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1 Introduction

A general formula for computing the generating function (Hilbert series) for the chiral ring

associated with the Coulomb branch of three dimensional N = 4 gauge theories has been

recently proposed [1]. The formula counts monopole operators dressed by classical opera-

tors and includes quantum corrections. It can be applied to any 3d N = 4 supersymmetric

gauge theories that possess a Lagrangian description and that are good or ugly in the

sense of [2]. The formula has been successfully tested against mirror symmetry in many

cases [1, 3].

In a companion paper we developed a machinery for computing Coulomb branch

Hilbert series for wide classes of N = 4 gauge theories by using gluing techniques. We

computed the Coulomb branch Hilbert series with background fluxes for the flavor sym-

metry of the three dimensional superconformal field theories known as Tρ(G) [2], a class

of linear quiver theories with non-decreasing ranks associated with a partition ρ and a fla-

vor symmetry G. We found an intriguing connection with a class of symmetric functions,

the Hall-Littlewood polynomials, which have also appeared in the recent literature in the

context of the superconformal index of four dimensional N = 2 theories [4]. We clarify the

meaning of this connection in the following. The Tρ(G) theories serve as basic building

blocks for constructing more complicated theories.

In this paper we consider the theories that arise from compactifying the 6d (2, 0) theory

with symmetry G = SU(N),SO(2N) on a circle times a Riemann surface with punctures.

These are known as three dimensional Sicilian theories. With the exception of the SU(2)

case, they have no Lagrangian description [5]. We are interested in their mirror which can

be obtained as follows. Starting from a set of building blocks {Tρ1(G), Tρ2(G), . . . , Tρn(G)},
one can construct a new theory by gauging the common centerless flavor symmetryG/Z(G),

where Z(G) is the center of G. We refer to this procedure as ‘gluing’ the building blocks

together. The resulting theory is the aforementioned mirror of the theory associated to a

sphere with punctures {ρ1,ρ2, . . . ,ρn} [6, 7].

The main purpose of this paper is to compute the Coulomb branch Hilbert series of

these mirrors. We do this by gluing together the Hilbert series of the theories Tρi(G) as

explained in [3]. By mirror symmetry, our results should agree with the Higgs branch

Hilbert series of the Sicilian theories. The latter can be computed for the four dimensional

version of the theory, since the Higgs branch of a theory with eight supercharges is protected

against quantum corrections by a non-renormalization theorem [8] and therefore is the same

in all dimensions. Although the theory is non-Lagrangian, at genus zero the Higgs branch

Hilbert series can be written in terms of the Hall-Littlewood indices proposed in [4, 9]. We

find perfect agreement with the results in [4, 9, 10], as predicted by mirror symmetry.

Our result clarifies why the Hall-Littlewood polynomials appear in two different con-

texts, the Coulomb branch Hilbert series for the Tρ(G) theories and a limit of the four

dimensional superconformal index of Sicilian theories. It is interesting to observe how

the structure of the superconformal index formula (see for example (3.31)), obtained in

a completely different manner, can be naturally reinterpreted in terms of gluing of three

dimensional building blocks.
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Our gluing formula easily extends to punctured Riemann surfaces of higher genus, by

incorporating adjoint hypermultiplets in the mirror theory [6]. For such Riemann surfaces

the Hall-Littlewood index of the 4d non-Lagrangian theory differs from the Higgs branch

Hilbert series, as discussed in [4]. Our formula for the Coulomb branch Hilbert series of

the 3d Lagrangian mirror theory (3.30) provides the Higgs branch Hilbert series of the (3d

or 4d) non-Lagrangian Sicilian theory, for any genus g, as long as the theory is not bad in

the sense of [2]. In section 3.1, we successfully test our higher genus prediction for the case

of A1 Sicilian theories, also known as tri-vertex theories. These are 3d N = 4 Lagrangian

theories associated to a graph with tri-valent vertices, where a finite line denotes an SU(2)

gauge group, an infinite line denotes an SU(2) global symmetry, and a vertex denotes 8

half-hypermultiplets in the tri-fundamental representation of SU(2)3. These graphs are

characterized by the genus g and the number of external legs e. The Higgs branch Hilbert

series of such theories were computed directly in [11]. In section 3.1.1 we reproduce that

result from the Coulomb branch of the mirror theory.

As an addition to the main line of this paper, which focusses on the Coulomb branch

of mirrors of three dimensional Sicilian theories, in section 5 we study the Coulomb branch

of tri-vertex theories themselves at genus zero using the monopole formula. We find that

the Coulomb branch Hilbert series depends only on e and not on the details of the graph,

as suggested in [6].

The paper is organized as follows. In section 2 we review the formula for the Coulomb

branch Hilbert series of N = 4 theories, the gluing technique and the Hall-Littlewood for-

mula for the Tρ(G) theories. In section 3 we compute the Coulomb branch Hilbert series

of the mirrors of three dimensional Sicilian theories with A-type punctures at arbitrary

genus g. We examine in particular the case of the TN theory. We successfully compare the

result for genus zero with the superconformal index prediction for Higgs branch Hilbert

series of the Sicilian theories given in [4, 9]. We also give explicit examples for theories at

higher genus. In the SU(2) case, where the Sicilian theories are Lagrangian, we compare

our result with the Higgs branch Hilbert series computed in [11] finding perfect agreement.

In section 4 we extend the analysis to theories of type D. As a general check of our predic-

tions, we demonstrate the equivalence between D3 and A3 punctures and we compute the

Coulomb branch Hilbert series for a set of D4 punctures where the Higgs branch Hilbert

series can be explicitly evaluated, finding perfect agreement. In section 5 we compute the

Hilbert series of the tri-vertex theories at genus zero showing that they only depend on

the number of external legs. In section 5.3 we present generating functions and recursive

formulae, which are powerful tools for computing the Hilbert series of tri-vertex theories.

Finally, in appendix A we consider theories of type D with twisted punctures.

Note added. One might ask whether there is any relation between the Coulomb branch

Hilbert series that we study and the 3d superconformal index [12–14]. Indeed, a recent

work [15] appeared after the submission of this paper, showing that the superconformal

index of a 3d N = 4 theory reduces to the Hilbert series in a particular limit.

– 3 –
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2 Coulomb branch Hilbert series of a 3d N = 4 gauge theory

Our main aim is to study the Coulomb branch of three dimensional N = 4 gauge theories.

Classically, this branch is parameterized by the vacuum expectation values of the triplet

of scalars in the N = 4 vector multiplets and by the vacuum expectation value of the dual

photons, at a generic point where the gauge group is spontaneously broken to its maximal

torus. This yields a HyperKähler space of quaternionic dimension equal to the rank of the

gauge group. The Coulomb branch is, however, not protected against quantum corrections

and the associated chiral ring has a complicated structure involving monopole operators in

addition to the classical fields in the Lagrangian.

A suitable quantum description of the chiral ring on the Coulomb branch is to replace

the above description by monopole operators. The gauge invariant BPS objects on the

branch are monopole operators dressed by a product of a certain scalar field in the vector

multiplet. The spectrum of such BPS objects can be studied in a systematic way by com-

puting their partition function, known as the Hilbert series. A Hilbert series is a generating

function of the chiral ring, which enumerates gauge invariant BPS operators which have a

non-zero expectation value along the Coulomb branch. As extensively discussed in [1, 3],

a general formula for the Hilbert series of the Coulomb branch of an N = 4 theory can be

computed based on this principle. We refer to such a formula as the monopole formula.

In [3] we found an analytic expression for the Coulomb branch Hilbert series of a class

of theories called Tρ(G) [2], where G is a classical group and ρ is a partition associated

with the GNO dual group G∨. Such a theory has a Lagrangian description [2, 3, 6]. The

Hilbert series of these theories can be conveniently written in terms of Hall-Littlewood

polynomials [3], and the corresponding formula is dubbed the Hall-Littlewood formula.

In the following section we show that the Hall-Littlewood formula is a convenient tool

to compute the Coulomb branch Hilbert series of mirrors of three dimensional Sicilian

theories.

Let us now summarize important information on the monopole and Hall-Littlewood

formulae for Coulomb branch Hilbert series.

2.1 The monopole formula

The monopole formula [1] counts all gauge invariant chiral operators that can acquire a

non-zero expectation value along the Coulomb branch, according to their dimension and

quantum numbers. The operators are written in an N = 2 formulation and the N = 4

vector multiplet is decomposed into an N = 2 vector multiplet and a chiral multiplet

Φ transforming in the adjoint representation of the gauge group. We refer to [1] for an

explanation of the formula and simply quote the final result here.

The formula for a good or ugly [2] theory with gauge group G reads

HG(t, z) =
∑

m∈ΓG∨/WG∨

zJ(m)t∆(m)PG(t;m) . (2.1)

The sum is over the magnetic charges of the monopoles m which, up to a gauge transfor-

mation, belong to a Weyl Chamber of the weight lattice ΓG∨ of the GNO dual group [16].

– 4 –
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PG(t;m) is a factor which counts the gauge invariants of the gauge group Hm unbroken

by the monopole m made with the adjoint scalar field φ in the multiplet Φ, according to

their dimension. It is given by

PG(t;m) =
r∏
i=1

1

1− tdi(m)
, (2.2)

where di(m), i = 1, . . . , rank Hm are the degrees of the independent Casimir invariants of

Hm. ∆(m) is the quantum dimension of the monopole which is given by [2, 17–19]

∆(m) = −
∑

α∈∆+(G)

|α(m)|+ 1

2

n∑
i=1

∑
ρi∈Ri

|ρi(m)| , (2.3)

where α are the positive roots of G and ρi ∈ Ri the weights of the matter field representa-

tion Ri under the gauge group. z is a fugacity valued in the topological symmetry group,

which exists if G is not simply connected, and J(m) the topological charge of a monopole

operator of GNO charges m.

Turning on background magnetic fluxes. As discussed in [3], the formula can be

generalized to include background monopole fluxes for a global flavor symmetry GF acting

on the matter fields:

HG,GF (t,mF , z) =
∑

m∈ΓG∨/WG∨

zJ(m)t∆(m,mF )PG(t;m) . (2.4)

The sum is only over the magnetic fluxes of the gauge group G but depends on the weights

mF of the dual group G∨F which enter explicitly in the dimension formula (2.3) through all

the matter fields that are charged under the global symmetry GF . By using the global sym-

metry we can restrict the value ofmF to a Weyl chamber of G∨F and takemF ∈ ΓG∨F /WG∨F
.

The gluing technique. We can construct more complicated theories by starting with

a collection of theories and gauging some common global symmetry GF they share. The

Hilbert series of the final theory where GF is gauged is given by multiplying the Hilbert

series with background fluxes for GF of the building blocks, summing over the monopoles

of GF and including the contribution to the dimension formula of the N = 4 dynamical

vector multiplets associated with the gauged group GF :

H(t) =
∑

mF ∈ΓG∨
F
/WG∨

F

t
−

∑
αF∈∆+(GF ) |αF (mF )|

PGF (t;mF )
∏
i

H
(i)
G,GF

(t,mF ) , (2.5)

where αF are the positive roots of GF and the product with the index i runs over the Hilbert

series of the i-th theory that is taken into the gluing procedure. Since we can always make

αF (mF ) non-negative by choosing mF in the main Weyl chamber, the evaluation of H(t)

turns out to have no absolute values. The formula (2.5) can be immediately generalized to

include fugacities for the topological symmetries acting on the Coulomb branch.

In the next sections we will provide explicit and general formulae for many interesting

3d N = 4 superconformal theories including mirrors of M5-brane theories compactified on

a circle times a Riemann surfaces with punctures. They are obtained by gluing a simple

class of building blocks that we now discuss.

– 5 –
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2.2 The Hall-Littlewood formula

As extensively discussed in [3], the Coulomb branch Hilbert series of Tρ(G∨) for a clas-

sical group G can be computed using formulae involving Hall-Littlewood polynomials.

The main purpose of this paper is to show that these formulae are useful for computing

Coulomb branch Hilbert series of mirrors of 3d Sicilian theories. For the sake of complete-

ness of the paper, we review Hall-Littlewood formulae below. We first present the formula

for G = SU(N) and then discuss the formula for other classical groups, namely SO(N)

and USp(2N).

2.2.1 Tρ(SU(N))

The quiver diagram for Tρ(SU(N)) is

[U(N)]− (U(N1))− (U(N2))− · · · − (U(Nd)), (2.6)

where the partition ρ of N is given by

ρ = (N −N1, N1 −N2, N2 −N3, . . . , Nd−1 −Nd, Nd) , (2.7)

with the restriction that ρ is a non-increasing sequence:

N −N1 ≥ N1 −N2 ≥ N2 −N3 ≥ · · · ≥ Nd−1 −Nd ≥ Nd > 0 . (2.8)

The quiver theory in (2.6) can be realised from brane configurations as proposed in [20].

The Coulomb branch Hilbert series of this theory can be written as

H[Tρ(SU(N))](t;x1, . . . , xd+1;n1, . . . , nN )

= t
1
2
δU(N)(n)(1− t)NKU(N)

ρ (x; t)ΨnU(N)(xt
1
2
wρ ; t) ,

(2.9)

where the Hall-Littlewood polynomial associated with the group U(N) is given by

ΨnU(N)(x1, . . . , xN ; t) =
∑
σ∈SN

xn1

σ(1) . . . x
nN
σ(N)

∏
1≤i<j≤N

1− tx−1
σ(i)xσ(j)

1− x−1
σ(i)xσ(j)

, (2.10)

with n1, . . . , nN the background GNO charges for U(N) group, with

n1 ≥ n2 ≥ · · · ≥ nN ≥ 0 . (2.11)

The notation δU(N) denotes the sum over positive roots of the group U(N) acting on the

background charges ni:

δU(N)(n) =
∑

1≤i<j≤N
(ni − nj) =

N∑
j=1

(N + 1− 2j)nj . (2.12)

The fugacities x1, . . . , xd+1 are subject to the following constraint which fixes the over-

all U(1):

d+1∏
i=1

xρii = 1 . (2.13)

– 6 –
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The vector wr denotes the weights of the SU(2) representation of dimension r:

wr = (r − 1, r − 3, . . . , 3− r, 1− r) . (2.14)

Hence the notation t
1
2
wr represents the vector

t
1
2
wr = (t

1
2

(r−1), t
1
2

(r−3), . . . , t−
1
2

(r−3), t−
1
2

(r−1)) . (2.15)

In (2.9) and henceforth, we abbreviate

ΨnU(N)(xt
1
2
wρ ; t) := Ψ

(n1,...,nN )
U(N) (x1t

1
2
wρ1 , x2t

1
2
wρ2 , . . . , xd+1t

1
2
wρd+1 ; t) . (2.16)

The prefactor K
U(N)
ρ (x; t) is given by

K
U(N)
ρ (x; t) =

length(ρT )∏
i=1

ρTi∏
j,k=1

1

1− aijaik
, (2.17)

where ρT denotes the transpose of the partition ρ and we associate the factors

aij = xj t
1
2

(ρj−i+1) , i = 1, . . . , ρj

aik = x−1
k t

1
2

(ρk−i+1) , i = 1, . . . , ρk
(2.18)

to each box in the Young tableau. The powers of t inside aij and aik are positive by

construction.

We demonstrate the HL formula (2.9) in a number of examples in section 3.

2.2.2 Tρ(G
∨)

In this section we review a generalized version of formula (2.9) to a more general classical

group G. The quiver diagrams are explicitly given in [3]. Further discussions regarding

mathematical aspects of this formula can be found in [3, 21, 22].

The partition ρ induces an embedding ρ : Lie(SU(2))→ Lie(G) such that

[1, 0, . . . , 0]G =
⊕
i

[ρi − 1]SU(2) . (2.19)

The global symmetry Gρ associated to the puncture ρ = [ρi], with rk the number of times

that part k appears in the partition ρ, is given by

Gρ =


S (
∏
k U(rk)) G = U(N) ,∏

k odd SO(rk)×
∏
k even USp(rk) G = SO(2N + 1) or SO(2N) ,∏

k odd USp(rk)×
∏
k even SO(rk) G = USp(2N) .

(2.20)

Let x1, x2, . . . be fugacities for the global symmetry Gρ, the commutant of ρ(SU(2)) in

G, and r(G) the rank of G. In [3] we have conjectured that the Coulomb branch Hilbert

series is given by the HL formula

H[Tρ(G∨)](t;x;n1, . . . , nr(G)) = t
1
2
δG∨ (n)(1− t)r(G)KG

ρ (x; t)ΨnG(a(t,x); t) . (2.21)

– 7 –
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Here ΨnG is the Hall-Littlewood polynomial associated to a Lie group G, given by

ΨnG(x1, . . . , xr; t) =
∑
w∈WG

xw(n)
∏

α∈∆+(G)

1− tx−w(α)

1− x−w(α)
, (2.22)

where WG denotes the Weyl group of G, ∆+(G) the set of positive roots of G, n =∑r
i=1 niei, with {e1, . . . , er} the standard basis of the weight lattice and r the rank of G.

See appendix B of [3] for more details. G∨ is the GNO dual group [16]. The power δG∨(n)

is the sum over positive roots α ∈ ∆+(G∨) of the flavor group G∨ acting on the background

monopole charges n:

δG∨(n) =
∑

α∈∆+(G∨)

|α(n)| . (2.23)

Explicitly, for classical groups G and fluxes n in the fundamental Weyl chamber, these are

given by

δG∨(n) =



∑N
j=1(N + 1− 2j)nj G∨ = G = U(N),∑N
j=1(2N + 1− 2j)nj G∨ = BN , G = CN∑N
j=1(2N + 2− 2j)nj G∨ = CN , G = BN∑N−1
j=1 (2N − 2j)nj G∨ = G = DN .

(2.24)

The argument a(t,x) of the HL polynomial, which we shall henceforth abbreviate as

a, is determined by the following decomposition of the fundamental representation of G to

Gρ × ρ(SU(2)):

χGfund(a) =
∑
k

χ
Gρk
fund(xk)χ

SU(2)
[ρk−1](t

1/2) , (2.25)

where Gρk denotes a subgroup of Gρ corresponding to the part k of the partition ρ that

appears rk times. Formula (2.25) determines a as a function of t and {xk} as required. Of

course, there are many possible choices for a; the choices that are related to each other by

outer-automorphisms of G are equivalent.

The prefactor KG
ρ (x; t) is independent of n and can be determined as follows. The

embedding specified by ρ induces the decomposition

χGAdj(a) =
∑

j=0, 1
2
,1, 3

2
,...

χ
Gρ
Rj

(xj)χ
SU(2)
[2j] (t1/2) , (2.26)

where a on the left hand side is the same a as in (2.25). Each term in the previous formula

gives rise to a plethystic exponential,1 giving

KG
ρ (x; t) = PE

 ∑
j=0, 1

2
,1, 3

2
,...

tj+1χ
Gρ
Rj

(xj)

 . (2.27)

1See appendix A of [1] for the definition.
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As a remark, in the special case when ρ : Lie(SU(2))→ Lie(G) is a principal embedding

ρprinc (see, e.g. [22]), the global symmetry acting on the Coulomb branch is trivial Gρprinc =

1, the prefactor KG
ρprinc

(t) = PG(t; 0) equals the Casimir factor of G (or equivalently G∨),

and the Hall-Littlewood formula (2.21) reduces to

H[Tρprinc(G
∨)](t;n1, . . . , nr(G)) = 1 . (2.28)

This identity has a simple physical interpretation in the context of mirrors of Sicilian

theories that we consider in this paper: adding an empty puncture does not affect the

Hilbert series of the Sicilian theory.

In the following we discuss several examples of mirrors of 3d Sicilian theories for which

we use the Hall-Littlewood formulae to compute their Coulomb branch Hilbert series.

3 Mirrors of 3d Sicilian theories of A-type

In this and the next section we evaluate the Coulomb branch Hilbert series of the mirror

of the theories arising from compactifying the 6d (2, 0) theory with symmetry G on a circle

times a Riemann surface with punctures, also called Sicilian theories. These theories and

their Coulomb branch Hilbert series will be obtained by gluing together Tρ(G) building

blocks.

Given a set of theories {Tρ1(G), . . . , Tρn(G)}, we can construct a new theory by gauging

the common centerless flavor symmetry G/Z(G); see figure 1.2 The resulting theory is the

mirror of the theory on M5-branes wrapping a circle times a Riemann sphere with punctures

ρ1, . . . ,ρn [6, 7]. For example, taking G = SU(3) and ρ1 = ρ2 = ρ3 = (1, 1, 1) we obtain a

mirror of the T3 theory reduced to three dimensions. Recall that the Higgs branch of the

3d T3 theory is the reduced moduli space of 1 E6 instantons on C2 and the Coulomb branch

is C2/Ê6. The moduli spaces of k E6, E7 and E8 instantons on C2 can be also realized as

the Higgs branch of the 6d (2, 0) theory compactified on a circle times a Riemann sphere

with punctures.

We demonstrate how to ‘glue’ the Hilbert series Tρn(G) together to obtain the Coulomb

branch Hilbert series of the mirror of the theory on M5-branes compactified on S1 times

a Riemann sphere with punctures {ρi}. By mirror symmetry, this is equal to the Higgs

branch Hilbert series of the latter. The theories on M5-branes are not Lagrangian, but,

when the genus of the Riemann surface is zero, the Higgs branch Hilbert series can be

evaluated by the Hall-Littlewood (HL) limit of the superconformal index [4]. We find

perfect agreement with the results in [4], which were obtained in a completely different

manner. Upon introduction of g G-adjoint hypermultiplets [6], our formulae can be used

also for genus greater than one, where the Higgs branch Hilbert series for the M5-brane

theories cannot be evaluated as a limit of the 4d superconformal index.3 In section 3.1 we

will be able to test the validity of our result for higher genus in the case of two M5 branes

2For G = U(N), this also involves factoring out a decoupled U(1) gauge group.
3For genus greater than 1, the F-terms of the theory are not all independent. As a result, the HL limit of

the 4d superconformal index fails to reproduce the Higgs branch Hilbert series. For a very clear explanation

of this technical fact, see section 5 of [4].
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G/Z(G)

Tρ1(G)

Tρ2 (G)

Tρ3 (G)

Tρn(G)

Tρn-1 (G)

Figure 1. Gluing Tρ1
(G), . . . , Tρn

(G) via the common centerless flavor symmetry G/Z(G). This

is a mirror theory of the theory on M5-brane compactified on a circle times a Riemann sphere with

punctures ρ1, . . . ,ρn.

where the theory is Lagrangian and we can use conventional methods for computing the

Higgs branch Hilbert series.

In this section we discuss the case of A-type theories with G = SU(N) and in the next

section we discuss D-type theories with G = SO(2N).

3.1 Mirrors of tri-vertex theories: star-shaped U(2)×U(1)e/U(1) quivers

We start by considering the Coulomb branch Hilbert series of the mirrors of theories on two

M5-branes compactified on a circle times a Riemann surface with punctures. The latter

are referred to as 3d SU(2) Sicilian theories [6, 23] or 3d theories with tri-vertices [11].

They are Lagrangian theories whose quiver is explicitly discussed in section 5. According

to [6], the mirror of a tri-vertex theory with genus g and e external legs is a star-shaped

U(2)×U(1)e/U(1) quiver gauge theory with the U(2) node with g adjoint hypermultiplets

in the center, attached to e ≥ 3 U(1) nodes around it. The quiver is depicted in figure 2.

The overall U(1) gauge group in the quiver is decoupled and needs to be factored out.

It is crucial to mod out by the overall U(1) properly: in particular the quiver with an SU(2)

node in the center, attached to e U(1) nodes around it, gives the wrong Coulomb branch,

which disagrees with the Higgs branch of the g = 0 tri-vertex theory with e ≥ 3 legs [11].

The reason is that U(2) = U(1)× SU(2)/Z2.

Let us first consider the U(2)×U(1)e quiver gauge theory which includes the decoupled

overall U(1). We use GNO charges n1 and n2 for U(2), related to the integer weights

n1 ≥ n2 > −∞ in the Weyl chamber. For the i-th U(1) gauge group, with i = 1, . . . , e, we

– 10 –
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U(2)

U(1)U(1)

g adjoint hypers

e U(1) gauge groups

Factoring out by the overall U(1)

Figure 2. The mirror theory of a tri-vertex theory with genus g and e external legs.

use the GNO charge mi ∈ Z. The dimension formula (2.3) reads

∆g(n1, n2;m1, . . . ,me) = (g − 1)|n1 − n2|+
1

2

e∑
i=1

(|n1 −mi|+ |n2 −mi|) . (3.1)

The formula is invariant under the common shift n1,2 → n1,2 + c, mi → mi + c, with

i = 1, . . . , e and c ∈ Z: this is the decoupled U(1) that we have to fix.

Topological factor. The topological U(1)e+1
J fugacities for the naive U(2)×U(1)e theory

contribute

zn1+n2
0

e∏
i=1

zmii , (3.2)

where z0 is the fugacity associated to the topological charge of U(2) and zi, with i = 1, . . . , e,

the fugacity associated to the topological charge of the i-th copy of U(1).

Factoring out the overall U(1). To get rid of the decoupled U(1), which would make

this a bad theory, we fix the Z shift symmetry of the magnetic fluxes and impose a relation

on the topological fugacities zI , where I = 0, 1, . . . , e. Different fixings make manifest dif-

ferent topological symmetry enhancements. Here we want to manifest an SU(2)e enhanced

topological symmetry, with one SU(2) per external U(1) node. Therefore we fix the overall

U(1) by imposing

n2 = 0 , z2
0

e∏
i=1

zi = 1 . (3.3)

In the following we choose to write

z0 = ε x1 · · ·xe , zi = x−2
i , i = 1, . . . , e , ε2 = 1 . (3.4)

As we shall see, this choice makes SU(2) characters manifest in the Hilbert series. ε is the

fugacity of a potential discrete Z2 topological symmetry. This Z2 can be absorbed into the

center of an SU(2) symmetry, and correspondingly ε can be absorbed into zi or xi, except

for the case of no punctures e = 0, where it is the topological symmetry for the gauge

group SU(2)/Z2. We will sometimes omit ε in the following.

– 11 –
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The monopole formula for Coulomb branch Hilbert series. Following the above

discussion, the refined Hilbert series of the Coulomb branch (2.1) reads

H[mirror (g, e)](t;x1, . . . , xe) (3.5)

=

∞∑
n1≥n2=0

∑
mi∈Z

t∆g(n1,n2;m1,...,me)PU(1)(t)
e(1− t)PU(2)(t;n1, n2)εn1+n2

e∏
i=1

xn1+n2−2mi
i ,

where the last factor comes from (3.2) and (3.4).The classical factors are given by

PU(1)(t) =
1

1− t
(3.6)

and

PU(2)(t;n1, n2) =

 1
(1−t)(1−t2)

, n1 = n2

1
(1−t)2 , n1 6= n2

. (3.7)

The factor (1− t) in front of PU(2) removes the classical invariants of the decoupled U(1).

As we show explicitly in subsection 3.1.1, evaluating the monopole formula (3.5) re-

produces the refined Hilbert series of the Higgs branch of the mirror theory, formula (7.1)

of [11], under the fugacity map there = t2there.

Coulomb branch Hilbert series from gluing. It is instructive to rewrite (3.5) as

H[mirror (g, e)](t;x1, . . . , xe) =
∑

n1≥n2=0

(1− t)PU(2)(t;n1, n2)t(g−1)(n1−n2)×

εn1+n2

e∏
j=1

H[T (SU(2))](t;xj , x
−1
j ;n1, n2) ,

(3.8)

where H[T (SU(2))] is the Coulomb branch Hilbert series with background fluxes of the

T (SU(2)) theory given by (2.9) with ρ = (1, 1):

H[T (SU(2))](t;x, x−1;n1, n2) =
∑
m∈Z

t
1
2

(|m−n1|+|m−n2|)x−2mPU(1)(t)

= t
1
2

(n1−n2)(1− t)2 PE[(1 + [2]x)t]Ψ
(n1,n2)
U(2) (x, x−1; t) .

(3.9)

Eq. (3.8) is nothing but the gluing formula for the Coulomb branch Hilbert series of the

star-shaped quiver, which results from gauging the common flavor symmetry of e copies

of T (SU(2)) and introducing g adjoint hypermultiplets under the U(2) group. The gluing

factor is

(1− t)PU(2)(t;n1, n2)t(g−1)|n1−n2|εn1+n2

e∏
j=1

xn1+n2
j , (3.10)

with xn1+n2
j factors already incorporated in H[T (SU(2))] for convenience.

– 12 –
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3.1.1 Computation of the Hilbert series for general g and e

We now compute the Coulomb branch Hilbert series (3.8) of the mirror of tri-vertex theories

with genus g and e external legs.

Using (2.9), we obtain

H[T (SU(2))](t;x, x−1;n, 0) = t
1
2
n(1− t)2 PE[(1 + χ

SU(2)
[2] (x))t]Ψ

(n,0)
U(2) (x, x−1; t)

= t
1
2
n(1− t) PE[tχ

SU(2)
[2] (x)]Ψ

(n,0)
U(2) (x, x−1; t) ,

(3.11)

where [2] represents the adjoint representation of SU(2). An explicit formula for

Ψ
(n,0)
U(2) (x, x−1; t) is known in terms of SU(2) characters:

Ψ
(n,0)
U(2) (x, x−1; t) = χ

SU(2)
[n] (x)− tχSU(2)

[n−2] (x) , (3.12)

where

χ
SU(2)
[n] (x) =

xn+1 − x−(n+1)

x− x−1
, (3.13)

which we extend to n ∈ Z. Observe that (1− t) PE[χ
SU(2)
[2] (x)t]Ψ

(m,0)
U(2) (x, x−1; t) is equal to

the function fm(t, x) defined in (7.18) of [11]:

fm(t, x) := (1− t) PE[χ
SU(2)
[2] (x)t]Ψ

(m,0)
U(2) (x, x−1; t)

= (1− t)(χSU(2)
[m] (x)− χSU(2)

[m−2](x)t) PE[[2]xt]

=

∞∑
n=0

χ
SU(2)
[2n+m](x)tn .

(3.14)

Hence from (3.11) we have

H[T (SU(2))](t;x, x−1;m, 0) = t
1
2
mfm(t, x) . (3.15)

Substituting this into (3.8), we obtain

H[mirror (g, e)](t;x1, . . . , xe; ε)

=

∞∑
m=0

t
1
2
χmεm(1− t)PU(2)(t;m, 0)

e∏
j=1

fm(t, xj)

=
1

1− t2
e∏
j=1

f0(t, xj) +

∞∑
m=1

t
1
2
χmεm

1− t

e∏
j=1

fm(t, xj)

=
1

1− t2
∞∑
m=0

t 1
2
χmεm

e∏
j=1

fm(t, xj) + t
1
2

(χ(m+1)+2)εm+1
e∏
j=1

fm+1(t, xj)

 ,
(3.16)

where χ = 2g + e − 2. This result precisely equals the Higgs branch Hilbert series of the

mirror tri-vertex theory, (7.19) of [11], after the redefinition t→ t2 and setting ε = 1. Note

that when e > 0, the Z2 topological symmetry can be absorbed into the center of any of

– 13 –
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N N − 1N − 1

N − 1

N − 2

N − 2N − 2 · · ·· · ·

...

11

1

Figure 3. Quiver diagram for the mirror of TN . Each node represents a unitary group of the

labelled rank and the overall U(1) is modded out.

the global SU(2) factors, therefore we can set ε = 1. When e = 0, ε is the fugacity for the

actual Z2 topological symmetry of the SU(2)/Z2 theory with g adjoint hypermultiplets.

The Hilbert series of the Coulomb branch is

H[mirror (g, 0)](t; ε) = PE[t2 + ε(tg−1 + tg)− t2g] , (3.17)

indicating a C2/D̂g+1 singularity. The monopole generators of dimension g − 1 and g are

odd under Z2. This Z2 symmetry acts on the Higgs branch of the mirror side by flipping

sign to any one of the tri-fundamentals in the generators at page 27 of [11].

3.2 The Coulomb branch of the mirror of TN

The case of a sphere with three maximal punctures ρ = (1, · · · , 1) is known as the TN
theory [5]. We can compute the Coulomb branch Hilbert series of the mirror of the TN
theory reduced to three dimensions by gluing three T (SU(N)) tails together. The quiver

diagram of such a mirror theory is depicted in figure 3.

Note that for N = 3 the quiver of the mirror is the E6 quiver and the result should

match with the Hilbert series of the reduced moduli space of 1 E6 instanton on C2.

H[mirror TN ](t;x(1),x(2),x(3))

=
∑

n1≥···≥nN=0


3∏
j=1

H[T (SU(N))](t;x(j);n1, . . . , nN )

×
t−δU(N)(n1,...,nN )(1− t)PU(N)(t;n1, . . . , nN ) ε

∑N
i=1 ni

=
∑

n1≥···≥nN−1≥0

t
1
2

∑N−1
j=1 (N+1−2j)nj (1− t)3N+1PU(N)(t;n1, . . . , nN−1, 0)×

ε
∑N−1
i=1 ni

3∏
j=1

K(1N )(x
(j); t)Ψ

(n1,...,nN−1,0)
U(N) (x(j); t) ,

(3.18)
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where we explain the notation below:

• x(i) = (x
(i)
1 , . . . , x

(i)
N ), with i = 1, 2, 3, denotes the fugacities of the SU(N) global

symmetry on the Coulomb branch associated with the i-th copy of T (SU(N)); they

satisfy

N∏
k=1

x
(i)
k = 1 , with i = 1, 2, 3 . (3.19)

• The second line of the first equality is the gluing factor for the U(N) group:

1. δU(N) denotes the contribution from the U(N) background vector multiplet:

δU(N)(n1, . . . , nN ) =
∑

1≤i<j≤N
|ni − nj |

=
N∑
j=1

(N + 1− 2j)nj , n1 ≥ n2 ≥ · · · ≥ nN ≥ 0 .

(3.20)

2. The removal of the overall U(1) is done in two steps:

(a) Multiplying (1− t) to the function PU(N)(t;n1, . . . , nN ).

(b) Restricting nN = 0.

• The prefactor K(1N )(x; t) is given by

K(1N )(x; t) = PE
[
χ

U(N)
Adj (x)t

]
. (3.21)

• The fugacity ε, with εN = 1, corresponds to a potential ZN discrete topological

symmetry for the U(N) gauge group modulo U(1). In the notations of section 3

of [1], the ZN valued fugacity is related to the ambiguity in taking the N -th root

when solving the constraint on the topological fugacities for z0:

z0 = εẑ0 , with ẑ0 :=

(
e∏

a=1

da∏
k=1

z
Nk,a
k,a

)1/N

, (3.22)

where ẑ0 denotes the N -th principal root and ε runs over N -th roots of unity,

εN = 1 , (3.23)

and Nk,a and zk,a are the rank and the fugacity for the topological symmetry of the

k-th gauge group in the a-th leg. Often all or part of this ZN symmetry can be

absorbed in the center of the continuous topological symmetry associated to zk,a.

For this reason we will sometimes omit ε in the following.

– 15 –



J
H
E
P
0
9
(
2
0
1
4
)
1
8
5

Our result should agree with the Higgs branch Hilbert series of the TN theory. The

latter can be evaluated in the 4d version of the theory, since the Higgs branch does not

depend on the dimension. Let us compare (3.18) with the result in [4] for the Higgs branch

Hilbert series of TN which is computed by the 4d Hall-Littlewood index. In that reference,

the HL polynomial is defined with a normalization factor:4

Ψ̂λU(N)(x1, . . . , xN ; t) = Nλ(t)ΨλU(N)(x1, . . . , xN ; t) . (3.24)

The normalization Nλ(t) is given by

N−2
λ1,...λk

(t) =
∞∏
i=0

m(i)∏
j=1

(
1− tj

1− t

)
, (3.25)

where m(i) is the number of rows in the Young diagram λ = (λ1, . . . , λN ) of length i. It is

related to PU(N) as follows:

(1− t)NPU(N)(t;n1, . . . , nN−1, 0) = Nn1,...,nN−1,0(t)2 . (3.26)

Using the identity

(1− t)2N+1t
1
2

∑N−1
j=1 (N+1−2j)nj =

(1− t)N+2
∏N
i=2(1− ti)

Ψ
(n1,...,nN−1,0)
U(N) (t

1
2

(N−1), t
1
2

(N−3), . . . , t−
1
2

(N−1); t)
, (3.27)

we arrive at

H[mirror TN ](t;x(1),x(2),x(3))

= (1− t)N+2

{
N∏
i=2

(1− ti)

}
K(1N )(x

(1); t)K(1N )(x
(2); t)K(1N )(x

(3); t)×

∑
n1≥n2≥···≥nN−1≥0

Ψ̂
(n1,...,nN−1,0)
U(N) (x(1); t)Ψ̂

(n1,...,nN−1,0)
U(N) (x(2); t)Ψ̂

(n1,...,nN−1,0)
U(N) (x(3); t)

Ψ̂
(n1,...,nN−1,0)
U(N) (t

1
2

(N−1), t
1
2

(N−3), . . . , t−
1
2

(N−1); t)
,

(3.28)

where the normalized HL polynomial Ψ̂nU(N)(x; t) is defined as in (3.24). Our result agrees

with formula (5.33) of [4].

3.3 The Coulomb branch of the mirror of a general 3d Sicilian theory

The computation of the Coulomb branch Hilbert series for the mirror of TN can be easily

generalized to a general 3d Sicilian theory. For the mirror of a theory that arises from a

compactification of the AN−1 6d (2, 0) theory on a circle times a genus g Riemann surface

with punctures {ρ1,ρ2, . . . ,ρe}, the Coulomb branch Hilbert series is given by

H[mirror g, {ρ1,ρ2, . . . ,ρe}](t;x(1), . . . ,x(e))

=
∑

n1≥···≥nN=0


e∏
j=1

H[Tρj (SU(N))](t;x(j);n1, . . . , nN )

×
tδ̃U(N), g(n1,...,nN )(1− t)PU(N)(t;n1, . . . , nN ),

(3.29)

4Our fugacity t is related to τ in [4] by τ = t1/2.
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where the contribution of the g U(N) adjoint hypermultiplets and vector multiplet to the

dimension of monopole operators is

δ̃U(N), g(n) = (g − 1)δU(N)(n) = (g − 1)
∑

1≤i<j≤N
|ni − nj |

= (g − 1)

N∑
j=1

(N + 1− 2j)nj , n1 ≥ · · · ≥ nN ≥ 0 ,

with δU(N)(n1, . . . , nN ) given by (3.30). We therefore obtain

H[mirror g, {ρ1,ρ2, . . . ,ρe}](t;x(1), . . . ,x(e))

=
∑

n1≥···≥nN−1≥0

t(
e
2

+g−1)
∑N−1
j=1 (N+1−2j)nj (1− t)eN+1PU(N)(t;n1, . . . , nN−1, 0)×

e∏
j=1

Kρj (x
(j); t)Ψ

(n1,...,nN−1,0)
U(N) (x(j)t

1
2
wρj ; t) ,

(3.30)

3.3.1 The case of genus zero

In a special case of g = 0, we use (3.26) and (3.27) to obtain

H[mirror {ρ1,ρ2, . . . ,ρe}](t;x(1), . . . ,x(e))

= (1− t)e+(N−1)

{
N∏
i=2

(1− ti)

}e−2

×

∑
n1≥n2≥···≥nN−1≥0

∏e
j=1Kρj (x

(j); t)Ψ̂
(n1,...,nN−1,0)
U(N) (x(j)t

1
2
wρj ; t)

[Ψ̂
(n1,...,nN−1,0)
U(N) (t

1
2

(N−1), t
1
2

(N−3), . . . , t−
1
2

(N−1); t)]e−2
,

(3.31)

where Ψ̂U(N) denotes the normalized Hall-Littlewood polynomial defined in (3.24). This

result agrees with the Higgs branch Hilbert series of the Gaiotto theory, computed as a

Hall-Littlewood index for g = 0 in (2.13) of [9].

As discussed in [9], the formula (3.31) can be used to write the Hilbert series for the

moduli spaces of E6, E7 and E8 instantons on C2, which can be realized as the Higgs branch

of the 6d (2, 0) theory compactified on a Riemann sphere with punctures {ρ1,ρ2,ρ3}

ρ1 ρ2 ρ3

E6 (k, k, k) (k, k, k) (k, k, k − 1, 1)

E7 (k, k, k, k) (2k, 2k) (k, k, k, k − 1, 1)

E8 (3k, 3k) (2k, 2k, 2k) (k, k, k, k, k, k − 1, 1)

(3.32)

corresponding to the mirror quiver given in figure 4.

3.3.2 Mirror of the SU(3) Sicilian theory with g = 1 and a maximal puncture

Recall that for genus g > 0 the HL index differs from the Higgs branch Hilbert series of the

Sicilian theory [4]. The latter is given by our formula (3.30), assuming mirror symmetry.
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3k

2k

k

2k kk 2k 1

(a)

4k

3k

2k

2k k2k 1

k

3k

(b)

6k

4k

2k

3k 5k

(c)

4k 2k k 13k

Figure 4. The moduli spaces of k E6, E7 and E8 instantons on C2 can be realized using the

Coulomb branch of quiver diagrams (a), (b) and (c) respectively. Each node represents a unitary

group of the labelled rank and the overall U(1) is modded out in each diagram.

1 2 3

Figure 5. Quiver for the mirror of the A2 theory on a circle times a torus with one maximal

puncture. The overall U(1) is factored out.

Let us provide an explicit example for the case of N = 3, g = 1 and one maximal

puncture ρ = (1, 1, 1) below. The quiver diagram of the mirror theory of our interest is

depicted in figure 5. This example is particularly interesting because the global symmetry

on the Coulomb branch enhances to G2 [9]. We will show this by computing the Hilbert

series and expanding it in G2 characters.

The Coulomb branch Hilbert series can be computed using (3.30), where the fugacities

x1, x2, x3 are related to the fugacities for the topological charges of U(1), U(2) and U(3)

gauge groups and are subject to the constraint (2.13). In order to make G2 characters

manifest in the Hilbert series, we use the fugacity map5

x1 = y1, x2 = y1y
−1
2 , x3 = y−2

1 y2 , (3.33)

where x1, x2 are the fugacities in formula (3.30) and y1, y2 are the G2 fugacities.

We then obtain

H[mirror g = 1, (1, 1, 1)](t; y1, y1y
−1
2 , y2y

−2
1 ) = f(0, 0, 0) + f(3, 1, 5) , (3.34)

5Here we use the characters of G2 as in LiE online service at the following link: http://young.sp2mi.univ-

poitiers.fr/cgi-bin/form-prep/marc/LiE form.act?action=character&type=G&rank=2&highest rank=8.
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where

f(a, b, c) =

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

∞∑
n4=0

[2n2 + 3n3 + a, n1 + 2n4 + b]tn1+2n2+3n3+4n4+c , (3.35)

and [a, b] denotes the character of the G2 representation with highest weight [a, b], written

in terms of y1, y2. The character expansion (3.34) shows not only that the adjoint repre-

sentation arises at ∆ = 1 (for the scalar partners of conserved currents), but also that the

whole chiral spectrum transforms in G2 representations as expected.

The unrefined Hilbert series is given by

H[mirror g = 1, (1, 1, 1)](t; 1, 1, 1) =
1 + 4t+ 9t2 + 9t3 + 4t4 + t5

(1− t)10
, (3.36)

with a palindromic numerator and a pole at t = 1 of order 10, equal to the complex

dimension of the Coulomb branch of the moduli space.

The generating function of highest weights [24]. The highest weight vectors that

appear in formula (3.34) can be collected in the following generating function:

PE[µ2t+ µ2
1t

2 + µ3
1t

3 + µ2
2t

4 + µ3
1µ2t

5 − µ6
1µ

2
2t

10]

=
1− t10µ6

1µ
2
2(

1− t2µ2
1

) (
1− t3µ3

1

)
(1− tµ2)

(
1− t5µ3

1µ2

) (
1− t4µ2

2

) , (3.37)

where µ1 and µ2 are the fugacities associated with the highest weights n1 and n2 of repre-

sentations of G2. Upon computing the power series in t of (3.37), the powers µn1
1 µn2

2 can be

traded for the Dynkin label [n1, n2] to obtain the character expansion as stated in (3.34).

Let us demonstrate this for the first few terms in the power series:

1 + µ2t+
(
µ2

1 + µ2
2

)
t2 +

(
µ3

1 + µ2
1µ2 + µ3

2

)
t3 + . . . . (3.38)

Trading the powers of µ1 and µ2 for the Dynkin label, we obtain

1 + [0, 1]t+ ([2, 0] + [0, 2])t2 + ([3, 0] + [2, 1] + [0, 3])t3 + . . . . (3.39)

4 Mirrors of 3d Sicilian theories of D-type

In this section we consider three dimensional theories arising from the 6d (2, 0) theory of

DN type compactified on a circle times a Riemann surface with punctures. Each puncture

is classified by a D-partition of SO(2N). The Coulomb branch Hilbert series of the mirror

theory can be computed by gluing copies of the Tρ(SO(2N)) theories [6] according to the

general discussion in section 3. The quivers for the Tρ(SO(2N)) theories, which can be

realised from brane and orientifold configurations as in [25], are reviewed in section 4.2

of [3]. We remark that we gauge the centerless group SO(2N)/Z2 rather than SO(2N).

Consequently, the magnetic fluxes of the gluing gauge group belong to the weight lattice

of the dual group Spin(2N) modulo the Weyl group.
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Given a 3d Sicilian theory with genus g and e D-type punctures {ρ1,ρ2, . . . ,ρe}, the

Coulomb branch Hilbert series of its mirror theory is6

H[mirror g, {ρ1,ρ2, . . . ,ρe}](t;x(1), . . . ,x(e))

=
∑

n1≥···≥nN−1≥|nN |


e∏
j=1

H[Tρj (SO(2N))](t;x(j);n1, . . . , nN )

×
tδ̃SO(2N), g(n1,...,nN )PSO(2N)(t;n1, . . . , nN ),

(4.1)

where H[Tρ(SO(2N))] is given by (2.21), the Casimir factor PSO(2N) is computed as in (2.2)

(see (A.10) of [1] for an explicit expression), and δ̃SO(2N), g(n) is the contribution of the

g SO(2N) adjoint hypermultiplets and vector multiplet to the dimension of monopole

operators is

δ̃SO(2N), g(n) = (g − 1)δSO(2N)(n) = (g − 1)

N−1∑
j=1

(2N − 2j)nj , (4.2)

with the second equality following from (2.24). Note that because the dual of the gluing

group is Spin(2N), n1, . . . , nN are all integers or all half-odd integers.

For g = 0 our formula (4.1) for the Coulomb branch Hilbert series of mirrors of D-

type Sicilian theories proposed in [6] agrees with the Higgs branch Hilbert series of the

Sicilian theory, computed as the Hall-Littlewood limit of the superconformal index of the

4d Sicilian theory in formula (4.10) of [10].7 For higher genus the HL index does not

compute the Hilbert series of the Higgs branch. Formula (4.1) provides a prediction for

the latter, assuming mirror symmetry.

In the rest of the section we provide examples of Sicilian theories with D3 and D4

symmetry and we compare with the results in [10, 26]. We start this section by considering

the case of D3. Due to the isomorphism of its Lie algebra with that of A3, each D3 puncture

can be identified with an A3 puncture. We compute the Coulomb branch Hilbert series of

mirror theories of 3d Sicilian theories with D3 punctures using the Hall-Littlewood formula

and compare the result with those with A3 punctures. We then consider D4 theories with

a set of punctures for which the Higgs branch is explicitly known and we compare our

result for the Coulomb branch Hilbert series of the mirror with the Higgs branch Hilbert

series. The case of twisted D punctures is discussed in the appendix. All these examples

demonstrate the validity of our formula (4.1).

4.1 D3 punctures

There are four possible D-partitions of SO(6). These partitions and the identification with

A3 partitions are given on page 17 of [26]. We list them as follows in table 1. Next, we

6It is straightforward to include in (4.1) a fugacity for the center of Spin(2N), but we prefer not to

clutter formulae with those factors, which can often be reabsorbed.
7The orthonormal Hall-Littlewood polynomials used in [10] can be expressed in terms of the Hall-

Littlewood polynomials used here as PnM G(a|0, t)=(1−t)rk(G)/2PG∨(t;n)1/2ΨnG(a(t,x); t). The pre-factors

are related by KG=(1−t)rk(G)/2KG. Finally, for G=SO(2N) one finds A(0, t)/PnM SO(2N)(1, t, t
2, . . . , tN−1|0, t)

= t
1
2
δSO(2N)(n)PSO(2N)(t;n)−1/2.
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D3 puncture A3 puncture Global symmetry

(16) (14) SO(6) ' SU(4)

(22, 12) (2, 12) USp(2)× SO(2) ' SU(2)×U(1)

(3, 13) (22) SO(3) ' SU(2)

(32) (3, 1) SO(2) ' U(1)

Table 1. The list ofD3 regular punctures, their identifications with A3 punctures and the associated

global symmetries.

consider an example of the mirror theory of a 3d Sicilian theory with D3 punctures (32),

(16) and (16).

4.1.1 D3 punctures: (32), (16) and (16)

In terms of A3 punctures, these punctures correspond to two maximal (14) and one minimal

(3, 1) punctures. This Sicilian theory corresponds to the quiver diagram [SU(4)]− [SU(4)],

and contains 16 free hypermultiplets; see [5] and page 18 of [27].

The Coulomb branch Hilbert series of the mirror theory of this Sicilian theory can be

computed by gluing two copies of T(16)(SO(6)) and one copy of T(32)(SO(6)) together via

the common SO(6) symmetry:

H(t;x,y, z) =
∑

a1,a2,a3≥0

t−δSO(6)(n(a))PSO(6)(t;n(a)) H[T(16)(SO(6))](t;x;n(a))×

H[T(16)(SO(6))](t;y;n(a))H[T(32)(SO(6))](t; z;n(a)) , (4.3)

where x,y, z are respectively fugacities of SO(6), SO(6) and SO(2) symmetries and the

function PSO(6) is defined as in (A.10) of [1], and

n(a) =

(
a1 +

1

2
(a2 + a3),

1

2
(a2 + a3),

1

2
(−a2 + a3)

)
,

δSO(6)(n) = 4n1 + 2n2 , (4.4)

H[T(16)(SO(6))](t;x;n) = t
1
2
δSO(6)(n)(1− t)3 PE

[
tχD3

[0,1,1](x)
]

ΨD3(x;n; t) ,

H[T(32)(SO(6))](t;x;n) = t
1
2
δSO(6)(n)(1− t)3 PE

[
t+ t2χC1

[2] (x) + t3
]

ΨD3(tx, t−1x, x;n; t) .

Note that in the above notation, a = [a1, a2, a3] denotes a Dynkin label of an irreducible

representation of Spin(6) and n = (n1, n2, n3) denotes its highest weight in the standard

basis. Hence the summations run over all irreducible representations of Spin(6), including

the spinorial representations.

It can be checked that the first few terms in the power series of (4.3) are equal to those

of the Hilbert series of 16 free hypermultiplets in the spinor representations of SO(6), as
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Partition ρ Quiver diagram for Tρ(SO(8))

(5, 3) [SO(8)]− (USp(2))

(32, 12) [SO(8)]− (USp(4))− (SO(2))

(24) [SO(8)]− (USp(6))− (SO(4))− (USp(2))

(3, 15) [SO(8)]− (USp(4))− (SO(4))− (USp(2))− (SO(2))

(22, 14) [SO(8)]− (USp(6))− (SO(4))− (USp(2))− (SO(2))

(18) [SO(8)]− (USp(6))− (SO(6))− (USp(4))− (SO(4))− (USp(2))− (SO(2))

Table 2. Quiver diagrams for Tρ(SO(8)) for certain D4 partitions ρ.

expected from mirror symmetry:

H(t;x,y, z) = PE
[{
z1/2χD3

[0,1,0](x)χD3

[0,1,0](y) + z−1/2χD3

[0,0,1](x)χD3

[0,0,1](y)
}
t
]

=
∞∑

n1,n2,n3=0

χD3

[n2,n1,n3](x)χD3

[n2,n1,n3](y)(z1/2t)n1+2n2+3n3×

∞∑
m1,m2,m3=0

χD3

[m2,m3,m1](x)χD3

[m2,m3,m1](y)(z−1/2t)m1+2m2+3m3 . (4.5)

4.2 D4 punctures

In this section, we provide three examples on Sicilian theories with the following D4 punc-

tures.

1. (5, 3), (22, 14) and (18) ,

2. (32, 12), (22, 14) and (22, 14) ,

3. (5, 3), (5, 3), (24) and (3, 15) .

In the following subsections, we compute the Coulomb branch Hilbert series of the mirror

theories of these Sicilian theories and compare the results to those presented in [26].

For reference, we tabulate the quiver diagrams for Tρ(SO(8), with ρ being partitions

listed above, in table 2.

4.2.1 D4 punctures: (5, 3), (22, 14) and (18)

The global symmetries associated with these punctures are trivial, USp(2) × SO(4) '
SU(2)3 and SO(8), respectively. According to page 24 of [26], this Sicilian theory is a free

theory containing 48 half-hypermultiplets.

We realize the Higgs branch of this theory from the Coulomb branch of the mirror

theory. The quiver diagram of the latter can be obtained by gluing the quiver diagrams of

T(5,3)(SO(8)), T(22,14)(SO(8)) and T(18)(SO(8)) via the common symmetry SO(8)/Z2; this

is depicted in (4.6), where each gray node labeled by N denotes an SO(N) gauge group

(with the central node 8∗ being SO(8)/Z2) and each black node labeled by M denotes a
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USp(M) gauge group.

•
2
− •

2
− •

4
− •

6
−
• 2
|
•
8∗
− •

6
− •

6
− •

4
− •

4
− •

2
− •

2
. (4.6)

Note that the ranks of all gauge groups add up to 24. This is the quaternionic dimension

of the Coulomb branch, which indeed agrees with the dimension of the Higgs branch of the

theory of 48 free half-hypermultiplets.

The Coulomb branch Hilbert series of the mirror theory is

H(t;x,y) =
∑

a1,a2,a3,a4≥0

t−δSO(8)(n(a))PSO(8)(t;n(a)) H[T(5,3)(SO(8))](t;n(a))×

H[T(22,14)(SO(8))](t;y;n(a))H[T(18)(SO(8))](t;x;n(a)) , (4.7)

where x = (x1, x2, x3) and y = (y1, . . . , y4) are respectively fugacities of SU(2)3 and SO(8)

symmetries and the function PSO(8) is defined as in (A.10) of [1], and

n(a) =

(
a1 + a2 +

a3 + a4

2
, a2 +

a3 + a4

2
,
a3 + a4

2
,
−a3 + a4

2

)
,

δSO(8)(n) = 6n1 + 4n2 + 2n3 ,

H[T(18)(SO(8))](t;x;n) = t
1
2
δSO(8)(n)(1− t)4K(18)(x; t)ΨD4(x;n; t) ,

H[T(5,3)(SO(8))](t;n) = t
1
2
δSO(8)(n)(1− t)4K(5,3)(t)ΨD4(1, t, t−1, t2;n; t) ,

H[T(22,14)(SO(8))](t;y;n) = t
1
2
δSO(8)(n)(1− t)4K(22,14)(y; t)ΨD4(tx−1

1 , ty1, y2, y3;n; t) ,

K(18)(x; t) = PE
[
χD4

[0,1,0,0](x)t
]
,

K(5,3)(t) = PE
[
3t2 + t3 + 2t4

]
,

K(22,14)(t;y) = PE
[
t
(

2 + χ
SU(2)
[2] (y1) + χ

SU(2)
[2] (y2)χ

SU(2)
[2] (y3)

)
+ t3/2χ

SU(2)
[2] (y1){χSU(2)

[2] (y2) + χ
SU(2)
[2] (y3)}+ t2

]
. (4.8)

It can be checked that the first few terms in the power series of (4.7) agrees with

H(t;x,y) = PE
[{
χD4

[1,0,0,0](x)χ
SU(2)
[1] (y1) + χD4

[0,0,1,0](x)χ
SU(2)
[1] (y2)

+ χD4

[0,0,0,1](x)χ
SU(2)
[1] (y3)

}
t
]
,

(4.9)

namely the Hilbert series of 48 free half-hypermultiplets, as expected from mirror symmetry.

4.2.2 D4 punctures: (32, 12), (22, 14) and (22, 14)

The quiver diagram of the mirror of this Sicilian theory can be obtained by gluing the quiver

diagrams of T(32,12)(SO(8)), T(22,14)(SO(8)) and T(22,14)(SO(8)) via the common symmetry

SO(8)/Z2; this is depicted in (4.10), where each gray node labeled by N denotes an SO(N)

gauge group (with the central node 8∗ being SO(8)/Z2) and each black node labeled by M
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denotes a USp(M) gauge group.

•
2
− •

2
− •

4
− •

6
−

•2
|
• 4
|
•
8∗
− •

6
− •

4
− •

2
− •

2
. (4.10)

The quaternionic dimension of the Coulomb branch of this theory, equal to the sum of the

ranks of all gauge groups, is 21.

The global symmetries associated with these punctures are respectively SO(2)2, SU(2)3

and SU(2)3. According to page 28 of [26], this Sicilian theory can be identified with the

T4 theory and the global symmetry enhances to SU(4)3. Indeed, the Higgs branch of the

T4 theory is 21 quaternionic dimensional; this is in agreement with the dimension of the

Coulomb branch of the mirror theory.

The Coulomb branch Hilbert series of theory depicted in (4.10) is

H(t;x,y, z) =
∑

a1,a2,a3,a4≥0

t−δSO(8)(n(a))PSO(8)(t;n(a)) H[T(32,12)(SO(8))](t; z;n(a))×

H[T(22,14)(SO(8))](t;y;n(a))H[T(22,14)(SO(8))](t;x;n(a)) , (4.11)

where x = (x1, x2, x3) and y = (y1, y2, y3) are fugacities for SU(2)3, z = (z1, z2) are

fugacities for SO(2)2, and

H[T(32,12)(SO(8))](t; z;n) = t
1
2
δSO(8)(n)(1− t)4K(32,12)(z; t)ΨD4(z1t, z1t

−1, z1, z2;n; t) ,

K(32,12)(z; t) = PE

2t+

z2
1 + 1 + z−2

1 +
∑

ε1,ε2=±1

zε11 z
ε2
2

 t2 + t3

 . (4.12)

Computing the power series in t of the above expression (4.11), we find that at order

t, the 45 gauge invariants transform as follows:

(z1 + z−1
1 )[1]x1 [1]y1 + [2]x1 + [2]y1 + 1

+ (z
1/2
1 z

1/2
2 + z

−1/2
1 z

−1/2
2 )[1]x2 [1]y2 + [2]x2 + [2]y2 + 1

+ (z
1/2
1 z

−1/2
2 + z

−1/2
1 z

1/2
2 )[1]x3 [1]y3 + [2]x3 + [2]y3 + 1 ,

(4.13)

where [· · · ]a denotes the character of representation [· · · ] written in terms of a. Note

that each line gives the decomposition of the adjoint representation of SU(4) in terms of

representations of SO(2)×SU(2)2. Hence these 45 generators indeed decompose into three

copies of 15, each transforming in the adjoint representation of an SU(4) in SU(4)3.

A similar analysis can be performed at higher orders of t. Moreover, the unrefined

Hilbert series, i.e. all xi, yi, zi are set to 1, can be computed from (4.11):

H(t; 1,1,1) = 1 + 45t+ 128t3/2 + 1249t2 + 5504t5/2 + . . . ; (4.14)

the result is in agreement with [4].
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4.2.3 D4 punctures: (5, 3), (5, 3), (24) and (3, 15)

The quiver diagram of the mirror of this Sicilian theory can be obtained by gluing the quiver

diagrams of T(5,3)(SO(8)), T(5,3)(SO(8)), T(24)(SO(8)) and T(3,15)(SO(8)) via the common

symmetry SO(8)/Z2; this is depicted in (4.15), where each gray node labeled by N denotes

an SO(N) gauge group (with the central node 8∗ being SO(8)/Z2) and each black node

labeled by M denotes a USp(M) gauge group.

•
2
− •

4
− •

6
−
• 2
|
•
|
• 2

8∗ − •
4
− •

4
− •

2
− •

2
. (4.15)

The quaternionic dimension of the Coulomb branch of this theory, equal to the sum of the

the ranks of all gauge groups, is 18.

The global symmetries associated with each puncture are respectively trivial, trivial,

USp(4) and SO(5) ' USp(4). According to the top diagram of page 32 of [26], this Sicilian

theory can be identified with the G2 gauge theory with 4 fundamental hypermultiplets

and 4 free hypermultiplets, which has USp(8) flavor symmetry. Indeed, the quaternionic

dimension of the Higgs branch of this theory is equal to 1
2(7 × 4) + 4 = 18; this is in

agreement with the dimension of the Coulomb branch of the mirror theory.

The Higgs branch Hilbert series of G2 gauge theory with 4 flavors of funda-

mental hypers, plus 4 free hypers. In the following, we write

τ = t1/2 . (4.16)

The F -flat Hilbert series is given by

F [(τ ; z;x) = PE
[
τχ

USp(8)
[1,0,0,0](x)

]
× PE

[
τχ

USp(8)
[1,0,0,0](x)χG2

[1,0](z)− τ2χG2

[0,1](z)
]
. (4.17)

The Higgs branch Hilbert series can be obtained by integrating over the G2 gauge group

as follows:

g(τ,x) =

∫
dµG2(z) F [(τ ; z;x) , (4.18)

where the Haar measure of G2 is given by∫
dµG2(z) =

1

(2πi)2

∮
|z1|=1

dz1

z1

∮
|z2|=1

dz2

z2
(1− z1)(1− z2

1z
−1
2 )(1− z3

1z
−1
2 )

(1− z2)(1− z2z
−1
1 )(1− z2

2z
−3
1 ) .

(4.19)

The first few terms in the power series of the Higgs branch Hilbert series g(τ,x) are

g(τ,x) = PE
[
τχC4

[1,0,0,0](x)
]
×
{

1 + χC4

[2,0,0,0](x)τ2 +
(
χC4

[1,0,0,0](x) + χC4

[0,0,1,0](x)
)
τ3

+
(
χC4

[4,0,0,0](x) + χC4

[0,1,0,0](x) + χC4

[0,2,0,0](x) + χC4

[0,0,0,1](x) + 1
)
τ4 + . . .

}
. (4.20)

Below we reproduce this Hilbert series from the Coulomb branch of the mirror theory of

this Sicilian theory.
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The Coulomb branch Hilbert series of the mirror theory. The Coulomb branch

Hilbert series is given by

H(t;x,y) =
∑

a1,a2,a3,a4≥0

t−δSO(8)(n(a))PSO(8)(t;n(a)) H[T(5,3)(SO(8))](t;n(a))×

H[T(5,3)(SO(8))](t;n(a))H[T(24)(SO(8))](t;y;n(a))×
H[T(3,15)(SO(8))](t;x;n(a)) ,

(4.21)

where x = (x1, x2) and y = (y1, y2) are fugacities for SO(5) and USp(4) respectively, and

H[T(3,15)(SO(8))](t;x;n) = t
1
2
δSO(8)(n)(1− t)4K(3,15)(x; t)ΨD4(1, t, x1, x2;n; t) ,

K(3,15)(x; t) = PE
[
tχB2

[0,2](x) + t2(1 + χB2

[1,0](x)
]
.

(4.22)

We have checked that the first few terms in the power series of this Hilbert series agree

with (4.20). In particular, the unrefined Hilbert series is

H[T(3,15)(SO(8))](t,x = 1,y = 1) = 1 + 8t1/2 + 72t+ 464t3/2 + 2782t2 + . . .

=
1

(1− t1/2)8
(1 + 36t+ 56t3/2 + 708t2 + . . .) . (4.23)

5 Coulomb branch Hilbert series of 3d theories with tri-vertices

In this section we consider the Coulomb branch of theories on two M5-branes compactified

on a Riemann surface with punctures times a circle of vanishing size. The latter are referred

to as 3d SU(2) Sicilian theories [6, 23], or 3d theories with tri-vertices [11]. We emphasize

that in this section we aim to compute the Coulomb branch Hilbert series of tri-vertex

theories, in contrast to section 3.1.1 in which we considered the Coulomb branch of their

mirrors.

We follow the notation adopted in [11]. The Lagrangian of a tri-vertex theory is

specified by a graph made of tri-valent vertices connected by lines. Each line denotes an

SU(2) group; an internal line (of finite length) denotes a gauge group, whereas an external

line (of infinite length) denotes a flavor group. Each vertex denotes 8 half-hypermultiplets

in the tri-fundamental representation of the corresponding SU(2)3 group. Such graphs are

classified topologically by the genus g and the number e of external legs. It was found

in [11] that the Higgs branch of such theories depends only on g and e and not on the

details of how the vertices are connected to each other.

In this section we focus only on the cases with g = 0, i.e. tree diagrams, since for

higher genus the theory is bad. For g = 0, the Coulomb branch Hilbert series can be

evaluated explicitly and it depends only on the number of external legs e and not on the

details of the graph. In section 5.3 we present certain generating functions and recursive

formulae that serve as powerful tools for computing Hilbert series of these class of theories

using gluing techniques. The fact that such generating functions depend solely on the

number of external legs e is proven in section 5.3.2.

It would be interesting to understand how to compute the Coulomb branch Hilbert

series of theories with higher genus by determining whether they flow to a good theory in

the IR.
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...

e  external legs

Figure 6. A tri-vertex diagram with genus zero and e external legs. The number of gauge groups

is e− 3.

5.1 The case of g = 0

We consider the Coulomb branch of 3dN = 4 gauge theories based on tri-vertex tree (g = 0)

diagrams, with SU(2) gauge groups associated to internal edges and tri-fundamental half-

hypermultiplets associated to nodes.

We will see in a few examples that, as for the Higgs branch [11], the Coulomb branch

only depends on the number of external edges; see an example for g = 0 and e = 6 in

section 5.1.2 below. We give a general proof of this fact in subsection 5.3.2.

5.1.1 General formula for g = 0 and any e

In the following we restrict to linear diagrams where each tri-vertex has one external leg,

except for those at the ends of the line which have two external legs; see figure 6.

Let us consider e = n+ 3 external legs. The gauge group is SU(2)n. The Hilbert series

of the Coulomb branch of this gauge theory is

H[g = 0, e = n+ 3](t) =

∞∑
a1=0

· · ·
∞∑

an=0

t∆(a)
n∏
i=1

PSU(2)(t; ai) . (5.1)

The dimension formula for monopole operators is

∆(a) =
1

2

2(|a1|+ |−a1|) +

1∑
s1,2=0

n−1∑
j=1

|(−1)s1aj + (−1)s2aj+1|+ 2(|an|+ |−an|)


−

n∑
i=1

|2ai| = −2

n−1∑
i=2

|ai|+
n−1∑
i=1

(|ai − ai+1|+ |ai + ai+1|) ,

(5.2)

where ai, i = 1, . . . , n are the GNO charges in the weight lattice of the GNO dual SO(3)n

group: ai ∈ Z≥0. The classical factor accounts for the Casimir invariants of the residual

gauge group which is not broken by the monopole flux. For an SU(2) gauge group, the

classical factor is

PSU(2)(t; a) =

{
1

1−t2 , a = 0
1

1−t , a > 0
. (5.3)
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(a) (b)

Figure 7. Two tri-vertex diagrams with genus zero and 6 external legs.

The result for the Hilbert series (5.1) appears to be

H[g = 0, e = n+ 3](t) =

∑n
j=0

(
n
j

) [(
n
j

)
t2j −

(
n
j+1

)
t2j+1

]
(1− t)2n(1 + t)n

=
1

(1−t)2n(1+t)n

[
− nt 2F1(1− n,−n; 2; t2) + 2F1(−n,−n; 2; t2)

]
.

(5.4)

5.1.2 Special case of g = 0 and e = 6

As an example of the fact that the Coulomb branch only depends on the number of external

edges we consider the case e = 6. There are two diagrams corresponding to g = 0 and

e = 6, depicted in figure 7.

Diagram (a). The Coulomb branch Hilbert series of diagram (a) is given by (5.4):

H(a)(t) =
1− 3t+ 9t2 − 9t3 + 9t4 − 3t5 + t6

(1− t)6(1 + t)3
. (5.5)

Diagram (b). For diagram (b), we have

∆(b)(a) =
1

2

1

2

1∑
s1,2,3=0

∣∣∣∣∣
3∑
i=1

(−1)siai

∣∣∣∣∣+ 2

3∑
i=1

(|ai|+ |−ai|)

− 3∑
i=1

|2ai| , (5.6)

Observe that this is not equal to ∆(a)(a) which is given in (5.2). However, the Hilbert

series of the Coulomb branch is given by

H(b)(t) =
∞∑

a1,a2,a3=0

t∆(b)(a)
3∏
i=1

PSU(2)(t; ai)

=
1− 3t+ 9t2 − 9t3 + 9t4 − 3t5 + t6

(1− t)6(1 + t)3
= H(a)(t) ,

(5.7)

which is indeed equal to that of diagram (a).

5.2 Turning on background fluxes

So far we have computed the Coulomb Hilbert series without considering the background

monopole charges coming from the global symmetries of the theory. In this section, we

turn on such background charges for the flavor symmetries present in the theory and the
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corresponding Hilbert series will, of course, depend on such charges. This will turn out to

be extremely useful in subsequent computations.

Let us first consider the T2 theory (g = 0, e = 3). The Coulomb branch Hilbert series

with background fluxes turned on is simply

H[T2](t; a1, a2, a3) = t∆g=0,e=3(a1,a2,a3) , (5.8)

where a1, a2, a3 ≥ 0 are the background fluxes and

∆g=0,e=3(a1, a2, a3) =
1

2

1

2

1∑
s1,2,3=0

|(−1)s1a1 + (−1)s2a2 + (−1)s3a3|

 . (5.9)

The Coulomb branch Hilbert series with background fluxes turned on can be handled

more easily if we introduce extra fugacities to keep track of such background charges. In

this way, we end up computing the generating function of the Coulomb branch Hilbert

series. This is the topic of the next section.

5.3 Generating functions of Coulomb branch Hilbert series

For a theory with genus zero and e external legs, we can construct a generating function

Ge(z1, . . . , ze) =
∞∑
a1=0

· · ·
∞∑
ae=0

H[e](t; a1, . . . , ae)
e∏
i=1

zaii , (5.10)

where a1, . . . , ae are the background fluxes for the SU(2)e global symmetry group associated

to the external legs and H[e](t; a1, . . . , ae) is the usual Hilbert series with these background

fluxes turned on. Note that we omit the t dependence in Ge(z1, . . . , ze) for the sake of

brevity. To turn off the background fluxes, we simply set all zi to zero:

H[e](t; 0, . . . , 0) = Ge(0, 0, . . . , 0) . (5.11)

We go over the computations of generating functions in the examples below.

The T2 theory. From (5.8), we have

Ge=3(z1, z2, z3) =

∞∑
a1=0

∞∑
a2=0

∞∑
a3=0

t∆e=3(a)za1
1 za2

2 za3
3 , (5.12)

Evaluating the summations, we obtain

Ge=3(z) =
1∏3

i=1(1− t2zi)
∏

1≤j<k≤3(1− t2zjzk)
×
[
1 + z1z2z3t

3

+ (−z1z2 − z1z3 − z2z3 − 3z1z2z3) t4 +
(
−z2

1z2z3 − z1z
2
2z3 − z1z2z

2
3

)
t5

+ 2
(
z1z2z3 + z2

1z2z3 + z1z
2
2z3 + z1z2z

2
3

)
t6 +

(
z2

1z
2
2z3 + z2

1z2z
2
3 + z1z

2
2z

2
3

)
t7

+
(
−z2

1z
2
2z3 − z2

1z2z
2
3 − z1z

2
2z

2
3

)
t8 − z2

1z
2
2z

2
3t

9
]
. (5.13)

Observe that Ge=3(z) is invariant under the permutations of z1, z2, z3. Upon setting z1 =

z2 = z3 = 0, we recover the (trivial) Hilbert series of the Coulomb branch as expected:

Ge=3(0, 0, 0) = 1 . (5.14)
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5.3.1 Gluing generating functions and recursive formula

If we glue a tree diagram with e1 external legs with another tree diagram with e2 external

legs via an external leg, the resulting diagram is a tree diagram of e1 + e2−2 external legs.

In terms of the Coulomb branch Hilbert series, this gluing operation can be formulated as

H[e1 + e2 − 2](a)

=

∞∑
a=0

H[e1](a1, . . . , ae1−1, a)PSU(2)(t; a)t−2aH[e2](a, ae1 , . . . , ae1+e2−2) ,
(5.15)

where in this formula we glue the e1-th external leg of the first diagram with the first leg

of the second diagram. In terms of the generating functions, we have

Ge1+e2−2(a) =

∮
|u|=1

du

2πiu

∮
|w|=1

du

2πiw

∞∑
a=0

Ge1(z1, . . . , ze1−1, u)×

u−aPSU(2)(t; a)t−2aw−aGe2(w, ze1 , . . . , ze1+e2−2) ,

(5.16)

The recursive formula. The diagrams with g = 0 and e + 1 external legs can be

constructed recursively by gluing the diagram (g = 0, e = 3) with another diagram with

e external legs. We can thus obtain the recursive formula for the generating functions as

follows.

From (5.16) we obtain

Ge+1(z) =

∮
|u|=1

du

2πiu

∮
|w|=1

dw

2πiw

∞∑
a=0

Ge=3(z1, z2, u)×

u−aPSU(2)(t; a)t−2aw−aGe(w, z3, . . . , ze+1) .

(5.17)

We write the infinite sum as follows:

∞∑
a=0

u−aPSU(2)(t; a)t−2aw−a = − t

1− t2
+

t2uw

(1− t)(t2uw − 1)
. (5.18)

Thus we have

Ge+1(z) = − t

1− t2

∮
|u|=1

du

2πiu

∮
|w|=1

dw

2πiw
Ge=3(z1, z2, u)Ge(w, z3, . . . , ze+1)

+
t2

1− t

∮
|u|=1

du

2πi

∮
|w|=1

dw

2πi

Ge=3(z1, z2, u)Ge(w, z3, . . . , ze+1)

t2uw − 1

= − t

1− t2
Ge=3(z1, z2, 0)Ge(0, z3, . . . , ze+1)+

+
1

1− t

∮
|w|=1

dw

2πi

Ge=3(z1, z2, w
−1t−2)Ge(w, z3, . . . , ze+1)

w
.

(5.19)

– 30 –



J
H
E
P
0
9
(
2
0
1
4
)
1
8
5

In the integral of the last line, we see from (5.13) that the poles of Ge=3(z1, z2, w
−1t−2) are

at w = 1, w = z1 and w = z2. Using the residue theorem, we obtain

Ge+1(z) = − t

1− t2
Ge=3(z1, z2, 0)Ge(0, z3, . . . , ze+1)+

+
1

(1− t)
Res
[
Ge=3(z1, z2, w

−1t−2);w = 1
]
Ge(1, z3, . . . , ze+1)

+
1

(1− t)z1
Res
[
Ge=3(z1, z2, w

−1t−2);w = z1

]
Ge(z1, z3, . . . , ze+1)

+
1

(1− t)z2
Res
[
Ge=3(z1, z2, w

−1t−2);w = z2

]
Ge(z2, z3, . . . , ze+1) .

(5.20)

Using (5.13), we find that the above residues can be written in terms of simple rational

functions:

Res
[
Ge=3(z1, z2, w

−1t−2);w = 1
]

=
1

(1− z1) (1− z2)
,

Res
[
Ge=3(z1, z2, w

−1t−2);w = z1

]
=

(1− t)z2
1

(
−z1 − tz1 + tz2 − tz1z2 + t2z1z2 + t3z2

1z2

)
(z1 − z2) (1− z1) (1− t2z1) (1− t2z1z2)

,

Res
[
Ge=3(z1, z2, w

−1t−2);w = z1

]
=

(1− t)z2
2

(
−z2 + tz1 − tz2 − tz1z2 + t2z1z2 + t3z1z

2
2

)
(z2 − z1) (1− z2) (1− t2z2) (1− t2z1z2)

.

(5.21)

We can thus rewrite (5.20) as

Ge+1(z) = − t(1− t4z1z2)

(1− t2) (1− t2z1) (1− t2z2) (1− t2z1z2)
Ge(0, z3, . . . , ze+1)

+
1

(1− t) (1− z1) (1− z2)
Ge(1, z3, . . . , ze+1)

+

{
z1

(
−z1 − tz1 + tz2 − tz1z2 + t2z1z2 + t3z2

1z2

)
(z1 − z2) (1− z1) (1− t2z1) (1− t2z1z2)

Ge(z1, z3, . . . , ze+1)

+ (z1 ↔ z2)

}
.

(5.22)

The special case of z2 = · · · = ze+1 = 0. In this case, let us denote

Ĝe(z) := Ge(z, 0, . . . , 0) . (5.23)

It is immediate from (5.22) that

Ĝe+1(z) = − t

(1− t2)(1− t2z)
Ĝe(0) +

1

(1− t) (1− z)
Ĝe(1)

− (1 + t)z

(1− z) (1− t2z)
Ĝe(z) .

(5.24)

The ordinary Hilbert series without background fluxes is obtained from Ĝe(z) by set-

ting z = 0:

H[e](t) = Ĝe(0) . (5.25)

Hence one can use the recurrence relation (5.24) to check the exact result (5.4).
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5.3.2 Proof of the symmetry of the generating functions Ge(z)

The Coulomb branch Hilbert series of the tri-vertex theories only depends on the number

of external legs. This follows from the fact that Ge(z1, · · · , ze) is a symmetric function of

the variables z1, · · · , ze. In this section we sketch a proof of this statement.

The proof goes trough various steps.

1. We have seen in (5.13) that Ge=3(z1, z2, z3) is invariant under permutations of z1, z2,

z3. Using (5.13) and the recursion relation (5.22) we can evaluate Ge=4(z1, z2, z3, z4),

whose expression is too long to be reported here, and explicitly check that it is

invariant under permutations of z1, z2, z3, z4.

2. We next analyze linear tree-level theories consisting of a linear chain of e−2 vertices,

each connected to the following one by an internal line, and with a total number

of e external legs. An example for the case e = 6 is given in part (a) of figure 7.

We now show that the generating function Ge(z1, · · · , ze) for a linear theory is fully

symmetric in the zi. It is enough to show that it is invariant under the exchange of

any pair of neighboring external legs. Let zi and zi+1 the fugacities associated with

the pair of external legs. We can always obtain the linear theory by gluing a e = 4

tree diagram containing the two external legs zi and zi+1 with two linear theories

with i and e− i external legs and write

Ge(z1, · · · , ze) =
∞∑

a,a′=0

Gi(z1, · · · , zi−1, a)PSU(2)(t; a)t−2aGe=4(a, zi, zi+1, a
′)

PSU(2)(t; a
′)t−2a′Ge−i(a

′, zi+2, · · · , ze) , (5.26)

where the symmetry in zi and zi+1 is manifest.

3. A generic genus zero tri-vertex theory also contains saturated vertices, i.e. vertices

that are connected to three other different vertices by internal lines. We now show

that any genus zero diagram can be reduced to a linear one with the same generating

function. This will prove our statement for all genus zero theories. As an example we

can consider the theory in part (b) of figure 7. We can recognize that the diagram

is obtained by gluing two simple three-vertices (g = 0, e = 3) with a four-vertex

diagram (g = 0, e = 4), and its generating function can be written as

Ge=6(z1, · · · , z6) =

∞∑
a,a′=0

Ge=3(z1, z2, a)PSU(2)(t; a)t−2aGe=4(a, a′, z3, z4)

PSU(2)(t; a
′)t−2a′Ge=3(a′, z5, z6) .

(5.27)

Since the four-vertex diagram is fully symmetric under the exchange of the external

legs, we can permute them and give a different shape to our diagram. In particular,

equation (5.27) is also the generating function for the linear diagram in part (a) of

figure 7. In a similar way, whenever a linear diagram is attached to a saturated node

by gluing the two external legs at one of its extremities, by permuting its legs we can
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remove the saturated node in favor of a linear structure. By repeating this process

many times we can transform any genus zero diagram into a linear one.

This ends our proof. We notice that we can construct the Hilbert series of higher

genus tri-vertex theories by identifying external legs of a genus zero graph, adding the

appropriate factor PSU(2)(t, a), the contribution of the gauge fields to the dimension formula

and summing over the a. Unfortunately, since the resulting theory is bad, the Hilbert series

is divergent. We can make it finite by changing the matter content and adding matter fields

transforming under the gauge groups of the legs that are identified. For example, by adding

one or more adjoint hypermultiplets to each leg that has been identified the Hilbert series

becomes convergent. As a curiosity, we notice that the resulting Hilbert series will be fully

symmetric under the exchange of the external legs, since the tree-level Hilbert series was.

It would be interesting to see if any of these regularized theories are related to the IR

behavior of the higher genus tri-vertex theories.

6 Conclusion

In this paper we have applied gluing techniques to the computation of the Coulomb branch

Hilbert series of mirrors of three dimensional Sicilian theories and we have successfully

compared our results with the superconformal index predictions for the Higgs branch of

the Sicilian theories themselves. As shown in [4], the Hall-Littlewood limit of the 4d N = 2

superconformal index captures the Higgs branch Hilbert series only for genus zero Riemann

surfaces. One of the main results of this paper is formula (3.31) for genus zero: it perfectly

agrees with the findings of [4], that were obtained in a completely different manner.

We have also computed the Coulomb branch Hilbert series of mirrors of Sicilian theories

with genus greater than one. For N = 2 M5-branes, the Sicilian theories are Lagrangian

and their Higgs branch Hilbert series can be computed by standard methods [11]. We have

successfully matched those results with our Coulomb branch Hilbert series of the mirror

theories, providing a check of our formulas based on mirror symmetry. For N > 2, there is

no other available method for computing the Higgs branch Hilbert series of Sicilian theories.

Our results give non-trivial predictions, that would be nice to check in some other way,

maybe using the 3d superconformal index.

Our results clarify why the Hall-Littlewood polynomials appear in two different con-

texts, the Coulomb branch Hilbert series for the Tρ(G) theories and the four dimensional

superconformal index of Sicilian theories. It is interesting to see how the Hall-Littlewood

limit of the superconformal index formula [4, 10], emerging from an apparently unrelated

construction, can be naturally reinterpreted in terms of gluing of three dimensional build-

ing blocks. It would be interesting to see if these Hilbert series are computed by some

auxiliary three or two dimensional topological theories along the lines of [28–30].

It is natural to expect that the gluing prescription discussed in this paper can be

generalized to any group G, including non-simply laced and exceptional groups, by gluing

Coulomb branch Hilbert series (2.21) of Tρ(G) tails via the common centerless symmetry

G/Z(G) in the obvious way. This should yield the Coulomb branch Hilbert series for the
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mirror of 5d N = 2 super Yang-Mills of gauge group G compactified on the punctured

Riemann surface. It would be nice to come up with an explicit check for this proposal.

Our results clearly show that gluing is an efficient technique to evaluate the Coulomb

branch Hilbert series, once the Hilbert series with background fluxes of the building blocks

are explicitly known. It would be interesting to extend our analysis to cover more general

classes of building blocks which can be applied to an even wider class of N = 4 gauge

theories.
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A Mirrors of Sicilian theories with twisted D punctures

In this appendix, we briefly discuss 3d Sicilian theories with twisted D punctures. A twisted

DN puncture can be written in terms of a CN−1 partition ρ̃ = [ρ̃i] with
∑

i ρ̃i = 2N − 2

and rk the number of times that part k appears. The global symmetry to this puncture is

given by

Gρ̃ =
∏
k odd

USp(rk)×
∏
k even

SO(rk) . (A.1)

For example, the global symmetry associated with twisted D4 puncture (2, 14) is USp(4).

A building block of a mirror of Sicilian theories with twisted D punctures is a gauge

theory Tρ̃(BN−1), whose quiver diagram, of the type first considered in [25], is given by

(4.3) of [3] and (6.5) of [6]. The quiver gauge theory is bad in the sense of [2], therefore

the monopole formula for the Coulomb branch Hilbert series diverges. However, according

to [3], the Coulomb branch Hilbert series of the infrared CFT is conjectured to be computed

by the Hall-Littlewood formula (2.21), which gives

H[Tρ̃(BN−1)](t;x;n) = t
1
2
δBN−1

(n)(1− t)N−1K
CN−1
ρ (x; t)ΨnCN−1

(a(t,x); t) . (A.2)

We will assume the validity of this formula in the rest of the appendix.
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Example: ρ̃ = (2, 14). For example, given an SO(8) twisted puncture ρ̃ = (2, 14), the

corresponding theory is

T(2,14)(SO(7)) : [SO(7)]− (USp(4))− (O(5))− (USp(2))− (O(3)) . (A.3)

Note that such a tail is a typical component in a mirror pair computation of [25].

The Hall-Littlewood formula (A.2) applied to this theory gives the Coulomb branch

Hilbert series

H[T(2,14)(SO(7))](t;x;n) = t
1
2

(5n1+3n2+n3)K
USp(6)
(2,14)

(x; t)Ψ
(n1,n2,n3)
USp(6) (t, x1, x2; t) , (A.4)

where the notations are explained below:

• x = (x1, x2) are the fugacities of the global symmetry USp(4).

• n = (n1, n2, n3) are the background fluxes for SO(7), with the restriction

n1 ≥ n2 ≥ n3 ≥ 0 . (A.5)

• The argument (t, x1, x2) of the Hall-Littlewood polynomial is obtained from the

decomposition of the fundamental representation of USp(6) into representations of

SU(2)×USp(4):

χ
USp(6)
[1,0,0] (y) = χ

SU(2)
[1] (t1/2) + χ

USp(4)
[1,0] (x) , (A.6)

so that y = (y1, y2, y3) = (t1/2, x1, x2).

• The prefactor K
USp(6)
(2,14)

(x; t) comes from the following decomposition of the adjoint

representation of USp(6):

χ
USp(6)
[2,0,0] (t1/2, x1, x2) = χ

USp(4)
[2,0] (x) + χ

USp(4)
[1,0] (x)χ

SU(2)
[1] (t1/2) + χ

SU(2)
[2] (t1/2) . (A.7)

Hence, according to (2.27), the prefactor is given by

K
USp(6)
(2,14)

(x; t) = PE
[
tχ

USp(4)
[2,0] (x) + t3/2χ

USp(4)
[1,0] (x) + t2

]
. (A.8)

For reference, we provide the Hilbert series with vanishing background fluxes:

H[T(2,14)(SO(7))](t;x; 0) = PE
[
χ

USp(4)
[2,0] (x)t+ χ

USp(4)
[1,0] (x)t3/2 − t4 − t6

]
. (A.9)

Hence the Coulomb branch of this theory is a complete intersection space with 12 complex

dimensions, as expected from the quiver diagram (A.3).
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A.1 The Coulomb branch Hilbert series of mirror theories

Let us consider a Sicilian theory associated with a Riemann surface with genus g and two

sets of punctures: 2m twisted DN punctures ρ̃1, ρ̃2, . . . , ρ̃2m and n untwisted DN puncture

ρ1,ρ2, . . . ,ρn.

Following the prescription of [6], the mirror of this Sicilian theory can be constructed by

gluing Tρ̃1
(BN−1), . . . Tρ̃2m

(BN−1) together with Tρ1(DN ), . . . Tρn(DN ), with the common

global symmetry group BN−1 = SO(2N − 1), which is a subgroup of DN = SO(2N),

being gauged. The mirror quiver also contains m + g − 1 hypermultiplets in the vector

representation of the common gauge group SO(2N − 1). We test the prescription of [6] in

section A.1.3 below using the mirror of a theory associated with a genus zero surface and

four SO(4) punctures.

The Coulomb branch Hilbert series of the resulting mirror theory is therefore

H(t, x̃1, . . . , x̃m,x1, . . . ,xn)

=
∑

n1≥···≥nN−1≥0

t(g−1)δSO(2N−1)(n)t(m+g−1)
∑N−1
i=1 niPSO(2N−1)(t;n1, . . . , nN−1)×

m∏
i=1

H[Tρ̃i(BN−1)](t; x̃i;n1, . . . , nN−1)

n∏
j=1

H[Tρj (DN )](t;xj ;n1, . . . , nN−1, 0) ,

(A.10)

where the Casimir factor PSO(2N−1) is given by (A.9) and (A.6) of [1] and δSO(2N−1) is given

by (2.24); the fugacities x̃1, . . . , x̃m correspond to the global symmetries associated with the

twisted punctures ρ̃1, . . . , ρ̃m respectively, and similarly for the non-tilde fugacities. Here

the factor denoted in blue is the contribution from the extra m+ g − 1 hypermultiplets in

the vector representation of the gauge group SO(2N − 1).

It can be checked that formula (A.10) agrees with formula (4.10) of [10] and formula

(2.8) of [31] for the HL index of the Sicilian theory in the case of two twisted punctures

and genus 0.

Below we demonstrate formula (A.10) using examples with SO(8) twisted and un-

twisted punctures on a Riemann surface with genus 0.

A.1.1 Twisted punctures (2, 14), (2, 14) and untwisted puncture (4, 4)

Let us present an explicit example with ρ̃1 = ρ̃2 = (2, 14) and ρ1 = (4, 4). The Coulomb

branch Hilbert series of T(4,4)(SO(8)) is discussed in detail in appendix C.2 of [3]. From

(A.10), the Hilbert series of the mirror of the Sicilian theory in question is

H(t,a, b, c)

=
∑

n1≥n2≥n3≥0

t−(5n1+3n2+n3)PSO(7)(t;n1, n2, n3)H[T(2,14)(SO(7))](t; a1, a2;n1, n2, n3)×

H[T(2,14)(SO(7))](t; b1, b2;n1, n2, n3)H[T(4,4)(SO(8))](t; c;n1, n2, n3, 0) , (A.11)

where the explicit expressions for H[T(2,14)(SO(7))] and H[T(4,4)(SO(8))] are given by (A.4)

and by (C.18) of [3], respectively. The fugacities a = (a1, a2), b = (b1, b2) and c correspond

to the global symmetries USp(4), USp(4) and USp(2) respectively.
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The Higgs branch of the four dimensional Sicilian theory with the same punctures

as this example was discussed on page 30 of [31] and Fixture 16 on page 35 of the same

reference. Upon expanding (A.11) in a power series in t, we find an agreement with [31],

namely

H(t;a, b, c) = PE
[
t1/2χ

SU(2)
[1] (c)

]
× H̃(t,a, b, c) , (A.12)

where the first factor with the PE denotes the free hypermultiplet whose chiral mul-

tiplets transforming as a doublet of SU(2), and the first few terms in irreducible part

H̃(t,a, b, c) are

H̃(t;a, b, c) = 1 + χC5

[2,0,0,0,0](y)t+ χC5

[0,0,0,0,1](y)t3/2+

(χC5

[4,0,0,0,0](y) + χC5

[0,2,0,0,0](y) + 1)t2 + . . . , (A.13)

where y = (y1, . . . , y5) are fugacities of USp(10) and a possible fugacity map between y

and a, b, c is

y1 = a1, y2 = a2, y3 = c, y4 = b1, y5 = b2 . (A.14)

The plethystic logarithm of (A.13) indicates that there are 55 generators at order t trans-

forming in the representation [2, 0, 0, 0, 0] of USp(10) and 132 generators at order t3/2 in

the representation [0, 0, 0, 0, 1] of USp(10).

The unrefined Hilbert series H̃(t;a = 1, b = 1, c = 1) can be computed exactly:

H̃(t;a = 1, b = 1, c = 1) =

1

(1− t)32(1 + t)18 (1 + t+ t2)16 ×(
1 + 2t+ 40t2 + 194t3 + 1007t4 + 4704t5 + 18683t6 + 67030t7 + 220700t8

+ 657352t9 + 1796735t10 + 4540442t11 + 10610604t12 + 23011366t13

+ 46535540t14 + 87887734t15 + 155277056t16 + 257288236t17

+ 400453203t18 + 585971786t19 + 807195575t20 + 1047954388t21

+ 1282842123t22 + 1481462886t23 + 1615002952t24 + 1662191888t25

+ 1615002952t26 + palindrome up to t50
)
.

(A.15)

The irreducible component of the Coulomb branch is 16 quaternionic dimensional, as in-

dicated by half of order of the pole at t = 1 in the unrefined Hilbert series. Taking into

account the free hypermultiplet, the Coulomb branch of this mirror theory is 17 quater-

nionic dimensional. This agrees with the result stated in the second bullet point on page 50

of [31] that the difference between the effective numbers of hypermultiplets and vector mul-

tiplets is 35− 18 = 17.
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A.1.2 Twisted punctures (6), (16) and untwisted puncture (18)

From (A.10), the Hilbert series of the mirror of the Sicilian theory in question is

H(t; b, c)

=
∑

n1≥n2≥n3≥0

t−(5n1+3n2+n3)PSO(7)(t;n1, n2, n3)H[T(6)(SO(7))](t;n1, n2, n3)×

H[T(16)(SO(7))](t; b;n1, n2, n3)H[T(18)(SO(8))](t; c;n1, n2, n3, 0) ,

(A.16)

where b = (b1, b2, b3) are fugacities for USp(6) and c = (c1, . . . , c4) are fugacities for SO(8).

Here the Hilbert series of the building blocks are given by

H[T(6)(SO(7))](t;n1, n2, n3) = t
1
2

(5n1+3n2+n3) PE[t2 + t4 + t6]

·Ψ(n1,n2,n3)
USp(6) (t1/2, t3/2, t5/2; t)

= 1 ,

H[T(16)(SO(7))](t; b;n1, n2, n3) = t
1
2

(5n1+3n2+n3) PE[tχ
USp(6)
[2,0,0] (b)]Ψ

(n1,n2,n3)
USp(6) (b; t) ,

H[T(18)(SO(8))](t; c;n1, n2, n3, n4) = t
1
2

(6n1+4n2+2n3) PE[tχ
SO(8)
[0,1,0,0](b)]Ψ

(n1,n2,n3,n4)
SO(8) (c; t) .

(A.17)

It can be checked that (A.16) is equal to the Hilbert series of 48 free half-hypermultiplets:

H(t; b, c) = PE
[
t1/2χ

USp(6)
[1,0,0] (b)χ

SO(8)
[1,0,0,0](c)

]
. (A.18)

This confirms the free field fixture #8 on page 37 of [31].

A.1.3 Four SO(4) twisted punctures: (2), (2), (12), (12)

The aim of this example is to test the prescription of adding extra fundamental hypermul-

tiplets of SO(2N − 1), as discussed in [6]. From (A.10), the Coulomb branch Hilbert series

of the mirror of the D4 Sicilian theory with twisted punctures (2), (2), (12), (12) is

H(t;x1, x2)

=
∑
n≥0

t−ntnPSO(3)(t;n)
[
H[T(2)(SO(3))](t;n)

]2
2∏
i=1

H[T(1,1)(SO(3))](t;xi;n)

=
∑
n≥0

t−ntnPSO(3)(t;n)

2∏
i=1

H[T(1,1)(SO(3))](t;xi;n) ,

(A.19)

where the blue factor denotes the contribution of the extra hypermultiplet. The explicit

expressions of each Hilbert series in the summand are

H[T(1,1)(SO(3))](t;x;n) =
tnx−n

(
1− t2x2 + t2x2n − x2+2n

)
(1− x2) (1− t2x−2) (1− t2x2)

,

H[T(2)(SO(3))](t;n) = 1 .

(A.20)

Performing the summation, we find that the above Hilbert series is equal to (D.14)

of [3]. Setting x1 = x2 = 1, we recover the unrefined Hilbert series written in (D.15) of [3].

This is indeed equal to the Higgs branch Hilbert series of the SO(4) gauge theory with 2

flavors, in accordance with section 4.1 of [31].
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