,...,Jn
(p1, . . . , pn+1) we may write for

the n-parton final state

FnJ1,...,Jn(p1, . . . , pn) =
∏
i 6=j

Θ(yij(p1, . . . , pn)− ycut). (2.7)

The resolution depends on the final state objects: partons in case of the perturbative

calculation and hadrons in case of the experimental analysis. ycut defines a preset value for

the jet resolution. The momenta p1, . . . , pn refer to the parton momenta, while J1, . . . , Jn
refer to the jet momenta. We have included them in the definition of the jet function since

every jet algorithm includes in addition to the resolution also a prescription how to define

the momenta of a jet in case it is formed by the merging of two finale state objects. In

leading-order the jet momenta are identified with the parton momenta, since no merging

is possible. In NLO we also need the jet function for the case that n + 1 partons form n

jets. Since for soft and collinear configurations the jet function Fn+1
J1,...,Jn

needs to reproduce

– 7 –
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FnJ1,...,Jn
to ensure the cancellation of soft and collinear divergencies, the jet function may

be written as

Fn+1
J1,...,Jn

(p1, . . . , pn+1) =
∑
i 6=j

Θ(ycut − yij(p1, . . . , pn+1))FnJ1,...,Jn(J1, . . . , Jn) (2.8)

with

Θ(ycut − yij(p1, . . . , pn+1)) = 1 (2.9)

for soft or collinear configurations. (For the moment we ignore initial state singularities. As

we shall see the extension to include them as well is straightforward.) The step functions

assure that a recombination of two partons into one jet occurs. For each possible combina-

tion i, j with yij < ycut the momenta Ji are obtained through the respective recombination

procedure from the original momenta pi. As mentioned before the mapping should respect

momentum conservation and keep the recombined particle on the respective mass-shell

in the sense defined above. This can be achieved by using the mapping introduced in

the Catani-Seymour subtraction method. Depending on the unresolved partons and the

chosen spectator four different mappings are given in refs. [22, 23]. For each unresolved

configuration we may choose for example the combination with the smallest momentum

transfer to the spectator parton. More general we may define functions

Θk(p1, . . . , pn+1), k = 1, . . . , n+ 1 (2.10)

with the requirement that ∑
k

Θk = 1 (2.11)

to select a specific mapping. For the numerical phase space integration using Monte Carlo

methods it might be useful to use smooth functions Θk instead of step functions.

Introducing
∑

k Θk = 1 in eq. (2.8) we get

Fn+1
J1,...,Jn

(p1, . . . , pn+1) =
∑

i 6=j,k 6=i,j
Θ(ycut − yij(p1, . . . , pn+1))ΘkF

n
J1,...,Jn(J1, . . . , Jn) (2.12)

For the jet cross section the contribution from the real corrections reads

dσ =
1

2s

∑
i 6=j,k 6=i,j

Θ(ycut − yij(p1, . . . , pn+1))ΘkF
n
J1,...,Jn(J1, . . . , Jn)

× |Mn+1|2dRn+1(p1, . . . , pn+1), (2.13)

with the phase space measure as defined in eq. (2.4). In what follows we consider the

functions Θk as part of the jet algorithm. The role of the Θk is to select in each phase

space region where partons/jets are merged the appropriate clustering. Since in each region

Θk selects a mapping (p1, . . . , pn+1)→ (J1, . . . , Jn) we may change the integration variables

accordingly using the respective Catani-Seymour parameterisation of the phase space:

dσ =
1

2s

∑
i 6=j,k 6=i,j

Θ(ycut − yij(p1, . . . , pn+1))ΘkF
n
J1,...,Jn(J1, . . . , Jn)

× |Mn+1|2dRn(J1, . . . , Jn)dRij,k (2.14)

– 8 –
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where dRij,k denotes the respective phase space measure introduced in refs. [22, 23]. Note

that p1, . . . , pn+1 appearing in the jet function and the matrix elements should be expressed

in terms of the the momenta J1, . . . , Jn and the integration variables used in dRij,k. Using

the factorised phase space it is straightforward to calculate the contribution of the real

corrections to the event weight in NLO accuracy:

1

2s

∑
i 6=j,k 6=i,j

Θ(ycut − yij(p1, . . . , pn+1))Θk(p1, . . . , pn+1)|Mn+1|2dRij,k. (2.15)

In the integration the momenta p1, . . . , pn+1 are determined from the jet momenta

J1, . . . , Jn and the variables used in dRij,k. The inversion of the mapping (p1, . . . , pn+1)→
(J1 . . . , Jn,Φ) where Φ denotes the collection of variables used in the (unresolved) phase

space measure dRij,k is discussed in section 3.

We have ignored so far that the phase space integration is in general divergent due

to soft and collinear singularities. Since the Catani-Seymour phase space factorisation is

valid in d dimension it is straightforward to regularise the divergencies within dimensional

regularisation. Conceptually the easiest way to deal with the singularities is to apply a

phase space slicing [25, 26]. In the numerical integration the integration over the unresolved

parton is cut-off to avoid the collinear and soft configurations. In the singular regions,

soft and collinear factorisation can be used to simplify the matrix elements such that

the integration can be done analytically. The singularities obtained in this way are then

combined with the virtual corrections.

As far as the application of the Catani-Seymour subtraction method is concerned the

situation is more involved: to allow the combination of the (integrated) subtraction term

with the virtual corrections the jet algorithm or in general the observable is evaluated for

the reduced kinematics in the Catani-Seymour formalism. The term which is added (and

subtracted) thus reads:

1

2s

∑
i 6=j,k 6=i,j

FnJ1,...,Jn(J̃1, . . . , J̃n)Dij,kdRn+1(p1, . . . , pn+1) (2.16)

where Dij,k denote the dipoles defined in the Catani-Seymour subtraction method. Note

that the mapping to obtain the jet momenta J̃i from the parton momenta pi is encoded

in the dipole. We are not free to chose the mapping in this case as this would result in

a mismatch with the contribution integrated analytically and combined with the virtual

corrections. The contribution from the subtracted dipoles can thus not be combined point

wise with the real corrections calculated using eq. (2.15). In ref. [20] a similar conclusion re-

garding the application of Catani-Seymour dipole subtraction within that method is drawn.

So far we have assumed only final state singularities. The above approach can be easily

extended to initial state singularities. The jet function needs to be extended to cover also

initial state singularities. Using the different mappings as introduced in refs. [22, 23] is

sufficient to handle all different cases.

– 9 –
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3 Phase space parameterisation

The parameterisation of the n + 1 particle phase space in terms of an n particle phase

space times an ‘unresolved’ phase space follows the phase space factorisation as given in

the context of the Catani-Seymour subtraction method [22, 23]. As mentioned before, the

mapping of the real phase space to the reduced kinematics defines the clustering prescrip-

tion for the 3→ 2 jet algorithm, generalising the 2→ 1 clustering normally used. Since in

the modified jet algorithm the resolution is not affected and the recombined jet momenta

reproduce the naive soft and collinear limits,2 the modified jet algorithm automatically

fulfills infrared safety, factorisation of initial state collinear singularities, and momentum

conservation while keeping the resulting jets on-shell. Furthermore, the phase space fac-

torisation allows to span the respective real phase space associated with each point in the

n-jet phase space in a straightforward manner.

Each combination of unresolved partons i, j picked by the resolution of the jet algorithm

(Θ(ycut−yij (p1, . . . , pn+1)) = 1) and the spectator k selected through Θk defines a specific

mapping to cluster n+ 1 partons to n jets (p1, . . . , pn+1)
i,j,k−−→ (J1, . . . , Jn). Depending on

whether j and k are final or initial state particles (i is always a final state parton) there

are four qualitatively different types of mappings which can be formulated for massless or

massive particles [22, 23]. To apply the method outlined in section 2 we need to invert

these mappings. For a given set of on-shell jet momenta (J1, . . . , Jn) and a set of variables

describing the unresolved phase space (Φ) we need the mapping

(J1, . . . , Jn,Φ)→ (p1, . . . , pn+1) (3.1)

to generate the n + 1 parton phase space. In the following subsections we collect the

required formulae. As mentioned in the introduction related formulae can be found in

refs. [24, 27, 28].

3.1 Final state clustering with final state spectator

3.1.1 Massless particles

As described in ref. [22] the phase space of n + 1 massless partons can be factorised in

terms of a phase space of n massless momenta — which we identify with the jet momenta

Ji — and the dipole phase space measure dRij,k related to the emission of an additional

parton:

dRn+1 (pa + pb, p1, . . . , pn−2, pj , pk, pi) = dRn (pa + pb, J1, . . . , Jn−2, Jj , Jk) dRij,k (3.2)

with the n-particle phase space as defined in eq. (2.4). The incoming momenta are given

by pa and pb. The dipole phase space measure as given in ref. [22, (5.20)] reads in four

space time dimensions

dRij,k =
Jj · Jk
2 (2π)3dφ dz dy (1− y) Θ (φ (2π − φ)) Θ (z (1− z)) Θ (y (1− y)) . (3.3)

2In the soft limit (pi → 0) the kinematics used in the Catani-Seymour formalism reduces to

{p1, . . .�Zpi, . . . , pn+1}, while in the collinear limit (pi → zp, pj → (1 − z)p) the set of momenta reduces

to {p1, . . .�Zpi, . . . ,��ZZpj , . . . , pn+1, p}.

– 10 –



J
H
E
P
0
9
(
2
0
1
5
)
0
8
3

The set of variables Φ = {φ, z, y} used to parameterise the phase space dRij,k is discussed

below. The phase space parameterisation corresponds to the following clustering of n+ 1

partons to n jets

Jj = pi + pj −
y

1− y
pk, (3.4)

Jk =
1

1− y
pk, (3.5)

Jm = pm, for m 6= j, k (3.6)

which fulfill momentum conservation (
n∑
i=1

Ji = P ) and the respective on-shell conditions

(J2
i = 0, i = 1, . . . , n). To invert the mapping (p1, . . . , pn+1) → (J1, . . . , Jn,Φ) we first

observe that the momentum pk and the momenta pm (m 6= i, j, k) can be obtained in terms

of the momenta Ji and the variable y through

pm = Jm, (3.7)

pk = (1− y) Jk. (3.8)

To determine the missing momenta pi and pj we use

pij ≡ pi + pj = Jj + yJk, (3.9)

sij = (Jj + yJk)
2 = 2y(Jj · Jk). (3.10)

The momenta pi and pj can be easily expressed in the rest frame of pij rotated such that Jj
points along the positive z-axis. Using 2(Jj · pij) = sij the momentum J ′j in this particular

frame is given by

J ′j =

√
sij

2
(1, 0, 0, 1). (3.11)

The momentum J ′j is obtained from the given Jj by a boost into the rest frame of pij and

two subsequent rotations to annihilate the x and y component of Jj :

J ′j = Λrx(φx)Λry(θy)Λ
b(p̂ij)Jj , (3.12)

with the Lorentz transformations Λr
x(φx), Λry(θy), and Λb(p̂ij) given in the appendix. We

used the hat to denote the parity transform of a four vector x: x̂ = (x0,−~x). The angles

θy and φx are determined through

cos(θy) =
Jzj√

(Jxj )2 + (Jzj )2
, sin(θy) =

Jxj√
(Jxj )2 + (Jzj )2

, (3.13)

cos(φx) =

√
(Jxj )2 + (Jzj )2

| ~Jj |
, sin(φx) =

−Jyj
| ~Jj |

. (3.14)

In this frame the momenta p′i and p′j read

p′i =

√
sij

2

(
1, 2
√
z(1− z) cosφ, 2

√
z(1− z) sinφ, 2z − 1

)
, (3.15)

p′j = p̂′i. (3.16)
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where we have used the definition [22, (5.6)]

z =
2(pi · Jk)
2(Jj · Jk)

. (3.17)

The momenta pi, pj follow from p′i, p
′
j by inverting the Lorentz transformations:

pi = Λb(pij)Λ
r
y(−θy)Λrx(−φx)p′i, (3.18)

pj = Λb(pij)Λ
r
y(−θy)Λrx(−φx)p′j . (3.19)

(The inverse of Λb(p̂ij) is given by Λb(pij).)

3.1.2 Massive particles

For massive partons i, j, k the phase space can again be factorised in terms of a phase space

of n jets and the dipole phase space measure dRij,k related to the clustered parton [23]:

dRn+1 (P, p1, . . . , pn−2, pi, pk, pj) = dRn (P, J1, . . . , Jn−2, Jj , Jk) dRij,k. (3.20)

The n-jet phase space is again given by eq. (2.4), where some of the mi are non-zero now.

The dipole phase space measure as taken from ref. [23, (5.11)] reads in four dimensions

dRij,k =
Q2

4 (2π)3

(
1− µ2

i − µ2
j − µ2

k

)2

√
λ
(

1, µ2
ij , µ

2
k

) Θ (1− µi − µj − µk)

× dφ dz dy (1− y) Θ (φ (2π − φ)) Θ ((z−z−) (z+−z)) Θ ((y−y−) (y+−y)) (3.21)

with the Källén function defined by

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (3.22)

and

µn =
mn√
Q2

, mij =
√
J2
j , Q = pi + pj + pk = Jj + Jk. (3.23)

The integration boundaries are given by [23, (5.13)]

y− =
2µiµj

1− µ2
i − µ2

j − µ2
k

, (3.24)

y− = 1− 2µk (1− µk)
1− µ2

i − µ2
j − µ2

k

, (3.25)

z± =
2µ2

i +
(

1− µ2
i − µ2

j − µ2
k

)
y

2
[
µ2
i + µ2

j +
(

1− µ2
i − µ2

j − µ2
k

)
y
] (1± 3ij,i3ij,k) , (3.26)
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with the relative velocities between pi + pj and pi or pk [23, (5.14)]

3ij,i =

√(
1− µ2

i − µ2
j − µ2

k

)2
y2 − 4µ2

iµ
2
j(

1− µ2
i − µ2

j − µ2
k

)
y + 2µ2

i

, (3.27)

3ij,k =

√[
2µ2

k +
(

1− µ2
i − µ2

j − µ2
k

)
(1− y)

]2
− 4µ2

k(
1− µ2

i − µ2
j − µ2

k

)
(1− y)

. (3.28)

The phase space parameterisation corresponds to the following clustering of n + 1

partons to n jets [23, (5.9)]

Jk =

√√√√√λ
(

1, µ2
ij , µ

2
k

)
λ
(

1,
sij
Q2 , µ

2
k

)pk +

−
√√√√√λ

(
1, µ2

ij , µ
2
k

)
λ
(

1,
sij
Q2 , µ

2
k

) 2pk ·Q
Q2

+ µ2
k − µ2

ij + 1

 Q

2
(3.29)

Jj = Q− Jk, (3.30)

Jm = pm, (m 6= j, k) (3.31)

which again fulfill momentum conservation (
n∑
i=1

Ji = P ) and and the on-shell conditions

(J2
j = m2

ij , J
2
l = m2

l for l 6= j). To invert this clustering the momenta pk and pm (m 6=
i, j, k) are calculated first:

pk =

[
Jk−

(
1+µ2

k−µ2
ij

) Q
2

]√√√√√λ
(

1,
sij
Q2 , µ

2
k

)
λ
(

1, µ2
ij , µ

2
k

)+
[
(1−y)

(
1−µ2

i−µ2
j−µ2

k

)
+2µ2

k

] Q
2
, (3.32)

pm = Jm, (3.33)

where we have used

2(pk ·Q) = Q2 + p2
k − (pi + pj)

2 = Q2 +m2
k − sij , (3.34)

together with the definition

y =
2(pi · pj)
Q2

=
sij −m2

i −m2
j

Q2 −m2
i −m2

j −m2
k

. (3.35)

Similar to the massless case it is convenient to express pi and pj in the rest frame of

pij = pi + pj rotated such that Q in the respective frame points along the positive z-axis.

Using 2(Q ·pij) = Q2 +sij−m2
k the momentum Q′ in this particular frame is then given by

Q′ =
Q2

2
√
sij

(
sij
Q2

+ 1− µ2
k, 0, 0,

√
λ

(
1,
sij
Q2

, µ2
k

))
. (3.36)

Again Q′ is obtained from Q through a boost to the rest frame of pij and subsequent

rotations:

Q′ = Λrx(φx)Λry(θy)Λ
b(p̂ij)Q, (3.37)
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where the angles are similar to eq. (3.13) and eq. (3.14). In this frame the momenta p′i and

p′j read

p′i =

(
Q2

2
√
sij

(
sij
Q2

+ µ2
i − µ2

j

)
,
∣∣~p′i∣∣ (sin θ′ cosφ, sin θ′ sinφ, cos θ′)

)
, (3.38)

p′j =

(
Q2

2
√
sij

(
sij
Q2

+ µ2
j − µ2

i

)
,−~p′i

)
, (3.39)

with |~p′i| =
√

(p′0i )2 −m2
i = 1

2
√
sij

√
λ
(
sij ,m2

i ,m
2
j

)
. Using

sik = (pi + pk)
2 = Q2

[
z (1− y)

(
1− µ2

i − µ2
j − µ2

k

)
+ µ2

i + µ2
k

]
(3.40)

one gets

cos θ′ =
Q2(1−y)(1−µ2

i − µ2
j−µ2

k)[((1−µ2
i−µ2

j−µ2
k)y+µ2

i +µ2
j )(1−2z)−µ2

j+µ2
i ]√

λ
(
sij ,m2

i ,m
2
j

)√
λ
(

1,
sij
Q2 , µ

2
k

) . (3.41)

Under the exchange µ2
i ↔ µ2

j , z → 1− z we have cos(θ′)→ − cos(θ′) as it should be.

The momenta pi, pj follow again from p′i, p
′
j by

pi = Λb(pij)Λ
r
y(−θy)Λrx(−φx)p′i, (3.42)

pj = Λb(pij)Λ
r
y(−θy)Λrx(−φx)p′j . (3.43)

3.2 Final state clustering with initial state spectator

3.2.1 Massless particles

Using ref. [22, (5.45)] the phase space can be factorised into the phase space of n massless

particles and the dipole phase space dRij,a:

dRn+1 (pa + pb, p1, . . . , pn−1, pj , pi) = dRn (xpa + pb, J1, . . . , Jn−1, Jj) dRij,a. (3.44)

The dipole phase space measure in four dimensions is given by [22, (5.48)]

dRij,a =
Jj · pa
2(2π)3

dφ dz dx Θ (φ (2π − φ)) Θ (z (1− z)) Θ (x (1− x)) . (3.45)

Note that dRij,a includes an integration over x leading to a convolution of the measures

given in eq. (3.44). The space parameterisation corresponds to the clustering of n + 1

partons to n jets

Jj = pi + pj − (1− x) pa, (3.46)

Jm = pm (m 6= i, j) (3.47)

which fulfills momentum conservation (
n∑
i=1

Ji = xpa+pb) and the on-shell conditions (J2
l =

0, l = 1, . . . , n). Inverting this clustering allows to parameterise n+ 1 partons by means of

the n jet momenta and three integration variables x, z, φ as follows

pm = Jm, (m 6= i, j) (3.48)
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and because of

pij = pi + pj = Jj + (1− x) pa, (3.49)

sij = (Jj + (1− x) pa)
2 , (3.50)

pi and pj can be calculated using the steps outlined in eqs. (3.11)–(3.19).

3.2.2 Massive particles

Using ref. [23] the phase space of n+ 1 massive partons can be expressed as a phase space

of n particles convoluted with the dipole phase space dRij,a:

dRn+1 (pa + pb, p1, . . . , pn−1, pj , pi) = dRn (xpa + pb, J1, . . . , Jn−1, Jj) dRij,a. (3.51)

The dipole phase space measure dRij,a reads [23, (5.48)]:

dRij,a =
Jj · pa
2 (2π3)

dφ dz dx Θ (φ (2π − φ)) Θ ((z − z−) (z+ − z)) Θ (x (x+ − x)) . (3.52)

The integration boundaries are given by

x+ = 1 + µ2
ij − (µi + µj)

2 , (3.53)

z± =
1− x+ µ2

ij + µ2
i − µ2

j ±
√(

1− x+ µ2
ij − µ2

i − µ2
j

)2
− 4µ2

iµ
2
j

2
(

1− x+ µ2
ij

) . (3.54)

with

µn =
mn√

2Jj · pa
, mij =

√
J2
j . (3.55)

The phase space parameterisation corresponds to the clustering of n+ 1 partons to n jets

as in eq. (3.46) and eq. (3.47) but satisfying now the on-shell conditions J2
j = m2

ij and

J2
l = m2

l for l 6= j. To invert the mapping (p1, . . . , pn+1)→ (J1, . . . , Jn,Φ) (Φ = {x, z, φ}),
we start again in the rest frame of pij = pi+pj rotated such, that the momentum Jj points

along the positive z-axis. Using (pij · Jj) = 1
2(sij −m2

ij) the corresponding momenta J ′j in

the rest frame of pij is given by

J ′j =
1

2
√
sij

(
sij +m2

ij , 0, 0, sij −m2
ij

)
. (3.56)

The relation to Jj is again given by a sequence of one Lorentz boost and two rotations:

J ′j = Λrx(φx)Λry(θy)Λ
b(p̂ij)Jj . (3.57)

the momenta p′i and p′j are given by

p′i =

(
sij −m2

j +m2
i

2
√
sij

, |~p′i|
(
sin θ′ cosφ, sin θ′ sinφ, cos θ′

))
, (3.58)

p′j =

(
sij −m2

i +m2
j

2
√
sij

,−~p′i

)
, (3.59)
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with |~p′i| =
√
E′i

2 −m2
i = 1

2
√
sij

√
λ
(
sij ,m2

i ,m
2
j

)
and

cos θ′ =
m2
j −m2

i − (1− 2z)sij√
λ
(
sij ,m2

i ,m
2
j

) . (3.60)

pi and pj follow from p′i and p′j by inverting the Lorentz transformations given in

eq. (3.57).

3.3 Initial state clustering with final state spectator

3.3.1 Massless particles

The phase space of n+1 massless partons can be expressed as a phase space convolution of

a phase space of n massless jets and the dipole phase space measure dRia,k for the emission

of an additional massless parton from the initial state with a massless final state spectator.

Most statements from section 3.2.1 can be carried over by the replacements a → k and

j → a (see ref. [22]). However, since we now are dealing with clustering in the initial state,

collinear singularities must be factorisable into the parton distribution functions. Because

x =
pa · (pi + pk)− pi · pk

pa · (pi + pk)
−−−−−−−→
pi→(1−z)pa

z, (3.61a)

a jet function applying this clustering fulfills the condition for factorisability of initial state

collinear singularities

Fn+1
J1,...,Jn

(p1, . . . , pn−1, pk, pi; pa, pb) −−−−−−−→
pi→(1−z)pa

FnJ1,...,Jn (p1, . . . , pn−1, pk; zpa, pb) . (3.61b)

3.3.2 Massive particles

The phase space of n massive partons and one massless parton can be expressed as a

phase space convolution of a phase space of n massive jets and the dipole phase space

measure dRia,k for the emission of an additional massless parton from the initial state with

a massive final state spectator. All statements from section 3.2.2 can be carried over by

the replacements a → k and j → a, mi → 0 and mij → mk (see ref. [23]). The argument

from eq. (3.61) also holds.

3.4 Initial state clustering with initial state spectator

In case of initial state clustering with an initial state spectator the phase space can again

be written as a convolution [22, (5.149)]:

dRn+1 (pa + pb, p1, . . . , pn, pi) = dRn (xpa + pb, J1, . . . , Jn) dRia,b, (3.62)

with the n-particle phase space given in eq. (2.4). The dipole phase space measure dRia,b
reads [22, (5.151)]:

dRia,b =
pa · pb
2 (2π)3dφ d3 dx Θ (φ (2π − φ)) Θ (3) Θ

(
1− 3

1− x

)
Θ (x (1− x)) . (3.63)
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The phase space parameterisation corresponds to the following clustering of n + 1

(massless/massive) partons to n (massless/massive) jets:

Jm = Λia,b pm, m = 1, . . . , n (3.64)

with

K = pa + pb − pi, K̃ = xpa + pb, (3.65)

and the Lorentz boost transforming K into K̃ given by [22, (5.144)]:

[Λia,b]
µ
ν = gµν −

2
(
K + K̃

)µ (
K + K̃

)
ν(

K + K̃
)2 +

2K̃µKν

K2
. (3.66)

The inverse boost is obtained by exchanging K and K̃. All outgoing momenta pi are trans-

formed to balance the transverse momentum. Momentum conservation (
n∑
i=1

Ji=xpa+pb)

and on-shell conditions (J2
l = m2

l , l = 1, . . . , n) are not affected by the boost. Inverting

this clustering allows to parameterise n + 1 partons by means of the n jet momenta and

three integration variables x, 3, φ as follows. The momenta pm (m = 1, . . . , n) are obtained

by inverting the boost:

pm = Λ−1
ia,b Jm. (3.67)

Using the definition for 3

sia = 3sab, (3.68)

together with

sib = (1− x− 3) sab (3.69)

which leads to

sia + sib = (1− x)sab (3.70)

it is straightforward to express the momentum pi in the rest frame of pa + pb rotated such

that pa points along the z-axis. In this particular frame the momentum pi is given by

p′i = (1− x)

√
sab
2

(1, sin θ′i cosφ, sin θ′i sinφ, cos θ′i). (3.71)

Using pa in this particular frame

p′a =

√
sab
2

(1, 0, 0, 1) , (3.72)

the angle θ′ can be read off

cos θ′i = 1− 23

1− x
. (3.73)

The momenta pi is obtained according to

pi = Λry(−θy)Λrx(−φx)p′i (3.74)

as in the previous cases with Jj → pa. Note that no massive case as in the previous sections

needs to be studied since the two incoming partons and the collinear parton are always

assumed to be massless.
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4 Consistency checks

To validate the approach, we apply the procedure outlined in the previous sections to

two processes. As an example, where one has to deal with initial state singularities, we

study Drell-Yan production in hadronic collisions. More precisely, we calculate Drell-Yan

production at the LHC running at a center-of-mass energy of
√
s = 13 TeV. We apply phase

space cuts similar to what is used in the LHC experiments. For simplicity, we veto any

additional jet in the final state since we are only interested in the case where recombination

occurs in the real corrections. The inclusion of the contribution due to an additional jet is

straightforward since no recombination occurs. For the final state electrons, we require the

invariant mass mee of the electron pair in the region defined by 116 GeV< mee < 3 TeV.

Furthermore, we demand a minimum transverse momentum p⊥e > 25 GeV for the electron

and restrict the rapidity of the electron to |ηe| < 2.5. Unresolved initial state radiation is

clustered with the beam according to section 3.4.

As a second example, where one has to deal with final state radiation, we analyse top-

quark pair production in e+e− annihilation. Similar to the Drell-Yan case, we veto again

the emission of an additional jet. For the top-quark mass we use mt = 174 GeV. For the

center-of-mass energy we choose
√
s = 500 GeV relevant for a future linear collider. We do

not include the decay of the top quarks, instead, we treat them as tagged top-jets. These

jets are obtained with a kt-jet algorithm with the resolution criteria defined by

yij = 2
min

(
E2
i , E

2
j

)
(1− cos(θij))

s
, (4.1)

and the resolution ycut set to ycut = 0.1. For the recombination of unresolved particles the

modified 3→ 2 clustering prescription according to section 3.1.2 is used.

Although very simple, these two examples cover essentially all relevant cases. Fur-

thermore, compact analytic results are available for the higher order corrections and it is

straightforward to apply the ideas outlined in this article. For details on the NLO calcula-

tions using phase space slicing we refer to refs. [36, 37].

Exclusively demanding n jets in the final state allows to define a differential n-jet event

weight at NLO accuracy:

dσNLO

d4J1 . . . d4Jn
=

dσB

d4J1 . . . d4Jn
+

dσV

d4J1 . . . d4Jn
+

dσR

d4J1 . . . d4Jn
. (4.2)

We use the superscripts B, V and R to indicate the contributions from the Born matrix

elements, the virtual corrections and the real corrections. In case of the real corrections a

regularisation of the soft- and collinear singularities using the phase space slicing method

is understood. The ‘unresolved’ contribution is included in the virtual corrections and

cancels the respective soft and collinear singularities. We note, that the real corrections

are calculated using eq. (2.15) which means that for each phase space point (J1, . . . , Jn) an

additional three dimensional integration is required to obtain dσR. To check the approach

and the numerical implementation we use eq. (4.2) integrated over the phase space to

calculate the total cross section. The results can be compared with the ones obtained by a
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Figure 1. Differential distributions for Drell-Yan production calculated using a conventional parton

level MC compared with a calculation using the factorised jet phase space as described in section 3.4.

standard parton level Monte Carlo. We have checked that the results using eq. (2.15) are

in perfect agreement with the results of a conventional parton MC. One may argue that the

comparison of the total cross section is not very sensitive to the details of the calculation

and inconsistencies in specific phase space regions could escape detection. In fact eq. (4.2)

can also be used to calculate arbitrary distributions:

dσNLO

dO(J̃1, . . . , J̃n)
=

∫ n∏
m=1

d4Jm
dσNLO

d4J1 . . . d4Jn
δ
(
O(J1, . . . , Jn)−O(J̃1, . . . , J̃n)

)
. (4.3)

Again these contributions can be compared with the outcome of a parton level Monte Carlo.

This comparison allows a detailed check of the entire phase space. We stress that in the par-

ton level Monte Carlo the same modified jet algorithm (3→ 2 clustering!) has to be used.

In figure 1 we collect various distributions calculated for Drell-Yan production. In particu-

lar, we show the angular and the energy distribution of the scattered electron/positron. In

addition, the invariant mass distribution and the rapidity distribution of the e+e− system

are given. The blue solid lines show the results obtained with a conventional parton level

Monte Carlo. The red dashed lines show the results using the factorised jet phase space as

illustrated in the previous sections. In the lower part of the plots we show the discrepancy
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Figure 2. Differential distributions for top-quark pair production in e+e− annihilation calculated

using a conventional parton level MC compared with a calculation using the factorised jet phase

space as described in section 3.1.2.

between the two approaches in terms of standard deviations, where the uncertainty of each

approach is due to the limited statistics of the Monte Carlo integrations. For the parton

distribution functions we use the CT10nlo pdf set [38]. The center-of-mass energy is set to

13 TeV and we applied the aforementioned cuts. For all four distributions, we find perfect

agreement between the two approaches. In most cases the discrepancy is less than one

standard deviation. In figure 2 a similar analysis is shown for top-quark pair production

in e+e− annihilation. In particular, we show distributions with respect to the cosine of

the azimuthal angle of the outgoing top quark, the polar angle distribution, the transverse

momentum distribution and the rapidity distribution. Again the blue solid curves show

the results of a conventional parton level Monte Carlo while the red dashed curves give the

results using the factorised jet phase space. Note that in both cases the modified 3 → 2

clustering is employed. Again we find perfect agreement between the two approaches.

4.1 Impact of NLO corrections — k-factors

It has been pointed out in ref. [18] that restricting the NLO analysis to the Born level kine-

matics may lead to rather moderate k-factors in general. In figure 3 we show the respective

k-factors for the previously studied differential distributions. In case of the angular dis-

tribution of the outgoing electron, NLO corrections at the level of only a few percent are
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Figure 3. Impact of NLO corrections on differential distributions for Drell-Yan production at a

hadron collider.

observed. For the rapidity distributions they are slightly larger but still small in absolute

size. For the energy distribution of the electron and the invariant mass distribution of the

lepton pair the corrections seem to be larger. However, the k-factor suffers from statistical

uncertainties and shows large fluctuations. In regions where the statistical fluctuations

are small we find again a moderate k-factor. In figure 4 the k-factor for top-quark pair

production in e+e− annihilation is shown. In all cases we find NLO corrections of a few per

cent only and thus k-factors very close to one. We thus extend the observations of ref. [18]

also to final state radiation.

4.2 Impact of modified clustering/jet algorithms

All the previously shown differential distributions have been obtained using the modified

jet algorithm: in the conventional parton level Monte Carlo as well as in the alternative

approach using a factorised jet phase space. As pointed out in the introduction we consider

the modification of the clustering as part of the intrinsic ambiguities of jet algorithms. As

a consequence we do not expect a large effect of the clustering. If in contrast a large

effect is observed one should question the definition of the observable since it shows a large

sensitivity on an aspect of the jet algorithm which is not well defined. Since it is difficult to

make general statements about the size of possible effects, one should investigate the impact

of the new clustering on a case by case study to make sure that no large deviations are
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Figure 4. Impact of NLO corrections on differential distributions for top-quark pair production in

e+e− annihilation.

observed. In figure 5 the conventional 2→ 1 clustering which does not respect the on-shell

condition of the clustered objects is compared for Drell-Yan production with the 3 → 2

clustering advocated here. Note that both results have been obtained using a conventional

parton-level MC. The blue solid curves show the result using the 2 → 1 clustering, while the

red dashed lines give the results for the 3 → 2 clustering. Since for Drell-Yan production

the clustering never includes the outgoing electron we do not expect a major effect. Indeed

figure 5 shows essentially no difference within the statistical uncertainty. A minor effect is

visible in the angular distribution and in the rapidity distribution. This can be related to

the initial state clustering which may introduce an additional boost orthogonal to the beam

axis which can influence the angular distributions. In figure 6 the corresponding result

is shown for top-quark pair production. For the angular distribution the two different

algorithms give the same result within the statistical uncertainties. For the transverse

momentum distribution a large effect is visible at large transverse momentum. This is not

surprising since at phase space boundaries we expect to become sensitive to the details of

the clustering. Below 160 GeV we observe that the 3 → 2 clustering leads to distributions

which are between two and five per cent below the traditional 2 → 1 combination. In

general the 2→ 1 clustering leads to an increase of the mass of the clustered object which

could be responsible for the observed pattern. To analyse this effect we show in figure 7 the
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Figure 5. Impact of 3→ 2 clustering with respect to 2→ 1 clustering on differential distributions

for Drell-Yan production at a hadron collider.

distribution of the mass of the top-quark jet using the conventional 2 → 1 clustering. As one

can see most of the events have a jet-mass close to the nominal top-quark mass. However,

there are also events with jet masses up to 280 GeV. Note that using the modified clustering

the jet mass is fixed to the top-quark mass. In particular at phase space boundaries, the

difference in the jet mass may result in distortions of distributions which are sensitive to

mass effects. This is precisely what we observe in the lower plots of figure 6 where one can

see that indeed the largest effects arise at the phase space boundary. This is not surprising

since minor changes in the mass of the clustered objects become important. Since the

distributions are normalised this effect introduces also a modification in the distribution

away from the phase space boundary. Using cuts to avoid the phase space boundaries

should thus result in smaller differences between the two different clustering prescriptions.

This is illustrated in figure 8 where we show the same distributions but now using additional

cuts. Again the blue solid line shows the conventional 2 → 1 clustering while the red dashed

line shows the alternative 3 → 2 clustering. Indeed we find that the difference becomes

smaller and is of the order of 1% only, which might be seen as an intrinsic uncertainty. To

close this section we stress that minor differences between the two clusterings are not per

se problematic as long as everything is done consistently and the same clustering is used

in the experimental analysis.
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Figure 6. Impact of 3→ 2 clustering with respect to 2→ 1 clustering on differential distributions

for top-quark pair production in e+e− annihilation.
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Figure 7. Distribution of the mass of the top-quark jet using the conventional 2 → 1 recombination.
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Figure 8. Same as figure 6 but with additional cuts to avoid the phase space boundaries.

5 Application

In this section we apply the MEM to top-quark pair production in e+e− annihilation. First

we use the aforementioned procedure to generate unweighted events with NLO accuracy.

These events are then analysed using the MEM in LO and NLO accuracy. In particular,

we illustrate the extraction of the top-quark mass from the event sample.

5.1 Generating unweighted jet events

For a chosen jet algorithm with a preset value of the resolution ycut it is now straightforward

to generate unweighted jet events using an ‘acceptance-rejection’ algorithm. The respective

NLO jet weight is given by

ρ (J1, . . . , Jn) =
dσNLO

d4J1 . . . d4Jn
. (5.1)

where the right hand side is evaluated according to eq. (4.2). The acceptance-rejection

method requires an upper boundary ρmax of the weight ρ (J1, . . . , Jn). This can be ob-

tained for example within a phase space integration. An n-jet candidate event is then

constructed using (3n− 4) random numbers. As a measure for the probability the weight

introduced in eq. (5.1) is calculated for the candidate event. Note that a three dimensional

integration must be performed to do so. Generating an additional uniformly distributed

random number ru between 0 and ρmax the candidate event is accepted if ru is below the

aforementioned weight.

In principle it is also possible to generate unweighted NLO n-jet events (J1, . . . , Jn)

together with n+1-jet events (J ′1, . . . , J
′
n+1) from n+1 partons (p1, . . . , pn+1) by augmenting

the definition of ρ:

ρ̃ (p1, . . . , pn+1) =
dσNLO

d4J1 . . . d4Jn
Fn+1
J1,...,Jn

(p1, . . . , pn+1)

+
dσNLO

d4J ′1 . . . d
4J ′n+1

Fn+1
J ′

1,...,J
′
n+1

(p1, . . . , pn+1). (5.2)
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Figure 9. Validation of the generation of unweighted NLO top-quark pair events (no additional jet).

The jet functions Fn+1
J1,...,Jn

and Fn+1
J ′

1,...,J
′
n+1

decide whether n or n + 1 jets are resolved and

how the momenta pi are clustered into the jets. The n + 1-jet events (J ′1, . . . , J
′
n+1) are

obtained by the identification

J ′i ≡ pi. (5.3)

The n-jet events (J1, . . . , Jn) follow from clustering by the 3→ 2 jet algorithm

(p1, . . . , pn+1)→ (J1(p1, . . . , pn+1), . . . , Jn(p1, . . . , pn+1)) . (5.4)

The main difference with respect to the previously described event generation is, that now

n + 1 parton momenta are generated using (3(n + 1) − 4) random numbers. While this

method will generated n-jet events with NLO accuracy we stress that the generated n+1-jet

events have only LO accuracy.

To validate the generation of unweighted events, we reproduce the differential distribu-

tions calculated in section 4. In total we generated 73128 events with NLO accuracy. As in

section 4 we veto the emission of an additional jet. In figure 9 we show the comparison with

distributions calculated using the conventional parton level Monte Carlo. The blue solid

lines represent the results from the parton-level Monte Carlo while the red dashed lines

show the distributions calculated from the unweighted jet events generated as described

– 26 –



J
H
E
P
0
9
(
2
0
1
5
)
0
8
3

above. Below we show the difference between the two distribution in units of one standard

deviation. As one can see we find perfect agreement within the statistical uncertainties.

5.2 Matrix Element Method

The possibility to generate unweighted jet events with NLO accuracy together with the

possibility to assign NLO event weights to them, allows to perform a validation of the

Matrix Element Method at NLO using the generated events as input to a toy experiment.

As a concrete example we illustrate the extraction of the top-quark mass in e+e− → tt̄

employing the MEM at NLO. We note that this study may be relevant for the top-quark

mass measurements at a future linear collider.

As mentioned before we ignore for simplicity the top-quark decay and assume that

top-(anti)quark jets are observed. An event is than defined by the energies and angles of

the respective jets (Et, cos θt, φt, Et̄, cos θt̄, φt̄). This fixes the jet momenta depending

on the top quark mass mt as

Jt = (Et, |pt| cosφt sin θt, |pt| sinφt sin θt, |pt| cos θt) ,

Jt̄ = (Et̄, |pt̄| cosφt̄ sin θt̄, |pt̄| sinφt̄ sin θt̄, |pt̄| cos θt̄) , (5.5)

with |pt,t̄| =
√
E2
t,t̄
−m2

t . Exclusively demanding a top-quark pair without an additional jet

fixes the energies Et = Et̄ =
√
s/2. A 2-jet NLO event weight for ~x = (cos θt, φt, cos θt̄, φt̄)

can be obtained according to

dσNLO

d~x
=

dσNLO

d cos θt dφt d cos θt̄ dφt̄

=
βt

32π2

dσNLO

d4J1 d4J2

∣∣∣∣
cos θ1=cos θt, cos θ2=cos θt̄, φ1=φt, φ2=φt̄

,

with βt =

√
1− 4m2

t
s . A sample of N unweighted 2-jet NLO events{

~xi = (cos θit, φ
i
t, cos θit̄, φ

i
t̄), i = 1, . . . , N

}
(5.6)

is generated for some ‘true” top-quark mass mtrue
t = 174 GeV. The NLO likelihood LNLO

for the sample can be constructed from the differential 2-jet cross section as follows

LNLO (mt) =

N∏
i=1

LNLO (~xi|mt) =

(
1

σNLO(mt)

)N N∏
i=1

dσNLO(mt)

d~xi

=

(
βt

32π2 σNLO(mt)

)N N∏
i=1

(
dσNLO

d4Jt d4Jt̄

)∣∣∣∣
event i

(mt) (5.7)

where the dependence on mt is shown explicitly and Jt and Jt̄ follow from ~xi according to

eq. (5.5). Note that the jet momenta when evaluated for the event ~xi depend on the mass
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Figure 10. NLO and Born Log-likelihood for 73128 NLO events between mt = 100 GeV and mt =

240 GeV (”true” value mtrue
t = 174 GeV) and zoomed in between mt = 170 GeV and mt = 180 GeV

to extract m̂t and ∆m̂t by a fit.

mt. The negative logarithm of the likelihood (or “Log-likelihood”) therefore reads

− logLNLO (mt) = −
N∑
i=1

logLNLO (~xi|mt) = N log
(
σNLO(mt)

)
−

N∑
i=1

log

(
dσNLO(mt)

d~xi

)

= N log

(
32π2 σNLO(mt)

βt

)
−

N∑
i=1

log

(
dσNLO(mt)

d4Jt d4Jt̄

)∣∣∣∣
event i

. (5.8)

Maximising (minimising) this likelihood (Log-likelihood) with respect to mt yields an esti-

mator m̂t

LNLO (m̂t) = sup
mt

(
LNLO (mt)

)
,

− logLNLO (m̂t) = inf
mt

(
− logLNLO (mt)

)
. (5.9)

The lefthand plot of figure 10 illustrates the Log-likelihood for 73128 events generated

with NLO accuracy as function of the top-quark mass mt in the range between 100 GeV

and 240 GeV. The solid blue line shows the result evaluating the likelihood using LO

predictions, the dashed red line shows the result obtained using NLO predictions. As

mentioned before a top-quark mass mtrue
t = 174 GeV has been used to generate the events.

The righthand plot of figure 10 shows the area around the minimum between mt = 170 GeV

and mt = 180 GeV in order to extract m̂t and ∆m̂t by a parabola fit (see ref. [39]). As

one can see from figure 10 extracting the top-quark mass with a likelihood based on the

Born approximation yields an estimator m̂Born
t which shows a significant deviation from

the input value mtrue
t hence can not be regarded as an unbiased estimator. More precisely

we find

m̂LO
t = (178.7± 1.2) GeV (5.10)

which is 4 σ way from the true top-quark mass used in the event generation. Note that

in LO the results are independent of αs. It is thus not possible to attribute a theoretical
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Figure 11. Comparison of the NLO predictions (red dashed line) evaluated for mt = 174 GeV

with the Born approximation (blue solid line) evaluated for mt = 178 GeV. In the lower plot the

ratio of the two is shown (black line). For comparison the k-factor for mt = 174 GeV is shown in

gray (cf. figure 4).

uncertainty by simply varying the renormalisation scale. On the other hand extracting

the top-quark mass with the likelihood based on NLO predictions results in an estimator

m̂NLO
t which is consistent with the input value mtrue

t within the uncertainty. Using NLO

accuracy we find

m̂NLO
t = (174.3± 1.3) GeV (5.11)

in perfect agreement with mtrue
t . We stress that in both cases we use the same unweighted

events generated with NLO accuracy. In principle the discrepancy between m̂LO
t and m̂NLO

t

is not surprising since we used in m̂LO
t LO predictions to analyse events generated with

NLO accuracy. What is however remarkable is the large size of the effect. As has been

illustrated in section 4 the NLO corrections are usually small for most of the distributions.

Nevertheless we observe a large effect using LO or NLO predictions within the Matrix

Element Method. From the above results we may conclude that the Born matrix element

evaluated for mt = 178 GeV gives a better approximation of the NLO corrections evaluated

for mt = 174 GeV than the Born approximation evaluated for 174 GeV. To investigate this

point further we show in figure 11 the comparison of the two predictions. Obviously

the NLO corrections cannot be completely absorbed by changing the mass in the LO

predictions. Comparing however the black with the gray line in figure 11 we find that

indeed mt = 178 GeV gives a slightly better description of the NLO result. In the range

−1 < cos θt . 0.75 the difference is below 1% and the maximal deviation at cos θt = 1 is

4%. The difference is below 1% in the range −1 < cos θt . 0.38 and the maximal deviation

at cos θt = 1 is 6% when mt = 174 GeV is used in the Born approximation.

In view of a future linear collider we stress that the renormalisation scheme is well

defined in the above procedure. Applying the above procedure to realistic data, the top-

quark mass within the pole mass scheme would be determined.
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dence of the Log-likelihood on the number of events. At the bottom of the right plot the respective

estimator m̂t ±∆m̂t is shown.

In figure 12 we show the consistency of the approach. In particular, we illustrate

that m̂NLO
t provides indeed an unbiased maximum likelihood estimator (ref. [40]). The

lefthand plot of figure 12 shows the distribution of the estimator m̂NLO
t if we interpret our

event sample with 73128 events as 203 independent toy experiments with 360 events each.

The dashed line shows a gaussian fitted to the data. The righthand plot illustrates how

increasing the number of events results in a tightening of the dip in the Log-likelihood

around the true value of mt and the approximate scaling of the error of the estimator

∆m̂t ∝ N−
1
2 (see bottom of righthand plot).

As a final remark we comment on the impact of the modified jet algorithm. Top-quark

pair production in e+e− annihilation is highly constrained through momentum conservation

and the underlying symmetries of the interaction. Most of the sensitivity to the top-quark

mass stems essentially from information contained already in in the cos(θt) distribution.

On the other hand for this distribution the two clustering algorithms give the same result

at the permille level as we have shown in figure 6. As a consequence we do not expect major

differences in case the conventional clustering would be used in the experimental analysis.

6 Conclusion

In this article we have shown how to calculate event weights for jet events at NLO accuracy.

The ability to define event weights at NLO is a necessary prerequisite to extend the Matrix

Element Method beyond the Born approximation. The basic ingredient of the method pre-

sented here is a modification of the clustering prescription used in jet algorithms. Instead

of using the conventional 2→ 1 clustering, where the momentum of the clustered object is

just the sum of the two initial jet candidates, we use a recombination inspired by the phase

space mapping used in the Catani-Seymour subtraction method. This leads naturally to a

factorisation of the phase space for the real corrections into resolved and unresolved con-

tributions. Furthermore, the factorisation allows to integrate numerically the contribution
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of the unresolved configurations after an appropriate regulator to handle the mass and soft

singularities has been chosen. Similar ideas have been investigated in a different context

already in refs. [24, 27, 28]. The major difference is that we consider the new clustering

not only as a technical trick but as an essential part of a modified jet algorithm. Using this

modified clustering no artifical jet mass is generated and it is straightforward to map the

events obtained onto the born kinematics. As validation of the proposed method, we have

successfully reproduced differential distributions at NLO accuracy in Drell-Yan production

and top-quark pair production in e+e− annihilation. Although simple, these two examples

cover essentially all relevant cases. We have also investigated the impact of the modified jet

algorithm. At phase space boundaries the effects can be large. Additional cuts can be used

to reduce the impact. The remaining effect may be considered as an intrinsic uncertainty

inherent to jet algorithms. For the examples studied here the effect is reduced to the per

cent level, after applying cuts. We stress however that in hadronic collisions the situation

could be different and one needs to investigate the impact of the new clustering on a case

by case study. As a further application we have studied as a toy example the Matrix El-

ement Method at NLO applied to top-quark pair production in e+e− annihilation. More

precisely, we investigated the determination of the top-quark mass. This study is relevant

for a possible future Linear Collider. Applying the Matrix Element Method to events gen-

erated with NLO accuracy we observe that the MEM in LO fails to reproduce the input

value. While the NLO analysis correctly reproduces the input with an uncertainty of about

1 GeV for about 70000 simulated events, the LO analysis leads to a value off by 4 GeV.

These findings should be taken into account, when top-quark mass measurements at the

Tevatron using the MEM are discussed. Let us end with a final remark concerning parton

shower corrections. As mentioned in section 2 the naive inclusion of corrections due to the

parton shower would lead to a double counting. Further studies are required to extend the

method presented here in this direction.

Note added. While we were in the process of writing this article ref. [41] appeared,

where an extension of the jet algorithm in e+e− annihilation to massless quarks similar to

what is discussed here has been presented.
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A Explicit form of the Lorentz transformations

For a given four vector X with X2 6= 0 the rotational free boost from the rest frame of X to

the system where X takes the form as given reads when applied to the four momentum y:

Λb(X)y =

(
X0

√
X2

y0 +
( ~X · ~y)√
X2

, ~y +

[
( ~X · ~y)√

X2(X0 +
√
X2)

+
y0

√
X2

]
~X

)
. (A.1)

Defining X̂ = (X0,− ~X) the boost from the frame in which X is given to the rest frame

is given by Λb(X̂). In fact, eq. (A.1) is a special case of the more general boost given in

eq. (3.66):

Λb(X) = Λia,b, for K = (
√
X2,~0), K̃ = (X0, ~X). (A.2)

The Lorentz transformations for rotations around the x and the y axis are given by

Λrx(φ) =


1 0 0 0

0 1 0 0

0 0 cos(φ) sin(φ)

0 0 − sin(φ) cos(φ)

 , (A.3)

Λry(φ) =


1 0 0 0

0 cos(φ) 0 − sin(φ)

0 0 1 0

0 sin(φ) 0 cos(φ)

 . (A.4)

For the product we have

Λry(θ)Λ
r
x(φ) =


1 0 0 0

0 cos θ sin θ sinφ − sin θ cosφ

0 0 cosφ sinφ

0 sin θ − cos θ sinφ cos θ cosφ

 . (A.5)
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