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ABSTRACT: We present a subtraction method utilizing the N-jettiness observable, Ty, to
perform QCD calculations for arbitrary processes at next-to-next-to-leading order (NNLO).
Our method employs soft-collinear effective theory (SCET) to determine the IR singular
contributions of N-jet cross sections for 7Ty — 0, and uses these to construct suitable
Tn-subtractions. The construction is systematic and economic, due to being based on
a physical observable. The resulting NNLO calculation is fully differential and in a form
directly suitable for combining with resummation and parton showers. We explain in detail
the application to processes with an arbitrary number of massless partons at lepton and
hadron colliders together with the required external inputs in the form of QCD amplitudes
and lower-order calculations. We provide explicit expressions for the Ty-subtractions at
NLO and NNLO. The required ingredients are fully known at NLO, and at NNLO for
processes with two external QCD partons. The remaining NNLO ingredient for three or
more external partons can be obtained numerically with existing NNLO techniques. As an
example, we employ our results to obtain the NNLO rapidity spectrum for Drell-Yan and
gluon-fusion Higgs production. We discuss aspects of numerical accuracy and convergence
and the practical implementation. We also discuss and comment on possible extensions,
such as more-differential subtractions, necessary steps for going to N3LO, and the treatment
of massive quarks.

KEYywoRrDS: QCD Phenomenology, NLO Computations

ARX1v EPRINT: 1505.04794

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP09(2015)058


mailto:jonathan.gaunt@desy.de
mailto:maximilian.stahlhofen@desy.de
mailto:frank.tackmann@desy.de
mailto:jwalsh@lbl.gov
http://arxiv.org/abs/1505.04794
http://dx.doi.org/10.1007/JHEP09(2015)058

Contents

1 Introduction

2 General formalism

2.1
2.2
2.3

Notation

Singular and nonsingular contributions
Txn-subtractions

2.3.1 Ty-slicing

2.3.2 Differential Ty-subtractions
2.3.3 Estimating numerical accuracy

3 N-jettiness subtractions

3.1

3.2

3.3

3.4

Definition of N-jettiness

3.1.1 Born kinematics

3.1.2 N-jettiness

3.1.3 Example Born projections
Factorization in the singular limit

3.2.1 Factorization theorem

3.2.2  QCD amplitudes and color space
3.2.3 Leading order

Single-differential subtractions

3.3.1 NLO subtractions

3.3.2 NNLO subtractions

3.3.3 Toward N3LO subtractions
Constructing more-differential subtractions

4 Practical considerations and implementation

4.1

4.2
4.3

NLO

4.1.1 FKS subtractions

4.1.2 Ty-subtractions

NNLO

Example: NNLO rapidity spectrum for Drell-Yan and Higgs

5 Conclusions

A Subtraction ingredients
A.1 Jet function
A.2 Beam function

A.3 Single-differential soft function

© 00 00 =~ Ut R

12
12
12
13
15
16
16
17
18
18
19
20
22
23

26
26
26
27
28
31

36

37
38
39
41




1 Introduction

The precise knowledge of QCD corrections is a key ingredient for interpreting the data
from collider experiments. In hadronic collisions, the inclusive QCD cross section for the
production of a final state X can, if the hard scale @) associated with X is large enough,
be obtained in terms of a perturbatively calculable partonic cross section convolved with
parton distribution functions (PDFs).

Perturbative calculations performed using the leading order (LO) term in «y typically
suffer from large theoretical uncertainties due to missing higher-order perturbative correc-
tions. Often, next-to-leading order (NLO) is the first order at which the normalization and
in some cases the shape of cross sections can be considered reliable. As such, this level of
accuracy has become standard for comparing with data from the LHC. For some processes
the experimental uncertainties are becoming so small, or the perturbative uncertainties
at NLO are still so large, that next-to-next-to-leading order (NNLO) computations are
called for.

For many important benchmark processes, the required virtual amplitudes are known
at NNLO. However, as is well known, the computation of the full cross sections be-
yond leading order is complicated by infrared (IR) divergences — explicit divergences in
virtual amplitudes, and divergences in the phase-space integration over the real-emission
amplitudes in regions where particles become soft or collinear to other particles. These
divergences only cancel after integrating the real-emission amplitudes over the phase space
of unresolved particles and adding the result to the virtual loop amplitudes order by order.

To handle these divergences in practice one typically makes use of some subtraction
method. That is, one subtracts terms from the real emission contributions that reproduce
the IR soft and collinear behaviour of the real emissions, which then allows the phase-space
integral of the full amplitude minus the subtraction terms to be performed numerically in
d = 4 dimensions, giving a finite result. The subtracted terms have to be sufficiently
simple that they can be integrated over the phase space of emitted particles in d = 4 — 2¢
dimensions. They are then added back to the virtual contributions, where they cancel the
explicit 1/€™ IR poles.

The goal of typical NLO subtraction schemes like FKS subtractions [1-3] or CS sub-
tractions [4—6] is to construct subtraction terms that reproduce the correct IR-singular
behaviour of the full real-emission amplitude point-by-point in phase space. Over the past
decade enormous effort has been devoted to extend such local subtraction methods to
NNLO using different approaches [7-38]. This extension is very involved due to the many
overlapping singularities at NNLO, which have to be isolated by appropriate phase-space
parameterizations. At the same time, the subtractions have to remain simple enough that
the 1/€" IR poles can be extracted from the integrated subtractions.

The basic idea of our method, which we call N-jettiness subtractions, is to use a
physical jet-resolution variable Ty to control the infrared behaviour of the cross section.
The key point is that, if the (factorized) structure of the leading contribution to the Ty-
differential cross section in the IR limit 7n — 0 is known, the singular part can often be
determined analytically and used to construct an IR subtraction term. A major advantage



of using a physical observable is that the differential and integrated subtraction terms
are then equivalent to the singular limits of a physical cross section, which can indeed be
significantly easier to calculate than the full cross section. A well-known example of such
a physical subtraction scheme is the gp-subtraction method for color-singlet production in
hadron collisions [39], which has been successfully applied to a variety of processes [40-47].
(It has also been suggested that this method can be applied to compute heavy-quark pair
production at NNLO [48, 49].) Our N-jettiness subtraction method generalizes this to
arbitrary numbers of QCD partons in the initial and final state. It employs the N-jettiness
global event shape [50] as the physical N-jet resolution variable. In this paper, we limit
ourselves to massless quarks; the extension to massive quarks is in principle possible and
commented on in section 5.

The key feature of N-jettiness is that it has very simple factorization properties in the
singular limit. The factorization theorem for the N-jettiness cross section is known [50-52]
from soft-collinear effective theory (SCET) [53-58]. It can be used to systematically com-
pute the leading singular contributions (thus determining the subtraction terms) by per-
forming standard fixed-order calculations of soft and collinear matrix elements in SCET.
At NLO, all necessary ingredients have been known for some time, and by now, essentially
all necessary NNLO ingredients are available. For processes with hadronic initial states a
key ingredient that has become available recently are the two-loop quark and gluon beam
functions [59, 60].

The price one has to pay for using a single physical observable to describe the IR is
that the subtraction does not act point-by-point in phase space, but only on a more global
level after a certain amount of phase-space integration has been carried out. In essence,
the large number of terms in a fully local subtraction method are projected onto a single,
nonlocal subtraction term. In practice, this means that the numerical convergence may
be slower than for the fully local case. However, this is compensated by the significant
reduction in complexity of the subtractions. Furthermore, as we will discuss, it is pos-
sible to make the subtractions step-by-step more local by making the N-jettiness cross
section more differential in additional variables. This is again possible by using SCET to
factorize and calculate the singular contributions of more differential cross sections (see
e.g. refs. [52, 61-65]).

There are several important benefits of using a physical observable as jet resolution
variable, as already emphasized in refs. [66]. It allows one to directly reuse the existing NLO
calculations for the corresponding N + 1-jet cross sections, and the resulting NNLO calcu-
lation is automatically fully-differential in the Born phase space. Moreover, the calculation
will be in a form which makes it directly suitable to be combined with higher-order resum-
mation as well as parton showers by using the general methods developed in refs. [66, 67].

The idea of using N-jettiness as an N-jet resolution variable is not new. In fact, this
is what largely motivated its invention in the first place. It is already utilized in essentially
the same context as here in the GENEvVA Monte-Carlo program [67]. For color-singlet pro-
duction, the N-jettiness subtraction method reduces to an analogue of gy subtractions [39]
with an alternative physical resolution variable. The differential version as a subtraction
was used at NLO in ref. [68].



In its simplest form as a phase-space slicing, the N-jettiness subtraction method has
been successfully applied already to calculate the top quark decay rate at NNLO [69].!
While this work was being finalized, this method was also suggested and applied to the
NNLO calculations of pp — W/H + jet in refs. [72, 73]. These results clearly high-
light the usefulness of the slicing method, even for complex 2 — 2 processes with three
colored partons.

In this work we give a general description of how N-jet resolution variables, and specif-
ically N-jettiness, can be used as subtraction terms to compute fixed-order cross sections.
In section 2, we discuss how the IR singularities in QCD cross sections are encapsulated
by an N-jet resolution variable. We demonstrate that this naturally leads to subtraction
terms for fixed-order calculations, and show how these can be used in phase-space slicing,
as done in refs. [69-73], and as differential subtractions, generalizing gr-subtractions [39].
In section 3, we review the definition of N-jettiness and its general factorization theorem
for N-jet production. We show how the subtraction terms are defined in terms of func-
tions in the factorization theorem. We explicitly construct the subtraction terms at NLO
and NNLO for generic N-parton processes. We also discuss the extension to N3LO and
to more-differential subtractions. In section 4, we discuss how these subtractions may be
implemented in parton-level Monte-Carlo programs. We also show results for Drell-Yan
and gluon-fusion Higgs production at NNLO and use these as an example to discuss some
of the numerical aspects. We conclude in section 5.

2 General formalism

2.1 Notation

We denote the N-jet cross section that we want to compute by o(X). Here, X collectively
stands for all differential measurements and kinematic cuts applied at Born level. In
particular, it contains the definitions of the N identified signal jets in o(X) and all cuts
required to stay away from any IR-singularities in the N-parton Born phase space.

The cross section at leading order (LO) in perturbation theory can then be written as

oMO(X) = /d<I>N By (®n) X (D), (2.1)

where the measurement function X (®y) implements X on an N-parton final state. The
Born contribution, By (®y), is given by the square of the lowest-order amplitude, A for
the process we are interested in,2

=S AQ@N[P o By@n) =fufe SJAD y@0P, (22)
color color

where @ denotes the complete dependence of the amplitude on the external state (includ-
ing all dependence on momentum, spin, and partonic channel). For hadronic collisions,

' A similar slicing method utilizing heavy-quark effective theory was also used in ref. [70, 71] to perform
the fully-differential NNLO calculation for ete™ — t£.

2For a tree-level process, A g given by the sum of the relevant tree-level diagrams. For a loop-induced
process, like gg — H, it is the sum of the relevant lowest-order IR-finite loop diagrams.



the PDFs f,; are included in By (®x) and @y also includes the corresponding momentum
fractions x4p. Correspondingly, the integral over d®y in eq. (2.1) includes all phase-space
integrals and sums over helicities and partonic channels. For simplicity, we also absorb into
it flux, symmetry, and color and spin averaging factors. We use N to denote the number
of strongly-interacting partons in the final state. There can also be a number of additional
nonstrongly interacting final states at Born level, which are included in ® ; but we suppress
for simplicity.

2.2 Singular and nonsingular contributions

Any N-jet cross section o(X) can also be measured differential in a generic N-jet resolution
variable Ty, which we write as do(X)/d7x. Then o(X) may be written as

B do(X) /Tﬁ“t do(X) / do(X)
(X)) = /OdTN el A bl U o (2.3)

dividing the more differential cross section into the region 0 < Ty < T and the re-

gion Ty > T, For Ty to be an N-jet resolution variable it must satisfy the following
conditions:

TN(CI)N) =0, TN(‘I)ZN—H) >0, TN((I)EN-&-I — (I)N) — 0. (2.4)

In words, Ty must be a physical IR-safe observable that resolves all additional IR-divergent
real emissions, such that the cross section do(X)/d7y is physical and IR finite for any
Tn > 0, and the IR singular limit corresponds to Ty — 0. Hence, we have

doO(X) 1 do(X)
d7n olO(X) dTn Ta>0

We use the convention that Ty is normalized to be a dimension-one quantity, and for

= o"0(X) 8(Tw)

= O(ay). (2.5)

convenience we also define the dimensionless quantities

cut
= 75, 7_cut — Tg (2.6)

Here, @ is a typical hard-interaction scale of the Born process (whose precise choice however
is unimportant). For example, canonical choices would be Q = Ey, for ete™ — jets,
Q= \/qjgé for Drell-Yan pp — V — ¢, Q = my for gg = H, and Q = pJTet for pp — dijets.
We define the “singular” part of the Ty spectrum to contain all contributions that are
singular in the 7 — 0 limit, i.e., all contributions which are either proportional to 6(7x)

or that behave as In"(7)/7 for 7 — 0. It can be written as
do®ns(X)

= Ca(X)8(7) + D CalX) La(r), (2.7)

n>0

3For particular definitions of Ty, there could also be regions of ®>x 1 (far) away from any IR singu-
larities where 7n is small or vanishing. Such regions do not pose a problem and are irrelevant for our
discussion. The typical example for Txy = gr at NNLO are contributions from two hard real emissions
that are back-to-back such that gr — 0. Another generic example are regions where two partons are
collinear that cannot arise from a QCD singular splitting. Such cases can be avoided by defining 7x in a
flavor-aware way.



where the £, (7) are the usual plus distributions. For a suitable test function f(7):

£ty = [A0000)

cut cut

T T o™ (r nn+1 cut
IREGECEY ar ™ 0y - g0+ p0) 2T

2.8
o T n—+1 ( )

This logarithmic structure of the singular contributions directly follows from the IR singular
structure of QCD amplitudes, the KLN theorem, and the fact that Ty is an IR-safe physical
observable. Since the infrared limit of the QCD amplitudes, and hence the IR singularities,
depends only on the lower-order phase space, the singular coefficients C,, only depend on
the underlying ® 5. That is,

60 = [aaxcu@n ey, TIE L a0y T i@y

We can therefore consider the singular distributions directly as a function of the full @y
and independently of the specific measurement X,

(ycsm;(@m =C-1(Pn) d(7) +7;)Cn(¢zv) Ln(7)
2m—1
= [C“’P(@N)ém > C,sm><q>N>cn<T>} ()" (2.10)

m>0 n=0

In the second line, we have expanded the singular coefficients in as. At LO, the only
nonzero coefficient is

cO)(@y) = By(Py), (2.11)

so at LO the singular spectrum reproduces the LO cross section, consistent with eq. (2.5),

sing
doro

= CcO(X)6(Tw) = (X)) 5(Tw) - (2.12)

At NLO, the coefficients C_11(®y) are nonzero, while at NNLO, the coefficients
C_1,0,1,2,3(®nN) contribute.

Writing the singular spectrum in terms of plus distributions as in egs. (2.7) and (2.10)
precisely encodes the cancellation between real and virtual IR divergences. The C_; coef-
ficient contains the finite remnant of the virtual contributions after the real-virtual cancel-
lation has taken place. By itself, it is not unique, but depends on the boundary conditions
adopted in the definition of the plus distributions, which is encoded in the choice of 7 (the
choice of Q). Changing the boundary conditions is equivalent to rescaling the arguments
of the plus distributions according to (see e.g. ref. [74])

n

B n\ . & In" i\
ALn(AT) = kzzo <k> I\ Ly (7) + T 5(1). (2.13)




While this rescaling moves contributions between different C,, it does not change the
overall 1/Ty scaling, which implies that the sum of all terms in eq. (2.7) is unique* and
in fact independent of the choice of Q.° Once the singular spectrum is written in terms
of distributions as in eq. (2.7), one can easily integrate it up to Ty < T5" to obtain the
singular cumulative distribution (or cumulant in short)

da_sing (X)
d7n

nnJrl ( cut)

T

—C(X)+ Y Cx)

_— (2.14)
"0 n+1

. T
O_smg (X, T]%ut) = / dTN
0

The “nonsingular” contributions are defined as the difference between total and sin-
gular contributions,

do"™(X)  do(X) B do®ne(X)
dTn - dTN dTn

T dghons( x
O_nonS(X’ T]\C[Ut) :/0 dTN g ( )

= o (X, T — o*8(X, T (2.15)
dTn
They start at O(ay) relative to O (X) (which is part of do*8). By definition of the
singular terms, the nonsingular spectrum contains at most integrable singularities for Ty —
0, the largest terms being do™™(X)/dTy ~ a?In®**(r). Equivalently, the nonsingular
cumulant behaves for 73" — 0 as

O,noHS()(7 T]{?]ut — 0) ~ 7_cut CMZ ln2n(7_cut) 0. (216)

Hence, also the underlying matrix-element contributions yielding the nonsingular terms
can be safely integrated in the infrared.

2.3 Tn-subtractions

Up to this point, the decomposition of a cross section into singular and nonsingular terms is
just notation and holds for any 7. The key point of the Ty-subtraction method is that if
we have analytic control of the singular 7Ty dependence, we can turn the singular spectrum
do*"8(X)/dTy and its integral o*"8(X, T¢%) into subtractions, as discussed next. This
requires that for some N-jet resolution variable 7y, the underlying coefficients C,(®y) in
eq. (2.10) can be determined explicitly.® In particular, the ability to explicitly compute
C_1(®y) is precisely equivalent to being able to compute the integrated subtractions in a
classical subtraction method. All these conditions are satisfied for N-jettiness, as we will
discuss in section 3.

41t is unique in the sense that it has the minimal 7n dependence, only containing In"(7x)/7n. One
could in principle include some subleading 7n dependence in the coefficients, if this turns out to be useful
or convenient. This would move some contributions between the singular contributions and the nonsingular
remainder in eq. (2.15).

®The actual physical scales appearing together with 7x in the logarithms are set by the hard Born
kinematics. The reason to think of @) as a typical hard scale is that this provides the natural power
suppression of the nonsingular terms.

5They do not necessarily have to be known fully analytically, and in general they will not be. All we
really need is a sufficiently fast way to compute their numerical values for given ®x to in principle any
desired accuracy.



2.3.1 7Tn-slicing

If the singular contributions for a given 7y are known, we can use 75" to divide the phase
space into two regions: Ty < T and Ty > T Taking 75" — 75 = 6rQ, where
dir = T5/Q is an (in-principle) arbitrarily small IR cutoff, the singular terms will numer-
ically dominate the nonsingular for Ty < Ty". In fact, since the nonsingular cumulant
o™ ( X, Ts) is of O(T5/Q) = O(dir), we can neglect it in this limit. Hence, we get

T do(X) do(X)
X)= d7; + / dTN —=—
o(X) /0 N T - N Ty

; do(X)
_ ,sing
o (X,73)+/7:SdTN i

+ O(dRr) - (2.17)

This is precisely a phase-space slicing method, which we will call Ty-slicing. Calculating
o(X) to N"LO in this way requires determining o"¢(X, 75) to N"LO, which includes the
N"LO virtual contributions. Beyond that, since the Ty spectrum only starts at O(ay)
relative to o(X), the problem is reduced to the N*"'LO calculation for the cross section
do(X)/dTy for Ty > Ts. Furthermore, if an N"~'LO calculation is available, the slicing
only needs to be performed for the pure N"LO terms.

2.3.2 Differential Tn-subtractions

It is instructive to rewrite the Ty-slicing in eq. (2.17) in the form of a subtraction as follows,

. o Tot oSing
o(X) = o™"8(X, Togr) + [/TdTN dd%()] - [/T dTNd(ﬂ,]\([X) LOGR).  (218)

This reorganization shows that the integral of the singular spectrum acts as a global sub-
traction for the integrated full spectrum, while the cumulant o5"&(X, Tog) is the corre-
sponding contribution of the virtual terms (sitting at 7 = 0) plus the integrated subtrac-
tion. The value of Tog is arbitrary and exactly cancels between the first and third terms. It
determines the upper limit in 75 up to which the subtractions are used. The subtraction
term in this case is maximally nonlocal, as it is applied after all phase-space integrations.
Hence, one would naively expect the numerical cancellations to be maximally bad. This
also shows that 75 really is an IR cutoff below which only the singular (subtraction) terms
are used, due to limited numerical precision.

Looking at eq. (2.18), we can also move the singular spectrum underneath the Ty

integration,
" do(X) do*"8(X) }
X) = sing X o
o(X) =" (X, Torr) + /TS dTN[ T T 0(Tn < Tot) | + O(01r)
~ Tor  domo™s(X) do(X)
=" (X, Ts +/ dT; +/ + O(R), 2.19
d ( ff) T N dTn T dTN ( IR) ( )

which turns the singular spectrum into an actual subtraction which is local (point-by-
point) in Ty. It is of course still nonlocal in the remaining real radiation phase space. To
use eq. (2.19), one now has to explicitly calculate the singular differential spectrum. This



requires essentially no additional effort, since the required singular coefficients are the same
as in oS8 (X, Tut).

Writing it as in the second line of eq. (2.19) shows explicitly that the numerical integral
over Ty now only encounters an integrable singularity for 7ny — 0 since the integrand is
precisely the nonsingular contribution. This turns 75 into a purely technical cutoff for the
numerical integration, which is only necessary because the integrand is still given by the
difference of two diverging integrands. Finally, we note that the neglected contributions
due to the numerical IR cutoff 75 are precisely the same as in eq. (2.17) for the same value
of Ts. The numerical error introduced by such a cutoff is discussed in the next section.

We stress that a technical IR cutoff analogous to dir exists in any numerical fixed-
order calculation using subtractions, since the QCD amplitudes (and their subtractions)
become arbitrarily large in the IR. Below the cutoff, the full QCD amplitudes are always
approximated by the subtraction terms, so that below the cutoff only the integral of the
subtraction is used, while the nonsingular cross section below the cutoff is power suppressed
by dr and neglected.

Finally, note that separating the spectrum or cumulant into its singular and nonsin-
gular parts, as we have done here, is in fact very well known and routinely used when
performing the higher-order resummation for an IR-sensitive observable Tx. In this con-
text, the singular contributions are resummed to all orders in a,; and a given logarithmic
order, while eq. (2.15) is used to determine the nonsingular contributions. At NNLO, this
utilizes the result for do(X)/d7y obtained from the NLO N + 1-jet calculation and the
NNLO singular contributions obtained from the NNLL’ resummation of Ty . In section 3 we
will employ the same techniques to compute directly the fixed-order singular contributions
without resummation. This also makes it clear that if desired any NNLO calculation per-
formed in this way can be straightforwardly improved with the corresponding higher-order
resummation in 7.

2.3.3 Estimating numerical accuracy

We can judge the numerical accuracy of the Ty-slicing and differential Ty-subtractions
using some simple scaling arguments. First, it is important to quantify the effect of the IR
cutoff digr. Using N-jettiness as an example, at N"LO relative to the Born cross section,
the most dominant singular terms in the spectrum and the cumulant are, for a given
partonic channel,

jé = GLO; ZL(Z?>H<_ZQI‘O)”£2”1(T) +e

o (T = o0 Z % (%)n (— Z C’J‘o)n In?" (7)) ... . (2.20)
n>1 i

Here, I'g = 4 is the one-loop coeflicient of the cusp anomalous dimension, C; = CF for
quarks and C; = Cy for gluons, and the ellipsis denote terms with fewer powers of loga-



rithms at each order in a,.” Correspondingly, the leading nonsingular term in the cumulant
has the form

oM (TR = O3 () clan(- Z CiTy) r M L () (221

The coefficient CIEZI)]S is not known in general, but we take 01(12318 = 1 here, which is the
correct value for 2-jettiness in ete™ (i.e. thrust).

We denote the missing nonsingular contribution due to approximating the full result
by the singular contributions below Ty < 75 by Acor(dr) and expand it in oy as
e Qs

s Aa‘2)(5la)(—)2 . (2.22)

"™ (T5) = Aor(0R) = AUI(pl{) (01r) in IR y

The size of the dominant nonsingular terms in eq. (2.21) at 7 = R is indicative of the size
of Aor. For the production of a color singlet X in the pp — X and pp — X +jet channels,
the missing terms at NLO and NNLO scale as (plugging in the relevant color factors):

qq — X : {Aol(ll%) ~ ULO{—10.751R Indir, 113.8r 1113(5111},
~ o"O{—2461r In iR , 576 61r In®01 },
~ 00{-22.76r Indir , 513.8 01r In®01r },

~ O'LO{*36 5IR In 5IR R 1296 5IR ln35IR}.
(2.23)

—

=%
—
jv]

~—

g9 — X : {AJIR
_ 1
g9 — Xq,q7 — Xg: {AUI(R)

=~ o~ o~ o~
T T T D
—~
=%
—
jos}
N~—

—

=2
—
=

~—

—~
=%
—
=~}
~—
e N N

g9 — Xg: {AJIR

To estimate the impact of these terms relative to the full NLO and NNLO contributions,
we write the full result for the cross section as
2
— o0 4 ;1) Qs (2)(%)
= + + + . 2.24
oc=o0 A i by (2.24)
We assume that the K-factors at each order of perturbation theory for q§ — X and
q7 — Xg, q9 — Xq processes are 10%, so ¢ /o0 ~ 10". For gg — X and gg — Xg
processes, we assume the K-factors are 30%, so that o / o0 ~ 30" for these cases. These
factors roughly scale like the prefactors in eq. (2.23). Hence, a rough estimate of the relative
size of the missing terms at each order is given by

A (1) A (2)
M ~a 5IR In (SIR , M ~a 5IR lIl3 5IR . (225)
o) o

The dependence of these corrections on &g is plotted in figure 1, where we take a between
1/3 and 3. The dashed line shows the known exact NLO result for thrust. This implies
that when working to NNLO, we need dig < 1072 — 10~% to have a reasonable < O(10%)
determination of the a2 NNLO contribution to the cross section. For typical applications
with @ ~ O(100 GeV) this implies that 75 < 0.1 —0.01 GeV. To the extent that the NNLO

"In principle, subleading logarithmic terms can also be numerically important due to large numerical
prefactors, especially for moderate 75 values. However, for small enough 7s values, the leading logarithmic
terms are a sufficient estimate.
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Figure 1. Estimated size of the missing nonsingular terms below 7 = dig as a fraction of the full
correction at NLO (blue band) and NNLO (orange band), see eq. (2.25). The dashed line shows
the known exact result for thrust.

terms are only a small part of the total cross section (as is the case for Drell-Yan, for
example), a larger error on the NNLO terms might be tolerable. However, we stress that
these estimates can only serve as an indication, and in practice one should carefully test
the size of missing corrections, for example by studying the d;r dependence as discussed in
section 4.3.

An important comment concerns the fact that it is in principle possible and straight-
forward (though perhaps tedious in practice) to derive subleading factorization theorems
for N-jettiness and other observables using SCET. These can then be used to systemati-
cally determine the next-to-singular O(7) corrections and include them in the same way
in the subtractions. This would substantially reduce the size of the missing nonsingular
corrections by one power of dig. A complete factorization theorem at subleading order for
a single-jet process has been derived for semileptonic heavy quark decays in ref. [75]. For
recent work in this direction for thrust in ete™ see e.g. refs. [76-78].

A second important aspect concerns the required numerical precision in a practical
implementation. For both Ty-slicing and differential 7y-subtractions, the full QCD and
2> Ts, where there

~

singular cross sections are probed in regions of phase space with Ty
are significant numerical enhancements due to the nearby IR singularity at 7y = 0. For
Sir ~ 1074, the cancellations between the full QCD and singular 7x distributions can
easily reach the O(10%) level and only increase as dig is lowered further. Getting a result at
O(10~%) relative numerical precision in this case demands at least an O(10~*+4)) relative
numerical precision in the evaluation of the squared QCD amplitudes.

For Ty-slicing, the numerical cancellations only happen after the Ty integration, which
means that in the worst case the 7y integral itself may have to be carried out to the same
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high precision. In practice, this will strongly depend on the process and the chosen Ts,
since the numerical cancellations actually happen between the two terms in eq. (2.17) rather
than the the last two terms in eq. (2.18). In any case, using Monte-Carlo integration to
determine the integral of the unsubtracted full result down to Ty > Ts very accurately
requires very high statistics and good phase-space sampling. Since NLO codes are usually
not designed for this purpose, this strongly limits how low 75 can be taken.

For the Ty-subtractions, the QCD amplitudes in the integrand still require the same
high numerical precision at small T to obtain an accurate result for the nonsingular spec-
trum. However, since the cancellations now happen already at the integrand level, the
T integration itself has to be carried out only to the nominal O(107%) relative precision.
Hence, the statistical requirements on the Monte-Carlo integration of the nonsingular spec-
trum in eq. (2.19) are much more modest compared to the 7Ty-slicing. This also means
that 75 can now be taken as low as the numerical precision in the integrand allows. The
main nontrivial requirement now is that one must be able to sample phase-space for fixed
Tn, which we discuss further in section 4.

3 N-jettiness subtractions

In this section, we now specify Ty to be N-jettiness and explicitly construct the N-jettiness
subtractions. We first discuss the Born kinematics and the definition of N-jettiness in
section 3.1. In section 3.2 we review the factorization theorem for the singular contributions
in Ty and how the virtual QCD amplitudes enter into it. Then in section 3.3 we explicitly
write out the Ty subtractions at NLO and NNLO. Finally, in section 3.4 we discuss how
the subtractions can be made more differential and thereby more local.

3.1 Definition of N-jettiness
3.1.1 Born kinematics

We always use the indices a and b to label the initial states, and 1,..., N to label the final
states. Unless otherwise specified, a generic index ¢ always runs over a,b,1,...,N. We
denote the momenta of the QCD partons in the ® 5 Born phase space by {qa, q; q1, - -, 9N}
and the parton types (including their spin/helicity if needed) by {kq, kp; K1, . .., kN }. Thus,
® v corresponds to

Oy = {(qaa Ktl)? (Qb, K‘b); (QI7 "{1)1 R (QNa ’%N); @L(Q)} ) (31)

where @1 (q) denotes the phase space for any additional nonhadronic particles in the final
state, whose total momentum is ¢q. (For ep or ee collisions, one or both of the incoming
momenta are considered part of ®(q).) We will mostly suppress the nonhadronic final
state. For us, it is only relevant because it contributes to momentum conservation in @y,
which reads

htaq =q +--+dy+ " (3.2)
When there is no ambiguity, we will associate k; = i (e.g., we use f, = f.,), and we use
the collective label k to denote the whole partonic channel, i.e.,

k = {Kaq, Kp; K1, .- kN ={a,b;1,...,N}. (3.3)
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We write the massless Born momenta ¢; as

In particular, for the incoming momenta we have

Ecm
2 )

(3.5)

SRS
—
—_
N>
N—
3
SalS
|
—~
—_
|
N>
N—

Ea,b = Za,b

where E.p, is the total (hadronic) center-of-mass energy and Z points along the beam axis.
The z, are the light-cone momentum fractions of the incoming partons, and momentum
conservation implies

xaEcm:nb'(q1+"'+QN+Q)v -TbEcm:na'(q1+"'+qN+Q)- (36)
The total invariant mass-squared Q? and rapidity Y of the Born phase space are

1
Q* = zqxp B2, Y = 5 In i—z , ToBom = Qe , 2pEem = Qe Y . (3.7)

The complete d®  phase-space measure corresponds to

1 dz, dap
doy = do .. — dCI’ 3.8
/ N 2Egm/ Ta Tp N(Ga & o3 a1, 4N ) L(g E se o (38)

where d®y(...) on the right-hand side denotes the standard Lorentz-invariant N-particle
phase space, the sum over k runs over all partonic channels, and s, is the appropriate
factor to take care of symmetry, flavor and spin averaging for each partonic channel.

3.1.2 N-jettiness

Given an M-particle phase space point with M > N, N-jettiness is defined as [50]

Zm {2% p’“} (3.9)

where ¢ runs over a,b,1,..., N. (Here we use a dimension-one definition of Ty following

refs. [52, 65].) For ep or ee collisions, one or both of the incoming directions are absent.
The @Q; are normalization factors, which are explained below. The p; are the M final-state
parton momenta (so excluding the nonhadronic final state) of ®;;. The ¢; in eq. (3.9)
are massless Born “reference momenta”, and the corresponding directions 7; = ¢;/|g;| are
referred to as the N-jettiness axes. For later convenience we also define the normalized

vectors
. q;

4=
Qi

The ¢; are obtained by projecting a given ®,; onto a corresponding Born point

(3.10)
d N(®ar). For this purpose, any IR safe phase-space projection can be used. That is,

in any IR singular limit where ®,; — @, the Born projection has to satisfy

Dy (Prr — Py) = Dy, (3.11)
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including the proper flavor assignments. In particular, for M = N, we simply have
QA)N(d)N) = &y and so ¢; = p;, which implies Ty (®y) = 0. For M > N + 1, there is
always at least one pi that cannot be exactly aligned with any of the ¢;, which means
that Tn(®as) > 0. The minimization condition in eq. (3.9) ensures that for each p; the
smallest distance to one of the g; enters the sum, which together with eq. (3.11) implies
that Ty (P — ®n) — 0. Hence, N-jettiness satisfies all the criteria of an IR-safe N-jet
resolution variable given in eq. (2.4).

Some examples of suitable Born projections are discussed in section 3.1.3 below. Al-
though the precise procedure to define the Born projection and the g; is part of the definition
of N-jettiness, it is important that it does not actually affect the singular structure of the
Tn-differential cross section. Different choices only differ by power-suppressed effects, as
explained in ref. [50], which means the precise choice only affects the nonsingular contribu-
tions. Hence, constructing the singular contributions and the subtraction terms does not
actually require one to specify the Born projection, as they are constructed in the singular
limit starting from a given ®y.® This fact provides considerable freedom in the practical
implementation, which we will come back to in section 4.

The singular structure of 7Ty is determined by the minimization condition in eq. (3.9)
and the choice of the @);. The minimization effectively divides the ®;; phase space into N
jet regions and up to 2 beam regions, where each parton in ®j; is associated (“clustered”)
with the ¢; it is closest to, where the (); determine the relative distance measure between
the different ¢;. We can then rewrite eq. (3.9) as follows,

M
Tv=>_Th with 779_2{2%?’“1_[9(%@?’“ —Qié? )] (3.12)

i k=1 G J !

where the 7'](} are the contributions to 7x from the ith region.
The @; can be chosen depending on the Born kinematics in @ (subject to the con-
straint that the resulting distance measure remains IR safe). A variety of possible choices
are discussed in detail in refs. [52, 65]. An “invariant-mass” measure is obtained by choos-
ing common @; = @. In this case, the sum of the invariant masses of all emissions in
each region will be minimized. A class of “geometric measures” is obtained by choosing Q;

proportional to FE;, which makes the value of Ty itself independent of the F;, i.e.,
ni 2¢i - pr

Qi = 2p; I = gi = pi 5 5

where the p; are dimensionless numbers which determine the relative size of the different

= PiNi - Dk, (3.13)

regions. In this case, the sum of the small light-cone momenta, n; - pi, of all emissions
relative to their associated IN-jettiness axis are minimized.

The singular structure of the cross section does explicitly depend on the distance
measure. When discussing the singular contributions in the next section, we will keep the

8In this regard, the Tx-subtractions are FKS-like, namely they are intrinsically a function of the
Born phase space @ and an emission variable, which for us is 7, as opposed to starting from a given
®>n41 point.
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Q; arbitrary, thus enabling various choices to be explored using our results. [As discussed in
ref. [50], one can generalize N-jettiness further to use any IR-safe distance measure d;(py)
in eq. (3.9), which has been used for example in the application to jet substructure [79, 80].
For our purposes, the canonical form d;(py) = §¢; - px is suited well, because the simple
linear dependence on pj, simplifies the theoretical analysis and computations.]

3.1.3 Example Born projections

To construct a generic Born projection, it suffices to use any IR-safe jet algorithm to cluster
the M-parton final state into N jets with momenta P;. One can then define massless final-
state ¢/ = Ejn!' by taking (i =1,...,N)

with  E;=P° or E;=|B| or 2E; =P’+|P|, (3.14)

| (2

where any of the choices for F; can be used. To ensure that the total transverse momentum
in the Born final state adds up to zero, one can then for example boost the hadronic
system or recoil the leptonic final state in the transverse direction. Finally, the initial-
state momenta ¢q, and g, which always lie along the beam directions as in eq. (3.5), are
determined by momentum conservation from eq. (3.6).

When using a geometric measure as in eq. (3.13), the canonical way to determine the
N-jettiness axes 7; is by an overall minimization of the total value of Tn. Up to NNLO
the relevant cases are M = N +1 and M = N + 2, i.e., one and two extra emissions, in
which case the overall minimization to find the N-jettiness axes is still fairly easy