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1 Introduction and summary

Global gravitational anomalies [1] are anomalous phases picked by the partition function

of quantum field theories under large diffeomorphisms of spacetime. Just as for local

anomalies [2], their cancellation is required in quantum field theories arising as low energy
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effective descriptions of quantum theories of gravity, providing constraints on the latter.

In non-gravitational theories, however, global anomalies need not vanish.

The aim of this paper is to compute the global gravitational anomalies of the 6-

dimensional conformal field theories with (2,0) supersymmetry [3, 4], henceforth referred

to as (2,0) theories. There are two main motivations for this computation, that will be

presented in turn.

As we will explain in section 2, the global anomaly of a d-dimensional quantum field

theory F is captured by an R/Z-valued geometric invariant AnF of d + 1-dimensional man-

ifolds. A large class of such invariants are Chern-Simons invariants, whose value on a

d + 1-dimensional manifold U is given by the integral of a characteristic form of degree

d+2 over a d+2-dimensional manifold W bounded U . The knowledge of the local anomaly

essentially amounts to the knowledge of a characteristic form I in dimension d + 2, and in

simple cases, such as complex chiral fermions, AnF(U) is indeed simply given by the Chern-

Simons invariant of I. However, such a formula can be consistent only when I yields an

integer whenever integrated over a closed manifold W . Indeed, this ensures that AnF(U)

is well-defined modulo Z.

The local anomaly of (2,0) theories has been computed in [5] for theories in the A-

series, in [6] for the D-series and a general formula, also valid for the E-series, has been

conjectured in [7]. Given these expressions, it is easy to check that the corresponding

degree 8 characteristic form I does not integrate to an integer on closed 8-dimensional

manifolds (see equation (2.3)). This shows that the Chern-Simons invariant of I does not

exist, and it is therefore an interesting task to determine the geometric invariant computing

the anomaly of the (2,0) theory. We will show that the latter can be seen as the sum of the

would-be Chern-Simons invariant of I and an extra term that does not contribute to the

local anomaly. While ill-defined separately, these two terms combine into a well-defined

invariant of 7-dimensional manifolds.

The second motivation for the study of the global anomaly of (2,0) theories comes from

the fact that they generate an impressive collection of supersymmetric theories in lower

dimensions upon reduction. When reduced on a 4-manifold X, the (2,0) theory yields

a 2-dimensional quantum field theory that can inherit a global gravitational anomaly,

translating into a failure of modular invariance. The knowledge of the global anomaly of

the (2,0) theory on generic 6-dimensional manifolds allows us in principle to compute the

failure of modular invariance in the 2-dimensional theory in terms of the geometry and

topology of X.

When reduced on a Riemann surface, the (2,0) theory yields a 4-dimensional supersym-

metric theory. The latter admits an S-duality group given by the mapping class group of the

Riemann surface [8–10]. The fact that the 6-dimensional theory has a global gravitational

anomaly translates into the fact that the S-duality transformation of the 4-dimensional

partition function is anomalous [11, 12]. Again, the knowledge of the 6-dimensional global

gravitational anomaly allows us in principle to compute the anomalous transformation of

the 4-dimensional theories under S-duality.

We will not venture into this interesting research program in the present paper, but

only keep it in mind as a strong motivation for the derivation of a general anomaly formula

for the (2,0) theory.

– 2 –
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We can carry out rigorous computation of the global anomaly only for A-type theories.

We use the fact that the latter can be realized on a stack of M5-branes in M-theory [4]. In

particular, there is a limit in which a set of n parallel non-intersecting M5-branes flows to

the An−1 (2,0) theory at a generic point of its Coulomb branch, together with a free tensor

multiplet corresponding to the center of mass of the brane system. We showed recently

in [13] that the global anomaly of non-intersecting M5-branes vanishes, as is expected from

the consistency of M-theory. In the present paper, we use this fact to derive the global

anomaly of the (2,0) theory, in the same spirit as the derivation of the local anomaly

in [5]. To do so, we consider the M5-brane system above and pick a tubular neighborhood

containing it. As we know that anomalies cancel in an M-theory spacetime including

(non-intersecting) M5-branes, the anomaly of M-theory in the tubular neighborhood is due

entirely to the presence of the boundary, and can essentially be computed by evaluating the

M-theory Chern-Simons term on the boundary. One then obtains the anomaly of the (2,0)

theory by subtracting the anomaly of the center of mass, which can be deduced from recent

results about the global anomaly of the self-dual field [14, 15]. One can then check explicitly

that the geometric invariant obtained is well-defined, in the sense discussed above.

There is an essentially unique way of expressing the geometric invariant of the An (2,0)

theory in terms of Lie algebra data, and this provides a natural formula for the anomaly

of the other (2,0) theories, which is automatically compatible with the exceptional isomor-

phisms between members of the A-D-E series. We check that the corresponding geometric

invariant is well-defined as well for Lie algebras in the D and E series. A derivation of

this formula in the Dn case should be possible using the realization of the latter by n

M5-branes on a R5/Z2 orbifold. In this paper, we only point out that the anomaly of the

R5/Z2 orbifold is not understood globally. Just like for the (2,0) theory, the Chern-Simons

term obtained from the index density describing the local anomaly is ill-defined. In this

case, however, we do not know how to compute the correct global anomaly.

In section 4.7, we also present a simple picture for the appearance of the Hopf-Wess-

Zumino terms present on the Coulomb branch of the (2,0) theory. Those terms can be

thought of as the topological modes of the C-field living between the M5-branes, which

have to persist when we scale distance between the M5-branes to zero in order to obtain

the (2,0) theory.

Another interesting point is that the anomaly formula we derive suggests that more

data is needed to define the (2,0) theory that was previously expected. In addition to a

simply laced Lie algebra, a smooth oriented 6-manifold M , a rank 5 R-symmetry bundle

N over M and a spin structure on TM ⊕N , we seem to need a global angular differential

cohomology class on N . This is a differential cohomology class on the 4-sphere bundle

M̃ associated to N , restricting on each fiber to a normalized top differential cohomology

class on M̃ . In the M-theory realization of the A-type theories, a choice of global angular

differential cohomology class is required in order to perform the decoupling of the center-

of-mass tensor multiplet. We should mention that when the fourth Stiefel-Whitney class

of N vanishes, a canonical choice is available.

A conceptual way to think of anomalies is in terms of a field theory (in the mathematical

sense of the term) in one dimension higher [16]. The geometric invariant computed in this
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paper is the partition function of this anomaly field theory. Other aspects of the anomaly

field theory will be explored elsewhere [17]. We should also mention that a discussion of

the relation between the quantum field theory on a stack of M5-branes and a non-abelian

Chern-Simons 7-dimensional theory appeared in [18].

We add two remarks to clarify the assumptions made in this paper and the caveats of

the derivation.1 First, the anomaly cancellation check of [13] was not quite complete, as

it was assumed that all 7-dimensional manifolds U involved in anomaly computations are

bounded by 8-dimensional manifolds W . It was shown in [13] that the possible obstruction,

given by a certain cobordism group, is at most torsion. If the cobordism group turns out

not to vanish, then the check in [13] is incomplete and it is in principle possible that M-

theory backgrounds containing certain configurations of M5-branes are anomalous under

certain combinations of large diffeomorphisms and C-field gauge transformations. In this

paper, we make the likely assumption that no such anomalies exist. (Their existence would

imply a fundamental inconsistency of M-theory).

Second, to keep the derivation simple, we assume in this paper that the cobordism

group vanishes, therefore that every U is bounded by a W . This allows us to compute in

section 4.2 the anomaly inflow using differential forms on W . As will be shown in [17], we

are not losing any information from this assumption, because the anomaly inflow compu-

tation can be carried out on U , using the corresponding differential cocycles, and it yields

the same result.

The paper is organized as follows. Section 2 presents the relation between global

anomalies of d-dimensional quantum field theories and geometric invariants of d + 1-

dimensional manifolds. We also review the known local anomalies of the (2,0) theories

and explain why the associated Chern-Simons invariants are ill-defined. In section 3, we

present aspects of the geometry of M5-branes necessary for our computation of the global

anomaly. The derivation of the global anomaly of the A-type (2,0) theories is found in sec-

tion 4. We show that the anomaly formula determines a well-defined geometric invariant

of 7-manifolds and comment on the appearance of conformal blocks and on the Hopf-Wess-

Zumino terms present on the Coulomb branch of (2,0) theories. Section 5 presents the

general anomaly formula, conjecturally also valid for the D- and E-type theories, as well

as a proof that the associated geometric invariants are well-defined.

2 Some remarks about anomalies

The aim of this section is to explain informally how the global anomaly of a d-dimensional

quantum field theory can be described by a geometric invariant of d+1-dimensional mani-

folds. In section 2.1, we introduce the anomaly line bundle and explain that its holonomies

and transition functions can be computed by evaluating a geometric invariant on mapping

tori and twisted doubles, respectively. In section 2.2, we give some examples of anomalous

theories and their geometric invariants. We introduce in section 2.3 the local anomaly of

the (2,0) theory and deduce a natural guess for its global anomaly. We explain why this

1We thank the referee for raising this point.
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naive guess cannot be correct, providing a motivation for the more careful derivation in

the following sections.

2.1 Global anomalies and cobordisms

A global symmetry of a field theory on a d-dimensional manifold M is associated to a

current J . The latter can be sourced by a background field A, which belongs to an infinite-

dimensional space of background fields B. Two common examples of such symmetries

are a global internal symmetry, described by a pointwise action of a Lie group G on the

fields of the theory, and the isometry group of spacetime, acting by pullback on the fields.

The associated currents are the symmetry current and the energy-momentum tensor. The

corresponding background fields in these two examples are a non-dynamical gauge field

coupling to the current, and a (Riemannian or Lorentzian) metric on M .

We can also consider the local transformations associated to the global symmetry. In

our first examples, such local transformations are generated by the action on the fields of a

section g of a G-bundle over M . In the second example, the local transformations are the

diffeomorphisms of M , or a subset of those, if some structure necessary for the definition

of the field theory needs to be preserved. While a local transformation does not leave the

action invariant, its effect can be compensated by a corresponding transformation on the

background fields. In the first example, this is achieved by changing the background gauge

field by the gauge transformation associated to g. In the second example, this is achieved

by pulling back the metric of M via the diffeomorphism.

In the quantum theory, we say that the global symmetry suffers from an anomaly if

the quantum theory turns out not to be invariant under the combined action of the local

transformations on the fields and on the background fields. More precisely, we can see

the partition function of the quantum field theory (as well as the associated correlation

functions) as functions over the space of background fields B. An anomaly is present if

these functions are not invariant under the action of the group G of local transformations

on B. For unitary theories, the lack of invariance of the partition function Z is only by

a phase. Our aim in the present paper is to give a formula for these phases in the case

of the 6-dimensional superconformal theories with (2,0) supersymmetries, when the local

transformations are diffeomorphisms of the 6-dimensional spacetime.

A fruitful point of view on anomalies is the following. If Z is not invariant under

G, it cannot define a function on the quotient B/G, seen as the space of gauge invariant

background field data. However, Z does define a section of a unitary G-equivariant line

bundle on B. For all practical purposes, a G-equivariant line bundle on B can be taken as the

definition of a line bundle over B/G, valid even when the quotient is singular. Therefore,

instead of defining a function over B/G, in general Z defines a section of a unitary line

bundle L over B/G.

From now on, in order to have a unified treatment, we include in the space of back-

ground field B all the data required to define our quantum field theory. In particular, a

point of B specifies the d-dimensional spacetime M . G is then not exactly a group, but a

groupoid obtained by the union of the groups of local transformations for each M , acting
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each on the respective component of B. In this more general setting, the partition function

still defines the section of a line bundle L over B/G.

How can we describe unitary line bundles and their sections over B/G? One way

to do so is to pick some R/Z-valued geometric invariant of manifolds with boundary of

dimension d + 1. (Recall that the spacetime M has dimension d.) We will write AnF for

the geometric invariant describing the anomaly bundle of the quantum field theory F. By

geometric invariant, we mean a functional that depends on certain geometric or topological

data on the d + 1-dimensional manifold U , which after restriction to ∂U defines a unique

point in B. The only requirement we put on AnF is that it is consistent with the gluing

of manifolds along their boundaries. If U1 has a boundary component M and U2 has a

boundary component M̄ (M with the opposite orientation) such that the extra structure

glues smoothly into a manifold U1 ∪M U2, then we require that

AnF(U1) + AnF(U2) = AnF(U1 ∪M U2) . (2.1)

In more abstract terms, we need to find a cobordism category C whose objects are

the elements of B, i.e. d-dimensional manifolds endowed with all the structures we need to

define our quantum field theory. AnF is then a functor from C to the category whose only

object is the complex line C and whose morphisms from C to itself are labeled by U(1),

identified with R/Z via exponentiation.

The geometric invariant AnF then defines a unitary line bundle L with connection

over B/G. For instance, a cobordism Ub between the empty manifold and b ∈ B can be

seen as defining the value at b of (the pull-back of) a section s of L . Indeed, b ∈ B defines

a manifold M together with background fields, and there is a subset BU ∈ B consisting

of the data that can be extended to U . The pull-back of π∗(L ) to BU is trivial and we

define π∗(s)(b) = AnF(U). As b moves in BU , we obtain a function over BU , which is the

pull-back of a section s of L .

An element g ∈ G acts on B and induces a change of trivialization in π∗(L ). We can

compute the phase of this change of trivialization by comparing the value of the pull-back

of a given section s at b and at g.b. We know that π∗(s)(b) = AnF(Ub). Consider now the

twisted double Ug of Ub. This is the manifold obtained by gluing Ub to Ūb (Ub with the

opposite orientation) through the transformation g. Then AnF(Ug) is the logarithm of the

phase associated to the change of trivialization induced by g. A simple reasoning shows

that the phase obtained is independent of the choice of manifold Ub, i.e. of the choice of

section of L , see figure 1.

The parallel transport along a path p in B is given by a cylindrical cobordism U[0,1] =

M × [0, 1] between p(0) and p(1), in such a way that M × {t} = p(t). In particular, a

loop c ∈ B determines a closed d + 1 manifold Uc, the mapping torus associated to c.

exp 2πiAnF(Uc) ∈ U(1) is the holonomy of the connection on L along c. This explains the

appearance of mapping tori in the computations of global anomalies [1, 13, 14, 19]. (We are

here glossing over the fact that the path or loop in B might not define unambiguously the

data needed to compute the geometric invariant on the cylinder or mapping torus. Those

subtleties will play no role in what follows.)
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id φ idφ

U M Ū U ′ M Ū ′

Ū ′
φ≃

id φid φ

U M ŪU ′ MŪ ′

≃

id id

U M ŪU ′ MŪ ′

≃

id id

∅

Uφ

V V̄

Figure 1. This figure illustrates the argument showing that the value of AnF on twisted doubles

depends only on the gluing map φ. We start by picking two manifolds U and U ′ bounded by

M . On the top left, the twisted double Uφ is constructed by gluing two copies of U , one of them

with its orientation reversed, with the help of the map φ. On the top right, the same construction

starting from U ′, with the opposite orientation, yielding Ū ′φ. By rearranging the pieces, we obtain

the second line. Then, noticing that the two twists cancel in the second gluing on the second line,

we obtain on the third line V = U ∪id Ū ′ and V̄ . This pair of manifolds is bordant to the empty

manifold, showing that AnF was zero all along and implying that AnF(Uφ) = AnF(U ′φ). In terms

of the line bundle L , this translates into the fact that the transition functions do not depend on

the sections used to compute them.

Let us remark that the construction using twisted doubles reviewed above allows us to

compute the anomalous phases picked by the partition function of a quantum field theory

without computing the latter explicitly, provided we know the invariant AnF.

2.2 Examples

Let us now turn to some examples. An important example is 3-dimensional Chern-Simons

theory, in which the above is well-known [20–22]. The anomalous field theory is the 2-

dimensional chiral WZW model and AnWZW is the Chern-Simons functional. Depending
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on whether we are considering the quantum [20, 21] or classical [22] theory, we consider the

gauge field as dynamical or include it with the background fields. The anomaly line bundle

associated to a surface by the Chern-Simons term is the line bundle over the moduli space

of flat connections of which the WZW conformal blocks are sections. This line bundle

extends as well over the space of conformal structures of the surface.

Another example, treated in detail in [23], is the modified eta invariant ξ of a Dirac

operator D on an odd-dimensional manifold of dimension d + 1. ξ is related to the eta

invariant by ξ = 1
2(η + h), where h denotes dimension of the kernel of D. It was shown

in [23] that when we take AnD+ = ξ, then L is the inverse of the determinant bundle

of the associated chiral Dirac operator D+ in dimension d. AnD+ then computes the

global anomaly of the complex chiral fermionic theory in dimension d associated to the

Dirac operator D+. In particular, the holonomies of the anomaly connection are given by

τ = exp 2πiξ evaluated on mapping tori, in a suitable adiabatic limit in which the size of

the base of the mapping tori tends to infinity [1, 24]. One can also compute the actual

phase picked by the chiral fermion partition function under a diffeomorphism or a gauge

transformation by evaluating τ on a twisted double, as explained above.

The latter example has the following interesting property. Assume that a closed d+1-

dimensional spin manifold U is bounded by a d + 2-dimensional manifold W on which the

spin structure of U extends, as well as any other data required to define D. The invariant

ξ can be computed using the Atiyah-Patodi-Singer index theorem [25]:

ξ = −index(DW ) +

∫
W

IDW
(2.2)

where DW is a Dirac operator on W restricting to D on U , and IDW
= Â(TW )ch(E) is

the index density of DW . (We expressed DW as the ordinary Dirac operator on W twisted

by a vector bundle E). Note that we are reading this formula only modulo 1, so the first

term on the right-hand side is irrelevant.

IDW
is exactly the characteristic form in d + 2 dimension used to compute the local

anomaly of the chiral fermionic theory [2]. It can be related to the curvature of the

anomaly line bundle L as follows. Recall that the holonomies of the connection on L

can be computed by evaluating τ on a mapping torus. Assume that we are interested in

a small homotopically trivial loop c in B. Then the mapping torus Uc = M × S1 is trivial

and we can take W = M × D2, where D2 is a 2-dimensional disk. We find therefore that

the holonomy around c is given by the integral of IDW
over M × D2. But the holonomy

around c is also given by the integral of the curvature of L over D2. As this is true for all

loops c, we find that the curvature of L is given by the degree 2 component of
∫
M IDW

,

where IDW
is seen as a differential form on M × B.

We deduce that the local anomaly polynomial, of degree d + 2, of a quantum field

theory is directly related to the curvature of the anomaly line bundle via integration over

spacetime. Of course, the local anomaly does not capture all the information about the

anomaly of a quantum field theory: there exist line bundles with non-trivial flat connec-

tions. The set of holonomies of the connection captures all the information about the

anomaly and is refered to as the global anomaly [1]. Equivalently, the anomaly is fully
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captured by the geometric invariant AnF, and this is the point of view that we will take in

this paper.

2.3 The case of the (2,0) theory

Let us now focus on the (2,0) theory in six dimensions. The local gravitational anomaly

of the (2,0) theory of type An was derived from M-theory in [5]. This result was extended

to the type Dn case in [6] and a general formula also valid for the E-type theories was

conjectured in [7]. The degree 8 local anomaly polynomial reads

Ig = r(g)J8 − |g|hg

24
p2(NW ) . (2.3)

r(g), |g| and hg denote respectively the rank, the dimension and the dual Coxeter number

of the simple and simply laced Lie algebra g. J8, whose explicit expression will appear

below, is the anomaly polynomial for a single tensor multiplet in six dimensions. p2(NW )

is the second Pontryagin class of the rank 5 bundle NW over W obtained by extending the

R-symmetry bundle of the (2,0) theory on M .

Given our experience with chiral fermions, one may be optimistic and guess that the

value of the geometric invariant Ang governing the global anomaly of the (2,0) theory,

evaluated on a manifold U bounded by W is simply given by

1

2πi
ln Ang(U) =

∫
W

Ig , mod 1 . (2.4)

The problem is that (2.4) is inconsistent. An R/Z-valued geometric invariant on a d + 1-

dimensional manifold U defined by integrating certain characteristic form I on a bounded

manifold of dimension d + 2 can be well-defined only if
∫
W I is an integer for any closed

manifold W . This is manifestly not the case for (2.4). For instance, as we will see, J8 can

be written 1
8L(TW ) + 1

2If , where L(TW ) is the Hirzebruch L-genus and If is an index

density with
∫
W If ∈ 2Z for W closed. On a closed manifold, we have

∫
W L(TW ) = σW ,

the signature of the 8-dimensional manifold W . If r(g)σW is not a multiple of 8, and in

general it has no reason to be so, then
∫
W L(TW ) cannot define a geometric invariant on

U . The second term in (2.3) does not define an invariant of U either. One can check

explicitly that |g|hg is a multiple of 6, but
∫
W p2(NW ) has no particular evenness property

on a closed manifold. As the coefficients of the two terms do not vary proportionally when

we change g, there is no hope that (2.4) can be well-defined.

The problem calls therefore for a more careful study. We will see that (2.4) holds after

adding extra terms on the right hand side that do not contribute to the local anomaly and

that make the geometric invariant (2.4) well-defined. Our strategy will be to focus first

on A-type theories, through their realizations on stacks of M5-branes. We will then find a

straightforward generalization to the D- and E-type theories.

3 The geometry of M5-branes

In this section, we review some facts about the geometry of M5-branes that will be useful

in the derivation of the anomaly of the (2,0) theory. In section 3.1, we review the properties

– 9 –
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of the embedding of the M5-brane worldvolume into spacetime. Some subtleties about the

coupling of the M-theory C-field to the worldvolume theory of the M5-brane are reviewed

in section 3.2 and we introduce some important notations for the rest of the paper. In

section 3.3, we generalize the analysis to the case of a stack of M5-branes and in section 3.4,

we extend these constructions to 7- and 8-dimensional manifolds, as required by anomaly

computations. In section 3.5, we review the M-theory Chern-Simons term and its role in

anomaly cancellation in the presence of M5-branes.

We assume that the reader is familiar with the use of (shifted) differential cocycles to

model higher p-form abelian gauge fields. The original reference is [26]. An introduction for

physicists can be found in section 2 of [27]. Our notations follow section 2.1 of [13], which

can be read as a quick reminder. Differential cocycles and cohomology classes are written

with a caron .̌ What we often call the field strength of a differential cocycle is sometimes

called the curvature in the literature. The reason for our terminology is obvious: when

the differential cocycle models an abelian gauge field, its curvature coincides with the field

strength of the gauge field.

3.1 Non-intersecting M5-branes

We consider the low energy limit of M-theory on an 11-dimensional smooth oriented spin

manifold Y , in the limit of vanishing gravitational coupling. It consists in 11-dimensional

supergravity, together with a Chern-Simons term involving an important higher derivative

correction [28]. We work in Euclidean signature, so we take Y to be Riemannian. We will

be considering gauge transformations and diffeomorphisms that are the identity outside of

a compact subset U of the spacetime Y . This implies that we can freely modify Y outside

this subset and take it to be compact, possibly adding sources outside U in order to satisfy

the Gauss law of the gauge fields.

Inside U , we choose a smooth oriented 6-dimensional manifold M , and we wrap one

M5-brane on each of its connected components. We write N for the normal bundle of M

in Y . Our assumptions that Y is oriented and spin and that M is oriented imply that

w1(TM) = w1(N ) = 0 , w2(TM) + w2(N ) = 0 , w5(N ) = 0 . (3.1)

The last equality is not obvious and its proof can be found in appendix A of [13]. It

should be also emphasized that it ceases to be automatically true once we extend these

constructions from the 6-dimensional manifold M to an 8-dimensional manifold W . In this

case it will assumed.

We pick a tubular neighborhood N of M of radius δ, which will eventually be taken

to zero, and we write M̃ for its boundary. M̃ is a 4-sphere bundle over M , and we write π

for the bundle map M̃ → M . We have

TM̃ ⊕ RM̃ ' π∗(TM ⊕ N ) , (3.2)

with RM̃ a trivial line bundle over M̃ . This implies that for any stable characteristic class

c, such as the Pontryagin or Stiefel-Whitney classes, we have

c(TM̃) = π∗(c(TM ⊕ N )) . (3.3)
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3.2 The effective C-field

It is well known that the quantization of the fluxes of the M-theory C-field are shifted: they

are integral or half-integral depending on the parity of the periods of w4(TY ) [28]. The

precise way of encoding this statement is to see the C-field as an element Č of a group of

shifted differential cocycles, written Žλ in section 2.1 of [13]. The shift λ is a half-integer-

valued cocycle such that 2λ is a lift of w4(TY ) as an integral cocycle (i.e. a period of 2λ on

a 4-cycle is even or odd depending on whether the period of w4(TY ) is 0 or 1). From now

on, we will refer to this shift simply as a shift by w4(TY ). We will similarly encounter later

differential cocycles shifted by the degree 4 Wu class of M , i.e. by w4(TM) + (w2(TM))2.

The M-theory C-field sources the self-dual two-form gauge field on the worldvolume of

the M5-brane. However, it is not trivial to restrict the C-field to the M5-brane worldvolume.

Indeed, the M5-brane itself sources the C-field in the bulk, which means that the integral

of the C-field field strength G on any 4-sphere linking M is equal to 1. This implies that G

diverges near M . If the normal bundle N is trivial, a trivialization defines longitudinal and

normal components of elements of T ∗M . The divergent part of the four-form G is purely

normal, and one can restrict the longitudinal component to M . However, this strategy

does not work if the normal bundle is non-trivial.

In section 2.3 of [13], we explained how to define in the general case the effective C-field

on the worldvolume. In terms of differential cocycles, the restriction reads

ČM =
1

2
π∗(ČM̃ ∪ ČM̃ ) . (3.4)

Here π∗ is the pushforward map on differential cocycles associated to the fiber bundle

M̃
π→ M , ČM̃ is the (non-singular) restriction to M̃ of the C-field on Y , and ∪ is the

cup product on differential cocycles. Let us remark that the factor 1
2 in (3.4) makes it

not obvious that the differential cohomology class of ČM depends only on the differential

cohomology class of ČM̃ , i.e. that (3.4) is gauge invariant. This can be shown by performing

an explicit gauge transformation on ČM̃ in (3.4) and noticing that the factor 1
2 do not appear

in the variation of ČM [13].

One can show that this definition reduces to the intuitive one sketched above when

N is trivial. We also showed in [13] that it passes a highly non-trivial consistency test:

ČM is a differential cocycle on M shifted by the degree 4 Wu class of M , which is exactly

what is required to define consistently the coupling to the worldvolume self-dual field [29].

(To be precise, the degree 4 Wu class of M always vanishes, for dimensional reasons. We

will however momentarily extend these constructions to manifolds of dimension 8, whose

degree 4 Wu classes can be non-trivial.)

For explicit computations, it will be useful to choose an unshifted differential cocycle

ǎM̃ , whose field strength fM̃ integrates to 1 over the 4-sphere fibers to M̃ . We will refer to

ǎM̃ in the following as a global angular differential cocycle. ČM̃ and its field strength GM̃

can then be written

ČM̃ = ǎM̃ + π∗(ǍM ) , GM̃ = fM̃ + π∗(FM ) , (3.5)

for some differential cocycle ǍM shifted by w4(TM ⊕ N ), with field strength FM . The

coefficient of ǎM̃ in (3.5) is 1 because the M5-brane supported on M sources one unit of
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flux of the C-field. The effective C-field (3.4) and its field strength GM then read

ČM = b̌M + ǍM , GM = hM + FM , (3.6)

where we defined

b̌M =
1

2
π∗(ǎM̃ ∪ ǎM̃ ) (3.7)

and wrote hM for the field strength of b̌M . The differential cocycle b̌M gives rise to a well-

defined differential cohomology class for the same reason as ČM does, see (3.4). Results

of [30] show that it is shifted by w4(N ). The differential cocycles ǎM̃ and b̌M will play an

important role in what follows.

3.3 Stacks of M5-branes

We point out here the differences arising when M supports a stack of n M5-branes, rather

than a single one. The flux through the fibers of M̃ is now n units. Using (3.5), we can

parameterize the C-field on M as follows:

ČM̃ = nǎM̃ + π∗(ǍM ) , GM̃ = nfM̃ + π∗(FM ) . (3.8)

ǍM is as before a differential cocycle shifted by w4(TM ⊕ NM ). Under changes of the

parameterization (3.8), we have

ǎM̃ → ǎM̃ + π∗(B̌M ) , ǍM → ǍM − nB̌M (3.9)

for B̌M an unshifted differential cocycle on M . We can also define

ČM,n := nb̌M + ǍM , GM,n := nhM + FM , (3.10)

which is invariant under (3.9). We can also write ČM,n = 1
2nπ∗(ČM̃ ∪ ČM̃ ). Depending on

whether n is even or odd, ČM,n is shifted by w4(TM ⊕N ) or by the degree 4 Wu class of

M . The differential cocycle

ČM := b̌M + ǍM (3.11)

is shifted by the Wu class of M and will play an important role in what follows. Remark

that ČM depends on a choice of parameterization (3.8).

Simplifications occur when w4(N ) = 0. Indeed, consider the vertical tangent bundle

TV M̃ . Remark that its Euler class e(TV M̃) integrates to 2 over the 4-sphere fibers of M ,

because the Euler number of a 4-sphere is 2. Modulo 2, we have

e(TV M̃) = w4(TV M̃) = π∗(w4(N )) . (3.12)

Therefore, if w4(N ) = 0, e(TV M̃) can be divided by 2. [31] shows that π∗
(

1
2e(TV M̃) ∪

1
2e(TV M̃)

)
is at most torsion. The above holds for the differential refinement ě(TV M̃)

obtained from the metric on M̃ . We can therefore take ǎM̃ = 1
2 ě(TV M) + π∗(ť), for some

differential cocycle ť representing a torsion differential cohomology class. We then have

b̌M = π∗

(
1

2
ě(TV M̃) ∪ 1

2
ě(TV M̃)

)
+ ť (3.13)

and we can pick ť so that b̌M = 0. Equations (3.10) and (3.11) then simplify.
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3.4 Extension to manifolds of dimension 7 and 8

As reviewed in section 2, the computation of the anomaly of a quantum field theory in

dimension d involves manifolds of dimension d + 1 and d + 2. Taking X to be a 7- or

8-dimensional manifold, we endow it with a rank 5 bundle NX satisfying (3.1). (From now

on we will analogously write NM for the normal bundle over M .) We then have a 4-sphere

bundle X̃ over X whose stable characteristic classes satisfy (3.3). As before, we write π

for the bundle map X̃ → X.

ČX̃ is a differential cocycle on X̃ shifted by π∗(w4(TX ⊕ NX)). The constructions of

sections 3.2 and 3.3 can be repeated on X, yielding differential cocycles ǎX̃ , ǍX , b̌X .

In the following, we will follow the notation in section 2 and write U and W for 7-

and 8-dimensional manifolds, respectively. As we will argue below, the decoupling of the

center of mass degrees of freedom on a stack of M5-branes requires a choice of global

angular differential cocycle ǎM̃ , as introduced in (3.8). It is therefore natural to consider

the following. 6-dimensional closed smooth oriented Riemannian manifolds M , together

with data dM = (NM , ČM̃ , ǎM̃ ), can be seen as the objects of a cobordism category C,

whose bordisms are oriented smooth Riemannian manifolds U with boundary, together

with data dU = (NU , ČŨ , ǎŨ ). Of course, we require that if (U, dU ) is a cobordism with

boundary (M, dM ), then dU |M = dM . We also require that the Riemannian metric of U

is isomorphic to a direct product in a neighborhood of ∂U . Similarly, we will consider

8-dimensional cobordisms (W, dW ) bounded by 7-dimensional closed manifolds (U, dU ).

3.5 Anomaly cancellation for non-intersecting M5-branes

M-theory on Y contains a Chern-Simons term reading

CS11 = 2πi

∫
Y

(
1

6
C ∧ G ∧ G − C ∧ I8

)
, (3.14)

when the C-field is topologically trivial and can be represented by a 3-form C with field

strength G. The index density I8 is defined in terms of the Pontryagin classes of TY by

I8 =
1

48

(
p2(TY ) +

(
p1(TY )

2

)2
)

. (3.15)

A more general formulation in terms of eta invariants can be found in [32]. Alternatively,

we can express it in differential cohomology. The integral Pontryagin cohomology class and

the metric on Y determine a differential cohomology class admitting I8 as its field strength,

which can be lifted to a differential cocycle Ǐ8. In terms of the shifted differential cocycle

Č describing the C-field, the Chern-Simons term (3.14) can be written

CS11 = 2πi

∫
Y

(
1

6
Č ∪ Č ∪ Č − Č ∪ Ǐ8

)
, (3.16)

where ∪ and
∫

are the cup product and integral in differential cohomology [26]. The integral

of a differential cocycle of degree 12 on an 11-dimensional manifold gives an element of R/Z,

reproducing the fact that the Chern-Simons term is defined only modulo 2πi.
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The Chern-Simons term (3.16) is a geometric invariant in the sense discussed in sec-

tion 2. In particular, it defines an anomaly line bundle over the base of families of 10-

dimensional manifolds. When evaluated on a 11-dimensional manifold with boundary, it

provides a section of this line bundle. As a result, when Y has a boundary, (3.16) is not

invariant under diffeomorphisms of and gauge transformations of the C-fields. There is

both a gravitational and a gauge anomaly, which are canceled by the fields living on the

boundaries of M-theory spacetimes [33].

When the spacetime Y has no boundaries but contains M5-branes wrapped on M ,

one is also naturally led to consider (3.16) on a manifold with boundary. As was already

mentioned above, in this case the C-field, and therefore (3.16), is defined only on Y \M .

Cutting out a small neighborhood N of M , CS11 needs to be evaluated on the manifold

Y \N , which has boundary M̃ . This shows that the bulk action of M-theory has both gauge

and gravitational anomalies in the presence of M5-branes. Those anomalies cancel against

the anomalies present on the worldvolume of the M5-branes. This was discussed in [29, 34]

and shown [35, 36] for local anomalies. Global anomalies were shown to cancel in [13].

For our purpose, this implies that in order to compute the anomaly associated to a

system of (non-intersecting) M5-branes in some region of space, it is sufficient to evaluate

the Chern-Simons term (3.16) on the boundary of a region containing them.

4 Global anomalies of A-type (2,0) theories

We compute in this section the global anomaly (2,0) theories in the A-series. In sec-

tion 4.1, we introduce the scaling limit in which we obtain the (2,0) theory from a system

of M5-branes. The computation of the anomaly of the stack of M5-branes is performed

in section 4.2. We then determine the anomaly of the center of mass tensor multiplet in

section 4.3, and deduce from it the global anomaly of the (2,0) theory in section 4.4. In sec-

tion 4.5, we check that the anomaly formula determines a well-defined geometric invariant

of 7-manifolds. Section 4.6 presents the relation of the anomaly line bundle to the confor-

mal blocks of the (2,0) theory and we discuss in section 4.7 a conceptual picture for the

origin of the Hopf-Wess-Zumino terms present on the Coulomb branch of the (2,0) theory.

4.1 Idea of the computation

We pick a compact smooth oriented 6-dimensional manifold M and a rank 5 vector bundle

NM on M whose Stiefel-Whitney classes satisfy (3.1). The total space of NM is an oriented

spin manifold, which we will see as an M-theory spacetime. We assume that M carries a

Riemannian metric and that NM carries a connection. We endow NM with a compatible

metric. Inside NM , points at a fixed distance R from the origin form a 4-sphere bundle

M̃ over M .

We pick n non-intersecting sections of NM on which we wrap n M5-branes. We assume

that the largest distance between an M5-brane and the origin is r.

As this system is formulated on a non-compact manifold, it displays a global anomaly

under diffeomorphisms and gauge transformations that are not compactly supported. As

explained in section 2, the anomaly can be computed from a closed 7-manifold U . U can
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be a mapping torus of M , if we are interested in computing the holonomy of the anomaly

connection, or a twisted double, if we are interested in computing the anomalous phase of

the partition function under a particular transformation. In any case, U comes with the

data dU = (NU , ČŨ , ǎŨ ) extending the corresponding data on M as described in section 3.4.

We know from [13] that the global anomaly vanishes in the bulk, so it can be computed by

evaluating the M-theory Chern-Simons term on the asymptotic boundary of NU , which is

diffeomorphic to Ũ , the 4-sphere bundle over U associated to NU .

We now take a decoupling limit in which we rescale both the Planck length lP and the

fibers of NM , in a way such that r/l3P stays constant [37]. This limit is such that the M2-

branes that might stretch between the M5-brane have constant energy. It ensures that the

energy scale at which the gauge symmetry of the (2,0) theory is broken is constant. In the

limit, we obtain effectively a free tensor supermultiplet describing the center of mass of the

system, together with a (2,0) superconformal field theory of type An−1 at a generic point

on its Coulomb branch. These theories are living on M , seen as the zero section of NM .

The global anomaly of the system does not change when we take the limit. As a con-

sequence, we see that we can compute the global anomaly of the (2,0) superconformal field

theory of type An−1 (together with the anomaly due to the center of mass) by evaluating

the M-theory Chern-Simons term on Ũ . Moreover, the anomaly has to be constant across

the Coulomb branch. The computation to be performed below, a priori valid only at a

generic point of the Coulomb branch, is therefore valid everywhere on the Coulomb branch.

4.2 Evaluation of the Chern-Simons term

After the limit described above has been taken, both the C-field and the metric on NU

are spherically symmetric. Moreover, the M-theory spacetime is empty away from the zero

section. This implies that the Chern-Simons term can be evaluated on any round sphere

bundle Ũ ⊂ NU centered around the origin. Taking Ũ to be a 4-sphere bundle with a finite

radius avoids the slight complications coming from the fact that the metric blows up and

the C-field field strength tends to zero as one approaches the asymptotic boundary of NU .

Let us note that if U is a mapping torus, adiabatic limits have to be taken in the formulas

below. In the adiabatic limit, the metric along the base circle c of U blows up. To simplify

the notation, we will suppress the adiabatic limits from the notation. No adiabatic limit

is necessary in the case of most interest to us, when U is a twisted double.

We assume that (U, dU ) is the boundary of (W, dW ) (see section 3.4). The cobordism

group computing the obstruction to the existence of (W, dW ) has been described in appendix

C of [13]. It is not known explicitly, but is at most torsion. To compute the anomaly of a

stack of n M5-branes, we need to evaluate

AnnM5(U) = −
∫

Ũ

(
1

6
ČW̃ ∪ ČW̃ ∪ ČW̃ − ČW̃ ∪ Ǐ8

)
(4.1)

= −
∫

W̃

(
1

6
GW̃ ∧ GW̃ ∧ GW̃ − GW̃ ∧ I8

)
,

where in the second line we expressed the Chern-Simons term on Ũ as the integral of the

associated characteristic form on W̃ . As explained in section 3.3, the C-field and its field
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strength on W̃ can be written

ČW̃ = nǎW̃ + π∗ǍW , GW̃ = nfW̃ + π∗FW , (4.2)

where GW̃ , fW̃ and FW are the field strengths of ČW̃ , ǎW̃ and ǍW , respectively. fW̃

integrates to 1 on the 4-sphere fibers of W̃ . The term nfW̃ in the field strength of the C-field

comes from the fact that we have n M5-branes at the origin sourcing the C-field. Eq. (4.2)

can be reparameterized as follows:

ǎW̃ → ǎW̃ + π∗(B̌W ) , ǍW → ǍW − nB̌W , (4.3)

for any degree 4 unshifted differential cocycle B̌W . The minus sign in (4.1) comes from the

fact that the orientation of the boundary Ũ is reversed compared to [13]. Equivalently (4.1)

yields directly the anomaly of the stack of M5-branes, as opposed to the anomaly inflow

required to cancel it.

We now want to express (4.1) as an integral on W . We can proceed as in section 3.3

of [13]. First, we see the integral on W̃ as the composition of a pushforward π∗ along the

4-sphere fibers with integration on W . The pushforward satisfies the relations

π∗(π∗(x)) = 0 , π∗(y ∧ π∗(x)) = π∗(y) ∧ x , π∗(fW̃ ) = 1 , (4.4)

valid for differential forms x ∈ Ω•(W ) and y ∈ Ω•(W̃ ). The right-hand side of (4.1) reads

−
∫

W
π∗

(
1

6
(nfW̃ + π∗FW )3 − (nfW̃ + π∗FW ) ∧ I8

)
. (4.5)

Note that in this equation, the Pontryagin forms in I8 are those of TW̃ , and (3.3) shows

that they are the pull-back to W̃ of the Pontryagin forms of TW ⊕ NW on W . Using the

latter fact and (4.4), we get

−
∫

W

(
n3

6
π∗(f3

W̃
) +

n2

2
π∗(f2

W̃
) ∧ FW +

n

2
F 2

W − nI8

)
, (4.6)

where now I8 is constructed out of the Pontryagin forms of TW ⊕ NW . Next, we use the

notation introduced in section 3.3 to rewrite (4.6):

−
∫

W

(
n3

(
1

6
π∗(f3

W̃
) − 1

8
π∗(f2

W̃
)2

)
+

n

2
G2

W,n − nI8

)
. (4.7)

The coefficient of n3 is 1
24p2(NW ), as explained in section 3.3 of [13]. We further define

the index density

J8 := I8 − 1

24
p2(NW ) , (4.8)

computing the local anomaly of a free tensor multiplet, and we obtain

AnnM5(U) =

∫
W

(
nJ8 − n3 − n

24
p2(NW ) − n

2
G2

W,n

)
. (4.9)

Remark that GW,n is invariant under the reparameterization (4.3), so (4.9) is manifestly

invariant as well.

– 16 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
8

4.3 The global anomaly of the center of mass

Eq. (4.9) describes the global anomaly of the stack of n M5-branes, corresponding to the

(2,0) theory of type An together with a free tensor supermultiplet of charge n, describing

the center of mass of the system, as well as the degrees of freedom related to it by super-

symmetry. In order to isolate the contribution from the (2,0) theory, we need to compute

the global anomaly due to the free tensor multiplet.

To derive it, we temporarily ignore the fermions in the tensor multiplet, which do not

have a gauge anomaly. The global anomaly of a self-dual field of charge 1 is given by [15, 26]

AnSD,1(U) =

∫
W

(
1

8
L(TW ) − 1

2
G2

W

)
, (4.10)

where L(TW ) is the Hirzebruch genus of TW . GW is the field strength of a degree 4

differential cocycle ČW , modeling a 3-form gauge field coupling to the self-dual field. For

the anomaly (4.10) to be well-defined, in the sense discussed in section 2.3, it is crucial that

ČW is a differential cocycle shifted by the Wu class, as explained in appendix A.2. Our

aim is to separate the gravitational anomaly from the gauge anomaly in this expression.

This is not a trivial problem, because although the first term in (4.10) seems to capture

the gravitational anomaly and the second one the gauge anomaly, they are not separately

well-defined. For instance, the first term is obviously not an integer when evaluated on a

closed manifold whose signature is not a multiple of 8.

This problem can be cured by rewriting (4.10) as

AnSD,1(U) =
1

8

∫
W

(L(TM) − σW ) −
∫

W

(
1

2
G2

W − 1

8
σW

)
, (4.11)

where σW denotes the signature of the (non-degenerate) intersection form on the image of

H4(W, ∂W ;R) in H4(W ;R). The point of this rewriting is that each of the two integrals

yields an integer when evaluated on a closed manifold W , as explained in appendix A.

Novikov’s additivity theorem for the signature also ensures that the corresponding geo-

metric invariants satisfy (2.1). Also, the dependence on the metric and on the C-field of

the two terms remain unchanged compared to (4.10). We can therefore interpret the first

term as the gravitational anomaly of the self-dual field, and the second one as the gauge

anomaly, consistently with the detailed analysis of [14, 15]. Both of these anomalies are

well-defined in the sense of section 2.3.

The gravitational anomaly of a self-dual field of charge n is the same as the one of a

self-dual field of charge 1, while its gauge anomaly is n times larger. (More precisely, its

gauge anomaly line bundle is the nth tensor product of the gauge anomaly line bundle of

a self-dual field of charge 1. This implies that the holonomies and transition functions are

taken to the nth power.) These facts determine the global anomaly of a self-dual field of

charge n to be

AnSD,n(U) =
1

8

∫
W

(L(TM) − σW ) − n

∫
W

(
1

2
G2

W − 1

8
σW

)
. (4.12)

– 17 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
8

We deduce that the global anomaly of a tensor multiplet of charge n is given by

AnTM,n(U) =

∫
W

(
J8 +

n − 1

8
σW − n

2
G2

W

)
. (4.13)

4.4 The global anomaly of the (2,0) theory

In (4.13), GW is the field strength of a differential cocycle ČW shifted by the Wu class.

What is the differential cocycle that should be identified with ČW when the tensor multiplet

is the center of mass of a stack of M5-branes? It would be natural to set ČW = ČW,n, but

this would be inconsistent, as ČW,n is not shifted by the Wu class in general. The only

n-independent cocycle with the correct shift in the problem is ČW = b̌W + ǍW . The fact

that this cocycle is shifted by the Wu class was shown in appendix B of [13], using crucial

results of [30]. It was also argued in [13] that ČM = b̌M + ǍM is the effective C-field

coupling to the self-dual field on the worldvolume of a single M5-brane. It seems natural

that the effective C-field coupling to the center-of-mass tensor multiplet should be given

by the same expression.

Subtracting the contribution to the anomaly of the free center-of-mass tensor super-

multiplet, we obtain a formula for the global anomaly of the (2,0) theory of type An−1:

AnAn−1(U) = AnnM5(U) − AnTM,n(U) (4.14)

=

∫
W

(
(n − 1)J8 − n3 − n

24
p2(NW )

− n − 1

8
σW − n(n − 1)

2
hW (2GW + (n − 1)hW )

)
.

where GW is the field strength of ČW .

As was discussed in section 3.3, if w4(NM ) = 0, there is a preferred choice for the

global angular cocycle ǎM , which results in b̌M = 0. If the extensions of the normal bundle

are such that w4(NU ) = w4(NW ) = 0, then we can extend the global angular cocycle on

Ũ and W̃ in such a way that b̌U = b̌W = 0. In particular, hW = 0 and the last term

vanishes. This is for instance the case when NM is trivial. However the cases where NM is

non-trivial are very important, as they correspond to twistings of the (2,0) theory. Then,

even if w4(NM ) = 0, there is in general no reason that would force w4(NU ) = w4(NW ) = 0

for all the twisted doubles U . In fact, we will see that the last term is crucial for the

consistency of (4.14).

It is interesting to note that there remains a dependence on the background C-field,

through the extension GW of its field strength to W . There is as well a dependence on

hW , the field strength of (3.7), and therefore a dependence on the choice of parameteriza-

tion (4.2). These somewhat puzzling features can all be traced back to the decoupling of

the center of mass degrees of freedom. This operation requires picking a differential cocycle

of degree 3 shifted by the Wu class, which is the effective C-field on the worldvolume cou-

pling to the center-of-mass tensor multiplet. There is no way to do this canonically and the

choice we made, ČM , extended to W as ČW , depends on (4.2). In contrast, the anomaly

formula (4.9) for a stack of M5-branes, including the center of mass, is independent of (4.2).
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A consequence of this fact is that the decomposition (4.2) cannot be chosen freely

on W . The definition of the (2,0) theory on M should include a choice global angular

differential cocycle ǎM̃ on M̃ , which should then be extended to Ũ and W̃ , as was already

suggested in our discussion of section 3.4. A choice of ǎM̃ is effectively a choice of a vertical

cotangent bundle on M̃ . It is therefore not so surprising that when the normal bundle NM

is topologically non-trivial, such a choice has to be made in order to decouple the center

of mass, and that this choice cannot be made canonically.

As we are only interested in the (2,0) theory, we should set the C-field on M to a

preferred value, for instance zero. Because of an analog of the Freed-Witten anomaly for

self-dual fields, first described in [30], this might not be consistent. We should rather set

ČM = ŠM , where ŠM is a certain 2-torsion differential cocycle determined by the anomaly

cancellation condition (see section 3.6 of [15]). Together with a choice ǎM̃ of a global

angular cocycle on M̃ , this fixes the value of the M-theory C-field on M̃ .

We can recover the local anomaly from (4.14) by taking U to be a mapping torus over

a small homotopically trivial loop c in the space of background fields. The holonomy of

the anomaly connection along c is then proportional to the value of its curvature inside the

loop. In this case, we can take W = M × D2, W̃ = M̃ × D2, where D2 is a 2-dimensional

disk. As the metric alone is changing along D2, only the metric-dependent terms can have

a non-zero integral. But the only metric-dependent terms are the first two in (4.14). A

comparison with [5] (see also (2.3)) shows that these two terms reproduce the index density

governing the local anomaly derived in that paper. Let us also remark that in [5], it was

assumed that the local gravitational anomaly cancellation, proven for a single M5-brane,

holds as well for a stack of M5-branes. Our derivation requires no such assumption. We

rather relied on the cancellation of global anomalies for non-intersecting M5-branes, proven

in [13] to deduce the anomaly at a generic point on the Coulomb branch.

We will also see in the next section that the last two terms in (4.14), while having no

effect on the local anomaly, are crucial for the anomaly to be consistent globally.

4.5 A consistency check

In this section we check that when (4.14) is evaluated on a closed manifold W , it yields an

integer. This ensures that the anomaly is well-defined, in the sense discussed in section 2.3.

Strictly speaking, this check is not necessary. We obtained (4.14) as the difference of

two terms describing well-defined anomalies. One is the reduction of the characteristic

form associated to the M-theory Chern-Simons term, which takes integral values on closed

manifolds as shown in [28]. The other is the global anomaly of the center of mass, which is

shown in appendix A to take integral values on closed manifolds as well. Nevertheless, this

is a good check on our computations and it involves some interesting algebraic topology.

In the rest of this section, W is a closed oriented 8-manifold. Let us first remark

that the analysis of the cancellation of local anomalies for five-branes [29, 35] shows that

J8 = 1
8L(TW )− 1

2If , where If is the index density of the chiral fermions on the worldvolume

of a single M5-brane. As the Dirac operator associated to If is quaternionic on an 8-

dimensional manifold (see section 3.1 of [13]), its index is even and
∫
W

1
2If is an integer.

The term involving the Hirzebruch genus integrates to the signature of W and cancels with
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the third term in (4.14). Therefore, all that remains to be shown is that the second and

fourth terms in (4.14) add up to an integer.

To this end, it is useful to distinguish two cases, depending on whether n is even or

odd. For odd n, n3 − n is a multiple of 24 (it is sufficient to check this explicitly for n = 1

to 23), so the second term is an integer. To see that the last term is an integer as well in

this case, we let n = 2k + 1 and write it∫
W

2k + 1

2
2khW (2GW + 2khW ) . (4.15)

But 2khW is a closed form with integral periods. 2GW is a closed form with integral periods

as well, but in addition it is a form lift of the Wu class (see appendix A). This implies that

2GW is a characteristic element for the wedge product pairing on the space of closed forms

on W with integral periods, which implies that (4.15) is an integer.

In case n is even, we need more sophisticated tools. Again, a straightforward inspection

shows that for n = 2k even,

4
n3 − n

24
= k mod 4 . (4.16)

On the other hand, the fourth term in (4.14) reads

−k(2k − 1)

∫
W

hW (2GW + (2k − 1)hW ) (4.17)

= −(2k − 1)

2

∫
W

2khW (2GW + 2khW ) + k(2k − 1)

∫
W

h2
W .

For the same reason as above, the first term on the right-hand side is an integer, and as

hW has half-integral periods, the second term belongs to Z/4. As k(2k − 1) = k mod 4, all

we need to show is that
∫
W 4h2

W =
∫
W p2(NW ) mod 4.

For this, we need to introduce a cohomological operation, the Pontryagin square P. P

maps H•(W ;Z2) into H•(W ;Z4). Denoting by ρk the reduction modulo k, the Pontryagin

square has the property that Pρ2(u) = ρ4(u
2) for any u ∈ H•(W ;Z). The action of the

Pontryagin square on Stiefel-Whitney classes has been computed by Wu [38] and can be

found for instance in [39]:

P(w2i) = ρ4(pi) + θ2

(
w1Sq2i−1w2i +

i−1∑
j=0

w2jw4i−2j

)
. (4.18)

In this formula, Sqi are the Steenrod squares and θ2 is the embedding of H•(W ;Z2) into

H•(W ;Z4) induced by the corresponding embedding of Z2 into Z4. Applying this formula

to the bundle NW , we see that P(w4(NW )) = p2(NW ) mod 4, as wi(NW ) = 0 for i > 5.

But now we can use the fact that 2hW is a form lift of w4(NW ), i.e. the periods of 2hW on

4-cycles on W are even or odd depending on whether w4(NW ) has period 0 or 1. Together

with the property of P mentioned above, this implies that∫
W

4h2
W =

∫
W

p2(NW ) mod 4 . (4.19)
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We have therefore shown that (4.14) always takes integer values on closed manifolds W .

The somewhat strange-looking fourth term is essential in order to cure the ambiguities of

the second term.

4.6 The conformal blocks

A potentially confusing point is the following. The geometric invariant AnAn−1 defines a

line bundle LAn−1 over the space of objects of the cobordism category C, that is over the

space of 6-manifolds M endowed with the data dM . We expect the partition function of

the (2,0) theory to be a section of this line bundle.

But it is known that the (2,0) theory does not admit a single partition function. Rather,

it has a space of “conformal blocks” whose dimension is given by the order of Lagrangian

subgroups of H3(M ;Zn) with respect to the cup product pairing on H3(M ;Zn) [40, 41].

These two statements can be reconciled as follows. The partition function ZnM5 of

a stack of M5-branes is well-defined and unique. The conformal blocks arise after the

decoupling of the center-of-mass tensor multiplet, because the self-dual field of charge n

that it contains does not have a single partition function, but rather a set of conformal

blocks ZCM,x [40]. They form a representation of a central extension GH of H3(M ;Zn) and

can be parameterized by an index x running over a Lagrangian subgroup of H3(M ;Zn). As

ZnM5 is invariant under GH and ZCM,x transforms in the irreducible unitary representation

of GH , it is natural to expect that the (2,0) theory has conformal blocks ZAn−1,x valued

in the dual representation, and that one can write ZnM5 =
∑

x ZCM,xZAn−1,x. Similar

statements in the case of N = 4 super Yang-Mills were put forward in [42]. Now ZCM,x

are all sections of the same line bundle. In order for the sum to make sense, the conformal

blocks ZAn−1,x should all be sections of a unique line bundle; this is the line bundle LAn−1 .

The fact that ZCM,x are sections of the same line bundle for all x also justifies our

computation of the anomaly of the (2,0) theory in section 4.4 by subtracting the anomaly

of the center-of-mass tensor multiplet from the anomaly of the stack of M5-branes.

In more detail, recall that we can parameterize the M-theory C-field on M̃ as follows

ČM̃ = nǎM̃ + π∗(ǍM ) . (4.20)

Clearly, the differential cohomology class of ČM̃ is left invariant under shifts

ǎM̃ → ǎM̃ + π∗(B̌M ) , (4.21)

where B̌M is a differential cocycle on M representing an order n differential cohomology

class. (From now on, we will make a slight abuse of language and refer to B̌M as an “order

n torsion differential cocycle”, even if nB̌M is zero only in cohomology.) The effective

C-field to which the center-of-mass tensor multiplet couples is

ČM =
1

2
π∗(ǎM̃ ∪ ǎM̃ ) + ǍM , (4.22)

transforming as:

ČM → ČM + B̌M . (4.23)
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So the differential cohomology class of ČM is not invariant under such changes of parame-

terization. The transformation (4.21) acts on the conformal blocks of the center of mass,

which are functions of ČM , but leaves ZnM5 invariant.

At least if there is no torsion in H3(M ;Z), we can be more precise. In this case,

a (linearly dependent) set of generators of the conformal blocks of the center of mass is

provided by level n Siegel theta functions over the torus Jn of flat (gauge equivalence classes

of) C-fields [43]. The latter is defined by Jn = H3(M ;R)/nH3
Z(M ;Z), where H3

Z(M ;R)

denotes the de Rham cohomology classes having integral periods on M . Eq. (4.23) is then

simply an order n rotation of Jn. It is well-known that the theta functions of level n are

in bijection with order n points of Jn, and therefore (4.23) simply permutes the elements

in our set of conformal blocks. If torsion is present, the space of flat C-fields Ȟ4
flat(M) fit

in a short exact sequence

0 → Jn → Ȟ4
flat(M) → H4

(n)(M ;Z) , (4.24)

where H4
(n)(M ;Z) is the subgroup generated by the elements of order n in H4(M ;Z).

The order n differential cocycle B̌M then acts on Ȟ4
flat(M) by order n rotations of the

components Jn together with permutations of these.

In summary, the data d defined in section 3.4 is the data required to define the (2,0)

theory and select a particular conformal block. All the conformal blocks of the (2,0) theory

are sections of the same line bundle over the moduli space of manifolds endowed with

the data d. This line bundle is determined by AnAn−1 as explained in section 2.1. The

conformal blocks share the same anomaly and are permuted by the shifts (4.21) of ǎM̃ .

In contrast, the data required to define the An−1 (2,0) theory without a choice of

conformal block is (keeping the notation of section 3.4) d′
M = (NM , ČM̃ , nǎM̃ ), where

now ǎM̃ is determined up to a torsion element of order n. Over the moduli space of

manifolds with data d′, the conformal blocks should rather be seen as sections of a vector

bundle, whose rank is given by the order of Lagrangian subspaces of H3(M ;Zn). To

describe the anomaly precisely in this context requires to promote the geometric invariant

AnAn−1 to an anomaly field theory [16]. The relevant anomaly field theory is a type of

quantum Dijkgraaf-Witten theory, whose classical version is given by AnAn−1 and whose

quantization is performed by summing over the torsion component of ǎM̃ . The details of

this construction will appear in a future paper [17].

This generalization is important because there exist diffeomorphisms that fail to pre-

serve the torsion component of ǎM̃ . Such diffeomorphisms permute the conformal blocks

of the (2,0) theory and their action cannot be accounted for naturally using the formalism

developed in the present paper.2 Indeed, they were implicitly ruled out by the choice of

the data d, which they fail to preserve.

Let us also remark also that the picture developed in this section shows that all the

subtleties of the (2,0) theory at a non-generic point on its Coulomb branch are captured by

the partition function ZnM5 of the stack of M5-branes and are independent of the choice

of conformal block.

2We thank the referee for making this point.
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Figure 2. A pictorial representation of the arguments in this section. The three pictures represent

a fiber over a point of M . On the left, the setup used to compute the anomaly due to a set of non-

intersecting M5-branes (black dots). Tubular neighborhoods (grayed out) are cut out and there is

an anomaly inflow from the M-theory Chern-Simons term in the bulk (in white). This inflow cancels

exactly the sum of the anomalies of the isolated M5-branes. In the middle, the setup presented in

section 4.1 in order to compute the anomaly of a stack of M5-branes on its Coulomb branch. A

single tubular neighborhood of M is cut out and includes all the M5-branes. Again, there is an

anomaly inflow due to the M-theory Chern-Simons term in the bulk. On the right, the difference

between the anomaly inflow contributions can be attributed to the M-theory Chern-Simons term

integrated over the region N , represented in white.

4.7 The origin of the Hopf-Wess-Zumino terms

A naive computation of the local gravitational anomaly of the (2,0) An−1 theory by sum-

ming the anomalies of the n tensor multiplets present at a generic point on the Coulomb

branch fails to capture the whole anomaly of the theory. It was proposed in [7] that

the effective theory on the Coulomb branch contains certain Wess-Zumino terms, dubbed

“Hopf-Wess-Zumino terms”, compensating for the difference between the naive computa-

tion and the correct anomaly found in [5]. In our framework, those terms are responsible

for the second and fourth terms of the anomaly (4.14), although only the second term was

accounted for in [7]. We show here that these Wess-Zumino terms can be pictured very

concretely as the topological modes of the M-theory C-field that get trapped between the

M5-branes when the decoupling limit of section 4.1 is taken. A somewhat similar idea was

mentioned in [44].

Recall our method to compute the anomaly inflow in section 4.1. We considered a set

of n non-intersecting M5-branes separated by a typical distance r. We picked a tubular

neighborhood N0 of M including all the M5-branes, say of radius R0. We then rescaled

r to zero while keeping R0 fixed. Equivalently, we could have kept r fixed and taken R0

to infinity.

An alternative way of computing the anomaly is the following. We take n non-

intersecting tubular neighborhoods Ni of the worldvolumes Mi of each M5-brane, of radius

Ri � r. Let us write M̃i = ∂Ni, a 4-sphere bundle over Mi. If this setup is extended to a

7-manifold U , we can compute the inflow due to the bulk on this system by evaluating the

M-theory Chern-Simons term on
⋃

i Ũi and taking a limit in which Ri scale down to zero.

It is clear that the anomaly obtained in this way is the sum of the anomalies due to each
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M5-brane. In other words, via this procedure, we obtain the naive anomaly mentioned at

the beginning of this section.

But now the reason why the two procedures do not give the same answer is clear. In

the first procedure, in addition to the M5-branes themselves, we also included a part of

the bulk of M-theory, namely

N := N0\
n⋃

i=1

Ni . (4.25)

The M-theory Chern-Simons term on N is anomalous, because N has boundaries. In fact,

when M is promoted to a 7-manifold U , the anomaly due to the Chern-Simons term can

be obtained by evaluating it on Ũ ∪⋃i(Ũ i). We see that the anomaly difference between

a stack of M5-branes on its Coulomb branch and a set of non-intersecting M5-branes is

entirely due to the M-theory Chern-Simons term on N . See figure 2.

N is a fiber bundle over M . The fiber is a 5-ball of radius R out of which n 5-balls of

radii Ri have been carved out. Writing π for the bundle map and čs11 for the integrand

of (3.16), the Hopf-Wess-Zumino term is

w̌z = π∗(čs11) , (4.26)

i.e. the integral of the Chern-Simons integrand over the fibers of N , yielding a top differ-

ential cocycle on M . By definition, we have∫
M

w̌z =

∫
N

čs11 , (4.27)

and w̌z is a local term on M accounting for the anomaly difference. Finally, we have to

take the limit R0 → ∞, Ri → 0. The advantage of this formulation is that it is completely

general: no assumption is made on the topology of the system of M5-branes, except that

they are not intersecting. Of course, in order to get an explicit expression for the Hopf-

Wess-Zumino terms, the setup should be simple enough so that the integration over the

fibers of N can be performed explicitly.

5 The global anomaly of a generic A-D-E (2,0) theory

In the present section, we show that the anomaly we found for A-type theories can be

naturally rewritten in terms of basic Lie algebra data. This result yields a conjectural

formula for the global anomaly of a generic (2,0) theory, which is automatically compatible

with the exceptional isomorphisms among the A-D-E Lie algebras. We also provide a

consistency check by showing that the corresponding anomaly is well-defined in the sense

of section 2.3.

5.1 The anomaly formula

For a simply laced simple Lie algebra g, the general global anomaly formula reads

Ang(U) =

∫
W

(
r(g)J8 − |g|hg

24
p2(NW ) − r(g)

8
σW − r(g)hghW (GW − hW ) − |g|hg

2
h2

W

)
,

(5.1)
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where |g| is the dimension of g, r(g) its rank and hg its dual Coxeter number. Eq. (5.1)

coincides with (4.14) for the A-type theory. Note that as (5.1) is expressed in terms of data

intrinsic to g, this formula is automatically compatible with the exceptional isomorphisms

among elements of the A, D and E series. For the reader’s convenience, we recall the

values of the dimension and of the dual Coxeter numbers:

|g| hg

An n2 + 2n n + 1

Dn 2n2 − n 2n − 2

E6 78 12

E7 133 18

E8 248 30

. (5.2)

Of course, the rank of Xn is n. The first two terms of (5.1), which are the only ones

relevant for the local anomaly, were obtained in [7].

5.2 Data required to specify a (2,0) theory

As we already discussed, in the A-type theories, hW and GW have a clear interpretation in

terms of M-theory data. For the other (2,0) theories, it is not obvious how these objects

should be interpreted, especially for the E-type theories, where there is no M-theory real-

ization. We define here data on M that naturally give rise to hW and GW . Presumably,

this data is required in order to define the (2,0) theory on a 6-manifold M , independently

of any M-theory realization.

We already know that in order to define the (Euclidean) (2,0) theory, we need a simply

laced Lie algebra g, a smooth oriented Riemannian manifold M , an R-symmetry bundle

NM satisfying (3.1) and a spin structure on TM ⊕N . We claim that in addition to this we

need a choice of global angular differential cocycle ǎM̃ on the 4-sphere bundle M̃ associated

to NM .

We saw that in the A-type theories, such a choice was necessary in order to perform the

decoupling of the center-of-mass degrees of freedom. ǎM̃ , together with the requirement

ČM = ŠM , fully determines the M-theory C-field on M̃ . Similarly, in any (2,0) theory, a

choice of ǎM̃ allows one to define b̌M := 1
2π∗(ǎM̃ ∪ ǎM̃ ), ČM = ŠM and ǍM = ČM − b̌M .

In anomaly computations, this data is extended to 7- and 8-dimensional manifolds U and

W . hW and GW in (5.1) are then respectively the field strengths of b̌W and ČW .

5.3 Consistency

Using our analysis of the An case, it is easy to see that (5.1) yields an integer on closed

manifolds for any g, and therefore that it describes a well-defined anomaly. Indeed, the

– 25 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
8

following terms take independently integer values on closed manifolds:∫
W

(
r(g)J8 − r(g)

8
σW

)
, (5.3)∫

W

( |g|hg

24
p2(NW ) +

|g|hg

2
h2

W

)
, (5.4)∫

W
r(g)hghW (GW − hW ) . (5.5)

The fact that (5.3) is an integer was explained in section 4.3. To show that (5.4) is an

integer, recall that we proved in section 4.5 that
∫
W p2(NW ) = 4

∫
W h2

W mod 4. Integrality

will follow provided that |g|hg/6 = −|g|hg/2 mod 4, which requires |g|hg to be a multiple

of 6. This can be readily checked in each case. Finally, the last term takes integer value

because r(g)hg is even, 2GW and 2hW have integral periods, and 2GW is a lift of the Wu

class, hence is a characteristic element of the wedge product pairing on forms with integral

periods (see appendix A).

5.4 Further comments

We do not have a compelling picture explaining how the conformal blocks arise in D- and

E-type theories.

It would be interesting to derive the anomaly formula (5.1) from the type IIB realization

of the (2,0) theories, but we leave this for future work.

We attempted to derive (5.1) for the Dn series using M-theory on an R5/Z2 orbifold.

However we cannot perform a rigorous derivation, because of a puzzling feature of the

orbifold background: the anomaly of the orbifold is not well-defined globally. This can be

understood from the fact that the R5/Z2 sources a half-quantum of flux of the M-theory C-

field. The orbifold singularity has an anomaly “AnO(U) = −
∫
W

1
2J8” canceled by anomaly

inflow. But as 1
2J8 does not integrate to an integer on a closed manifold W , the expression

above does not define a geometric invariant of U . We therefore encounter the same problem

that was plaguing the naive anomaly formula (2.4) for the (2,0) theory, and unlike in the

latter case, there seems to be no extra term appearing to cure the inconsistency. Closing

our eyes to this problem, a calculation very similar to that for An theory yields all the

terms in (5.1) with the right prefactors, except for the fourth one. Because of this, the

anomaly derived in this way is inconsistent. We expect that a proper understanding of the

orbifold’s anomaly should cure this problem.
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A Properties of lifts of the Wu class

We review here some basic properties of the Wu class and its lifts, which play an important

role in the proofs of the paper.
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A.1 The Wu class and its lifts

Recall that the Wu class on a closed manifold X of dimension d is an element ν =
∑

k νk

of H•(X;Z2) satisfying

〈Sqk(x), [X]〉 = 〈x ∪ νk, [X]〉 (A.1)

for x ∈ Hd−k(X;Z2). Sq denotes here the Steenrod operations and [X] is the fundamental

homology class of X. In case the dimension of X is even and x is of degree d/2, Sqd/2(x) =

x ∪ x and the above reduces to x ∪ x = x ∪ νd/2. ν can be expressed in terms of the

Stiefel-Whitney classes. For instance, on an oriented manifold, ν4 = w4 + w2
2.

We call a closed differential form λ ∈ Ωk(X) a form lift of the Wu class if the periods

of λ are integers and equal to the periods of νk modulo 2. Let Č be a differential cocycle

shifted by the Wu class on X (see section 2.1 of [13]) and let G be its field strength. Then

2G is a form lift of the Wu class.

A.2 Proof of integrality

Let X be of even dimension d and let λ be a form lift of the Wu class of degree d/2. Then

λ is a characteristic element for the wedge product pairing on the space Ω
d/2
Z (X) of closed

forms with integral periods, namely∫
X

F ∧ F =

∫
X

F ∧ λ mod 2 (A.2)

for any F ∈ Ω
d/2
Z (X). This follows from the corresponding property of νd/2 on Hd/2(X;Z2)

and the compatibility of the wedge and cup product pairings. A direct consequence of this

fact is

Proposition 1. Let W be a closed 8-manifold and λ be a form lift of the Wu class of

degree 4. The expression
1

8

∫
W

(L(TW ) − λ2) (A.3)

takes integer values, where L(TW ) is the Hirzebruch L-genus of TW .

Proof. The norm of any characteristic element of a unimodular lattice is equal to the

signature modulo 8. (This is a special case of Theorem 2.9 of [45], valid for any lattice.)

The proposition then follows from the fact that the integral of the L-genus over the manifold

yields the signature.
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[33] P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary,

Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].

[34] M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: A

One loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].

[35] D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for

M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

[36] K. Lechner, P.A. Marchetti and M. Tonin, Anomaly free effective action for the elementary

M5 brane, Phys. Lett. B 524 (2002) 199 [hep-th/0107061] [INSPIRE].

[37] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[38] W.T. Wu, On Pontrjagin classes III, Amer. Math. Soc. Transl. 11 (1959) 155.

[39] E. Thomas, On the cohomology of the real Grassmann complexes and the characteristic

classes of n-plane bundles, Trans. Amer. Math. Soc. 96 (1960) 67.

[40] E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012

[hep-th/9812012] [INSPIRE].

[41] E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].

[42] D. Belov and G.W. Moore, Conformal blocks for AdS5 singletons, hep-th/0412167

[INSPIRE].

[43] M. Henningson, The partition bundle of type AN−1 (2, 0) theory, JHEP 04 (2011) 090

[arXiv:1012.4299] [INSPIRE].

[44] J. Kalkkinen and K.S. Stelle, Large gauge transformations in M-theory, J. Geom. Phys. 48

(2003) 100 [hep-th/0212081] [INSPIRE].

[45] G.W. Brumfiel and J.W. Morgan, Quadratic functions, the index modulo 8 and a

Z/4-Hirzebruch formula, Topology 12 (1973) 105.

– 29 –

http://arxiv.org/abs/math/0211216
http://inspirehep.net/search?p=find+J+J.Diff.Geom.,70,329
http://dx.doi.org/10.1016/j.aop.2006.07.014
http://dx.doi.org/10.1016/j.aop.2006.07.014
http://arxiv.org/abs/hep-th/0605200
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605200
http://dx.doi.org/10.1016/S0393-0440(96)00042-3
http://dx.doi.org/10.1016/S0393-0440(96)00042-3
http://arxiv.org/abs/hep-th/9609122
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609122
http://dx.doi.org/10.1016/S0393-0440(97)80160-X
http://arxiv.org/abs/hep-th/9610234
http://inspirehep.net/search?p=find+EPRINT+hep-th/9610234
http://dx.doi.org/10.1088/1126-6708/2000/05/031
http://arxiv.org/abs/hep-th/9912086
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912086
http://arxiv.org/abs/math/9710001
http://arxiv.org/abs/hep-th/0312069
http://inspirehep.net/search?p=find+EPRINT+hep-th/0312069
http://dx.doi.org/10.1016/0550-3213(96)00308-2
http://arxiv.org/abs/hep-th/9603142
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603142
http://dx.doi.org/10.1016/0550-3213(95)00368-3
http://arxiv.org/abs/hep-th/9506126
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506126
http://arxiv.org/abs/hep-th/9803205
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803205
http://dx.doi.org/10.1016/S0370-2693(01)01390-9
http://arxiv.org/abs/hep-th/0107061
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107061
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1088/1126-6708/1998/12/012
http://arxiv.org/abs/hep-th/9812012
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812012
http://arxiv.org/abs/0905.2720
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2720
http://arxiv.org/abs/hep-th/0412167
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412167
http://dx.doi.org/10.1007/JHEP04(2011)090
http://arxiv.org/abs/1012.4299
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4299
http://dx.doi.org/10.1016/S0393-0440(03)00027-5
http://dx.doi.org/10.1016/S0393-0440(03)00027-5
http://arxiv.org/abs/hep-th/0212081
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212081

	Introduction and summary
	Some remarks about anomalies
	Global anomalies and cobordisms
	Examples
	The case of the (2,0) theory

	The geometry of M5-branes
	Non-intersecting M5-branes
	The effective C-field
	Stacks of M5-branes
	Extension to manifolds of dimension 7 and 8
	Anomaly cancellation for non-intersecting M5-branes

	Global anomalies of A-type (2,0) theories
	Idea of the computation
	Evaluation of the Chern-Simons term
	The global anomaly of the center of mass
	The global anomaly of the (2,0) theory
	A consistency check
	The conformal blocks
	The origin of the Hopf-Wess-Zumino terms

	The global anomaly of a generic A-D-E (2,0) theory
	The anomaly formula
	Data required to specify a (2,0) theory
	Consistency
	Further comments

	Properties of lifts of the Wu class
	The Wu class and its lifts
	Proof of integrality


