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1 Introduction

Superstring perturbation theory is traditionally constructed in an elegant framework of

superconformal field theory, with insertions of picture-changing operators (PCO’s) as well

as vertex operators for physical states [1, 2]. The PCO’s give a method of integration over

the odd moduli of a super Riemann surface [3].

Naively, the PCO’s can be inserted at arbitrary positions on a superstring worldsheet,

but it has been known since the 1980’s that this is oversimplified. The measure on the

moduli space of Riemann surfaces that is constructed using PCO’s has spurious singularities

if two PCO’s collide, and also if a certain global condition is obeyed.1 For this paper, it

suffices to know that the locus of spurious singularities is of complex codimension 1 or

real codimension 2 and has a reasonable behavior at infinity on moduli space.2 Actually,

the locus of spurious singularities is rather complicated and appears to have few useful

properties beyond what we have just stated.

1The global condition that leads to a spurious singularity says that the superconformal ghost field γ has

a zero-mode if it is allowed to have simple poles at the positions of PCO’s [3]. But that fact is really not

important for the present paper.
2The simplest way to explain what one means by “reasonable behavior” is to say that the bad set is

an orbifold of complex codimension 1 or real codimension 2 even if one compactifies the moduli space of

Riemann surfaces by allowing the usual degenerations.
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To get a correct, gauge-invariant method of computing superstring scattering ampli-

tudes, it is desirable to avoid spurious singularities. For topological reasons, a choice of

PCO locations that avoids spurious singularities exists only locally on moduli space. Ac-

cordingly, it has been understood since the 1980’s that a correct method of computation

based on PCO’s has to be based on piecing together local descriptions.

A relatively simple method to piece together the local descriptions was proposed re-

cently [4] in the form of “vertical integration.” However, only the basic idea of vertical

integration was described. Here, we explain systematically what vertical integration means

if carried out in full. An inductive procedure is involved with corrections, in a certain

sense, of all orders (bounded by the number of PCO’s). The need for corrections of high

order may come as a surprise to some readers. However, this should be anticipated based

on what was understood in the old literature, and is fairly clear from the point of view of

super Riemann surfaces.

In section 2, we recall the basic idea of vertical integration. In section 3, we describe

the procedure systematically to all orders. The construction described in section 3 re-

quires making some choices for the “vertical segment,” and in section 4 we show that the

scattering amplitude is independent of these choices. The measure that the procedure of

section 3 generates on the moduli space of ordinary Riemann surfaces is discontinuous, and

this is compensated by additional terms that take the form of integrals over subspaces of

the moduli space of codimension ≥ 1. In section 5, we describe a generalization of this

procedure that generates a smooth measure on the moduli space and show that the pro-

cedure described in section 3 can be regarded as a special case of this. In section 6, we

show gauge invariance of the amplitude defined in section 5. In section 7, we explain why

the inductive or hierarchical procedure that we follow would be expected from the point of

view of super Riemann surfaces.

In this paper, we ignore the fact that the moduli space M of Riemann surfaces is

not compact. This noncompactness arises from the fact that the string worldsheet Σ

can degenerate, and is associated to the infrared behavior of string theory. This infrared

behavior has been much analyzed in the literature and will not be considered here. We

simply remark that everything we say must be supplemented with some fairly well-known

conditions on the behavior of PCO’s in the limit that Σ degenerates.

A hierarchy of corrections somewhat similar to what we describe here was used in [7]

to construct a field theory of the NS sector of superstring theory. Each string field theory

diagram parametrizes in a relatively simple way a piece of the moduli space of bosonic

Riemann surfaces and comes with a relatively natural choice of PCO insertions suitable

for that piece. On the boundaries of the parts of moduli space parametrized by different

diagrams, the PCO choices do not fit together properly. In [7], a hierarchy of corrections

was introduced to compensate for this.

2 Overview

Before describing vertical integration in its most general form, we shall discuss some simple

cases explicitly and explain the issues one faces in extending to more general cases. Let us

denote by X (z) the PCO inserted at the point z in a string worldsheet Σ. We can express
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this as

X (z) = {QB, ξ(z)} , (2.1)

where ξ(z) is a fermion field of dimension (0,0) that arises from the bosonization of the

superghost system. ξ(z) is an operator defined in the large Hilbert space of Friedan,

Martinec, and Shenker [1, 2]. We shall work in the small Hilbert space,3 where one removes

the zero-mode of ξ from the spectrum of operators, so that only the derivatives of ξ are

valid operators. All our analysis will involve only such operators. However, we shall make

use of the fact that the periods of the closed 1-form ∂ξ vanish on any Riemann surface,

even in the presence of punctures labeled by operators of the small Hilbert space. Thus

operators of the form ξ(u)− ξ(v) ≡
∫ u
v ∂ξ(z)dz are well defined in the small Hilbert space

without having to specify the contour of integration from u to v.

Now consider a situation where the moduli space M over which we integrate has real

dimension n and suppose further that the correlation function of interest requires insertion

of only one PCO. Each point m ∈ M determines a Riemann surface Σ(m), and the one

PCO that we need can be inserted at an arbitrary point z ∈ Σ(m) except that we must

avoid a bad set of (real) codimension 2 at which there are spurious singularities. As Σ(m)

has dimension 2, the bad set consists of finitely many points in each Σ(m).

We denote by Y a fiber bundle with base M and fiber Σ(m):

Σ(m) −→ Yyϕ
M.

(2.2)

We also denote as X the subspace of Y in which, in each fiber, one deletes the bad points

at which the PCO should not be inserted.

We denote local coordinates on X as (m; a), with m ∈ M and a ∈ Σ(m). X is not a

fiber bundle over M , because as one varies m ∈ M , the bad points in Σ(m) can collide.

However, there certainly is a map ϕ : X → M . This is the map that forgets where the

PCO is inserted; in local coordinates, it maps (m; a) to m.

Suppose that M is of real dimension n. The path integral with one PCO insertion at

a ∈ M(m) (and all external vertex operators on-shell) naturally computes for us a closed

n-form on X:

ωn(m; a) ≡ 〈(X (a)− ∂ξ(a)da) ∧ O〉n . (2.3)

Here 〈 〉 denotes a CFT correlation function on Σ(m); O is a formal sum of operator-

valued k-forms on M for all k between 0 and n, constructed from insertions of b-ghosts and

possible on-shell vertex operators for external states. The subscript n denotes that we have

3Only the small Hilbert space appears to have a natural interpretation in terms of super Riemann

surfaces, so from that point of view one expects that all important formulas can be written in terms of

operators of the small Hilbert space.
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Figure 1. A triangulation of a two-dimensional surface.

to extract the n-form part of this expression.4 The precise form of O and the procedure to

extract the closed n-form ωn(m; a) is well-known and will not be described here.

The subtlety of superstring perturbation theory in the PCO formalism arises because

the PCO formalism naturally constructs a closed n-form on X, not on M . Ideally one would

want an n-form on M , which would automatically be closed for dimensional reasons, and

which would be integrated over M to compute a scattering amplitude.

How can we eliminate the dependence on a? If we had a section s : M → X of the map

ϕ : X →M , which concretely would be given in local coordinates by a formula5 a = s(m),

then we could pull back ωn(m; a) to an n-form on M and define the scattering amplitude as∫
M
s∗(ωn) =

∫
M
ωn(m, s(m)). (2.4)

Since ωn is closed, this definition of the scattering amplitude is invariant under small

changes in s. (From this point of view, if there are topologically distinct choices of s

they might lead to different but equally well-defined results for the scattering amplitude.)

Moreover, ωn and therefore s∗(ωn) changes by an exact form if one makes gauge transfor-

mations for some of the external vertex operators, so the scattering amplitude defined this

way would be gauge-invariant.

In general, the map ϕ does not have a global section, but if we choose a sufficiently

fine triangulation of M (figure 1) then on each triangle, there will be a local section. This

is just the statement that on a sufficiently small triangle, we can choose the PCO location

as a continuous function of m while avoiding the bad points.6

4In fact, the k-form parts of this expression for others values of k, which we may call ωk(m; a), are also

useful e.g. in the proof of decoupling of pure gauge states. This is because ωk satisfies the useful relation

ωk(QB |Φ〉) = (−1)kdωk−1(|Φ〉). Here |Φ〉 denotes the collection of all external states and QB is the total

BRST operator acting on all the external states.
5M and X are complex manifolds, but the section s (or equivalently the function s(m)) is not assumed

to be holomorphic.
6The term “triangle” assumes that M has dimension n = 2. The n-dimensional generalization of a

triangle is called a simplex. In the present introductory explanation, we use two-dimensional terminology.
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Let T1 be one such triangle with local section a = s1(m). The contribution to an on-

shell amplitude from the triangle T1 with the PCO insertion at a = s1(m) can be expressed

as ∫
T1

ωn(m; s1(m)). (2.5)

Now suppose that T2 is a second triangle which shares a common boundary B with

T1, and let s2 denote a local section on T2. Then the contribution to the amplitude from

T2, computed with this local section, will be given by∫
T2

ωn(m; s2(m)) . (2.6)

Since s1(m) and s2(m) do not in general agree on the boundary B, the full amplitude

must be obtained by summing over contributions from different triangles together with

appropriate correction factors from the boundaries between the triangles.

Vertical integration is a prescription for determining these corrections. We “fill the

gap” in the integration cycle on Y by drawing a vertical segment U . U is constructed by

connecting the point s1(m) ∈ Σ(m) to s2(m) ∈ Σ(m) by a curve C(m) ∈ Σ(m) for each7

m ∈ B, keeping away from the spurious singularities, and taking the collection of all such

curves: {C(m) : m ∈ B}. We parametrize U by m ∈ B and a variable u ∈ [0, 1] that labels

the position along the curve C(m). The correction term associated with the boundary B

is now taken to be given by the integral of ωn(m; a(u)) over U . Using (2.3), the integration

over u for fixed m ∈ B can be performed first, yielding the result∫
U
ωn(m;u) =

∫
B
〈(ξ(s1(m))− ξ(s2(m)))O〉n−1 (2.7)

The subscript just means that 〈(ξ(s1(m))− ξ(s2(m)))O〉n−1 is naturally an (n− 1)-form.

Importantly, the right hand side does not depend on the choice of the paths C(m), so we

do not really need to pick a specific vertical segment U .

In general, M may be triangulated with many triangles Ti, meeting in common bound-

aries Bij = Ti∩Tj (most of the Bij are empty). The full scattering amplitude is defined to be∑
i

∫
Ti

ωn(m; si(m)) +

∫
Bij

〈(ξ(si(m))− ξ(sj(m)))O〉n−1. (2.8)

Fixing the relative sign between the two terms requires fixing the orientation of Bij ; this

will be done carefully in section 3. Standard arguments show that this formula is in-

variant under continuous changes of the Ti and the si, and also is invariant under gauge

transformations of external state.

The logic behind this definition is as follows. Over each double intersection Bij = Ti∩Tj
of triangles, we can define a “vertical segment” Uij as a union of paths from si to sj . Now

let us consider a triple intersection Ti ∩ Tj ∩ Tk, with precisely three triangles meeting at

a common vertex (figure 2). This means that Bij , Bjk, and Bki share a common endpoint

7If the triangles T1 and T2 and therefore the boundary B are small enough, there is no problem in

making C(m) vary smoothly with m. But in a moment we will see that this is not necessary.
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Figure 2. A triple intersection of triangles.

pijk. (The case of more than three triangles meeting at a vertex can be treated similarly.)

It then makes sense to ask if Uij , Ujk, and Uki agree at pijk, i.e. for each m ∈ pijk the paths

from si(m) to sj(m) in Uij , sj(m) to sk(m) in Ujk and sk(m) to si(m) in Uki together

describe zero path. If they do (for all triples ijk), then the triangles si(Ti) and the vertical

segments Uij could be glued together to make a closed cycle S ⊂ X. One would then

define the scattering amplitude as
∫
S ωn. This actually would agree with eq. (2.6), since

under the stated assumptions, S could be slightly perturbed to be a section s : M → X.

It would clearly also agree with eq. (2.8), which expresses the scattering amplitude as an

integral over S = ∪iTi ∪jk Ujk. In reality, it may not possible to make the Uij ’s agree at

triple intersections since there may be a topological obstruction to finding a global section

s, but because the formula of eq. (2.8) does not depend on the choices of the Uij , this

version of the formula makes sense anyway and has the same properties as if the Uij did

agree on triple intersections. In fact, we can study each triple intersection independently

of the others, and at any one triple intersection, one can arrange so that the Uij do agree.

As long as only one PCO is needed, this is the end of the story. The situation gets more

complicated when there are more PCO’s. First of all, the generalization of (2.7) now is

ambiguous since s1(m) and s2(m) each will represent a collection of PCO’s, and the integral

in (2.7) depends on the order in which we move the PCO’s. Second, we may need additional

correction terms from codimension ≥ 2 subspaces where three or more triangles meet. We

can illustrate both these issues by considering the case where we need two PCO insertions in

the correlator. In this case the role of Y is played by the bundle whose base is M and whose

fiber is Σ(m)× Σ(m). As before, X is obtained by excluding from Y certain codimension

2 subspaces on which we encounter spurious poles. The local coordinates of X can still be

denoted as (m; a) but now a stands for a pair of PCO locations (z1, z2). Similarly the choice

of a local section s1 on T1 will now specify a pair of points (z
(1)
1 (m) ∈ Σ(m), z

(1)
2 (m) ∈ Σ(m))

avoiding spurious poles for each m ∈ T1, and the choice of a local section s2 on T2 will

specify a pair of points (z
(2)
1 (m) ∈ Σ(m), z

(2)
2 (m) ∈ Σ(m)) avoiding spurious poles for

– 6 –
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m ∈ T2. The contribution to the amplitude from a given triangle Ti is still given as∫
Ti

(si)∗(ωn) =

∫
Ti

ωn(m; z
(i)
1 (m), z

(i)
2 (m)), (2.9)

but ωn(m; a) is now given by

ωn(m; a) ≡ 〈(X (z1)− ∂ξ(z1)dz1) ∧ (X (z2)− ∂ξ(z2)dz2) ∧ O〉n , (2.10)

with two PCO insertions. We can now try to determine the correction terms at the bound-

aries between triangles by generalizing our prescription for vertical integration. At an

intersection of two triangles T1 and T2, we again need to integrate over a “vertical seg-

ment” that fills in between s1(T1) and s2(T2). For this, from each m ∈ B we need to

connect (z
(1)
1 (m), z

(1)
2 (m)) to (z

(2)
1 (m), z

(2)
2 (m)) by a path in Σ(m)×Σ(m). But now, if we

imitate the above procedure, the result will depend on the path. It is easy to check, for

example, that the paths

(z
(1)
1 (m), z

(1)
2 (m))→ (z

(2)
1 (m), z

(1)
2 (m))→ (z

(2)
1 (m), z

(2)
2 (m)) (2.11)

and

(z
(1)
1 (m), z

(1)
2 (m))→ (z

(1)
1 (m), z

(2)
2 (m))→ (z

(2)
1 (m), z

(2)
2 (m)) (2.12)

give different results for the integral:∫
B

〈[
(ξ(z

(1)
1 )− ξ(z(2)

1 ))(X (z
(1)
2 )− ∂ξ(z(1)

2 )dz
(1)
2 )

+(ξ(z
(1)
2 )− ξ(z(2)

2 ))(X (z
(2)
1 )− ∂ξ(z(2)

1 )dz
(2)
1 )
]
∧ O

〉
n−1

(2.13)

and ∫
B

〈[
(ξ(z

(1)
2 )− ξ(z(2)

2 ))(X (z
(1)
1 )− ∂ξ(z(1)

1 )dz
(1)
1 )

+(ξ(z
(1)
1 )− ξ(z(2)

1 ))(X (z
(2)
2 )− ∂ξ(z(2)

2 )dz
(2)
2 )
]
∧ O

〉
n−1

(2.14)

where dz
(1)
i , dz

(2)
i have to interpreted as their pullback to B. Let us suppose that we have

made some specific choice of the path for each boundary separating a pair of triangles.

Now if we consider the subspace of M where three triangles T1, T2 and T3 meet, then

the chosen path from (z
(1)
1 (m), z

(1)
2 (m))→ (z

(2)
1 (m), z

(2)
2 (m)) on the boundary between T1

and T2, together with the chosen path from (z
(2)
1 (m), z

(2)
2 (m))→ (z

(3)
1 (m), z

(3)
2 (m)) on the

boundary between T2 and T3, may not match the chosen path from (z
(1)
1 (m), z

(1)
2 (m)) →

(z
(3)
1 (m), z

(3)
2 (m)) on the boundary between T1 and T3. This means that when we regard

the integrals as integrals over subspaces of Y , then even after filling the gaps between the

sections over T1 and T2, the sections over T2 and T3 and the sections over T1 and T3, we are

left with a gap over the common intersection of the three triangles. The earlier argument

based on the path independence of (2.7) does not help us since now the result does depend

– 7 –
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on some details of the path. Thus we now need to “fill this gap,” leading to additional

correction terms.

In general, for computing an amplitude with some given numbers of external legs

of Neveu-Schwarz or Ramond type and given genus, we need a fixed number K of PCO

insertions. The analog of Y in the above discussion is a fiber bundle over M whose fiber is a

product Ξ(m) = Σ(m)×Σ(m)×· · ·×Σ(m) of K copies of Σ(m). The analog of X is obtained

by omitting from each fiber of Ξ(m) a codimension 2 subset on which spurious singularities

arise. We shall denote a point in X by (m; a) with m ∈M , a ∈ Ξ(m) and by ϕ : X →M the

map that forgets a. In general, ϕ : X →M does not have a global section but it has local

sections. Thus if we triangulate M (we follow a slightly different procedure in section 3), a

local section will exist over each simplex (recall that a simplex is the n-dimensional analog

of a triangle). We can follow the procedure described above, integrating (si)∗(ωn) over

each simplex and making corrections on the boundaries of simplices. But now, further

corrections will be needed on higher codimension subspaces where the boundaries meet. In

general, one needs corrections on codimension k subspaces for all k ≤ K. The main goal

of this paper to give a systematic procedure for constructing these correction terms and to

show that once all the corrections are added, the result has the desired properties of the

string amplitudes. In particular, it is gauge-invariant and free from any ambiguity.

3 General procedure

In this section, we shall generalize the ideas of section 2 to arrive at a complete prescription

for computing the amplitude.

3.1 Dual triangulations

For carrying out this program, roughly speaking, we will use a triangulation of M , but

actually triangulation is not precisely the most convenient notion. To “triangulate” an n-

manifold M means to build it by gluing together simplices, or simply by triangles if n = 2.

In a triangulation, any number of simplices might meet at a vertex. Instead of triangles,

we might cover M by more general polyhedra again in general with any number of building

blocks meeting at a vertex. This is sketched in two dimensions in figure 3. The analog of

this in dimension n is to use n-dimensional polyhedra, perhaps of some restricted type, as

the building blocks, rather than n-simplices.

For our purposes, we do not want an arbitrary covering by polyhedra, but the restric-

tion to simplices is also not convenient. We use the fact that to a covering Λ by polyhedra,

we can associate a dual covering Λ̃. In this duality, faces of dimension k are replaced by

faces of dimension n− k that meet them transversely. In two dimensions, this means that

a polygon in the covering Λ corresponds to a vertex in the dual covering Λ̃, and vice-versa,

while the edges Λ meet the edges in Λ̃ transversely (figure 4)).

In the two-dimensional example shown in figure 4, the “original” covering Λ is a tri-

angulation. This means generically that the dual covering Λ̃ is not a triangulation, but

a covering by more general polygons. However, Λ̃ has a useful property: every vertex in

– 8 –
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Figure 3. A covering of a two-dimensional surface by more general polygons.

Figure 4. A triangulation (black) and the dual covering (red). We call the dual covering a dual

triangulation. Any vertex of one of the polygons making up a dual triangulation is contained in

precisely three of those polygons.

Λ̃ is contained precisely in three polygons. In two dimensions, a covering of M with this

property can be built by drawing a trivalent graph on M (figure 5)).

If M is a manifold of any dimension n, by a “dual triangulation,” we mean a covering

that is dual to a triangulation. Thus, if Υ is a dual triangulation of M , then it is built by

gluing together n-dimensional polyhedra along their boundary faces, in such a way that

for k = 1, . . . , n, every codimension k face of one of the polyhedra is contained in precisely

k + 1 polyhedra in Υ. This generalizes the fact that in dimension 2, every edge in a dual

– 9 –
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Figure 5. A dual triangulation of a two-dimensional surface is defined by drawing a trivalent graph

on the surface.

triangulation is contained in two polygons and every vertex is contained in three polygons.

It will be technically easier for us to use a dual triangulation rather than some other type

of covering, because it is useful to have a bound on the number of polyhedra that meet at

a face of given codimension.

3.2 Basic setup

We pick a dual triangulation Υ of M by gluing together polyhedra. For k = 0, . . . , n, let

Sk be the set of codimension k faces of all the polyhedra that make up Υ. So S0 is the

set of polyhedra, S1 is the set of their boundary faces, S2 is the set of codimension 2 faces

making up the boundaries of the faces in S1, and so on. We denote a polyhedron as Mα
0 ,

α ∈ S0, and denote by Mα0···αk
k the codimension k face that is shared by the codimension

zero faces Mα0
0 , · · · ,Mαk

0 . We pick an orientation on M ; this restricts to an orientation of

each polyhedron Mα
0 , α ∈ S. We pick an orientation on Mα0···αk

k via the relation

∂Mα0···αk
k = −

∑
β

Mα0···αkβ
k+1 (3.1)

where the sum over β runs over all codimension 0 faces Mβ
0 , distinct from Mα0

0 , . . . ,Mαk
0 ,

that have nonempty intersection with Mα0···αk
k . These definitions imply that the orientation

of Mα0···αk
k changes sign under αi ↔ αj for any pair (i, j).

We pick Υ to be fine enough so that the map ϕ : X → M has a section sα over

each of the polyhedra Mα
0 , α ∈ S0. We need to impose further conditions on the sα.

To motivate the needed conditions, we consider the case of just two PCO’s and examine

the correction terms (2.13) or (2.14) that are needed on the intersection M12
1 = M1

0 ∩
M2

0 of two polyhedra. These depend on two sets of PCO data e.g. (z
(1)
1 (m), z

(1)
2 (m)) on

M1
0 and (z

(2)
1 (m), z

(2)
2 (m)) on M2

0 . The corrections involve mixed correlation functions

involving products ξ(z
(2)
1 )X (z

(1)
2 ) or ξ(z

(1)
2 )X (z

(2)
1 ). To ensure that these are free from

– 10 –
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spurious singularities, it is not enough that (z
(1)
1 , z

(1)
2 ) and (z

(2)
1 , z

(2)
2 ) separately describe

configurations free from spurious singularities; we also require that (z
(1)
1 , z

(2)
2 ) and (z

(2)
1 , z

(1)
2 )

describe configurations with the same property.8

In order to describe the required condition for the general case, let us introduce some

notation. For some given m ∈M , let a0, · · · , ak denote k+ 1 possible PCO arrangements,

with each aα standing for a set of K points (z
(α)
1 , · · · z(α)

k ) with z
(α)
i (m) ∈ Σ(m). Now

consider the (k + 1)K possible arrangement of PCO’s (z1, · · · zK) where each zi can take

values z
(α0)
i , · · · z(αk)

i . We shall say that (m; a0, · · · ak) ∈ X(k+1) if each of these (k + 1)K

PCO arrangements is free from spurious singularity.

We are now in a position to state the general condition on the sections sα on the

codimension zero faces. It states that on a codimension k face Mα0···αk
k that is shared by

k+1 codimension zero faces Mα0
0 , · · ·Mαk

0 , the corresponding sections satisfy the restriction

(m; sα0(m), · · · sαk(m)) ∈ X(k+1) for m ∈Mα0···αk
k . (3.2)

The existence of sections satisfying this condition (for a sufficiently fine dual triangulation

Υ) will be proved in section 3.6.

For the condition (3.2) to be meaningful, we need to choose some ordering of the PCO

locations associated with each sα, since this condition is not invariant under permuting the

PCO locations inside one sα (e.g. z
(α)
1 ↔ z

(α)
2 ) keeping the other sα’s unchanged. We shall

assume that some specific ordering of the PCO’s has been chosen on each codimension zero

face Mα
0 so that (3.2) is meaningful. However, the argument in section 3.6 will actually

show that we can assume that the condition (3.2) is satisfied independently for each possible

permutation.

From the discussion involving eqs. (2.11) and (2.12), we know that we need to choose

additional data to carry out the program of vertical integration. This will be described next.

3.3 Additional data

Let Mαβ
1 be the codimension 1 face shared by the codimension 0 faces Mα

0 and Mβ
0 .

Then on Mαβ
1 we need to choose a “path’‘ Pαβ from the PCO locations (z

(α)
1 , · · · z(α)

K ) to

(z
(β)
1 . · · · z(β)

K ). If we denote by Ξ(m) the product Σ(m)× · · · ×Σ(m) of K copies of Σ(m),

then Pαβ can be regarded as a path in Ξ from the PCO locations on Mα
0 to the PCO

locations on Mβ
0 . Once a path Pαβ has been chosen this way, we will choose Pβα be −Pαβ

i.e. the same path traversed in opposite direction. The paths will be constructed by moving

PCO’s one at a time from an initial location z
(α)
j (for some j) to a final location z

(β)
j .

It will be crucial that the construction depends only on the order in which the PCO’s

are moved between their initial and final positions, and not on the precise path by which

they are moved. Even two topologically distinct paths between z
(α)
j and z

(β)
j will be

equivalent for our application. This is due to the fact that expressions of the form (2.7)

or (2.13), (2.14) that result from integration over a segment of the path in which just one

8For this we use the fact that the locations of the spurious singularities in the correlation functions

involving products of ξ’s and X ’s remain unchanged if we replace ξ’s by X ’s. This follows from the general

form of the correlation functions of these operators given in [3].
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PCO is moved depend only on the initial and final PCO locations and not on the path con-

necting them. For this reason it will be useful to develop a symbolic representation of these

paths that only captures the relevant information without any unnecessary data. This can

be done as follows. To each codimension 1 face Mαβ
1 associate a K-dimensional Euclidean

space RK , and represent a PCO configuration (z1, · · · zK) with each zi taking values z
(α)
i or

z
(β)
i by an integer lattice point in RK , with the i-th coordinate being 0 if zi = z

(α)
i and 1 if

zi = z
(β)
i . Thus for example the origin represents the PCO configuration (z

(α)
1 , z

(α)
2 , · · · z(α)

K )

and the point (1, 1, · · · 1) represents the PCO configurations (z
(β)
1 , z

(β)
2 , · · · z(β)

K ). The path

Pαβ now can be represented by a path Qαβ in RK connecting the origin to (1, 1, · · · 1), lying

along the edges of a unit hypercube. Given any such path Qαβ , it captures all the relevant

information about Pαβ even though in actual practice there are many topologically distinct

paths on Ξ associated with a given Qαβ . All of these paths will give the same result for

the integral that will be written down in section 3.4. We pick a particular Qαβ for each

pair α, β, with Qβα = −Qαβ .

In eqs.(2.11) and (2.12), we considered an example with K = 2. The path (2.11)

will be represented as (0, 0) → (1, 0) → (1, 1) and the path (2.12) will be represented as

(0, 0)→ (0, 1)→ (1, 1).

To fully define vertical integration, we will need to refine this procedure and make some

additional choices. Consider a particular codimension 2 face Mαβγ
2 . Having picked a section

sα over each Mα
0 , we have on Mαβγ

2 three sets of PCO data: (z
(α)
1 , · · · z(α)

K ), (z
(β)
1 , · · · z(β)

K ),

(z
(γ)
1 , · · · z(γ)

K ). We now consider the 3K PCO configurations (z1, · · · zK) with zi taking

values z
(α)
i , z

(β)
i or z

(γ)
i for each i and represent them as follows as points in RK : the i-th

coordinate is assigned value 0 if zi is z
(α)
i , 1 if zi is z

(β)
i and 2 if zi is z

(γ)
i . Thus in this

description the path Pαβ can be represented by a path Qαβ from the origin (0, 0, · · · , 0)

to the point (1, 1, · · · , 1), the path Pβγ is represented by a path Qβγ from (1, 1, · · · , 1)

to (2, 2, · · · , 2) and Pγα is represented by a path Qγα from (2, 2, · · · , 2) to (0, 0, · · · , 0).

Together they form a closed path in RK . We now need to choose a subspace Qαβγ of RK ,

satisfying the following properties:

• The boundary of Qαβγ is given by

∂Qαβγ = −Qαβ −Qβγ −Qγα . (3.3)

• Qαβγ is made of a collection of rectangles whose vertices are integer points of RK

with coordinates 0, 1 or 2 and whose sides lie along some coordinate axes, i.e. along

each rectangle only two of the coordinates of RK vary.

• Once Qαβγ has been chosen, we define Qβαγ to be −Qαβγ . More generally Qαβγ is

chosen to be antisymmetric under the exchange of any pair of its subscripts.

For given α, β, γ, it is possible to choose a Qαβγ satisfying these conditions essentially

because the closed path Qαβ +Qβγ +Qγα is contained in a certain finite collection of unit

squares (the squares in RK whose corners have coordinates 0, 1, or 2), and this collection

is simply-connected. The choice of Qαβγ is of course is not unique; there are many unions
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of rectangles leading to the same result, just as there were many choices of Qαβ . Given a

choice of Qαβγ ∈ RK , we can associate with it a two-dimensional region Pαβγ of Ξ composed

of “rectangular regions” whose corners correspond to PCO locations (z1, · · · zK) with each

zi taking values z
(α)
i , z

(β)
i or z

(γ)
i , and along which only two of the zi’s vary.

We continue in this way for higher codimensions. Given a codimension k face Mα0···αk
k

shared by k+1 codimension zero faces Mα0
0 , · · · ,Mαk

0 , we can represent the PCO locations

determined by the sections sα0 , . . . , sαk as integer points in RK , with the prescription that

if the i-th PCO location is z
(αs)
i then the i-th coordinate is s. The analysis at the previous

step would have determined the (k−1)-dimensional subspaces Qα0···αk−1
, Qα0,···αk−2,αk etc.,

each of which can be represented as (k − 1)-dimensional subspaces of RK composed of a

union of hypercuboids9 with vertices given by integer points and in each hypercuboid only

k − 1 of the coordinates of RK vary. We now have to choose a k-dimensional subspace

Qα0···αk of RK satisfying the condition

∂Qα0···αk = −
k∑
i=0

(−1)k−iQα0···αi−1αi+1···αk . (3.4)

Furthermore we choose Qα0···αk to be a union of k-dimensional hypercuboids with vertices

at integer points and along each of which only k of the coordinates of RK vary. This can be

mapped back to a k-dimensional subspace of Ξ consisting of “hypercuboid-shaped regions”

with vertices given by the PCO locations for which zi can take one of the k + 1 values

z
(α0)
i , · · · z(αk)

i for each i and along each of these hypercuboid shaped regions only k of the

PCO locations vary. Finally, we choose Qα0···αk to be antisymmetric under the exchange

of αi and αj .

How far do we need to continue? First of all, it is clear that we must have k ≤ n

since Mk has codimension k. But also we must have k ≤ K since Qα0···αk has dimension

k. Typically in the situations we encounter, we always have K ≤ n and hence k ≤ K is

the bound we need to satisfy. That is why the examples of section 2 with k = 1, 2 did not

require developing the full procedure.

Once we have constructed the Qα0···αk ’s, we can associate with it a k-dimensional

subspace Pα0···αk(m) of Ξ(m) as follows. Since Qα0···αk can be regarded as a collection of

hypercubes in RK it is enough to prescribe how to construct k-dimensional subspaces of Ξ

for each hypercube in RK and then regard Pα0···αk as a union of these subspaces. For this

we first replace Ξ(m) by its universal cover Ξ̃(m) by taking K copies of the universal cover

Σ̃(m) of Σ(m), and represent each PCO location z
(α)
i for 1 ≤ i ≤ K, 0 ≤ α ≤ (k + 1) by

a point in Σ̃(m). This choice is not unique since each point in Σ(m) has infinite number

of representatives on Σ̃(m); we pick any one representative. This allows us to represent

9A hypercuboid is the multi-dimensional generalization of a rectangle. In general, we will consider k-

dimensional hypercuboids in Rn for various k. Their corners will always lie in the lattice in Rn consisting of

points with integer coefficients and their sides will be parallel (or perpendicular) to each of the coordinate

axes. We describe this loosely by saying that the sides of the hypercuboid lie along coordinate axes.

Such hypercuboids are built by gluing together a certain number of adjacent, parallel unit k-dimensional

hypercubes in the lattice of integer points. Because of this, one could express all statements in terms of

unit hypercubes rather than hypercuboids.
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the (k+ 1)K PCO arrangements (z1, · · · zK) — with each zi taking values z
(α0)
i , · · · z(αk)

i —

by (k + 1)K points on Ξ̃(m). Now given a k-dimensional hypercube in RK we first map

its corner points to Ξ̃, taking the point (β1, · · ·βK) ∈ RK to the point (z
(β1)
1 , · · · z(βK)

K ) on

Ξ̃(m). Next consider the dimension one edges of the hypercube. Along each such edge, one

of the coordinates of RK vary. If the i-th coordinate varies then we map it to a curve in

Ξ̃(m) along which only zi varies, keeping all zj ’s with j 6= i constant. The end points of the

curve are fixed by the locations of the vertices but the shape of the curve in the zi plane

can be chosen arbitrarily. After mapping all the dimension one edges to Ξ this way, we

turn to the dimension two faces. Along each face of the hypercube in RK only two of the

coordinates vary. Suppose that the i-th and the j-th coordinates vary along a particular

face. We map it to a two dimensional subspace of Ξ̃ along which only zi and zj vary leaving

all other zk’s fixed. The boundary of the two dimensional subspace is fixed by the choice

of the dimension one edges at the previous step, but how zi and zj vary in the interior can

be chosen arbitrarily. The maps for higher dimensional faces proceed in a similar manner.

For a dimension ` face of the hypercube in RK , along which the i1, · · · i`’th coordinates

vary keeping the other coordinates fixed, we associate an `-dimensional subspace of Ξ̃ along

which zi1 , · · · zi` vary leaving the other coordinates fixed. The boundary of this subspace

is fixed by the choice made at the previous step, but the choice of how zi1 , · · · zi` vary in

the interior can be made arbitrarily. Proceeding this way all the way upto ` = k we can

construct the map of the entire k-dimensional hypercube to a k-dimensional subspace of

Ξ̃. After we have repeated this construction for every hypercube contained in Qα0···αk , we

can construct the k-dimensional subspace of Ξ̃ obtained by union of these subspaces of Ξ̃.

This can now be interpreted as a k-dimensional subspace of Ξ. We call this Pα0···αk .

As a consequence of (3.4), the Pα0···αk ’s constructed this way satisfy the identity:

∂Pα0···αk ' −
k∑
i=0

(−1)k−iPα0···αi−1αi+1···αk , (3.5)

where ' symbol in (3.5) means that the boundary of Pα0···αk can be regarded as a collection

of (k− 1)-dimensional subspaces of Ξ whose corner points agree with the those of the right

hand side of (3.5). However the hypercubes themselves may not be identical since we

might have used different choices for constructing the faces of various dimensions from the

given corner points and might even have used different representatives for some of the PCO

locations on the universal cover of Σ(m). For example −Pαβ−Pβγ−Pγα constructed using

this procedure may even describe a non-contractible cycle of Ξ in which case there is no

subspace of Ξ whose boundary is given by this combination. However by choosing to define

Pαβ , Pβγ and Pγα on Mαβγ
2 using different paths with the same end-points we can make

−Pαβ − Pβγ − Pγα contractible and form the boundary of Pαβγ .

Once we have chosen all the Qα0···αk (and hence also the Pα0···αk) via this procedure, we

can formally construct a continuous integration cycle in Y as follows. First, for each codi-

mension zero face Mα
0 , the section sα gives a subspace of Y . Let us call this Σα. In a generic

situation, sα and sβ will not match at the boundary Mαβ
1 separating Mα

0 and Mβ
0 , leaving

a gap in the integration cycle between Σα and Σβ . We fill these gaps by including, for each
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Mαβ
1 , a subspace Σαβ of Y obtained by fibering Pαβ on Mαβ

1 . However since on the codi-

mension 2 faceMαβγ
2 Pαβ , Pβγ and Pγα enclose a non-zero subspace of Ξ, the subspaces Σαβ ,

Σβγ and Σγα will not meet. This gap will have to be filled by the space Σαβγ obtained by

fibering Pαβγ over Mαβγ
2 . Proceeding this way we include all subspaces Σα0···αk obtained by

fibering Pα0···αk on Mα0···αk
k . This formally produces a continuous integration cycle in Y .10

We shall call the segments Σα0···αk for k ≥ 1 vertical segments. Typically these seg-

ments pass through spurious poles and hence it may not be immediately obvious that this

procedure can lead to a sensible definition of a scattering amplitude. However, we shall

now show that this can be done by generalizing what has been explained in section 2.

3.4 Contributions from codimension k faces

We shall now state how, given the data of section 3.3, we can write down an expression for

the amplitude that is free from spurious poles. Contributions from the codimension zero

faces Mα
0 are straightforward to describe; we simply pull back

ωn =

〈
K∏
i=1

(X (zi)− ∂ξ(zi)dzi) ∧ O

〉
n

(3.6)

to Mα
0 using the section sα and integrate it over Mα. We write µαn(m) = (sα)∗(ωn), so

the contribution of Mα
0 to the scattering amplitude is

∫
Mα

0
µαn. Since (m; sα(m)) ∈ X, this

contribution is free from spurious singularities.

ωn given in (3.6) has an important property that we shall now describe. Let us consider

some k-dimensional region P of Ξ(m), representing the image of a k-dimensional hypercube

in RK constructed using the map described in section 3.3. Suppose that along P the PCO

locations zi1 , · · · zik vary, keeping the other PCO locations fixed. Suppose further that

along the edge of P along which zi varies, its limits are ui and vi. Then we have∫
P
ωn = ±

〈
k∏
s=1

(ξ(uis)− ξ(vis))
K∏
j=1

j 6=i1,···is

(X (zi)− ∂ξ(zi)dzi) ∧ O

〉
n−k

, (3.7)

where the overall sign has to be fixed from the orientation of the subspace P , which in

turn is determined from the orientation of Qα0···αk from (3.3). Since (ui, vi, zi) take values

from the set (z
(α0)
i , · · · z(αK)

i ), the result is free from spurious singularities as long as (3.2)

holds even if the subspace P contains spurious poles. Furthermore we see that the result

is independent of the ambiguities we have encountered in section 3.3 in the choice of P ,

since (3.7) has no dependence on the choices we made in constructing P .

The alert reader may object to calling (3.7) an identity since the left hand side is ill

defined if P contains a spurious pole of ωn. The correct viewpoint is that we can use (3.7)

as the definition of
∫
P ωn. The point however is that we can use all the usual properties of

an integral for this object, e.g. identities of the form (4.12) that will be used in our analysis.

Furthermore the integral of ωn over the two sides of (3.5) would agree.

10This construction of a cycle is only formal since e.g. the Pαβ that forms part of the boundary of Pαβγ
may differ from the Pαβ that was fibered over Mαβ to construct Σαβ by non-trivial cycles on Ξ.
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We shall now describe how we can use this result to construct the necessary correction

terms from codimension ≥ 1 faces of the dual triangulation. The first non-trivial case is

the contribution from codimension 1 faces. Once a family of paths Pαβ has been chosen

for each codimension 1 face, we fiber these paths over Mαβ
1 to get a new contribution Σαβ

to the integration cycle that “fills the gap” between sα(Mα
0 ) and sβ(Mβ

0 ). To compute

the contribution to the integral from this new “vertical” part of the integration cycle, we

simply use (3.7) to integrate ωn over the paths Pαβ to reduce to an integral over Mαβ
1 . By

first carrying out the integration over Pαβ for each m ∈ Mαβ
1 , we can express

∫
Σαβ

ωn as

an integral over Mαβ
1 . The form that must be integrated over Mαβ

1 is

µαβn−1 =

∫
Pαβ

ωn. (3.8)

The evaluation of the right hand side can be made explicit by noting that, along each

segment of Pαβ , only one of the zi’s — say zj — varies from an initial value uj to a final

value vj . This yields the result〈
(ξ(uj)− ξ(vj))

K∏
i=1
i 6=j

(X (zi)− ∂ξ(zi)dzi) ∧ O

〉
n−1

. (3.9)

The total contribution to µαβn−1 is obtained by summing over such contributions from all

the segments of Pαβ . The results will be automatically free from spurious poles as long

as (3.2) holds, since zi, ui, vi take values from the set z
(α)
i , z

(β)
i . We do not have to worry

about whether Pαβ passes through the locus of spurious singularities or which path we

choose from ui to vi to define it. The integral of the (n − 1)-form (3.9) over Mαβ
1 has a

well-defined sign, since we have chosen orientations of each Mαβ
1 .

Let us now consider a codimension two face Mαβγ
2 that is shared by Mα

0 , Mβ
0 and Mγ

0 .

On Mαβ
1 , the integral in the vertical direction is carried out over a particular path Pαβ

connecting sα(m) to sβ(m), and the analog is true for Mβγ
1 and Mγα

1 . Now if it so happens

that on Mαβγ
2 , Pαβ , Pβγ and Pγα together describe zero path (i.e. Pαβ + Pβγ = −Pγα)

then we do not need any correction term on Mαβγ
2 , since the integration cycle has no gap.

However generically Pαβ , Pβγ and Pγα will describe a closed path in Ξ, leaving a gap in

the integration cycle in Y , and we need to fill the gap by including, for each m ∈Mαβγ
2 , a

two-dimensional vertical segment that represents a two-dimensional subspace of Ξ bounded

by Pαβ , Pβγ and Pγα. We choose this to be the subspace Pαβγ constructed in section 3.3.

We now add to the integration cycle the spaces Σαβγ obtained by fibering Pαβγ over Mαβγ
2 ,

and explicitly carry out integration over Pαβγ for a given point m ∈Mαβγ
2 to get a form

µαβγn−2 ≡
∫
Pαβγ

ωn , (3.10)

which then has to be integrated over Mαβγ
2 to get the cxdimension 2 correction. Again

since Pαβγ is expressed as a sum of rectangles and along each rectangle only two of the

PCO locations vary, contribution from each rectangle can be computed using the general
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form described in (3.7). The condition (3.2) ensures that µαβγn−2 is well-defined, not affected

by spurious poles.

This continues to higher order. For example, at a codimension 3 face Mαβγδ
3 , four

codimension 2 faces Mαβγ , Mβγδ, Mγδα and Mδαβ meet. Associated with them are two-

dimensional subspaces Pαβγ , Pβγδ, Pγδα and Pδαβ of Ξ. Together they describe a two-

dimensional closed subspace of Ξ and hence can be taken to be the boundary of a three-

dimensional subspace of Ξ.11 We take this to be the subspace Pαβγδ introduced in sec-

tion 3.3 and fill the gap in the integration cycle by adding to it the space Σαβγδ obtained

by fibering Pαβγδ over Mαβγδ
3 . The integration over Pαβγδ can be performed explicitly for

each m ∈ Mαβγδ
3 using (3.7), yielding a result µαβγδn−3 free from spurious poles, which can

then be integrated over Mαβγδ
3 .

At the end, the full amplitude may be expressed as

K∑
k=0

(−1)k(k+1)/2
∑

{α0,··· ,αk}

∫
M
α0···αk
k

µα0···αk
n−k , (3.11)

with

µα0···αk
n−k =

∫
Pα0···αk

ωn (3.12)

being an n− k form on Mα0···αk
k that is free from spurious poles.

If the vertical paths could be chosen consistently to make the ' symbol in (3.5) an

equality, and if there were no spurious poles, then (3.11) could be interpreted as the integral

of ωn over a continuous integration cycle obtained by joining the sections {sα} over {Uα}
and the vertical segments {Pα0···αk}. Even though all this is not true, the expression (3.11)

shares all the necessary properties of an amplitude that would be obtained by integrating

ωn over a continuous integration cycle. In particular the amplitude is gauge invariant — if

any of the external states is a BRST trivial state then ωn is an exact form and its integral

vanishes (as long as the contribution from the boundary of the moduli space vanishes).

Similarly if we had made a different choice of the sections {sα} or a different choice of the

paths Qα0···αn then it would correspond to a different choice of the integration cycle that

is homologous to the original cycle, but the result for the amplitude remains unchanged

since ωn is closed. We shall give more explicit proofs of these properties in sections 4–6.

These proofs will make clear the need for the peculiar minus sign in eq. (3.11).

3.5 An example

We shall now illustrate the above method by explicitly constructing the integrands on

codimension 1 and 2 faces for three PCO’s. To simplify notation, let us define

Y(z) = X (z)− ∂ξ(z)dz . (3.13)

11For reasons explained earlier, there is no topological obstruction. We can always work with the subspaces

Qαβγ , Qβγδ, Qγδα and Qδαβ of RK , find the subspace Qαβγδ bounded by them, and then map it back to Ξ

to get Pαβγδ.
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Thus the form that must be integrated over the codimension zero face Mα
0 is

µαn(m) =
〈
Y(z

(α)
1 )Y(z

(α)
2 )Y(z

(α)
3 )O

〉
n
, (3.14)

where all products are to be interpreted as wedge products. In the following we shall work

on three codimension zero faces labelled a, b and c and determine µαβn−1 and µαβγn−2 for α, β, γ

taking values a, b, c.

We begin with the construction of µabn−1(m). We represent the sections sa =

(z
(a)
1 , z

(a)
2 , z

(a)
3 ) and sb = (z

(b)
1 , z

(b)
2 , z

(b)
3 ) as the opposite corners (0,0,0) and (1,1,1) of a

unit cube. The interpretation of the other corner points has been described earlier. Now

we have to “fill the gap” between the two opposite corners by choosing a path Qab between

them along the edges of the cube. Let us take this to consist of straight line segments

traversing the path (0,0,0)-(1,0,0)-(1,1,0)-(1,1,1), corresponding to moving first z1, then

z2, and finally z3. µn−1 is then given by the integral of Y(z1)Y(z2)Y(z3) along this curve.

Note that the integral could run into spurious poles along the way; so at this stage we still

regard this as a formal expression or a bookkeeping device for generating the µabn−1. In any

case, using (3.13) we get the result of integral to be

µabn−1 =

〈[
(ξ(z

(a)
1 )− ξ(z(b)

1 ))Y(z
(a)
2 )Y(z

(a)
3 ) + (ξ(z

(a)
2 )− ξ(z(b)

2 ))Y(z
(b)
1 )Y(z

(a)
3 )

+(ξ(z
(a)
3 )− ξ(z(b)

3 ))Y(z
(b)
1 )Y(z

(b)
2 )

]
∧ O

〉
n−1

. (3.15)

This depends only on the corner points and is free from any singularity. If we had chosen

a different path connecting (0,0,0) and (1,1,1) we would get a different result that is co-

homologically equivalent to the one given above. µban−1(m) will be the negative of (3.15)

and not what is obtained by exchanging a and b in eq. (3.15) since the result depends on

the choice of a path between the two opposite corners. To compute µban−1(m), we have to

reverse the order in which the PCO’s are moved, leading to µban−1(m) = −µabn−1(m).

We also define µbcn−1(m) and µcan−1(m) similarly, i.e. by choosing paths Qbc and Qca
and integrating ωn along the images of these paths in Ξ. For definiteness, we shall assume

that these paths follow the same ordering conventions as the ones used to defining µabn−1,

i.e. we move z1 first, then z2 and then z3. This is not necessary — one could have chosen

any other ordering prescription for these paths independently of how we have chosen Qab.

With this choice we get

µbcn−1 =

〈[
(ξ(z

(b)
1 )− ξ(z(c)

1 ))Y(z
(b)
2 )Y(z

(b)
3 ) + (ξ(z

(b)
2 )− ξ(z(c)

2 ))Y(z
(c)
1 )Y(z

(b)
3 )

+(ξ(z
(b)
3 )− ξ(z(c)

3 ))Y(z
(c)
1 )Y(z

(c)
2 )

]
∧ O

〉
n−1

,

µcan−1 =

〈[
(ξ(z

(c)
1 )− ξ(z(a)

1 ))Y(z
(c)
2 )Y(z

(c)
3 ) + (ξ(z

(c)
2 )− ξ(z(a)

2 ))Y(z
(a)
1 )Y(z

(c)
3 )

+(ξ(z
(c)
3 )− ξ(z(a)

3 ))Y(z
(a)
1 )Y(z

(a)
2 )

]
∧ O

〉
n−1

. (3.16)
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Now let us turn to µabcn−2(m). In the spirit of the algorithm described earlier, we

represent (z
(a)
1 , z

(a)
2 , z

(a)
3 ), (z

(b)
1 , z

(b)
2 , z

(b)
3 ) and (z

(c)
1 , z

(c)
2 , z

(c)
3 ) as the points (0, 0, 0), (1, 1, 1)

and (2, 2, 2) in R3 respectively, and interpret other integer points accordingly. In this

representation Qab describes a path connecting (0,0,0) to (1,1,1), Qbc describes a path

connecting (1,1,1) to (2,2,2) and Qca describes a path connecting (2,2,2) to (0,0,0). Together

the three paths Qab, Qbc and Qca describe a closed curve in R3 traversing the links of the

lattice of integers. By gluing these three paths together end to end, we make a closed path

from the origin in R3 to itself. With the choice just described, this closed path is

(0, 0, 0)− (1, 0, 0)− (1, 1, 0)− (1, 1, 1)− (2, 1, 1)− (2, 2, 1)

−(2, 2, 2)− (0, 2, 2)− (0, 0, 2)− (0, 0, 0) . (3.17)

Now the general algorithm instructs us to find a surface −Qabc enclosed by Qab+Qbc+Qca,

and consisting of a union of unit squares whose corners are lattice points. Equivalently, we

can use rectangles built by gluing together such unit squares. We then find the image Pabc
of Qabc in Ξ and integrate Y(z1)Y(z2)Y(z3) over this two-dimensional space to find µabcn−2.

Again the surface runs through spurious poles but we can regard this as a formal integral

or a bookkeeping device for generating µabcn−2, which will eventually be expressed in terms

of only the corner points of the rectangles. There are many ways of choosing Qabc; we will

describe a specific choice. We shall specify each rectangle by giving its corner points, and

then give the result of the integral over the image of the rectangle in Ξ:

(0, 1, 2)− (2, 1, 2)− (2, 2, 2)− (0, 2, 2) : (ξ(z
(c)
1 )− ξ(z(a)

1 ))(ξ(z
(c)
2 )− ξ(z(b)

2 ))Y(z
(c)
3 )

(0, 0, 2)− (1, 0, 2)− (1, 1, 2)− (0, 1, 2) : (ξ(z
(b)
1 )− ξ(z(a)

1 ))(ξ(z
(b)
2 )− ξ(z(a)

2 ))Y(z
(c)
3 )

(0, 0, 0)− (1, 0, 0)− (1, 0, 2)− (0, 0, 2) : (ξ(z
(b)
1 )− ξ(z(a)

1 ))(ξ(z
(c)
3 )− ξ(z(a)

3 ))Y(z
(a)
2 )

(1, 0, 0)− (1, 1, 0)− (1, 1, 2)− (1, 0, 2) : (ξ(z
(b)
2 )− ξ(z(a)

2 ))(ξ(z
(c)
3 )− ξ(z(a)

3 ))Y(z
(b)
1 )

(1, 1, 1)− (2, 1, 1)− (2, 1, 2)− (1, 1, 2) : (ξ(z
(c)
1 )− ξ(z(b)

1 ))(ξ(z
(c)
3 )− ξ(z(b)

3 ))Y(z
(b)
2 )

(2, 1, 1)−(2, 2, 1)−(2, 2, 2)−(2, 1, 2) : (ξ(z
(c)
2 )−ξ(z(b)

2 ))(ξ(z
(c)
3 )−ξ(z(b)

3 ))Y(z
(c)
1 ) (3.18)

If we denote the sum of all these terms by A then µabcn−2(m) will be given by

µabcn−2(m) = −〈A ∧ O〉n−2 (3.19)

where the extra minus sign reflects the fact that Qabc is enclosed by −(Qab +Qbc +Qca).

Of course, one can construct many other candidates for µabcn−2 by choosing a different

set of rectangles which have the path (3.17) as boundary, but we shall argue in section 4

that they will all give the same result for the final integral.

3.6 Avoiding the spurious singularities by fine coverings

We now turn to the proof that, for a sufficiently fine dual triangulation Υ, it is possible to

pick local sections that satisfy the condition (3.2). We shall in fact prove a slightly more

general statement. Given any positive integer t, and given any covering of M by sufficiently
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small open sets Uα any one of which has non-empty intersection with at most t others, we

can choose sections sα : Uα → X with the property that

(m; sα0(m), · · · , sαk(m)) ∈ X(k+1) for m ∈ Uα0 ∩ · · · ∩ Uαk . (3.20)

This implies the condition (3.2) if the dual triangulation Υ is fine enough. (We choose

the Uα to be open sets each of which is a slight thickening of one of the codimension zero

polyhedra in Υ.)

We start with a preliminary about Riemann surfaces. If U ⊂M is a sufficiently small

open set, we can think of the surfaces Σ(m), m ∈ U as a constant family of two-manifolds

(oriented and with punctures) with only the complex structure depending on m. There is

no natural way to do this, and we simply pick any way.

Once this is done for each Uα, we can pick the sections sα : Uα → X to be “constant.”

What this means is that we pick a base point mα in each Uα and we choose sα (a collection

of punctures in Σ(mα) at which PCO’s are to be inserted) at the point mα. Then for

m′α ∈ Uα, since we have picked an identification of Σ(m′α) with Σ(mα), we just define sα

by choosing the “same” PCO insertion points on Σ(m′α) as on Σ(mα).

Will a section defined this way avoid the locus of spurious singularities in Ξ(mα) =

Σ(mα) × · · · × Σ(mα)? Let us call the bad locus Ξ0(mα); it is of real codimension 2 in

Ξ(mα). A spurious singularity is avoided at mα if sα /∈ Ξ0(mα). To avoid a spurious

singularity from occurring at any m′α ∈ Uα, we want sα to be sufficiently far from Ξ0(mα).

For ε small and positive, using some arbitrary metric on Σ(mα), let Ξε0(mα) be a tube

centered at Ξ0 of radius ε. Then if Uα is small enough, the “constant” section sα avoids

spurious singularities for all m′α ∈ Uα provided that sα /∈ Ξε0(mα).

We observe that the volume of Ξε0(mα) is of order εn (where n = dimM) and in

particular for given positive integer T and small enough ε, the union of T tubes such as Ξε0
covers only a small part of Ξ.

Now suppose we are given a covering of M by sufficiently small open sets Uα, each of

which intersects at most t others. One at a time, we pick one of the Uα and select a base

point mα and a section sα : Uα → X that is constant in the above sense. To satisfy (3.20)

(where we consider only those Uβ for which sβ has already been chosen), sα must be chosen

to avoid at most T tubes similar to Ξε0(mα), where T is a positive integer that depends only

on t. (T exceeds t because there are many conditions to satisfy in (3.20).) For small enough

open sets Uα and therefore small enough ε, there is no obstruction to doing this at any stage.

4 Dependence on the choice of the vertical segments

We have seen that the definition of the string amplitude using the prescription for vertical

integration suffers from ambiguities since the choice of the subspaces Qα0···αk of RK have

some freedom and as a consequence their images Pα0···αk in Ξ also enjoy the same freedom.

Thus we need to show that the result for the amplitude is independent of this choice. This

is what we shall show in this section.

If there were no spurious poles, and if there were no topological obstruction to the

choice of a smooth section s : M → Y of the projection ϕ : Y → M , then a scattering
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amplitude would be defined simply as
∫
M s∗(ωn). Then Stoke’s theorem together with the

fact that dωn = 0 would imply that the scattering amplitude is independent of the choice

of s within its homology class. One would still have to worry about a possible dependence

on the homology class of s.

Actually, there are spurious poles and a global section s : M → Y very likely does

not exist. We have avoided both issues in this paper by using a piecewise construction

based on local sections sα : Uα → X ⊂ Y that avoid spurious singularities. Formally the

integration cycle then contains “vertical” segments, but since one does not have to really

pick specific vertical segments, spurious singularities do not enter, there is no need to

construct a global section of X →M or even of Y →M , and there is no issue concerning

the homology class of such a section.

However, we do want to show that the amplitude that we have defined is independent

of the choices that were made. We focus on the situation where two choices of integration

cycle correspond to the same dual triangulation and the same {sα} but different {Qα0···αk},
— the case where the choice of dual triangulation or the choice of {sα}’s change will be

discussed in a somewhat more general context in section 5. We denote by Qα0···αk and

Q̃α0···αk the two sets of choices for these subspaces. Now since (for example) Qαβ and Q̃αβ
are paths in RK with the same end points, we have

∂Qαβ − ∂Q̃αβ = 0 . (4.1)

This allows us to write

Qαβ − Q̃αβ = ∂Vαβ , (4.2)

where Vαβ is a two-dimensional subspace of RK . We take this to be composed of rectangles

lying along coordinate planes just as we did for Qαβγ . We make the choices so that

Vβα = −Vαβ (where −Vαβ is Vαβ with opposite orientation).

Next we note, using (3.3), its counterpart involving Q̃’s, and (4.2) that

∂Qαβγ − ∂Q̃αβγ = −(∂Vαβ + ∂Vβγ + ∂Vγα) (4.3)

This allows us to construct a three dimensional subspace Vαβγ of RK satisfying

Qαβγ − Q̃αβγ = −(Vαβ + Vβγ + Vγα) + ∂Vαβγ (4.4)

Again we shall choose Vαβγ to be composed of hypercuboids whose three sides lie along the

three coordinate axes, and antisymmetric under the exchange of α, β, γ.

At the next step we use

∂Qαβγδ − ∂Q̃αβγδ = −{(Qαβγ − Q̃αβγ)− (Qαβδ − Q̃αβδ)
+(Qαγδ − Q̃αγδ)− (Qβγδ − Q̃βγδ)}

= −∂(Vαβγ − Vαβδ + Vαγδ − Vβγδ) . (4.5)

The terms involving Vαβ , etc., have canceled in arriving at this result. We can now find a

Vαβγδ such that

Qαβγδ − Q̃αβγδ = −(Vαβγ − Vαβδ + Vαγδ − Vβγδ) + ∂Vαβγδ . (4.6)
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The generalization is now obvious. We get

∂(Qα0···αk − Q̃α0···αk) = −
k∑
i=0

(−1)k−i∂Vα0···αi−1αi+1···αk , (4.7)

and hence we can find Vα0···αk satisfying

Qα0···αk − Q̃α0···αk = −
k∑
i=0

(−1)k−iVα0···αi−1αi+1···αk + ∂Vα0···αk (4.8)

Furthermore we can choose Vα0···αk to be totally antisymmetric in the labels α0, · · ·αk and

to be composed of (k+ 1)-dimensional hypercuboids whose sides lie along coordinate axes.

In section 3, we picked maps from Qα0···αk to Ξ(m) for m ∈Mα0···αk
k and integrated ωn

over the image, which we called Pα0···αk . This construction was formal since the Pα0···αk ’s

could pass through spurious poles and also there could be many topologically different

choices for Pα0···αk . But the definitions were made so that the integral over Pα0···αk could

be defined as in eq. (3.7) (for example) without really having to pick the map from Qα0···αk
to Ξ(m).

In a similar spirit, we formally extend the maps from Qα0···αk and Q̃α0···αk to Ξ(m)

to maps from Vα0···αk to Ξ(m). Formally, we let Uα0···αk be the image of Vα0···αk in Ξ and

define an (n− k − 1)-form χα0···αk
n−k−1 on Mα0···αk

k by integration over Uα0···αk :

χα0···αk
n−k−1 =

∫
Uα0···αk

ωn . (4.9)

Just as in section 3, this is a symbolic formula. We really define χα0···αk
n−k−1 by a conformal

field theory formula analogous to eq. (3.7).

Now the image of (4.8) in Ξ gives

Pα0···αk − P̃α0···αk ' −
k∑
i=0

(−1)k−iUα0···αi−1αi+1···αk + ∂Uα0···αk , (4.10)

where ' has the same interpretation as in (3.5). Hence on Mα0···αk ,

µα0···αk
n−k − µ̃α0···αk

n−k =

∫
Pα0···αk

ωn −
∫
P̃α0···αk

ωn

= −
k∑
i=0

(−1)k−i
∫
Uα0···αi−1αi+1···αk

ωn +

∫
∂Uα0···αk

ωn . (4.11)

Now for any p-form Ωp on Y , and an `-dimensional subspace R`(m) of Ξ(m) defined on a

local neighbourhood U of M , we have∫
∂R`

Ωp =

∫
R`

dΩp − (−1)`d

∫
R`

Ωp. (4.12)

This is a relation among (p− `+1)-forms on U . In our analysis we shall apply this identity

for Ωp = ωn which has spurious singularities. Nevertheless the identity holds with the
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definition of the various integrals as given in (3.7). For p = n, Ωp = ωn, ` = k + 1 and

R` = Uα0···αk , one term drops out since dωn = 0. Hence

µα0···αk
n−k − µ̃α0···αk

n−k = −
k∑
i=0

(−1)k−i
∫
Uα0···αi−1αi+1···αk

ωn − (−1)k+1d

∫
Uα0···αk

ωn . (4.13)

Using the definition (4.9) we get, on Mα0···αk
k

µα0···αk
n−k − µ̃α0···αk

n−k = −
k∑
i=0

(−1)k−iχ
α0···αi−1αi+1···αk
n−k − (−1)k+1dχα0···αk

n−k−1 . (4.14)

Let us now examine the difference between the full amplitudes computed using the

Qα0···αk ’s and the Q̃α0···αk ’s. Using (3.11) this is given by

K∑
k=0

(−1)k(k+1)/2
∑

{α0···αk}

∫
M
α0···αk
k

(µα0···αk
n−k − µ̃α0···αk

n−k )

= −
K∑
k=0

(−1)k(k+1)/2
∑

{α0···αk}

k∑
i=0

(−1)k−i
∫
M
α0···αk
k

χ
α0···αi−1αi+1···αk
n−k

+

K∑
k=0

(−1)k(k+1)/2+(k+1)
∑

{α0···αk}

∑
β

∫
M
α0···αkβ
k+1

χα0···αk
n−k−1 (4.15)

where we have used (4.14) and manipulated the second term using∫
M
α0···αk
k

dχα0···αk
n−k−1 =

∫
∂M

α0···αk
k

χα0···αk
n−k−1 = −

∑
β

∫
M
α0···αkβ
k

χα0···αk
n−k−1 , (4.16)

using (3.1). The sum over β in (4.15), (4.16) run over all β 6= α0, · · ·αk for which Mβ
0

overlaps with Mα0···αk
k . It is now easy to see that the terms in (4.15) cancel pairwise,

making the result vanish. For this it is important that we have the (−1)k(k+1)/2 factor in

the summand in (3.11).

5 Smooth measure

The integration measure on M that we have constructed in section 3.1 is not smooth

since it is discontinuous across the boundaries separating a pair of codimension zero

faces and we have to add correction terms on codimension 1 faces to compensate for this

discontinuity. We shall now describe an alternate procedure that constructs a smooth

integration measure on M .

This requires the following ingredients.

1. Choose a sufficiently fine cover of M by open sets {Uα} so that on each open set we

can choose a local section sα of X satisfying (3.20):

(m; sα0(m), · · · sαk(m)) ∈ X(k+1) for m ∈ Uα0 ∩ · · · ∩ Uαk . (5.1)
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2. On each overlap Uα∩Uβ we choose a path Qαβ in RK (and hence its image Pαβ in Ξ)

as in section 3.3. Similarly, on each triple overlap Uα ∩ Uβ ∩ Uγ , we choose a surface

Qαβγ in RK (and its image Pαβγ in Ξ) satisfying (3.3). We continue this and choose

Qα0···αk ⊂ RK for all k up to K, satisfying (3.4):

∂Qα0···αk = −
k∑
i=0

(−1)k−iQα0,···αi−1,αi+1,···αk . (5.2)

3. Using the image Pα0···αk of Qα0···αk in Ξ, we now follow the procedure of section 3.4

to construct the n − k form µα0···αk
n−k for all sets {α0, · · ·αk} and all k from 0 to K

for which Uα0 ∩ · · · ∩ Uαk is non-empty. The difference with the case analyzed in

section 3.4 is that µα0···αk
n−k is now defined on the open set Uα0 ∩ · · · ∩ Uαk instead of

just on a codimension k subspace.

4. We now choose a partition of unity subordinate to the open cover Uα. This means

that we choose, on each Uα, a smooth function A(α)(m) satisfying

A(α)(m) = 0 for m 6∈ Uα,
∑
α

A(α)(m) = 1 . (5.3)

We are now ready to write down the expression for the amplitude generalizing (3.11):

A =

∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

A(α0)dA(α1) ∧ · · · ∧ dA(αk) ∧ µα0···αk
n−k . (5.4)

The sum over each αi runs over all the open sets in the cover, but due to the presence of the

Aαi ’s in the summand and the antisymmetry of µ, we only pick up a non-zero contribution

from those combinations {α0, · · ·αk} for which αi’s are all different and the sets {Uαi} for

0 ≤ i ≤ k have an overlap. In order to prove that (5.4) is a sensible expression for the

amplitude, we have to show that

1. It is independent of the choice of Qα0···αk .

2. It is independent of the choice of the A(α)’s.

3. It is independent of the choice of the sections {sα}.

4. It is independent of the choice of the open cover.

5. In an appropriate limit, it reduces to (3.11).

It is also necessary to show gauge invariance, but we postpone this to section 6.

We begin with the proof of the first property. If µ and µ̃ denote the µ’s associated

with two different choices of Qα0···αk , then their difference can be expressed as in (4.14).

Using this we get the difference between the two amplitudes to be

∆ = −
∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0···αk}

A(α0)dA(α1) ∧ · · · ∧ dA(αk)
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∧
[ k∑
i=0

(−1)k−iχ
α0···αi−1αi+1···αk
n−k + (−1)k+1dχα0···αk

n−k−1

]
. (5.5)

We manipulate the second term inside the square bracket by integration by parts and the

first term by noting that all i’s from 1 to k gives identical contributions to the sum, so that

we can include the sum over i = 0 and 1 only and multiply the result for i = 1 by a factor

of k. After exchanging the labels α0 and α1 in the latter term we get

∆ = −
∫
M

K∑
k=0

(−1)k(k+1)/2
∑

{α0α1···αk}

(A(α0)dA(α1) − k A(α1)dA(α0))

∧dA(α2) ∧ · · · ∧ dA(αk) ∧ χα1···αk
n−k

−
∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0···αk}

dA(α0) ∧ dA(α1) ∧ · · · ∧ dA(αk) ∧ χα0···αk
n−k−1 . (5.6)

We can now perform the sum over α0 explicitly in the first term. Using
∑

αA
(α)(m) = 1

and
∑

α dA
(α) = 0 we get

∆ = −
∫
M

K∑
k=1

(−1)k(k+1)/2
∑

{α1···αk}

dA(α1) ∧ dA(α2) ∧ · · · ∧ dA(αk) ∧ χα1···αk
n−k

−
∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0···αk}

dA(α0) ∧ dA(α1) ∧ · · · ∧ dA(αk) ∧ χα0···αk
n−k−1 . (5.7)

After renaming k as k + 1 in the first term we see that these two terms cancel, leading to

∆ = 0 . (5.8)

Next we turn to the proof of the second property. For this we note, using the defini-

tion (3.12) of µ, (4.12), the fact that dωn = 0, and the formula (3.5) for ∂Pα0···αk that

dµα0···αk
n−k = d

∫
Pα0···αk

ωn = −(−1)k
∫
∂Pα0···αk

ωn =

k∑
i=0

(−1)i
∫
Pα0···αi−1αi+1···αk

ωn

=
k∑
i=0

(−1)iµ
α0···αi−1αi+1...αk
n−k+1 . (5.9)

Let us now consider an infinitesimal change12 A(α) → A(α) + δA(α) subject to the

constraint (5.3). This gives

δA(α)(m) = 0 for m 6∈ Uα,
∑
α

δA(α)(m) = 0 . (5.10)

12We can interpolate between any two partitions of unity A(α) and Ã(α) subordinate to the same open

cover via the family of partitions of unity given by the functions uA(α) + (1− u)Ã(α), 0 ≤ u ≤ 1. To show

that the choice of partition of unity does not matter, it suffices to consider the effect of differentiating with

respect to u.
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The change in the amplitude (5.4) under this infinitesimal change is given by

δA =

∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

{
δA(α0)dA(α1) + k A(α0)d

(
δA(α1)

)}
∧dA(α2) ∧ · · · ∧ dA(αk) ∧ µα0···αk

n−k . (5.11)

We now manipulate the second term inside the curly bracket by integrating by parts to

move the d operator from δA(α1) to the rest of the terms and then exchanging the labels

α0 and α1, picking up a sign due to the antisymmetry of µ. This gives

δA =

∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

δA(α0)dA(α1) ∧ · · · ∧ dA(αk) ∧ µα0···αk
n−k

+

∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

k δA(α0)dA(α1) ∧ · · · ∧ dA(αk) ∧ µα0···αk
n−k

+

∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

k (−1)k−1 δA(α0)A(α1) ∧ dA(α2)

∧ · · · ∧ dA(αk) ∧ dµα0···αk
n−k . (5.12)

Combining the first two terms into a single term and replacing dµ by the right hand side

of (5.9) in the last term we get

δA =

∫
M

K∑
k=0

(−1)k(k−1)/2(k + 1)
∑

{α0,··· ,αk}

δA(α0)dA(α1) ∧ · · · ∧ dA(αk) ∧ µα0···αk
n−k

−
∫
M

K∑
k=0

(−1)k(k−1)/2 k
∑

{α0,··· ,αk}

δA(α0)A(α1) ∧ dA(α2) ∧ · · · ∧ dA(αk)

∧
k∑
i=0

(−1)k−iµ
α0···αi−1αi+1···αk
n−k+1 . (5.13)

We can now manipulate the second term by noting that all i’s from 2 to k gives identical

contribution to the sum, so that we can include the sum over i = 0, 1 and 2 only and

multiply the result for i = 2 by a factor of (k − 1). This gives

δA =

∫
M

K∑
k=0

(−1)k(k−1)/2(k + 1)
∑

{α0,··· ,αk}

δA(α0)dA(α1) ∧ · · · ∧ dA(αk) ∧ µα0···αk
n−k

−
∫
M

K∑
k=0

(−1)k(k−1)/2 k
∑

{α0,··· ,αk}

δA(α0)A(α1) ∧ dA(α2) ∧ · · · ∧ dA(αk)

∧
{
(−1)kµα1···αk

n−k+1+(−1)k−1µα0α2···αk
n−k+1 +(−1)k−2(k − 1)µα0α1α3···αk

n−k+1

}
. (5.14)

The contribution from the first term in the curly bracket vanishes since
∑

α0
δA(α0) = 0.

The second term can be simplified using
∑

α1
A(α1) = 1. The third term vanishes since
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∑
α2
dA(α2) = 0. This gives

δA =

∫
M

K∑
k=0

(−1)k(k−1)/2(k + 1)
∑

{α0,··· ,αk}

δA(α0)dA(α1) ∧ · · · ∧ dA(αk) ∧ µα0···αk
n−k (5.15)

−
∫
M

K∑
k=1

k (−1)(k−1)(k−2)/2
∑

{α0,α2,··· ,αk}

δA(α0) ∧ dA(α2) ∧ · · · ∧ dA(αk) ∧ µα0α2···αk
n−k+1 .

Relabelling k as k + 1 in the second term we see that the two terms cancel, leading to

δA = 0 . (5.16)

The third property — that the amplitude does not depend on the choice of sections

sα — is an immediate consequence. Let us suppose that we want to change the section on

a particular Uα — call it U∗ — from s∗1 to s∗2 , satisfying

(m; s∗i(m), sα1 , · · · sαk(m)) ∈ X(k+1) for m ∈ U∗ ∩ Uα1 · · · ∩ Uαk , i = 1, 2 . (5.17)

An alternative representation of these two choices of s∗ can be given as follows. Let us

consider a cover of M that is identical to the original choice except that the open set U∗
occurs twice. Call the two copies U∗1 and U∗2 , and choose sections s∗1 and s∗2 on them.

Then the choice s∗ = s∗1 on U∗ will correspond to choosing A(∗1) = A(∗), A(∗2) = 0 and the

choice s∗ = s∗2 on U∗ will correspond to choosing A(∗2) = A(∗), A(∗1) = 0. Since the choice

of a partition of unity does not matter, the two choices s∗1 and s∗2 of s∗ give identical

results for the amplitude.

An attentive reader might notice that we have skipped over a fine point here. Since

U∗1 has complete overlap with U∗2 , the above analysis requires that

(m; s∗1(m), s∗2(m), sα1(m), · · · sαk(m)) ∈ X(k+2) for m ∈ U∗ ∩ Uα1 · · · ∩ Uαk . (5.18)

This is somewhat stronger than (5.17) and can fail in a non-generic situation even if (5.17)

holds. However we can circumvent this problem by choosing a third section s× on U∗
satisfying

(m; s∗i(m), s×(m), sα1(m), · · · sαk(m)) ∈ X(k+2) for m ∈ U∗ ∩ Uα1 · · · ∩ Uαk i = 1, 2 .

(5.19)

The existence of s(×) satisfying (5.19) can be proved using the method of section 3.6 for a

sufficiently fine covering. Now our previous argument can be used to show that the result

for the amplitude for the sections s∗1 and s∗2 are identical to that for section s×, and hence

the results for the choices s∗1 and s∗2 are identical to each other.

The next property — that the amplitude does not depend on the choice of an open

cover — also follows from the second property. Let S be an open cover by open sets Uα,
α ∈ I, and S ′ another open cover by open sets Vβ , β ∈ J . We can define a third open cover

S ′′ in which the open sets Wσ are labeled by the union I ∪ J , with Wσ = Uσ for σ ∈ I and

Wσ = Vσ for σ ∈ J . In defining the amplitude using the open cover S ′′, we have a lot of
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freedom in the choice of a partition of unity. We can pick the partition of unity such that

Aσ = 0 for σ ∈ J . This implies that the Aσ, σ ∈ I, are a partition of unity subordinate to

the original open cover S. In this case, the amplitude computed using the open cover S ′′

immediately reduces to what we would have gotten using the open cover S. Alternatively,

reversing the roles of the finite sets I and J , we could pick a partition of unity subordinate

to S ′′ such that the calculation of the amplitude reduces to what we would have gotten

using the cover S ′. Hence any choice of open cover leads to the same amplitudes.

Finally, we want to show that the amplitude (5.4) computed via a general open cover

and partition of unity coincides with the amplitude (3.11) computed using a dual trian-

gulation. We shall do this by showing that given the data used in section 3, i.e. the dual

triangulation and the choice of local section on each polyhedron, we can choose a covering

by open sets Uα, a partition of unity {A(α)}, and local sections sα so that the formula (5.4)

gives us back the result of section 3. This is done as follows:

1. First we shall describe the choice of the open sets. Given any polyhedron Mα
0 forming

part of a dual triangulation, we thicken it slightly to make an open set Uα. This gives

an open cover of M , with the property that Uα ∩Uβ is a slight thickening Mα
0 ∩M

β
0 ,

and similarly for multiple intersections.

2. Next we describe the choice of the local sections sα on each Uα and the partition of

unity A(α). We choose the local sections sα : Uα → X so that their restrictions to

Mα
0 are the sections sα : Mα

0 → X that were used in section 3. Furthermore, we

choose A(α) to be a slightly smoothed version of the characteristic function of Mα
0

(the function that is 1 inside Mα
0 and 0 outside), which we will call Hα.

With this choice, the amplitude (5.4) is given by

A =

∫
M

K∑
k=0

(−1)k(k+1)/2 (−1)k
∑

{α0,··· ,αk}

Aα0dAα1 ∧ · · · ∧ dAαk ∧ µα0···αk
n−k , (5.20)

where Aα is a slightly smoothed version of the characteristic function Hα. Let Pα0···αk
denote the operation of summing over all permutations P of α0, · · ·αk weighted by (−1)P .

We shall show that in the limit Aα → Hα,

ρα0···αk
k ≡ (−1)kPα0···αk [Aα0dAα1 ∧ · · · ∧ dAαk ] (5.21)

approaches the δ-function that localizes the integral on the subspace Mα0···αk
k . Thus we

get back (3.11).

This result together with the previous results of this section immediately shows that

the amplitude (3.11) is independent of the choice of dual triangulation and the choice of

the sections {sα} on the codimension zero faces {Mα
0 } used in the construction of section 3.

It remains to prove that, in the limit Aα → Hα, the right hand side of (5.21) approaches

a delta function supported on Mα0···αk
k . In this limit, each factor dAαi converges to a delta

function with support in codimension 1. Each term on the right hand side of eq. (5.21) is a

product of k such terms and so will have delta function support in codimension k. It is clear
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that this support is localized on Mα0···αk
k , since the dAαi factor vanishes outside Mαi

0 and

the Aα0 factor vanishes outside Mα0
0 . Thus we only have to show that the normalization

is correct. We shall prove this inductively, i.e. assuming that it holds up to a certain value

of k, we shall prove that it holds when we increase k by 1. Since this is manifestly true

for k = 0 — a codimension zero delta function with support on Mα0
0 being simply the

characteristic function of Mα0
0 — the result follows for general k.

We take a small tubular neighbourhood Tα0···αk of Mα0···αk
k and foliate it by a family

of dimension k balls Bk(m), intersecting Mα0···αk
k transversely at the point m ∈ Mα0···αk

k .

We take the size of the ball Bk to be large compared to the regulator used to approximate

Hα by Aα, but sufficiently small so as not to intersect any Mα
0 other than Mα0

0 , · · ·Mαk
0 .

The orientation of Bk is chosen so that locally Bk ×Mα0···αk
k has the same orientation as

M . To prove the desired result, we need to show that the integral of ρα0···αk
k over Bk gives

1. Now inside Bk, all Aα’s vanish except for α = α0, · · ·αk and hence we have

Aα0 = 1−
k∑
j=1

Aαj , dAα0 = −
k∑
j=1

dAαk . (5.22)

Using this, we can express ρk given in (5.21) as

ρα0···αk
k

=(−1)k k!

[
Aα0dAα1 ∧ · · · ∧ dAαk−

k∑
i=1

AαidAα1 ∧ · · · dAαi−1 ∧ dAα0 ∧ dAαi+1 · · · ∧ dAαk
]

= (−1)k k!

[(
1−

k∑
i=1

Aαi
)
dAα1 ∧ · · · ∧ dAαk

+

k∑
i=1

AαidAα1 ∧ · · · dAαi−1 ∧ dAαi ∧ dAαi+1 · · · ∧ dAαk
]

= (−1)k k! dAα1 ∧ · · · ∧ dAαk = −dρα1···αk−1

k−1 . (5.23)

This gives ∫
Bk

ρα0···αk
k = −

∫
∂Bk

ρα1···αk
k−1 . (5.24)

Our earlier arguments show that ρα1···αk
k−1 has support only in the neighbourhood of Mα1···αk

k−1 .

∂Bk intersects it at some point m′. Let Bk−1(m) for m ∈Mα1···αk
k−1 denote a family of (k−1)-

dimensional balls centered at m that can be used to foliate a tubular neighbourhood of

Tα1···αk of Mα1···αk
k−1 . We pick the orientation of Bk−1 such that locally Bk−1×Mα1···αk

k−1 has

the same orientation as M . Then the relevant part of ∂Bk(m) in (5.24) can be replaced

by ±Bk−1(m′) with the sign determined by comparing the orientations of ∂Bk and Bk−1.

We shall soon show that the sign is negative. This gives∫
Bk(m)

ρα0···αk
k =

∫
Bk−1(m′)

ρα1···αk
k−1 . (5.25)

But we have assumed that ρα1···αk
k−1 gives the delta function that localizes the integral on

Mα1···αk
k−1 . Thus the right hand side is 1 and we get the desired result.
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Let us now show that ∂Bk and Bk−1 have opposite orientation. For this we note that

∂Tα0···αk = ∂Bk ×Mα0···αk
k + (−1)kBk × ∂Mα0···αk

k , (5.26)

where we have used × to denote fibering, e.g. the first term on the right hand side denotes

∂Bk fibered over Mα0···αk
k . On the other hand we have

∂Tα1···αk = ∂Bk−1 ×Mα1···αk
k−1 + (−1)k−1Bk−1 × ∂Mα1···αk

k−1 (5.27)

Using (3.1) we see that the second term on the right hand side has a component

− (−1)k−1Bk−1 ×Mα1···αkα0

k = Bk−1 ×Mα0···αk
k . (5.28)

This must be oppositely oriented to the component ∂Bk ×Mα0···αk
k in (5.26) since Tα0···αk

and Tα1···αk are complementary subspaces of M . Thus we see that ∂Bk has opposite

orientation to Bk−1.

6 Decoupling of pure gauge states

It remains to establish gauge invariance, which states that the amplitude vanishes if all

external states are BRST-invariant, and one of them is also BRST-trivial. It is well known

(see footnote 4) that in this case

ωn = dλn−1 (6.1)

where λn−1 has a form similar to that in (3.6)

λn−1 =

〈
K∏
i=1

(X (zi)− ∂ξ(zi)dzi) ∧ O′
〉
n−1

. (6.2)

We shall carry out our analysis for the amplitude (5.4) since (3.11) can be regarded as a spe-

cial case. Integrating (6.1) over Pα0···αk for fixed m ∈ Uα0 ∪· · · Uαk , and using (4.12) we get

µα0···αk
n−k =

∫
Pα0···αk

ωn =

∫
Pα0···αk

dλn−1 =

[
(−1)kd

∫
Pα0···αk

λn−1 +

∫
∂Pα0···αk

λn−1

]
. (6.3)

Defining

να0···αk
n−k−1 =

∫
Pα0···αk

λn−1 , (6.4)

and using (3.5) we get the relation

µα0···αk
n−k =

[
(−1)kdνα0···αk

n−k−1 −
k∑
i=0

(−1)k−iν
α0···αi−1αi+1···αk
n−k

]
. (6.5)

Substituting (6.5) into (5.4) we now get

A =

∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

A(α0)dA(α1) ∧ · · · ∧ dA(αk)
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∧

[
(−1)kdνα0···αk

n−k−1 −
k∑
i=0

(−1)k−iν
α0···αi−1αi+1···αk
n−k

]
. (6.6)

We analyze the first term by integration by parts. For the second term we note that all i

from 1 to k give identical results; so we can just restrict the sum to i = 0 and i = 1 and

multiply the latter by a factor of k. This gives

A = −
∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

dA(α0) ∧ dA(α1) ∧ · · · ∧ dA(αk) ∧ να0···αk
n−k−1

−
∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

A(α0) ∧ dA(α1) ∧ · · · ∧ dA(αk)

∧
[
(−1)kνα1···αk

n−k + (−1)k−1 k να0α2α3···αk
n−k

]
. (6.7)

For the first term inside the square bracket in the last line we can perform the sum over

α0 using
∑

α0
A(α0) = 1 and for the second term inside the square bracket in the last line

we can perform the sum over α1 using
∑

α1
dA(α1) = 0. This gives

A = −
∫
M

K∑
k=0

(−1)k(k−1)/2
∑

{α0,··· ,αk}

dA(α0) ∧ dA(α1) ∧ · · · ∧ dA(αk) ∧ να0···αk
n−k−1

−
∫
M

K∑
k=1

(−1)k(k+1)/2
∑

{α1,··· ,αk}

dA(α1) ∧ · · · ∧ dA(αk) ∧ να1···αk
n−k . (6.8)

Replacing k by k + 1 in the last term and using the fact that (−1)(k+1)(k+2)/2 =

−(−1)k(k−1)/2 we see that the two terms cancel.

7 Interpretation via super Riemann surfaces

We conclude by describing how one would interpret these results from the point of view of

super Riemann surface theory.

A perturbative scattering amplitude in superstring theory is naturally understood as

the integral of a natural measure Ψ on, roughly speaking, the moduli space M of super

Riemann surfaces.13 The worldsheet path integral determines a natural measure on M, and

perturbative superstring scattering amplitudes are obtained by integrating this measure.

What do PCO’s mean in this framework? This question was answered long ago [3].

PCO’s are a method to parametrize the odd directions in M by the use of δ-function

13We elide some details that are most fully explained in section 5 of [5]. To be more precise, instead of

M one should consider an appropriate cycle Γ ⊂M`×Mr, where Mr and M` parametrize respectively the

holomorphic and antiholomorphic complex structure of the superstring worldsheet. For example, for the

heterotic string, Mr is the moduli space M of super Riemann surfaces, M` is the analogous bosonic moduli

spaceM (with its complex structure reversed) and one can think of Γ as M with a choice of smooth structure.

– 31 –



J
H
E
P
0
9
(
2
0
1
5
)
0
0
4

gravitino perturbations.14 Any local choice of PCO’s (avoiding spurious singularities) gives

a parametrization of an open set in M, and gives a valid way to compute the superstring

measure Ψ in that open set.

From this point of view, then, the way to use PCO’s is to cover M with open sets Uα,

and pick in each Uα a section sα : Uα → X corresponding to a local choice of PCO’s. This

will give a convenient way to calculate a superstring measure Ψα on an open set Uα ⊂M

that corresponds to Uα ⊂ M . If Uα and Uβ are open sets in M with local sections sα and

sβ , then Ψα and Ψβ are equal on Uα ∩ Uβ . (We stress that they are equal, not equal up

to a total derivative.) Thus the local measures Ψα computed using PCO’s on the open

sets Uα making up a cover of M automatically glue together to determine the superstring

measure Ψ on M. More on this can be found in sections 3.5-6 of [6]. The perturbative

superstring scattering amplitude is simply defined as
∫
M Ψ. Gauge-invariance follows from

the super-analog of Stoke’s theorem, which says that if Ψ = dΛ (where now Λ is an integral

form of codimension 1, a concept described for example in [5]), then
∫
M Ψ =

∫
M dΛ = 0.

As for explicitly computing an integral
∫
M Ψ, there are various possible approaches.

For a smooth supermanifold M (see footnote 13) with reduced space M , one can always

pick a smooth projection ζ : M → M . By integrating over the fibers of ζ, one gets a

smooth measure ζ∗(Ψ) on M and ∫
M

Ψ =

∫
M
ζ∗(Ψ). (7.1)

Thus for any choice of the smooth projection ζ, the superstring scattering amplitude can be

computed by integration over M of a smooth measure, namely ζ∗(Ψ). However, while the

underlying measure Ψ on M is completely natural, the choice of ζ is not and the induced

measure ζ∗(Ψ) on M depends on that choice. If ζ and ζ̃ are two smooth projections from M

to M , then ζ∗(Ψ)−ζ̃∗(Ψ) = dχ, for some (n−1)-form χ on M . Hence
∫
M ζ∗(Ψ) =

∫
M ζ̃∗(M),

in keeping with the fact that they both equal
∫
M Ψ. All this is in accord with what we found

in section 5: superstring amplitudes can be computed by integrating a smooth measure on

the bosonic moduli space M , but there is no natural choice of this smooth measure.

Sometimes it may be inconvenient to pick a globally-defined smooth projection ζ :

M → M , or we may not wish to do so. Then we can proceed as follows. We pick a

dual triangulation Υ of M (or some more general covering). In a small neighborhood of

each polyhedron Mα
0 , we pick a smooth splitting ζα : M → M . We do not impose any

compatibility between the different ζα. We cannot, therefore, expect a simple relation∫
M

Ψ
?
=
∑
α

∫
Mα

0

ζα∗ (Ψ). (7.2)

To compensate for the mismatch between ζα and ζβ along Mα
0 ∩M

β
0 = Mαβ

1 , one must add

a correction term along Mαβ
1 . There is no unique way to determine this correction term.

14PCO’s have an analog in the theory of ordinary Riemann surfaces in the form of Schiffer variations. A

Schiffer variation is a deformation of the complex structure of a Riemann surface Σ that is determined by a

change in the metric of Σ with δ-function support. (The phrase “Schiffer variation” is also sometimes used

to refer to a deformation with support in a very small open set.)
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For example (though this is certainly not the only approach), one might correct ζα and ζβ

very near Mαβ
1 so that they agree; any way to do this will give a correction term along Mαβ

1

that should be added to the right hand side of eq. (7.2). If this is done properly — but this

may be inconvenient in practice — the corrected ζα, ζβ , and ζγ will agree along the triple

intersections Mαβγ
2 . Otherwise further corrections supported on Mαβγ

2 must be added.

Again, if those corrections are made independently, without worrying about compatibility

on quadruple overlaps, then one will require further corrections on Mαβγδ
3 . In general, one

will go on in this way all the way down to codimension n, at which point the process will

stop and we will get a formula for
∫
M Ψ as a sum of contributions from the polyhedra in

Υ and their faces of various codimension. The general structure is very similar to what we

found in section 3, and in fact what was just explained was part of the motivation for that

construction. (The construction in section 3 terminated in codimension K < n, where K is

the odd dimension of M. This is related to the fact that the expansion of a function on M

in powers of the odd coordinates terminates with the K-th term, which makes it natural

for a construction along the lines just explained to terminate in codimension K.)

Alternatively, we can compute using a partition of unity. One approach is as follows.

We pick a cover of M by open sets Uα (which are in 1-1 correspondence with open sets

Uα ⊂ M). We pick a partition of unity on M subordinate to the cover by the Uα; as on a

bosonic manifold, this means that we pick functions A(α) on M that vanish outside Uα and

obey
∑

αA
(α) = 1. (Technically, it is convenient to require also that the closure in M of

the support of A(α) should be contained in Uα.) The A(α) can be restricted to M to give

a partition of unity on M (subordinate to the open cover by the Uα), but the partition of

unity on M carries in a certain sense more information, as we will see. Since
∑

αA
(α) = 1,

and A(α) vanishes outside Uα, we have trivially∫
M

Ψ =
∑
α

∫
M
A(α)Ψ =

∑
α

∫
Uα
A(α)Ψ. (7.3)

Given this, a partition of unity can be used to correct the naive equation (7.2). If sα :

Uα → Uα ⊂M is any projection, then∫
Uα
A(α)Ψ =

∫
Uα
sα∗ (A(α)Ψ). (7.4)

So a perturbative superstring scattering amplitude can be calculated using a partition of

unity as follows: ∫
M

Ψ =
∑
α

∫
Uα
sα∗ (A(α)Ψ). (7.5)

There is no need here for any compatibility between sα and sβ on Uα∩Uβ . Since sα∗ (A(α)Ψ)

vanishes outside Uα, another equivalent formula is∫
M

Ψ =

∫
M

∑
α

sα∗ (A(α)Ψ). (7.6)

For another way to use a partition of unity on M, we recall that, as explained in

textbooks, such a partition of unity can be used to construct a smooth projection ζ : M→
M , giving one route to a formula along the lines of eq. (7.1).
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The reader may be curious to understand more explicitly the difference between the

correct formula (7.3) and the wrong formula (7.2). Let A
(α)
0 be a partition of unity on M

subordinate to a cover by open sets Uα. This means in particular that
∑

αA
(α)
0 = 1. We

can pull back the A
(α)
0 to functions (sα)∗(A

(α)
0 ) on M. However, these functions do not give

a partition of unity on M, since
∑

α(sα)∗(A
(α)
0 ) equals 1 on M but not necessarily on M.

By adding nilpotent terms, the functions (sα)∗(A
(α)
0 ) can be corrected to functions A(α)

that give a partition of unity on M. Eq. (7.2) is analogous to trying to use (sα)∗(A
(α)
0 )

rather than A(α) in (7.3).

We conclude with the following remark. There are two possible points of view on

superstring perturbation theory. One may view PCO’s, supplemented with some procedure

such as the one described in the present paper, as the basic definition. Or one may view the

basic definition as being provided by integration over moduli of super Riemann surfaces,

with PCO’s regarded as an often convenient method of computation.
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