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1 Introduction

It is a standard lore that dynamical generation of matter-antimatter asymmetry must hap-

pen after an inflationary epoch, since any asymmetry generated before that is diluted away

due to the rapid spacetime expansion. In order to produce a significant asymmetry, during

inflation, the production rate of baryonic charge must exceed its dilution rate. Actually,

inflationary dynamics may support such a scenario: if a large baryonic charge density is

created due to small-scale quantum fluctuations, it will typically be stretched out over large

scales due to inflation. This basic observation has been realised in a model of inflationary

leptogenesis [1], where a lepton asymmetry is produced during inflation due to the gravi-

tational birefringence through a gravitational lepton number anomaly coupled to an extra

pseuodoscalar field.

In this paper we argue that the inflationary baryogenesis scenario can be realised in

extensions of the Standard Model with an anomalous gauge symmetry which has mixed

anomalies with the electroweak gauge symmetry.1 This anomalous theory can also be

viewed as an effective low-energy theory, which admits a fundamental completion free of

gauge anomalies. The obvious candidates for such an anomalous gauge theory are gauged

baryon (B) and lepton (L) numbers, or any linear combination thereof except for (B−L).

In the present paper we consider a model with gauged B−number in detail.

The basic three Sakharov’s conditions for dynamical baryogenesis [5] are satisfied in our

model as follows. As in the Standard Model the baryon number is not conserved because

1In the early universe, when the expansion rate is faster than processes with fermion chirality flip, the

gauged anomaly may effectively appear within the Standard Model [2]. Indeed, it has been argued in [3] that

anomalous production of the right-handed electron number is possible through the hypercharge anomaly.

An inflationary version of the above scenario is discussed in [4].
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of the mixed electroweak - B anomaly. On top of this, U(1)B gauge invariance requires

a pseudoscalar field, that describes the longitudinal polarization of the baryonic photon,

to couple to the anomaly. In the cosmological setting these interactions spontaneously

violate CP invariance and lead to the CP−asymmetric out-of-equilibrium production of

electroweak gauge bosons with different polarizations. In particular, during an inflationary

epoch the produced particles form a Bose-Einstein condensate with a large correlation

length which supports the generation of a non-zero baryon number through the anomaly.

The rest of the paper is organized as follows. In the next section we describe a model

with gauged B−number. In section 3, we present quantization of the weak gauge bosons

in an inflationary spacetime. In section 4, we compute the generated baryon asymmetry.

Section 5 is reserved for conclusions. Finally, some technical details of our calculations and

useful formulas are delegated to appendices A and B.

2 A model with gauged B−number

Let us consider an extension of the Standard Model with gauged symmetry SU(3)×SU(2)×
U(1)Y × U(1)B. We assume that no extra fermions and scalars are introduced beyond

those in the Standard Model, except for a field (or fields) which drives inflation in the early

universe. The detailed dynamics of the inflaton field(s) is not essential in our analysis. Since

the gauged baryon number U(1)B is anomalous, the associated gauge boson carries three

degrees of freedom,2 that is, it is necessarily massive. A scalar field θ(x) that describes the

longitudinal degree of freedom of a massive baryonic photon Xµ can be used to cancel out

anomalies without introducing new matter fermions [6–8].3 The addition to the Lagrangian

density, describing the Standard Model, then reads:

1√−g
LB = −1

4
gµαgνβXµνXαβ +

1

2
f2
Bg

µν (gBXµ − ∂µθ) (gBXν − ∂νθ)

+
3θ(x)

32π2

[

g21BµνB̃
µν − g22W

a
µνW̃

aµν
]

− (2.1)

where Xµν , Bµν and W a
µν (a = 1, 2, 3; summation under the repeated weak isospin indices

is assumed throughout the paper) denote field strengths for U(1)B, U(1)Y and SU(2)

gauge bosons with corresponding coupling constants gB, g1, and g2, respectively; fB is

a parameter that defines the mass of the baryonic photon, mB = gBfB; B̃µν(W̃ aµν) =
1

2
√−g

ǫµνρσBρσ(W
a
ρσ) is the dual field strength, and ǫµνρσ is the Levi-Civita tensor. In

eq. (2.1) and in what follows, we omitted interactions of Xµ with the baryonic current Jµ
B,

since these are not relevant to our discussion. Note that the second term on the r.h.s. of

eq. (2.1) is the familiar term of the Stueckelberg formalism [10] for a massive gauge boson.

Note, that the terms in the second line of eq. (2.1) are introduced to maintain gauge

invariance of the full quantum theory under U(1)B transformations. Indeed, while they

are not invariant under U(1)B gauge transformations, Xµ → Xµ + (1/gB)∂µα and θ(x) →
2See [6] for a review of anomalous gauge theories.
3This mechanism of anomaly cancellation has been originally suggested in 10d anomalous gauge theories

in [9].
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θ(x) + α(x), their variance cancels out against the gauge variation of the functional mea-

sure of quark fields within the path integral quantization framework. It is clear that the

above model can also be viewed as an effective low-energy approximation of an anomaly-

free theory [11–15], where additional fermionic fields, which cancel the [SU(2)]2 − U(1)B
and [U(1)Y ]

2 − U(1)B mixed anomalies, are integrated out. Then, according to t’Hooft’s

anomaly matching condition [16], the terms restoring gauge invariance necessarily appear

in the low-energy theory.

A remark related to the above U(1)B gauge invariance is in order. In principle one may

locally fix the gauge such that θ(x) = 0,4 so that the theory with θ field is equivalent (within

the perturbation theory) to a theory with purely massive Xµ coupled to quarks without the

θ field (‘unitary gauge’). Nevertheless, we find it to be more convenient if θ is manifestly

present as in eq. (2.1), since the longitudinal physical degree of freedom of the massive

baryonic photon, which plays a crucial role in our analysis, is easily identifiable in this case.

The metric tensor in eq. (2.1) describes a homogeneous and spatially flat cosmological

spacetime, and hence, in conformal coordinates can be written as: gµν = a2(τ)ηµν and

g ≡ det(gµν). The scale factor a(τ) during inflation reads:

a(τ) = −1/Hinfτ , (2.2)

where Hinf is an expansion rate (Hinf
∼= const.) and τ ∈ [−∞, 0] is the conformal time.

To proceed further we make the following simplifying assumptions. We assume that

gB ≪ 1, and thus θ(x) and Xµ fields essentially decouple from each other. The smallness

of the U(1)B coupling constant implies the baryonic photon is relatively light, mB/fB ≪ 1,

and hence we will not be interested in its dynamics during inflation. We also ignore the

dynamics of the hypercharge gauge field Bµ as it is less relevant compared to the dynamics

of weak isospin fields W a
µ , due to the fact that g2 > g1. Furthermore, as we are interested in

small quantum fluctuations of SU(2) gauge bosons around a trivial (vacuum) configuration,

we ignore self-interactions of W a
µ restricting to the linearized approximation. For the θ(x)

field we only consider a classical homogeneous background configuration, θ(τ, ~x) = θ(τ),

and ignore quantum fluctuations over it. With these assumptions the Lagrangian terms

being considered significantly simplify to:

L = −1

4
ηµρηνσW a

µνW
a
ρσ +

a2(τ)

2
(φ′(τ))2 − 3g22

64π2fB
φ(τ)ǫµνρσW a

µνW
a
ρσ , (2.3)

where φ(τ) ≡ fBθ(τ) and φ′ ≡ dφ/dτ .

The equation of motion for φ(τ) that follows from the above Lagrangian reads:

(

a2φ′)′ = 0 , (2.4)

where we have ignored terms quadratic in W a
µ . From eq. (2.4) we obtain:

φ′(τ) =
φ′
0

a2(τ)
, (2.5)

4There may exist a topological obstruction to imposing this gauge condition globally in spacetime because

of the presence of vortex excitations around which θ(x) has a non-trivial winding number. However, within

the perturbative framework this complication is irrelevant; hence we ignore this non-perturbative effect here.
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where φ′
0 is an integration constant associated with the ‘field velocity’ at the start of

inflation τ = τ0, a(τ0) = 1. Plugging eq. (2.5) into the linearized equation of motion for

the W a
µ gauge fields we obtain:

(

∂2
τ − ~▽2

)

W ai + κτ2ǫijk∂jW
a
k = 0 , (2.6)

where

κ =
3g22φ

′
0H

2
inf

8π2fB
, (2.7)

and we have adopted the gauge where W a
0 = ∂iW

a
i = 0. Note that the first and the

last terms in eq. (2.6) have opposite P and, hence, CP parities. This is the source of CP
violation in our model which is one of the necessary Sakharov’s conditions [5].

The simplifying assumptions made in this section allow us to undertake an analytical

treatment of the problem in expense of the accuracy of the calculations. Our final results

must be understood as an order of magnitude estimation.

3 Quantum fluctuations of the weak gauge bosons during inflation

To quantize the model described in the previous section we promote the weak gauge boson

fields to operators:

W a
i =

∫

d3~k

(2π)3/2

∑

α

[

Fα(τ, k)ǫiαâ
a
αe

i~k·~x + F ∗
α(τ, k)ǫ

∗
iαâ

a†
α e−i~k·~x

]

, (3.1)

where creation, âa†α (~k), and annihilation, âaα(
~k), operators satisfy canonical commutation

relations:
[

âaα(
~k), âb†β (~k′)

]

= δαβδ
abδ3(~k − ~k′) , (3.2)

and

âaα(
~k)|0〉τ = 0 , (3.3)

where |0〉τ is an instantaneous vacuum state at time τ .

In eq. (3.1), two vectors ~ǫα (α = +,−) describe two helicity states (we treat the weak

bosons as massless particles, since mW ≪ Hinf) and they are in fact complex conjugates

of each other, i.e. ~ǫ∗+ = ~ǫ−. The equations for the mode functions, F±(τ, k) [k ≡ |~k|],
straightforwardly follow from eq. (2.6):

F ′′
± +

(

k2 ∓ κτ2k
)

F± = 0 . (3.4)

According to this equation, towards the end of inflation (τend ≃ 0) all the modes with

k ≫ µ = |κ|τ2end approach CP−symmetric flat spacetime plane waves:

F±(τ, k)
τ→0−→ 1√

2k
. (3.5)

These also include large wavelength superhorizon modes k|τend| ≪ 1, which are of our

prime interest. The field operator eq. (3.1) for τ → 0 becomes:

W a
i =

∫

d3~k

(2π)3/2
√
2k

∑

α

[

ǫiαb̂
a
αe

−ik|τ |+i~k·~x + ǫ∗iαb̂
a†
α eik|τ |−i~k·~x

]

. (3.6)
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The nonzero term ∝ κτ2k in eq. (3.4) is responsible for CP−asymmetric (F+ 6= F−)
solutions:

F+(τ, k) = C1D− 1

2
(1−Ωk)

(√
2kτ√
Ωk

)

+ C2D− 1

2
(1+Ωk)

(

i
√
2kτ√
Ωk

)

, (3.7)

and

F−(τ, k) = C3D− 1

2
(1+iΩk)

(√
2ikτ√
Ωk

)

+ C4D− 1

2
(1−iΩk)

(

i
√
2ikτ√
Ωk

)

, (3.8)

where Dν(z) is the parabolic cylinder function and Ωk =
(

k3

κ

)1/2
. The integration con-

stants C1,2,3,4 are defined through the Wronskian normalization condition and by matching

eqs. (3.7), (3.8) with plane wave modes according to eq. (3.5). For superhorizon modes

(k|τ | → 0), which are of our prime interest, they are given in appendix A, eqs. (A.1)–(A.4).

Two sets of creation and annihilation operators, {âaα, âa†α } and {b̂aα, b̂a†α }, in eqs. (3.1)

and (3.6), are related through the Bogoliubov transformations:

b̂aα(
~k) = ααa

a†
α (~k) + β∗

αâ
a
α(
~k) (3.9)

b̂a†α (~k) = α∗
αa

a
α(
~k) + βαâ

a†
α (~k) (3.10)

The Bogoliubov coefficients for the superhorizon modes (k|τend| ≈ 0) of interest can be

computed explicitly:

αα =
1

2
+ i

√

1

2k
R∗

α and βα =
1

2
− i

√

1

2k
R∗

α . (3.11)

where R∗
α := F ∗′

α |κτ2
end

k
,k|τend|→0

.

4 Computing the baryon asymmetry

We are now ready to compute the generated baryon number density. The anomalous

non-conservation of baryonic current reads:

∂µ
(√−gjµB

)

=
3g22
64π2

ǫµνρσW a
µνW

a
ρσ ≡ 3g22

16π2
∂µ
(√−gKµ

)

, (4.1)

where Kµ = 1
2
√−g

ǫµνρσW a
νρW

a
σ is a topological current. Thi equation implies that the net

baryon number density nB = nb−nb̄ ≡ a−1(τ)τ0〈0|j0B|0〉τ0 is related to the weak gauge bo-

son Chern-Simons number density, nCS =τ0 〈0|K0(τ)|0〉τ0 , at the end of inflation, τ = τend:

nB =
3g22
16π2

a(τend)nCS . (4.2)

Here, nB(τ0) = nCS(τ0) = 0, at the start of inflation. Furthermore, we are interested in

nCS for large scale superhorizon modes (k|τ | ≈ 0), hence, we have:

nCS =
1

a4(τend)
ǫijk lim

k|τ |→0
〈0|Wi∂jWk|0〉 =

3

8π2a4(τend)

∫ Λ

µ
kdk

[

|R+|2 − |R−|2
]

, (4.3)

– 5 –
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where

|R+|2 =
π

2

√

κk

2

∣

∣

∣

∣

∣

∣

C1
2

Ωk
4 (1− Ωk)

Γ
(

5−Ωk

4

) + iC2
(1 + Ωk)

2
Ωk
4 Γ
(

5+Ωk

4

)

∣

∣

∣

∣

∣

∣

2

, (4.4)

|R−|2 =
π

2

√

κk

2

∣

∣

∣

∣

∣

∣

C3
(1 + iΩk)

2
iΩk
4 Γ

(

5+iΩk

4

) + iC4
2

iΩk
4 (1− iΩk)

Γ
(

5−iΩk

4

)

∣

∣

∣

∣

∣

∣

2

, (4.5)

and Λ is an ultraviolet cut-off, and µ is an IR cut-off. We have found that the integral

in eq. (4.3) is dominated by the dependence on µ given below, and is independent of Λ.

This result can be understood as follows. Physically, the modes with large k are essen-

tially CP−invariant plane waves, thus the integrand in eq. (4.3) for those modes nullifies.

Thus, the integral is effectively zero for large k modes. The IR cut-off is naturally given by

µ = κτ2end which corresponds to the modes that were initially matched to the Minkowski

planewave solutions, in eq. (3.5).

Finally, assuming that there was no significant entropy production after the reheating

phase, we estimate the entropy density as: s ≃ 2π2

45 g∗T 3
rh, where g∗(Trh) ∼ 100 and Trh

is the reheating temperature. We obtain the following simple expression for the baryon

asymmetry parameter:

ηB =
nB

s
≈ 5g22

g∗
√
2π7

Γ
(

3
4

)4

Γ
(

5
4

)2 e
−3Ne

(

κ

µT 2
rh

) 3

2

≈ 4.1 · 10−3HinfTrh

M2
p

, (4.6)

where τend = − 1
a(τend)H

= − e−Ninf

Hinf
and g22 ≈ 4π/29. The total number of e-folds Ne, that

defines the dilution factor, includes the minimal number of e-folds required during inflation

Ninf ≃ 34+ln
(

Trh

100 GeV

)

and the number of e-folds during reheating Nrh ≃ 1
3 ln

(

45H2

inf
M2

p

4π3g∗T 4

rh

)

:

Ne = Ninf +Nrh ≃ 32 + ln

(

Trh

100 GeV

)

+
2

3
ln

(

HinfMp

T 2
rh

)

(4.7)

Eq. (4.6) was obtained using a first order Taylor expansion around Ωk = 0. Interest-

ingly, for the chosen IR cut-off µ = |κ|τ2end, the asymmetry parameter is not manifestly

dependent on κ, due to the approximation adopted in our calculations. Indeed, in the

opposite limit of vanishing κ → 0 and Ωk → ∞ leads to the F± solutions to approach

the flat spacetime limit, where the resulting asymmetry is 0. From eq. (4.6), the following

requirement is obtained:

HinfTrh ≈ 3× 1030 GeV2 . (4.8)

Hence, the desired value of ηB ≈ 8.5 · 10−11 can be obtained as long as the Hubble rate

and reheating temperature are suitable large as to satisfy eq. (4.8) (i.e. H ∼ 1014GeV and

Trh ∼ 1016GeV). Although eq. (4.8) is an order of magnitude estimation, we expect the

above mechanism to be phenomenologically viable if the ratio (r) of the inflationary tensor

and scalar perturbation amplitudes satisfies r & 10−2.

The net baryon number density nB eq. (4.2) generated during inflation evolves in the

subsequent epochs. Besides the trivial dilution due to the expansion, which is cancelled

– 6 –
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out in the asymmetry parameter eq. (4.6), there may be other processes that influence nB.

For example, non-perturbative (B + L)-violating processes, which are thermally activated

if Trh & 100GeV [17], wash out any existing (B + L) number, while preserving (B − L) in

thermal equilibrium. This means that part of the initial baryon number will be reprocessed

into a lepton number, but nB will remain of the same order of magnitude.

5 Conclusion

In this paper we have argued that a successful baryogenesis scenario can be realised during

the inflationary epoch within a class of anomalous gauge theories. A model with gauged

baryon number has been considered in detail. The large wavelength modes of electroweak

gauge bosons, produced during inflation, form a Bose-Einstein condensate that supports

non-zero net baryon number density nB. We have found that the baryon number asym-

metry parameter ηB has a simple dependence eq. (4.6) on the cosmological parameters

Hinf and Trh eq. (4.8), for which the experimental values can be accommodated. To obtain

the desired asymmetry large scale inflation H ∼ 1014GeV and high reheating temperature

Trh ∼ 1016GeV are required. This is in accord with indications on the inflationary scale

from the BICEP2 measurements of B-modes [18].

Several different versions of the model presented here are also possible. In fact, any

model with an additional gauge symmetry having mixed anomalies with the electroweak

symmetry can potentially provide a successful framework for inflationary baryogenesis. An

interesting aspect of these classes of models is that hypothetical new physics behind the

baryogenesis scenario may well be accessible at the LHC. It will be interesting to study

collider phenomenology of these models as well.
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A Further details on coefficient derivations

F+ coefficients, eq. (3.7). Matching superhorizon modes with the plane waves we

obtain the following relation:

C1 =
Γ(3−Ωk

4 )

2
−1

4
(1−Ωk)

√
π

(

1√
2k

− C2
2

−1

4
(1+Ωk)

√
π

Γ(3+Ωk

4 )

)

The Wronskian normalisation implies:
√

2

Ωk
C1C2 sin

(

π

4
(1 + Ωk)

)

+ C2
2

√

π

Ωk

1

Γ(1+Ωk

2 )
=

1

2k

Solving the above conditions we find that the coefficients for F+ modes are:

C1 =
2−

1

4
(1+Ωk)Γ(3−Ωk

4 )√
πk

−
2−

1

2
(Ωk+3)Γ

(

1+Ωk

4

)

Γ(3−Ωk

4 )

Γ(3+Ωk

4 )

√

Ωk

πk
(A.1)
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and

C2 =
Γ
(

1+Ωk

4

)

2
√
2π

√

Ωk

k
=

Γ
(

1+Ωk

4

)

2
√
2π

(

k

κ

) 1

4

(A.2)

F
−

coefficients, eq. (3.8). Similarly as above we obtain the following relations from

the matching,

C4 =
Γ(3−iΩk

4 )

2
−1

4
(1−iΩk)

√
π

(

1√
2k

− C3
2

−1

4
(1+iΩk)

√
π

Γ(3+iΩk

4 )

)

,

and the Wronskian normalisation:

C2
3 + |C4|2 + 2C3e

−πΩk
4

√
2πIm

( √
iC∗

4

Γ(1+iΩk

2 )

)

=
e

−πΩk
4

k

√

Ωk

2

These two equation determine the coefficients for F− modes:

C3=
1

2
√
2kP (k)

(

√

Ωke
−πΩk

4 − 1

π

∣

∣

∣

∣

Γ

(

3− iΩk

4

)∣

∣

∣

∣

2
)

(A.3)

C4=
Γ(3−iΩk

4 )

2
−1

4
(1−iΩk)

√
2πk

(

1−
√
π

2
1

4
(5+iΩk)P (k)Γ(3+iΩk

4 )

(

√

Ωke
−πΩk

4 − 1

π

∣

∣

∣

∣

Γ

(

3−iΩk

4

)∣

∣

∣

∣

2
))

, (A.4)

where

P (k) =
23/4√
π



2πe−
πΩk
4 Im





√
i

2
iΩk
4 Γ(1+iΩk

4 )



− Re





Γ
(

3−iΩk

4

)

2
iΩk
4









B Useful properties of parabolic cylinder functions

Here we collect useful formulas and properties of special functions [19] used in the main

text. The parabolic cylinder function is denoted Dν(z). It is related to the confluent

hypergeometric cylinder U and Whittaker W functions by the following,

Dν(z) = 2ν/2+1/4z−1/2Wν/2+1/4,−1/4

(

1

2
z2
)

=
2ν/2(−iz)1/4(iz)1/4√

z
U

(

−1

2
ν,

1

2
,
1

2
z2
)

The following relation has been utilised: Dν(z) = U(−1
2 − ν, z)

The Wronskian identities for the parabolic cylinder function used are:

W[U(a, z), U(a,−z)] =

√
2π

Γ(12 + a)

W[U(a, z), U(−a,±iz)] = ∓ie±iπ(a
2
+ 1

4
)

The derivative of the parabolic cylinder function, in the U(a, z) formalism, with respect

to a variable τ is:

dU(a, z(τ))

dτ
= −dz

dτ

[(

a+
1

2

)

U(a+ 1, z) +
z

2
U(a, z)

]

– 8 –
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When the argument z is set to zero, the above equation reads:

dU(a, 0)

dτ
=

dz

dτ

√
π

2
1

2
(a− 1

2
)Γ(12(

1
2 + a))

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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