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1 Introduction and review of the classification of CICY four-folds

Calabi-Yau manifolds have played a central role in many aspects of the development of

string theory, from phenomenology to formal theory. Several constructions of Calabi-Yau

three-folds have seen extensive use in the literature including the hypersurfaces in toric

ambient spaces [2, 3] and the complete intersections in products of projective spaces [4–7].

Complete classes of Calabi-Yau four-folds are somewhat rarer in the literature however [1,

8–12], partly due to the greater computational power which is required to exhaust these

much larger data sets.

In a previous paper [1], the authors attempted to improve upon this situation by

presenting a complete classification of the Calabi-Yau four-folds which can be described as

complete intersection in products of projective spaces. In this paper we will expand upon

various mathematical properties of these manifolds which are important for their use in

physics. In order to make the present paper self-contained, however, we will begin with a

brief review of the central findings of the classification presented in ref. [1].

To set up our notation, we consider a complete intersection of K polynomials pα in an

ambient spaceA which is a product ofm projective spacesA =
⊗m

r=1 Pnr of total dimension

K + 4 =
∑m

r=1 nr. We shall use indices r, s, . . . = 1, . . . ,m to label the ambient projective
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space factors Pnr and indices α, β, · · · = 1, . . . ,K to label the defining polynomials pα. We

can succinctly describe families of such manifolds in terms of a configuration matrix

[n|q] ≡

 n1 q1
1 . . . q1

K
...

...
. . .

...

nm qm1 . . . qmK

 , (1.1)

where the entries qrα are non-negative integers. The columns of the configuration matrix

qα = (qrα)r=1,...,m denote the multi-degrees of the defining polynomials pα. In other words,

the α’th polynomial, pα, is of degree qrα in the homogeneous coordinates xr,i of Pnr . In

order to ensure that the common zero locus of these equations gives rise to a well-defined

four-dimensional manifold, we demand that the K-form

dp1 ∧ · · · ∧ dpK (1.2)

is nowhere vanishing.

The family of complete intersection varieties which are described by a given configu-

ration matrix [n|q] is redundantly parametrized by the coefficients in the polynomials pα.

A generic choice of theses coefficients in any particular case defines a smooth complete

intersection manifold, thanks to an application of Bertini’s theorem [6]. Many of the key

properties of the manifolds depend only on the configuration matrix and not on the specific

variety within the family. Given this, in the rest of this paper, we will often not need to

distinguish between the family described by the matrix [n|q] and a specific variety therein.

A complete intersection variety of the type described above defines a Calabi-Yau man-

ifold, denoted X , if and only if the first Chern class vanishes, c1(X ) = 0. This is equivalent

to the conditions
K∑
α=1

qrα = nr + 1 (1.3)

on each row of the configuration matrix. In ref. [1] the authors classified a complete set

of such configuration matrices which describe all CICY four-folds. A priori, there is an

infinite number of configuration matrices of the form (1.1) obeying (1.3). However, the

same CICY four-fold can be described by an infinite number of different configuration

matrices. To avoid such infinite repetitions, it is possible to identify suitable equivalence

relations between configurations and only keep one representative per class [1, 5]. A simple

example of such an equivalence relation is the permutation of rows or columns. Clearly,

configuration matrices related by such row or column permutations describe the same

complete intersection variety since the ordering of ambient space factors and polynomials

in the configuration matrix is completely arbitrary. In addition, we made use of other

equivalence relations which are both practical as well as rigorously provable [1, 5]. This

lead to a finite list classifying all topological types of CICY four-folds [1].

The complete list presented in ref. [1] contains 921,497 configuration matrices in 587

different ambient spaces with a maximum matrix size of 16×20. A subset of 15813 matrices

corresponds to product manifolds. These fall into four types, namely T 8, T 2×CY3, T 4×K3

and K3×K3. The Euler characteristic χ for each matrix was computed and found to be
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in the range 0 ≤ χ ≤ 2610. All configurations with χ = 0 correspond to direct product

manifolds and the non-zero values for the Euler characteristic were found to be in the range

288 ≤ χ ≤ 2610. In total, the list contains 206 different values of χ. This topological data

provided a very weak lower bound on the number of inequivalent CICY four-folds.

In the present paper we compute a number of additional topological invariants associ-

ated to these manifolds, such as Hodge numbers, Chern classes and intersection numbers.

In addition to being useful in mathematical and physical applications, these results enable

us to establish a significantly larger lower bound of at least 36,779 topologically distinct

CICY four-folds. In the Hodge data, we find an approximate linear relation between h2,2

and h3,1, which is, at least to our knowledge, a mere consequence of the construction of

CICY four-folds. Analyzing the pair (h1,1, h3,1), which is interchanged under mirror sym-

metry, we conclude that the mirror of a CICY four-fold is in most cases not itself a CICY

four-fold. The only exceptions are the 153 Hodge theoretically self-mirror configurations

for which h1,1 = h3,1 holds. In view of potential applications for F-theory compactifica-

tions, we also study the elliptic fibration structure of CICY four-folds. We concentrate

on a specific, easy-to-handle class of elliptic fibrations, which provides a rich data set of

50,114,908 elliptic fibrations distributed among 99.95 percent of the CICY four-folds. In

addition, we present a classification of the different types of almost fano three-folds that

occur as base manifolds and we find 26,088,498 fibrations that satisfy necessary conditions

for admitting sections.

In the next section, we will describe how to compute several topological invariants

associated to CICY four-folds. These will include Chern classes, Hodge data, intersection

numbers of favourable divisors, and invariants constructed from the intersection numbers

which do not depend upon a choice of basis for H1,1(X ). In section 3, we will describe how

many of the CICY four-folds can be written as an elliptic fibration over an almost fano

three-fold base. In addition we will discuss how to compute some necessary conditions for

the existence of certain types of sections. In section 4 we will provide a cartography of

the results of the computations described in sections 2 and 3 for the data set of the CICY

four-folds computed in ref. [1]. Finally, a few technical results required in the text will

be provided in appendix A and the format in which we present our data is explained in

appendix B.

2 Topological invariants

In this section, we will describe how to compute various topological invariants of the CICY

four-folds, including Chern classes, Hodge numbers and intersection numbers. These nu-

merical characteristics are of importance in both the mathematical and physical investi-

gation of these manifolds. Mathematically, topological invariants contain significant infor-

mation about the structure of the Calabi-Yau four-fold and they help to establish which

configuration matrices could describe the same four-folds. Physically, these quantities are

of central importance in questions ranging from determining the number of moduli fields

in four dimensions, to the structure of tadpole cancellation conditions.
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2.1 Chern classes

For a general complete intersection manifold X , not necessarily Calabi-Yau, with configu-

ration matrix [n|q], the first four Chern classes are given by the following expressions [1, 6]

c1(X ) = cr1Jr =

[
nr + 1−

K∑
α=1

qrα

]
Jr , (2.1)

c2(X ) = crs2 JrJs =
1

2

[
−(nr + 1)δrs +

K∑
α=1

qrαq
s
α + cr1c

s
1

]
JrJs , (2.2)

c3(X ) = crst3 JrJsJt =
1

3

[
(nr + 1)δrst −

K∑
α=1

qrαq
s
αq

t
α + 3cr1c

st
2 − cr1cs1ct1

]
JrJsJt , (2.3)

c4(X ) = crstu4 JrJsJtJu =
1

4

[
−(nr + 1)δrstu +

K∑
α=1

qrαq
s
αq

t
αq

u
α + 2crs2 c

tu
2

+4cr1c
stu
3 − 4cr1c

s
1c
tu
2 + cr1c

s
1c
t
1c
u
1

]
JrJsJtJu . (2.4)

The multi-index Kronecker-symbol appearing above is defined to be δr1...rn = 1 if r1 =

r2 = . . . = rn and zero otherwise. In these expressions, Jr denotes the Kähler form of the

r’th ambient projective space Pnr , which is normalized in such a way that∫
Pnr

Jnr
r = 1 . (2.5)

For a configuration to describe a family of Calabi-Yau manifolds we need c1(X ) = 0. This

leads to the Calabi-Yau constraint (1.3) presented in section 1. If a configuration does

indeed represent a family of Calabi-Yau four-folds, the eqs. (2.2), (2.3) and (2.4) for the

higher Chern classes simplify substantially, since all terms containing a factor of the first

Chern class then vanish.

The fourth Chern class can be used to compute the Euler characteristic χ by a version

of the Gauss-Bonnet formula

χ(X ) =

∫
X
c4(X ) . (2.6)

This expression is easily evaluated using the fact that the integral of a top-form ω over X
can be pulled back to an integration over the ambient space A = Pn1

1 × · · · × Pnm
m . To do

this we use ∫
X
ω =

∫
A
ω ∧ µX , µX ≡

K∧
α=1

(
m∑
r=1

qrαJr

)
, (2.7)

and the normalizations (2.5) of the Kähler forms Jr. The (K,K)-form µX is a representative

of the class which is Poincaré dual to the homology class of the family of sub-manifolds

X = [n|q] in the ambient space A.

Given the proceeding paragraph, the explicit formula for the Euler characteristic χ of

a four-fold configuration X = [n|q] is simply given by the following

χ(X ) = [c4(X ) ∧ µX ]top . (2.8)
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Here, the subscript “top” refers to the coefficient of the volume form Jn1
1 ∧ · · · ∧ Jnm

m of A
which should be extracted from the enclosed expression.

2.2 Hodge data

In terms of bundle valued cohomology, the Hodge data of the CICY four-folds may be

expressed as follows

Hp,q(X ) ∼= Hp(X ,∧qT X ∗) . (2.9)

On a Calabi-Yau four-fold there are four non-trivial Hodge numbers, namely h1,1, h2,1,

h3,1 and h2,2, which need to be determined for the 921, 497 configuration matrices in our

data set. As such, we need an efficient procedure to calculate the cohomologies (2.9) on

a computer. We will begin our discussion with some simple relations amongst the Hodge

data of a Calabi-Yau four-fold that allow us to avoid calculating some of the individual

cohomologies directly. We will then describe how we compute the remaining bundle valued

cohomologies directly for the geometries of interest.

On a Calabi-Yau four-fold, the Betti numbers are determined by the Hodge numbers

as follows
b0 = b8 = 1 , b1 = b7 = 0 , b2 = b6 = h1,1 ,

b3 = b5 = 2h2,1 , b4 = 2h3,1 + h2,2 + 2 .
(2.10)

The Euler characteristic of the manifold, a topological invariant for which we reviewed a

simple formula in section 2.1, can likewise be expressed in terms of the Betti numbers. We

obtain the following expression relating the Euler and Hodge numbers

χ =

8∑
q=0

(−1)qbq = 4 + 2h1,1 − 4h2,1 + 2h3,1 + h2,2 . (2.11)

Thus, one of the Hodge numbers is determined by the others and the Euler characteristic,

enabling us to avoid calculating one of the cohomologies (2.9) explicitly.

Another simplification of this type can be achieved by considering the indices χq =

χ(X ,∧qT X ∗). From the index theorem, we have

χq =
4∑
p=0

(−1)php,q(X ) =

∫
X

ch(∧qT X ∗) ∧ Td(T X ) . (2.12)

The splitting principle formulae, c(T X ) =
∑

i(1 + xi), ch(T X ) =
∑

i e
xi and

ch(∧qT X ∗) ∧ Td(T X ) =
∑

i1>...>iq

e−xi1 . . . e−xiq
∏
j

xj
1− e−xj

, (2.13)

together with the Calabi-Yau condition c1(X ) = 0 of the four-fold, can be used to show

that the indices (2.12) take the following form

χ0 = 2 =
1

720

∫
X

(3c2
2 − c4) , (2.14)

χ1 = −h1,1 + h2,1 − h3,1 =
1

180

∫
X

(3c2
2 − 31c4) , (2.15)
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χ2 = −2h2,1 + h2,2 =
1

360

∫
X

(9c2
2 + 237c4) , (2.16)

χ3 = χ1 , χ4 = χ0 . (2.17)

From this we get one additional non-trivial relation: 22χ0 − 4χ1 − χ2 = 0, which gives us

− 4h1,1 + 2h2,1 − 4h3,1 + h2,2 = 44 . (2.18)

The direct computation of the remaining two Hodge numbers is performed using the

theory of spectral sequences [13–16].1 We will make use of two key short exact sequences

0→ OmX → R→ TA|X → 0 , 0→ TX → TA|X → N → 0 , (2.19)

referred to as the Euler and adjunction sequence, respectively. The normal bundle N and

the bundle R can both be written as sums of line bundles and are explicitly given by2

N =

K⊕
a=1

OX (qa) , R =

m⊕
r=1

OX (ei)
⊕(nr+1) , (2.20)

where ei are the standard unit vectors. The long exact sequences associated to these two

short exact sequences can be written in the form

OmX → R → TA|X TX → TA|X → N
H0(X , ·) Cm H0(X ,R) H0(X , TA|X ) 0 H0(X , TA|X ) H0(X ,N )

H1(X , ·) 0 H1(X ,R) H1(X , TA|X ) H3,1(X ) H1(X , TA|X ) H1(X ,N )

H2(X , ·) 0 H2(X ,R) H2(X , TA|X ) H2,1(X ) H2(X , TA|X ) H2(X ,N )

H3(X , ·) 0 H3(X ,R) H3(X , TA|X ) H1,1(X ) H3(X , TA|X ) H3(X ,N )

H4(X , ·) Cm H4(X ,R) H4(X , TA|X ) 0 H4(X , TA|X ) H4(X ,N )

From the first of these long exact sequences we learn that

H0(X , T A|X ) ∼= H0(X ,R)
Cm H1(X , T A|X ) ∼= H1(X ,R)

H2(X , T A|X ) ∼= H2(X ,R) H4(X , T A|X ) ∼= H4(X ,N )
(2.21)

and

H3(X , T A|X ) ∼= H3(X ,R) + Ker(Cm → H4(X ,R)) . (2.22)

Combining these results with the second long exact sequence gives

H3,1(X ) ∼=
H0(X ,N )

H0(X ,R)/Cm
⊕Ker(H1(X ,R)→ H1(X ,N )) (2.23)

H2,1(X ) ∼= Coker(H1(X ,R)→ H1(X ,N ))⊕Ker(H2(X ,R)→ H2(X ,N )) (2.24)

H1,1(X ) ∼= Coker(H2(X ,R)→ H2(X ,N ))⊕Ker(H3(X , T A|X )→ H3(X ,N )) (2.25)

1See also ref. [17] for a nice introduction to these kinds of computations.
2In this paper, we are using the following standard notation for line bundles on products of projective

spaces and CICYs. The line bundle OA(kr) on A is that whose first Chern class is given by c1(OA(kr)) =

krJr. The line bundle OX (kr) is the restriction of OA(kr) to the Calabi-Yau four-fold.

– 6 –
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for the desired Hodge cohomologies. The main observation from these results is that the

Hodge numbers can be computed entirely from the bundle cohomology of the line bundle

sums N and R on X .

A particularly interesting sub-class consists of those CICY four-folds which are favour-

able. We call a CICY four-fold favourable if its complete second cohomology descends from

the second cohomology of the ambient space, so that H1,1(X ) ∼= Cm, where Cm is the space

which appears in (2.22). A sufficient (although slightly too strong) set of conditions for

this to be the case is

H2(X ,N ) = H3(X ,N ) = H3(X ,R) = H4(X ,R) = 0 . (2.26)

Provided these conditions hold the Hodge numbers for favourable CICYs satisfy

h1,1(X ) = m ,

h3,1(X )− h2,1(X ) = m− h0(X ,R) + h1(X ,R)− h2(X ,R) + h0(X ,N )− h1(X ,N ) .

(2.27)

Together with the Euler number constraint, (2.11), this fixes three Hodge numbers in terms

of the line bundle cohomology of N and R without the need to compute ranks of maps.3

To complete the Hodge number calculation, we need to be able to compute line bundle

cohomology on CICYs and, in general, determine the ranks of maps between such coho-

mologies. The first step in this direction is to relate a line bundle LA on the ambient space

A to its restriction L = LA|X onto X by the Koszul resolution, a long exact sequence given

by [13, 14, 16, 18]

0→ ∧KN ∗A ⊗ LA → · · · → ∧2NA ⊗ L∗A → N ∗A ⊗ LA → LA → L → 0 . (2.28)

This long exact sequence can be broken up into short exact sequences each of which have

associated long exact sequences in cohomology or, alternatively, we can study the spectral

sequence associated to the Koszul resolution. Either way, this allows for the computation of

line bundle cohomology on the CICY X in terms of ambient space line bundle cohomology.

Line bundle cohomology on a single projective space is described by a theorem due to Bott,

Borel and Weil, see for example [16]. To obtain the cohomology for line bundles on our

ambient space, which are products of projective spaces, we can simply apply a version of

Künneth’s formula to the result for single projective spaces. In this way, we can develop

an algorithm to compute line bundle cohomology on CICYs and, combined with the above

results, this allows for a computation of Hodge numbers.

2.3 Intersection numbers and distinguishing invariants

Besides Chern classes, Hodge numbers and the Euler characteristics, there are a number of

additional invariants which can be used to distinguish different topological types of CICY

four-folds. We will focus, in particular, on those that are easily computable from the

configuration matrix.

3It seems that, in this situation, the additional constraint, (2.18), fixes the fourth Hodge number. How-

ever, it turns out that this constraint is usually automatically implied by (2.27) and (2.11).
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We begin by introducing a basis {νi} of H6(X ), dual to the integral basis, {Ji}, of

H2(X ) such that ∫
X
Ji ∧ νj = δji (2.29)

as usual. Of course, the products Ji ∧ Jj ∧ Jk can be written as linear combinations of the

basis {νi} and it follows easily that

Ji ∧ Jj ∧ Jk = dijklν
l , dijkl =

∫
X
Ji ∧ Jj ∧ Jk ∧ Jl , (2.30)

where dijkl are the quadruple intersection numbers.

The products Ji ∧ Jj for i ≤ j can be thought of as elements of H4(X ), but it is not

clear that they are linearly independent. Consider a linear relation λijJi ∧ Jj = 0 among

them. Then it follows that dijklλ
kl = 0. In other words, if dijklλ

kl = 0 does not have

non-trivial solutions λkl or, equivalently, if the matrix d(ij)(kl) has maximal rank, then the

forms Ji ∧ Jj for i ≤ j are linearly independent.

Now, consider the total Chern class expanded as

c(X ) = · · ·+ Cij2 Ji ∧ Jj + Cijk3 Ji ∧ Jj ∧ Jk + · · · = · · ·+ Cij2 Ji ∧ Jj + c3,iν
i + · · · , (2.31)

where we define c3,i = dijklC
jkl
3 , c2,ij = dijklC

kl
2 and so on. Clearly, one may form an

invariant in the following way

I =

∫
X
c2(X ) ∧ c2(X ) = c2,ijC

ij
2 = tr(c2C2) . (2.32)

However, due to (2.14), this invariant carries the same information as the Euler charac-

teristic in the case of a Calabi-Yau four-fold. The problem with other contractions which

involve c2 or C2 is that they may represent the second Chern class in a redundant way, since

the forms Ji∧Jj may not be linearly independent. So, in the absence of other assumptions,

expression (2.32) seems to be the only further invariant which involves Chern classes.

Let us, for the moment, assume that the forms Ji∧Jj for i ≤ j are linearly independent,

a condition which can be explicitly checked from the intersection numbers in any given case.

Then we have the following additional invariants

Ip = c3C2(c2C2)pc3 , (2.33)

Ĩq = tr((c2C2)q) , (2.34)

for p ≥ 0 and q ≥ 1. Unfortunately, with the exception of the small configurations at the

beginning of the list, the forms Ji∧Jj practically always turn out to be linearly dependent

and hence the above invariants Ip and Ĩq are of little practical use.

Next, we turn to invariants extracted solely from the quadruple intersection numbers.

We will follow the logic of ref. [19] and generalise their results to CICY four-folds. We

begin by defining the intersection form

Λ(K1,K2,K3,K4) =

∫
X
K1 ∧K2 ∧K3 ∧K4 , (2.35)
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where K1, . . . ,K4 represent classes in H2(X ,Z). In terms of this form, the quadruple

intersection numbers are of course given by

dijkl = Λ(Ji, Jj , Jk, Jl) . (2.36)

The next step is to define the following sets

S1 = {Λ(K1,K2,K3,K4) |Ka ∈ H2(X ,Z)} , (2.37)

S2 = {Λ(K1,K2,K3,K3) |Ka ∈ H2(X ,Z)} , (2.38)

S3 = {Λ(K1,K2,K2,K2) |Ka ∈ H2(X ,Z)} , (2.39)

S4 = {Λ(K1,K1,K1,K1) |K1 ∈ H2(X ,Z)} , (2.40)

and Ip = gcd(Sp). The virtue of the above sets is that they are not only topologically

invariant but, unlike the intersection numbers themselves, they are also basis-independent

and hence the Ip are genuine invariants. This invariance is due to the sets being defined by

scanning over the entire integral lattice spanned by Ka ∈ H2(X ,Z). However, computing

the intersection form on all elements of H2(X ,Z) is not practical. Instead, a simplification

is achieved by expanding Ka = niaJi with integer coefficients nia, which leads to

Λ(K1,K2,K3,K4) = dijkln
i
1n

j
2n

k
3n

l
4 . (2.41)

If two or more arguments in Λ(K1,K2,K3,K4) are identical, the quadruple sums on the

right hand side can be decomposed into smaller building blocks according to

dijkln
i
1n

j
1n

k
2n

l
3 = diijk(n

i
1)2nj2n

k
3 + 2

∑
i<j

dijkln
i
1n

j
1n

k
2n

l
3 , (2.42)

dijkln
i
1n

j
1n

k
1n

l
2 = diiij(n

i
1)3nj2 + 3

∑
i<j

[
dijjkn

i
1(nj1)2nk2 + diijk(n

i
1)2nj1n

k
2

]
+ 6

∑
i<j<k

dijkln
i
1n

j
1n

k
1n

l
2 , (2.43)

dijkln
i
1n

j
1n

k
1n

l
1 = diiii(n

i
1)4 + 6

∑
i<j

diijj(n
i
1)2(nj1)2 + 4

∑
i<j

[
dijjjn

i
1(nj1)3 + diiij(n

i
1)3nj1

]
+ 12

∑
i<j<k

[
dijkkn

i
1n

j
1(nk1)2 + dijjkn

i
1(nj1)2nk1 + diijk(n

i
1)2nj1n

k
1

]
+ 24

∑
i<j<k<l

dijkln
i
1n

j
1n

k
1n

l
1 . (2.44)

Given this, we define, in addition,4

S̃1 = {dijkl | i, j, k, l = 1, . . . , h1,1(X )} , (2.45)

4The sign choices in the definitions of S̃3 and S̃4 arise because we want to compare these sets to S3 and

S4 which scan over the entire integral lattice. This includes, in particular, those elements which have an

expansion of the form K = ±J1 ± J2 ± . . . in terms of the basis {Ji}. From eqs. (2.43) and (2.44), we

see that all possible relative signs appear in the ordered sums that involve ambiguities in the grouping of

indices. Thus, we need to include all possible relative signs in order for the entire lattice to be scanned by

S̃3 and S̃4.
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S̃2 = {diijk|i, j, k = 1, . . . , h1,1(X )} ∪ {2dijkl|i, j, k, l = 1, . . . , h1,1(X )} , (2.46)

S̃3 = {diiij |i, j = 1, . . . , h1,1(X )} ∪ {3(diijk ± dijjk)|i, j, k = 1, . . . , h1,1(X )})
∪ {6dijkl|i, j, k, l = 1, . . . , h1,1(X )} , (2.47)

S̃4 = {diiii|i = 1, . . . , h1,1(X )} ∪ {6diijj |i, j = 1, . . . , h1,1(X )}
∪ {4(diiij ± dijjj)|i, j = 1, . . . , h1,1(X )}
∪ {12(dijkk ± dijjk ± diijk)|i, j, k = 1, . . . , h1,1(X )})
∪ {24dijkl|i, j, k, l = 1, . . . , h1,1(X )} . (2.48)

From (2.36), it follows that S̃p ⊂ Sp. Therefore, a common divisor of Sp is also a common

divisor of S̃p. Conversely, a common divisor of S̃p divides all Λ(K1,K2,K3,K4) owing to

the expansion (2.41) and the fact that the nia are integers. Altogether, this shows that Sp
and S̃p have equal sets of common divisors and hence, in particular

Ip = gcd(Sp) = gcd(S̃p) . (2.49)

In practice these invariants can, of course, only be explicitly calculated for favourable

configurations where we know all of the intersection numbers. These are roughly half of

the CICYs in our data set.

Another invariant we consider is the signature of the intersection matrix. Denote by

G the matrix d(ij)(kl) with i ≤ j and k ≤ j, where we combine the first and last two

indices each into a single index. Then G transforms under a change of basis as G→ P TGP

with certain general linear matrices P . The eigenvalues of G are of course not invariant

under such a transformation but, by Sylvester’s law of inertia, the numbers of positive and

negative eigenvalues are. Hence, the two invariants obtained in this way are the number

of positive and negative eigenvalues of G. Of course, the actual computation of theses

invariants is also restricted to the favourable configurations.

3 Fibration structure

3.1 A class of elliptic fibrations

We would like to enumerate and present the different ways in which the CICY four-folds

discussed in section 1 and ref. [1] can be written as an elliptic fibration over a three

dimensional base. Finding every rewriting of a Calabi-Yau four-fold as an elliptic fibration

turns out to be a formidable task, especially in non-favourable cases where not all of the

divisors in X descend from divisors on the ambient space projective factors. Nevertheless,

there exist specific types of elliptic fibration which can be simply distinguished from the

structure of the configuration matrices (1.1) themselves. These bear some similarity to

methods of identifying fibrations in other Calabi-Yau four-fold constructions [10]. We have

performed an exhaustive classification of these readily accessible fibration structures within

our data set.
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Consider a configuration matrix which can, by row and column permutations, be put

in the following form

X =

[
A1 0 F
A2 B T

]
. (3.1)

Here A1 and A2 are two products of N1 and m−N1 projective spaces respectively, while

F ,B and T are sub-block matrices. If X is a Calabi-Yau four-fold then all of the rows, in

particular the first N1, obey the condition (1.3). Thus, if the components of F are denoted

f r̂α̂ where r̂ = 1, . . . , N1 and α̂ = 1, . . . , K̂, then we have
∑K̂

α̂=1 f
r̂
α̂ = nr̂ + 1 and [A1|F ] is

also Calabi-Yau. In examples where
∑N1

r̂=1 nr̂ − K̂ = 1 this Calabi-Yau is a one-fold, that

is, [A1|F ] is an elliptic curve. In such a situation, the configuration matrix (3.1) describes

an elliptic fibration over the almost fano three-fold base [A2|B] (here, “almost fano” is

shorthand for a three-fold configuration whose anticanonical bundle is almost-ample [16])

with the fibre being described by the matrix [A1|F ]. The twisting of the fibre over the

base is encoded in the matrix T . We shall refer to an elliptic fibration of the form (3.1) as

an “obvious elliptically fibration” or “OEF” for short.

A given configuration matrix may admit many different OEFs of the form (3.1). In

enumerating the inequivalent fibrations of this type, we face redundancy issues similar to

those encountered in the compilation of the CICY four-fold list itself. It is clear that two

different configuration matrices in the form (3.1) can describe the same OEF, for example,

if they are related by permutations of rows and columns which do not mix up the block

form of the matrix. In general, the redundancy between fibrations could be due to any of

the types of identities between configurations we have discussed in ref. [1]. Redundancies

can be removed from the description of sets of possible elliptic fibrations using very similar

observations to those made in the compilation of the CICY four-fold list [1], and results

such as those in appendix A. We remove all of the redundancies that are enumerated in

section 4.III of reference [1], as well as row and column permutations which do not mix up

the fibre and base structure described in (3.1). Even once such redundancies are removed,

we will see that the CICY four-folds generically admit many OEFs, especially for manifolds

with larger Picard number. It should be noted that not all such elliptic fibrations of a

manifold can be manifest in the configuration matrix simultaneously. Some of the rows

comprising the fibre in one elliptic fibration may also appear in the fibre description of

an inequivalent OEF. As such, while the configuration matrix can always be put in the

form (3.1) for any single fibration, further nesting of such structure can not be assumed in

the case of multiple fibrations. We also remind the reader that each configuration matrix

describes an entire complex structure moduli space of configurations. Thus two ‘equivalent’

fibrations could differ from one another for different choices of complex structure. The

statement is simply that, for two equivalent fibrations, given a choice of complex structure

of the first, there is a choice of complex structure of the second such that the two fibrations

are identical. For more general recent results on the subject of elliptic fibrations of Calabi-

Yau four-folds see ref. [20].

Testing whether a given matrix is of the form (3.1) can be straightforwardly imple-

mented on a computer, as can the redundancy removal described above. We have analysed
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the list of CICY four-folds in this way and the results of this investigation will be presented

in section 4.2.

3.2 The class of sections

Much of the physics literature that has been developed for describing F-theory compact-

ifications on Calabi-Yau four-folds relies not only on the existence of an elliptic fibration,

but also on that fibration admitting a section. We thus wish to study a class of sections of

the OEFs discussed in the previous subsection.

If a section exists for a given fibration, it constitutes a divisor of the Calabi-Yau four-

fold itself. In the description of our manifolds we have one set of divisors over which we

have particularly good calculation control - those that descend from hyperplanes in the

ambient space. Divisors which descend in this way from A to X are frequently referred to

as “favourable” in the literature. For computational ease we will restrict our attention to

sections which correspond to favourable divisors, referring to these as “favourable sections”.

As we will see this will provide us with a very large set of examples with which to work,

and thus this choice is not overly restrictive.

Deciding which of the OEFs we shall enumerate admit a favourable section is somewhat

beyond the computational scope of the current paper. Instead, we will check a condition

which is necessary if a fibration is to admit a section which is a generic representative of a

favourable divisor class. We first define a form on the base [A2|B] as follows

µpoints =

m∧
ř=N1+1

Jnř
ř . (3.2)

The form µpoints is dual to a fixed number of points in the usual way∫
[A2|B]

µpoints = #points . (3.3)

We then write a form, S = arJr, which is dual to a general favourable divisor class. We

wish to find coefficients ar for which this divisor class could contain the putative section.

To do this we demand that the divisor class S intersects the form dual to #points fibres,

described by the pullback under the fibration map π of µpoints, #points times (once for each

fibre) ∫
X
π∗µpoints ∧ S = #points . (3.4)

If there is a solution, ar, to (3.4) then the intersection numbers of X satisfy the necessary

condition for a generic element of the divisor class dual to S = ArJr to be a section. If

not, no such section can exist. We emphasize that even in the case of a positive result one

has to be careful. In order to prove the existence of a section, one would need to show

that there is a representative of the relevant divisor class which is nowhere vertical over

the base.
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Figure 1. Distribution of the Euler characteristic χ in the CICY four-fold list (excluding product

manifolds), as a logarithmic plot. The values lie in the range 288 ≤ χ ≤ 2610.

4 Results

We have applied the methods discussed in this paper to the list of 921,497 CICY four-fold

configuration matrices presented in ref. [1] in order to further explore their mathematical

properties. In this section, we present the main results of this analysis. The complete

data, which is the output of several computer programs running in parallel on a computer

cluster for several months, can be downloaded from [21] in a format that is described in

appendix B.

4.1 Cartography of properties: Hodge data and distinguishing invariants

Using the techniques presented in section 2.2, we have computed all Hodge numbers of all

CICY four-folds. We have excluded from this analysis the 15,813 block-diagonal config-

uration matrices since they correspond to product manifolds, which generally have more

non-zero entries in their Hodge diamond than an indecomposable four-fold. However, the

Hodge numbers in these cases follow from those of their lower-dimensional constituents and

Künneth’s formula.

For the remaining 921,497 − 15,813 = 905,684 CICY four-folds, we find the following

mean values for the Euler characteristic χ and the Hodge numbers hp,q

〈χ〉 = 3412610
288 , 〈h1,1〉 = 10.124

1 , 〈h2,1〉 = 0.81733
0 ,

〈h3,1〉 = 39.6426
20 , 〈h2,2〉 = 2411752

204 ,
(4.1)

where the superscripts and subscripts respectively denote the maximal and minimal values

that occur. For further details, we refer to the logarithmic plots of the distribution of

the Euler and Hodge numbers which can be found in figures 1 and 2 respectively. The

four-dimensional space spanned by the Hodge numbers is depicted in figure 3, where the

six canonical two-dimensional subspaces are shown.

There is one noteworthy peculiarity evident in one of the plots. Upon inspection of

the bottom right graph in figure 3, one discovers a weak correlation between the values of
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Figure 2. Logarithmic plots of the abundance of Hodge numbers in the CICY four-fold list

(excluding product manifolds). Here, N is the number of times a given value of the Hodge number

appears in the CICY four-fold list.
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Figure 3. The canonical two-dimensional sections of the space spanned by the Hodge numbers.

The colouring encodes the abundance with which the particular combination of Hodge numbers

occurs in the CICY four-fold list (excluding product manifolds).
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Figure 4. Density histogram of the pair (h3,1, h2,2) in the CICY four-fold list (excluding product

manifolds) overlaid with the linear equation h2,2 ≈ 4h3,1+82.8 (orange curve). The purely empirical

origin of this apparent linear relation between h3,1 and h2,2 is explained on page 13.

h3,1 and h2,2. The origin of this correlation is purely empirical and can be explained by

considering (2.18) rewritten as

h2,2 = 4h3,1 + (44 + 4h1,1 − 2h2,1) . (4.2)

Comparing with (4.1) shows that on average h2,2 and 4h3,1 are an order of magnitude larger

than the expression in parenthesis. To a good approximation, we may thus replace h1,1

and h2,1 by their mean values to obtain a linear relationship between h3,1 and h2,2

h2,2 ≈ 4h3,1 + (44 + 4〈h1,1〉 − 2〈h2,1〉) = 4h3,1 + 82.8 . (4.3)

The graph of this approximate relationship overlaid with the exact density histogram is

plotted in figure 4 showing good agreement between the linear curve and the density distri-

bution. A somewhat similar relation is also known to hold for a different class of explicitly

constructed Calabi-Yau four-folds [11]. It is important to stress however that the approxi-

mate linear correlation (4.3) is, as far as we know, merely an artefact of the construction

of CICY four-folds.

Under mirror symmetry, the two Hodge numbers h1,1 and h3,1 are interchanged [22]. In

order to illustrate the situation of mirror symmetry for CICY four-folds, we show a mirror

plot in figure 5 — that is, a plot of (h1,1 + h3,1) against (h1,1 − h3,1). From the highly

asymmetrical plot, we can conclude that the mirror of a CICY four-fold is in most cases not

itself a CICY four-fold, with the notable exception of 153 configurations with h1,1 = h3,1.

This situation is very similar to the case of CICY three-folds and, as was noted for example

in ref. [23], it is a consequence of the fact that CICYs are a rather special sub-class among

all Calabi-Yau four-folds. Indeed, for more general constructions the mirror plot typically

becomes more symmetrical [11].

Clearly, it is desirable to know how many topologically distinct manifolds there are

in the list of CICY four-folds. We have thus also computed the topological invariants

discussed in section 2.3. Taking all of these into account, we find in total 36,779 different

sets of topological invariants. This number serves as a new lower bound for the number
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Figure 5. A plot of (h1,1 +h3,1) against (h1,1−h3,1). The dashed lines bound the region h1,1 ≥ 0,

h3,1 ≥ 0.

of topologically distinct manifolds in the list of CICY four-folds. It improves the lower

bound given in ref. [1] by an order of magnitude. It may well be possible to raise this lower

bound further by considering additional topological invariants, such as the ones studied in

ref. [24].

4.2 The list of elliptic fibrations and their favourable sections

We have performed an exhaustive computer scan to find all OEF structures of the type

described in section 3.1 among the list of CICY four-folds. The resulting data set contains

50,114,908 elliptic fibrations5 distributed among 921,020 CICY four-folds. The remaining

477 CICY four-folds cannot be brought into the OEF form (3.1). For the rest of this section,

we exclude the 15,813 product manifolds. This reduces the number of elliptic fibrations by

648,660 to 49,466,248. On average a CICY four-fold thus admits 54.6 OEFs and the range

of the number of OEFs per configuration is 0 - 354. A logarithmic plot of the distribution

of the elliptic fibration abundance is shown in figure 6.

It should be noted that every configuration matrix in the list with h1,1 > 12 admits at

least one OEF. This ubiquity of elliptic fibrations at high Picard number echoes a structure

that was found in ref. [25], for the Kreuzer-Skarke classification of Calabi-Yau three-folds

constructed as hypersurfaces in toric ambient spaces [2, 3].

There are two different types of fibre configurations in our list. The first type is given

by block-diagonal fibre configurations, such as, for example[
1 2 0

2 0 3

]
. (4.4)

5We would like to remark that the numbers quoted in this section are to be regarded with some care.

Despite modding out by some types of equivalences such as row and column permutations, we expect

the presence of residual equivalences among the elliptic fibrations, just as with the four-fold configuration

matrices themselves.
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Figure 6. Distribution of elliptic fibration abundance in the CICY four-fold list (excluding product

manifolds). The values lie in the range 0 - 354. We find 49,466,248 OEFs in total and on average

each CICY four-fold configuration is elliptically fibered in 54.6 different ways.

This configuration describes two points in P1 times a torus [2|3]. The fibres of a total

of 2,149,222 OEFs are block-diagonal. The remaining 47,317,026 non block-diagonal fibre

configurations matrices describe irreducible tori. These fibrations can degenerate over

special loci in the base. It should be noted that some 99.4% of the fibre descriptions

contain linear constraints in the coordinates of a single projective space. However, such

linear constraints cannot be removed (by replacing the relevant Pn with Pn−1) as different

redundant descriptions of the fibre can be twisted over the base of the OEF in inequivalent

ways.

It is also of interest to analyse the base manifolds that occur in our list. There are three

main types of base manifolds, namely products of projective spaces, almost fano complete

intersections in products of projective spaces and P1 times almost del Pezzo complete

intersections in products of projective spaces. In table 1 we further sub-divide the three

main types and present a complete classification of the base manifolds that occur in our

list. We remark that bases of the form (P1)2×B1 and P2×B1, where B1 is an almost ample

complete intersection 1-fold, such as [2|2],
[

1
1

∣∣ 1
1

]
or
[

1
1

∣∣ 1
2

]
, do not occur in the classification

of base manifolds. This is a consequence of the redundancy removal (more precisely, the

modding out by ineffective splittings and identities) that was employed in the compilation

of the CICY 4-fold list [1], since the B1 merely describe different embeddings of P1 [5].

These cases are thus already captured by (P1)3 and P1 × P2.

Of the 50,114,908 OEFs in our data set 26,088,498 satisfy the necessary condition for

admitting a section which is a generic element of a favourable divisor class as described

in section 3.2.Restricting ourselves to the 49,466,248 elliptic fibrations which correspond

to CICY four-folds which are not direct products, we find 25,999,860 examples which

obey the conditions. Figure 7 shows the multiplicity of configuration matrices (omitting

the direct products) which admit a given number of fibrations satisfying this necessary

condition. The largest number of fibrations of a single configuration matrix potentially

admitting a generic favourable section is 312. It should be noted that, because of the form
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Type # χ Example configurations

P3 562,342 4 —

P1 × P2 9,745,787 6 —

(P1)3 10,030,442 8 —

almost

fano B3

6,252,997

{−60,−50,

−48,−46}

∪{2n| − 21

≤ n ≤ 12}

[
1
4

∣∣ 0 2
3 1

]
-30

,
[

1
3

∣∣ 2
2

]
0
,
[

2
2

∣∣ 1
3

]
6
, . . .,

fano B′3 6,995,514

{−56,−36,

−24,−14,

−12,−6,

−4, 0, 2, 4,

6, 8, 10}

[4|4]−56 , [5|2 2]0 , [4|2]4 ,
[

2
3

∣∣ 1 1
1 2

]
-4

,[
3
3

∣∣ 1 1 1
1 1 1

]
0
,
[

2
2

∣∣ 1
1

]
6
, . . .,

P1 × B2

(B2 almost

del Pezzo)

15,879,166

{8, 10, 12,

14, 16, 18,

20, 24}

P1 ×



[
1
2

∣∣ 1
1

]
4
,
[

1
1
2

∣∣∣ 0 1
1 0
1 1

]
5

,
[

1
1
1

∣∣∣ 1
1
1

]
6

,
[

1
2

∣∣ 1
2

]
7
,

[4|2 2]8 , [3|3]9 ,
[

1
2

∣∣ 2
2

]
10

,
[

1
2

∣∣ 1
3

]
12

,[
2
2

∣∣ 1 1
1 1

]
6
,
[

1
1
1

∣∣∣ 1
1
2

]
8

,
[

1
1
2

∣∣∣ 0 1
1 0
1 2

]
8

,
[

1
3

∣∣ 0 1
3 1

]
12

,[
1
4

∣∣ 0 0 1
2 2 1

]
12

,
[

1
1
1

∣∣∣ 1
2
2

]
12

,
[

1
1
2

∣∣∣ 0 1
2 0
2 1

]
12


Table 1. Classification of base manifolds that occur in our list. The first column lists the different

types of three-fold bases. By B3 (B2) we denote almost fano (almost del Pezzo) complete intersec-

tions in products of projective spaces, that is three-(two-)fold configurations whose anticanonical

bundle is almost-ample. In contrast, B′3 denote fano complete intersections in products of projective

spaces. Their anticanonical bundle is ample. The subscripts on the configuration matrices denote

the Euler characteristics. The second column counts how many times the types of base manifolds

occur in the list of fibrations. In the third column, we list all of the different values for the Euler

characteristic χ that occur. The last column contains example configurations and for the case of

P1 × B2 this list is actually complete.7

of condition (3.4), any fibration which satisfies these conditions will admit multiple divisor

classes which are suitable. This would correspond to, potentially, multiple sections (as

opposed to a multi-section which all of the fibrations admit).

7Moreover, the topological types of almost del Pezzo surfaces are classified by their Euler characteristic,

except for the case χ(B2) = 4 [16]. Hence, the configurations in the last two rows in the list of P1 × B2

configurations are equivalent to the respective configurations in the first two rows that have the same Euler

characteristics.
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Figure 7. Distribution of the multiplicity of configuration matrices (excluding product mani-

folds) admitting a given number of OEFs which satisfy the necessary conditions to admit a generic

favourable section, as described in section 3.2.

Acknowledgments

We would like to thank Lara Anderson, Ron Donagi and Martijn Wijnholt for useful

discussions. A. L. is partially supported by the EPSRC network grant EP/l02784X/1. The

results presented here were (partially) carried out on the cluster system at the Leibniz

University of Hanover, Germany.

A Proof of efficient permutation redundancy removal algorithm

In the compilation of the CICY four-fold list, it is important to know whether two matrices

are related by a permutation of rows or columns, since in that case they correspond to a

redundant description of the same underlying manifold. It is possible to partially remove

this redundancy by imposing a lexicographic order on the rows and columns [5]. There

remains, however, a residual redundancy and one may attempt to remove it by generating

in a “brute force” way all row and column permutations of a matrix and comparing with

the candidate equivalent configuration. This procedure eventually becomes unfeasible for

the larger CICY configuration matrices in our list since the number of permutations grows

exponentially with matrix size.

In ref. [1], we thus developed a more efficient method of deciding if two matrices are

related by permutation. The full details of this method and, in particular, the proof that it

is equivalent to the aforementioned “brute force” procedure were omitted then, but shall be

given in this appendix, instead. We mention in passing that a similar method can also be

used to remove redundancies in the set of possible elliptic fibrations of a configuration with
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the important restriction that the permutations may not mix the submatrices describing

fibre and base (see section 3.1).

Consider two configuration matrices, A and Ã, of size n×m. We will restrict ourselves

to the situation where n ≤ m. If this is not the case one can simply transpose the config-

uration matrix and then repeat the procedure elaborated below. For the purposes of this

section, we define an equivalence relation between such matrices as follows.

A ∼ Ã :⇔ ∃ two permutation matrices P ∈ O(n) ,Q ∈ O(m) such that A = P T ÃQ
(A.1)

Our goal is to find a necessary and sufficient criterion for A ∼ Ã which is computa-

tionally efficient to implement. We start with a few basic facts about the singular value

decomposition of an n × m matrix A. There exist orthogonal matrices R ∈ O(n) and

S ∈ O(m) such that

RTAS =
(
D 0

)
, D = diag(a1, . . . , an) . (A.2)

Multiplying this equation with its transpose gives

RTAATR = D2 = diag(a2
1, . . . , a

2
n) . (A.3)

This shows that the columns of R consist of the eigenvectors of AAT . Let us assume that

the spectrum {a2
i } is non-degenerate. In this case the (normalized) eigenvectors in R are

uniquely determined up to permutations and a sign ambiguity for each of them. Ordering

the eigenvalues a2
i (say with increasing size) removes the permutation ambiguity. Further,

let us assume that
∑n

i=1Rij 6= 0, that is, all eigenvectors are such that their component

sum is different from zero. In this case, the sign ambiguity can be fixed by demanding that

n∑
i=1

Rij > 0 (A.4)

for all j = 1, . . . , n. So, in summary, provided the eigenvalues of AAT are non-degenerate

and ordered and the conditions (A.4) are satisfied the diagonalizing matrix R ∈ O(n) in

the singular value decomposition (A.2) is unique. With these preliminaries complete, we

are now in a position to formulate the following claim.

Claim: let A, Ã be two n ×m (where n ≤ m) matrices with the same, non-degenerate

spectrum of eigenvalues for AAT and ÃÃT . Further, let R, R̃ ∈ O(n) be diagonalizing

matrices, that is RTAATR = R̃T ÃÃT R̃ = D2 = diag(a2
1, . . . , a

2
n), which both satisfy

condition (A.4). Then it follows that

A ∼ Ã⇐⇒(P := R̃RT is a permutation and

A,A′ := P T Ã have the same sets of column vectors.)
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Proof:

“=⇒”: let A ∼ Ã so that A = P T ÃQ for two permutation matrices P,Q. It follows

that AAT = P T ÃÃTP , so that D2 = RTAATR = (PR)T ÃÃT (PR). On the other hand

D2 = R̃T ÃÃT R̃, so that ÃÃ
T

is diagonalized by PR and R̃. Both R̃ and R satisfy

condition (A.4) by assumption. It follows that also PR does because multiplication with

P from the left corresponds to row permutation which leaves the sums (A.4) unchanged.

The above uniqueness statement then implies that R̃ = PR so that P = R̃R
T

is indeed

a permutation. Then A = A′Q, for a permutation Q, so that A and A′ have the same

column vectors, possibly with different ordering.

“⇐=”: assume that P = R̃R
T

is a permutation and A,A′ = P T Ã have the same column

vector sets. From RTAS = R̃T ÃS̃ it follows that A = P T ÃQ = A′Q, where Q = S̃S
T ∈

O(n). Since A and A′ only differ by a permutation of columns we can choose Q to be a

permutation matrix, so that A = P T ÃQ with two permutation matrices P,Q and, hence,

A ∼ Ã. �

So, in practice, we first check that the spectrum of AAT , ÃÃ
T

is identical (if it is

not the configurations are of course inequivalent) and non-degenerate and then find the

corresponding diagonalizing matrices R, R̃ ∈ O(n) for the same ordering of eigenvalues

and ensure they both satisfy condition (A.4).8 Then we compute P = R̃R
T

and check

if it is a permutation matrix. If it is not, the configurations are inequivalent. If it is we

compute A′ = P T Ã and check if is has the same column vector set as A. If it does the two

configurations are equivalent, otherwise they are not.

B Data Format

In this appendix, we describe the format in which the data that was computed in this

project is stored and made available. The complete data is contained in two data sets

which can be downloaded from [21] in compressed form. The first data set includes the

configuration matrices and the topological invariants associated to them. It is stored as

a Mathematica list {configuration1, configuration2, configuration3, ... } and

can be loaded in Mathematica using the ReadList command. Each entry has the following

structure

{Id, m, K, q, χ, IsProduct, h1,1, h2,1, h3,1, h2,2, Favour},

where the unique identifier Id is a positive integer indicating the position of the entry

in the full list, m is the number of ambient space projective factors, K the number of

8If the spectrum happens to be degenerate, or the sum in (A.4) vanishes, then we can modify the

configuration matrices A and Ã in a way that does not affect equivalence but may change the spectrum or

positivity properties. For example, we can substitute the occurrence of a given number everywhere in the

matrix with a different value. If, in a given case, such procedures can not change the eigenvalues of the

matrices AAT and ÃÃT then the brute force method described earlier must be employed. If condition (A.4)

cannot be satisfied because one or more eigenvectors have components which sum to zero, one can compute

R and R̃ for all possible sign choices for those eigenvectors and then check if the criterion is satisfied for at

least one such choice.
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defining polynomials, q the configuration matrix,9 χ the Euler characteristic and hp,q the

Hodge numbers. IsProduct is true if the configuration matrix is block diagonal thus

representing a product manifold and false otherwise. Favour is true if the configuration

matrix is favourable in the sense explained in section 2.2 and false otherwise.

The second data set contains the fibration structure of the manifolds. It is also stored

as a Mathematica list and split across several files of manageable size. Each entry is of the

form

{Id, Fibs}.

Here, Id is the same unique identifier that was introduced above and configurations that

do not have OEFs are omitted from the list. Fibs represents a list of lists where each entry

has the form

{FibEntries, {SectionCond, S}},

where FibEntries is a list of two lists. The first list are the rows and the second list the

columns corresponding to the sub-part, [A1|F ], of the configuration matrix which describe

the fibre. SectionCond is true if the section condition (3.4) is satisfied. In that case, S

contains the components ar of the two-form S = arJr as defined10 in section 3.2. On the

other hand, if the section condition (3.4) cannot be satisfied, SectionCond is false and S

is the empty list {}.

The data format is best illustrated by means of an example:

{1595, 4, 3, {{0, 1, 1}, {2, 0, 0}, {2, 0, 1}, {1, 1, 2}},

648, False, 4, 0, 96, 444, True} .

This is the 1595th entry in the CICY four-fold list represented by the configuration matrix
1 0 1 1

1 2 0 0

2 2 0 1

3 1 1 2

 .

It is not block-diagonal, but favourable and has topological data χ = 648, h1,1 = 4, h2,1 = 0,

h3,1 = 96 and h2,2 = 444. The corresponding entry in the fibration data set reads

{1595, {{{{1, 4}, {1, 2, 3}}, {True, {2, -1, 0, 0}}},

{{{2, 3}, {1, 3}}, {False, {}}},

{{{2, 4}, {1, 2, 3}}, {False, {}}},

{{{1, 2, 3}, {1, 2, 3}}, {False, {}}}}} .

Thus, there are four OEFs, namely
[

1
3

∣∣ 0 1 1
1 1 2

]
fibered over P1 × P2,

[
1
2

∣∣ 2 0
2 1

]
fibered over[

1
3

∣∣ 1
1

]
,
[

1
3

∣∣ 2 0 0
1 1 2

]
fibered over P1 × P2 and

[
1
1
2

∣∣∣ 0 1 1
2 0 0
2 0 1

]
fibered over P3. Only for the first of

9The configuration matrix is stored without the column vector n, which contains the dimensions of the

ambient space projective factors. It is straightforward to reconstruct n using the Calabi-Yau condition (1.3).
10It should be noted that the labelling of the Jr in S is with respect to the OEF form (3.1), which does

not necessarily have the same ordering of rows and columns as the original configuration matrix.
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the four OEFs, the section condition (3.4) is satisfied. With respect to the OEF form of

the configuration matrix 
1 0 1 1

3 1 1 2

1 2 0 0

2 2 0 1

 ,

the corresponding two-form S is then given by S = 2J1 − J2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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