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1 Introduction

In recent [1] Mason and Skinner proposed an ‘ambitwistor’ string and superstring models

and argued that, upon quantization according the prescription discussed in [1], these con-

tain only massless particles in the quantum state spectrum, are consistent in D=10 (D=26

in the bosonic case) and reproduce the Cachazo-He-Yuan formulae for tree-level scattering

amplitudes [2]. (In recent [3] these formulae for SYM amplitudes were proved using the

BCFW (Britto-Cachazo-Feng-Witten) techique [4]). The NSR version of the ambitwistor

string were also discussed in [1] and in [5], while the corresponding limit of the pure spinor

formulation of superstring was the subject of [6].

According to [1] the ambitwistor string appears as an infinite tension limit of the

standard Green-Schwarz (GS) superstring. On the other hand, the authors of [1] noticed

the relation with the equations from the famous papers by Gross and Mende [7, 8], which

described the string at ultra-high energy and due to this reason, usually associated with

tensionless limit of string rather than with the limit of infinite tension.
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In this paper we show that, at the classical level, the ambitwistor string model is

equivalent to null- superstring as described in moving frame and spinor moving frame

formulation (see [9–13]1 for D=4 case). We also study the tensionless limit and the limit

of infinite tension of the (spinor) moving frame formulation of the GS superstring, which

was proposed in [23] and studied in [24, 25],2 and show that, in suitable setups, both limits

can produce the null-superstring action. This provides us with an explanation why the

ambitwistor string, claimed to be the infinite tension limit of the superstring in [1], may

reproduce the amplitudes with the properties characteristic for the tensionless limit of the

superstring [7, 8].

Furthermore, it is known that the tensionless (limit of) string does not have critical

dimensions (see [22, 36–38], refs in [22] and also [9–13]). This allows us to conjecture that

the ambitwistor string also can be formulated and is consistent in an arbitrary dimensionD,

including in D=11, where its quantization according (a generalization of) the scheme used

in [1, 5, 6] (or following the line of [39–41]) should produce (tree and one-loop) amplitudes

for the 11 dimensional supergravity.

In [42] it was shown that the D=4 N =4 version of the null-supestring model [10–13]

is equivalent to the closed twistor string model proposed by Siegel in [43] (see [44] for the

original formulation, [45] for another open twistor string action, as well as [39–41, 46] and

refs. in [41] for further development of the twistor string approach). In this paper we show

that spinor moving frame formulation the D-dimensional null-superstring action, which is

classically equivalent to the ambitwistor string, is also equivalent to the ‘D-dimensional’

generalization of the Siegel’s twistor string action. Thus ambitwistor string can be also

called twistor string.

In contrast with D=4, the D=10, 11 versions of Siegel’s twistor string, which we de-

scribe in some details, are formulated in terms of strongly constrained spinors related to

the spinor moving frame variables of [23–25, 48, 51, 52]. However, the similarity of null-

superstring and superparticle action may simplify the quantization of such a constrained

system. An interesting problem for future is to quantize the D=10 and D=11 twistor

strings according to the line developed in [51, 52] for 11D superparticle, and to compare

the results with [1] and with [6].

2 Ambitwistor string action and kappa-symmetry of ambitwistor

superstring

The action for bosonic ‘ambitwistor string’ proposed by Mason and Skinner in [1] reads

Sbosonic
MS =

∫

W2

d2ξ
(

Pa∂̄X
a − e

2
P 2
)

, (2.1)

where W2 is the two dimensional worldsheet with local coordinates ξm =
(
ξ0, ξ1

)
,

Xa = Xa(ξ) is a coordinate function describing the embedding of W2 as a surface in

1See [14–21] and refs. in [22] for other formulations of null-string and tensionless string action.
2See [26–35] for other approaches to superparticle and supertring models using the spinor moving frame

variables (Lorentz harmonics)
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D-dimensional spacetime MD, a = 0, 1, . . . , (D − 1), and Pa = Pa(ξ) and e = e(ξ) are

auxiliary fields. ∂̄ is derivative in one of the directions of the worldsheet. If the signature

is taken to be Euclidean, one can introduce a complex structure and related complex co-

ordinates, z = ξ0 + iξ1 and z̄ = ξ0 − iξ1, and identify ∂̄ = ∂z̄ := ∂
∂z̄ . Considering the case

of Minkowski signature, one can use ∂̄ = ∂= = 1
2(∂0 − ∂1). However, in this paper we will

often use the notation ∂̄ z̄ = ∂̄ also for this case.

Eq. (2.1) differs from the massless particle action S0 =
∫

W 1 dτ
(
pa∂τx

a − e
2p

2
)
only

by replacing worldline W 1 by the worldsheet W2 and allowing all the field depend on two

coordinates of the worldsheet.

The ambitwistor superstring action is obtained by substituting z̄ component of the

pull-back of the bosonic supervielbein form, Ea
z̄ = ∂̄ZMEa

M (Z) for ∂̄Xa in (2.2),

SMS =

∫

W2

d2ξ
(

PaE
a
z̄ − e

2
P 2
)

. (2.2)

In the case of flat target superspace Σ(D|n), which we are interested in, the supervielbein

can be written in the form

Ea = dXa − idΘΓaΘ , Eα = dΘα (2.3)

where Θα are the fermionic coordinates of the superspace, and

Ea
z̄ = ∂̄Xa − i∂̄ΘΓaΘ , E

α
z̄ = ∂̄Θα (2.4)

appears in the decomposition of their pull-backs (which we denote by the same symbols)

Ea = dξmEa
m = dzEa

z + dz̄Ea
z̄ , Eα = dΘα = dξm∂mΘα = dz∂Θα + dz̄∂̄Θα . (2.5)

These include D bosonic and n fermionic coordinate functions

ZM (ξ) ≡ ZM (z, z̄) = (Xa(ξ),Θα(ξ)) , a = 0, 1, . . . , (D − 1) , α = 1, . . . , n , (2.6)

where n depends on D and also on N in the case of N -extended supersymmetry.

For D=4, N -extended superspaces (of which N = 4 case is relevant for the maximal 4D

SYM theory), a = 0, 1, 2, 3, n = 4N , Θα=
(
θαi , θ̄

α̇i
)
with α=1, 2, α̇=1, 2, i=1, . . . ,N , and

D=4 : Γa
αβ=

(

0 σa
αβ̇

δij

σa
βα̇δi

j 0

)

, with α=1, 2 , α̇=1, 2, i=1, . . . ,N , (2.7)

where σa
βα̇ = ǫβαǫα̇β̇σ̃

aβ̇α are relativistic Pauli matrices, σaσ̃b + σbσ̃a = 2ηabI2×2, so that

Ea = dXa − idθiσ
aθ̄i + idθiσ

aθ̄i . (2.8)

In the case of D=10, N = 1 superspace, relevant for the 10D SYM theory, a = 0, 1, . . . , 9,

α = 1, . . . , 16 is the 10D Majorana-Weyl index, the indices of the 16 × 16 matrix

Γa
αβ = σa

αβ = σa
βα cannot be risen, but there exist σ̃aαβ = σ̃aβα = Γ̃aαβ which obey

σaσ̃b + σbσ̃a = 2ηabI16×16,

D = 10: Γa
αβ = σa

αβ , Γ̃aαβ = σ̃
αβ
a , α, β = 1, . . . , 16, σaσ̃b+σbσ̃a = 2ηabI16×16 . (2.9)

– 3 –
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Notice also the famous identity

D = 10 : σa α(βσ
a
γδ) ≡ 0 (2.10)

which is very important in the Green-Schwarz (GS) superstring model. The classical GS

superstring exists only in the dimensions D=3, 4, 6, 10 where a counterpart of (2.10) is

valid. In contrast the existence of this identity is completely irrelevant for the ambitwistor

superstring as defined by the action (2.2).

This is explained by close relation of (2.2) with the Brink-Schwarz superparticle ac-

tion SBS =
∫

W 1

(
PaE

a − dτ e
2P

2
)
which basically consists in replacing worldline W 1 by

the worldsheet W2 and allowing all the fields to depend on two worldsheet coordinates

ξm = (τ, σ). Indeed, the local fermionic κ-symmetry, which leaves invariant the action (2.2),

is similar to the massless superparticle κ-symmetry [53]

δκΘ
α = PaΓ̃

aαβκβ , δκX
a = iδκΘΓaΘ , δκe = −2iΘκ , (2.11)

and relies only on the defining property of the Γ-matrix

(

ΓaΓ̃b + ΓbΓ̃a
)

α

β = 2ηabδα
β . (2.12)

This implies that, as in the case of massless superparticle [56], the classical ‘ambitwistor

string’ of [1], as described by the action (2.2), does exist in target superspace of any bosonic

dimension. Below we will discuss an indication that this is true also for the quantum theory.

Thus we can consider also the 11D ambitwistor superstring characterized by the

action (2.2) with a = 0, 1, . . . , 9, 10, (2.4) and

D = 11 : Γa
αβ = Γa

βα =
(

CΓ̃aC
)

αβ
, Cαβ = −Cβα α, β = 1, . . . , 32 . (2.13)

The quantization of this model along the (generalization of the) line of [1, 5] or [6] presum-

ably gives the formulae for tree-level amplitudes of 11D supergravity.

This statement is in contradiction with the point of view in [1, 5], where the stringy

critical dimensions D=26 and D=10 are attributed to the bosonic and supersymmetric

versions of ambitwistor string. Below we present some arguments in favor of that the

ambitwistor string, being classically equivalent of null-superstring, does not have critical

dimensions and can be defined in any D including D=11.

To lighten the notation, from now on we will omit underlining of the Majorana and

Majorana-Weyl spinor indices,

α, β, γ, . . . 7→ α, β, γ, . . . , (2.14)

in all places where this cannot produce a confusion. We also will tend to use the shorter

name ambitwistor string for the ambitwistor superstring.

– 4 –
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3 Ambitwistor string and null superstring. Moving frame enters

the game

3.1 Moving frame formulation of null superstring as equivalent form of the

ambitwistor string action

The Lagrange multiplier e in (2.2) produces the mass shell conditions

PaP
a = 0 . (3.1)

This is an algebraic equation so that its solution, if found, can be substituted into the

action; thus one can write the action (2.2) as

S′
MS =

∫

W2

d2ξEa
z̄Pa|P 2=0

=

∫

W2

d2ξPa|
P2=0

(∂̄Xa + fermions) . (3.2)

At any point of W2 we can chose a suitable Lorentz frame to solve (3.1) by

P(a) = ρ(ξ) (1, 0, . . . , 0
︸ ︷︷ ︸

D−2

,−1) . (3.3)

The general solution of (3.1) can be obtained from (3.3) by local (on W2) Lorentz rotation.

This is to say it has the form

Pa(ξ) = U (b)
a P(b) = ρ(ξ)

(

u0a − u(D−1)
a

)

=: ρ#(ξ)u=a (ξ) , (3.4)

where U
(b)
a =

(

u0a, u
1
a, . . . , u

(D−1)
a

)

is a Lorentz group valued matrix, called the moving

frame matrix. We prefer to write it in terms of light-like vectors u±±
a = u0a ± uD−1

a and to

make notation more compact re-denoting u−−
a =: u=a , u

++
a =: u#a ,

U (b)
a (ξ) =

(
1

2

(

u=a + u#a

)

, uia ,
1

2

(

u#a − u=a

))

∈ SO(1, D − 1) . (3.5)

This matrix describes a local Lorentz frame adapted to an embedding of the worldsheet W2

into the spacetime in such a way that the spacial component of the momentum density at

point ξ, Pa(ξ), is oriented along the (D-1)-th axis and has a negative projection on this axis.

The fact that the moving frame matrix U belongs to O(1, D − 1) is expressed by the

constraint UT ηU = η, which implies that its columns are orthogonal and normalized; in

terms of u=a (ξ) = u0a − u
(D−1)
a and u#a (ξ) = u0a + u

(D−1)
a these properties are expressed by

u=a u
a= = 0 , (3.6)

u#a u
a# = 0 , u=a u

a# = 2 , (3.7)

uiau
a= = 0 = uiau

a# , uiau
aj = −δij . (3.8)

– 5 –
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Equivalently, the statement of (3.5), U
(b)
a (ξ) ∈ O(1, D − 1), can be expressed by ‘unity

decomposition’ UηUT = η, i.e.

δa
b =

1

2
u=a u

b# +
1

2
u#a u

b= − uiau
bi . (3.9)

The fact that U belongs to SO(1, D− 1) subgroup of O(1, D− 1) implies that detU
(b)
a = 1

i.e. that

ǫabc1...cD−2u=b u
i1
c1 . . . u

iD−2
cD−2 = −(−)Dua=ǫi1...iD−2 ,

ǫabc1...cD−2u#b u
i1
c1 . . . u

iD−2
cD−2 = +(−)Dua#ǫi1...iD−2 . (3.10)

The splitting (3.5) of the moving frame matrix is invariant under local SO(1, 1) ⊗
SO(D−2) transformations; uia transforms as SO(D−2) vector, while the light-like vectors

u=a and u#a carry the weights −2 and +2 of SO(1, 1) group,

u=a 7→ u=a exp {−2β} , u#a 7→ u#a exp {2β} , uia 7→ ujaOji , OOT = I
(D−2)×(D−2)

. (3.11)

To make invariant the solution (3.4) of the constraint (3.1), we have to assume that ρ

in (3.4) carries SO(1, 1) weight +2, which is reflected by denoting ρ = ρ# in the last part

of eq. (3.4),

ρ# 7→ ρ# exp {2β} . (3.12)

Substituting the general solution (3.3) of the constraint (3.1) into (2.2) (or (3.2)) we

arrive at following moving frame action for ambitwistor string

SMF =

∫

W2

d2ξρ#E=
z̄ :=

∫

W2

d2ξρ#Ea
z̄u

=
a . (3.13)

One can also write this action as an integral of differential form:

SMF =
i

2

∫

W2

dz ∧ ρ#E= :=
i

2

∫

W2

dz ∧ dz̄Ea
z̄u

=
a ρ

# . (3.14)

Let us compare the above equivalent form of the ambitwistor string action with

(D-dimensional generalization of the) null-superstring action of [10–13], which can be

written as

Snull =

∫

W2

d2ξρ#mE=
m :=

∫

W2

d2ξρ#mEa
mu=a , (3.15)

or, in terms of differential forms, as

Snull =

∫

W2

ẽ# ∧ E= :=

∫

W2

d2ξẽ# ∧ Eau=a , (3.16)

where ẽ# = dξmẽ#m(ξ) and ẽ#m(ξ) ∝ ǫmnρ
n.

The equivalent form (3.13) (and (3.14)) of the ambitwistor string action can be con-

sidered as a gauge fixed version of the null-superstring action (3.15) (and (3.16)) in which

the 2d diffeomorphism gauge symmetry is broken by the condition

ρ#m = ρ#δmz̄ ; (3.17)

the residual part of the diffeomorphism gauge symmetry of the action (3.13) (and (3.14))

which preserves (3.17), can be identified as 2d conformal symmetry transformations,

z 7→ f̄(z), ∂̄f(z) = 0.

– 6 –
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3.2 Null superstring action from tensionless and infinite tension limits of

Green-Schwarz superstring

Now we would like to address the question of what is the limit in which the null-superstring

can be obtained from GS superstring. Let us start with (spinor)moving frame formulation

of the GS supersting action [23–25]

SGS = T

∫

W2

(

e# ∧ E= + e= ∧ E# − e# ∧ e=
)

− T

∫

W2

B2 . (3.18)

In it (cf. (3.13), (3.14))

E= = Eau=a , E# = Eau#a (3.19)

are projections of the pull-back of the target space bosonic supervielbein on the light-like

vector fields of the moving frame (3.5), e# = dξme#m(ξ) and e= = dξme=m(ξ) are independent

worldvolume 1-forms on W2,
∫

W2 B2 is the Wess-Zumino term; its explicit form, which is

the same as in the standard formulation of the GS superstring, will not be needed here.

Finally,

T =
1

4πα′
(3.20)

is the superstring tension and α′ is the Regge slop parameter. An equivalent form of the

(spinor)moving frame action is

SGS = T

∫

W2

d2ξ
(

ρ#mE=
m + ρ=mE#

m − ǫmnρ
#mρ=m

)

− T

∫

W2

B2 , (3.21)

where ρ#m ∝ ǫmne#n and ρ=m ∝ ǫmne=n .

Clearly, if we set T = 0 without redefining the basic variables, the action just vanishes.

However, if we first set e# = ẽ#/T = 4πα′ẽ# and then take the T 7→ 0 limit keeping ẽ#

‘fixed’, the action (3.18) reduces to (3.13),

lim
T 7→0

[

SGS|e#=ẽ#/T

]

= Snull . (3.22)

This is the reason to consider the null-superstring as tensionless limit of the GS superstring

(and the bosonic null-string as tensionless limit of the bosonic string).

To relate the null superstring, and hence ambitwistor superstring action, to the infinite

tension limit of the above action for GS superstring, we need to perform the redefinition

with opposite rescaling e# = T ẽ# (or ρ#m 7→ Tρ#m ). Then we find

SGS|e#=T ẽ# = T 2

[

Snull +O
(
1

T

)]

, (3.23)

which is dominated by contribution of null superstring action in the limit of infinite tension,

lim
T 7→∞

[
SGS|e#=T ẽ#

T 2

]

= Snull . (3.24)

To reproduce the wanted ambitwistor string in this limit we renormalized the action

thus making its dimension different from [~](= 1 in our conventions). This is not a problem

– 7 –
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for classical theory, as far as in it the action is used only to derive the equations of motion

through the variational principle. In quantum theory this argument does not work as far

as the action should be exponentiated. This implies that we need to renormalize the action

or our basic variable, ẽ# or ρ#, using another dimensionfull constant.

Notice that such a constant should certainly be present in the ambitwistor string

approach of [1] for calculating scattering amplitudes. Indeed, the proposition of [1, 5] is

to calculate the amplitudes for 10D SYM, which is not a conformally invariant theory

and has a dimensionfull coupling constant (
[
gYM
10D

]
= L−3).3 It would be interesting to

follow in some details the appearance of the coupling constant in the approach of [1, 5, 6],

but this is certainly out of the score of the present paper.4 Here we just consider the

above discussion as a suggestion that, upon a suitable use of an additional dimensional

constant (which is certainly present in the models of interest for the ambitwistor string

program) the infinite tension limit of classical GS superstring can also be described by the

null-superstring action.

This does not mean that infinite tension limit of superstring is identical to the ten-

sionless limit in quantum theory. Although the classical actions coincide, the ambitwistor

string approach [1] uses the vertex operators which may be different from the ones of the

tensionless string; in particular, as it was stressed in [1], despite the close similarity with the

equations from Gross and Mende articles [7, 8], the amplitudes in tensionless and infinite

tension limits are actually different.

In the next section we present indirect arguments in favor of one more similarity

between ambitwistor string and tensionless superstring: namely of that in both limits the

model can be formulated in spacetime of arbitrary dimensions.

3This prescription does not work, at least in its literal form, in D=4 case where the SYM coupling

constant gY M
4D is dimensionless,

[

gY M
4D

]

= 1. Curiously, this is the case where it had been established that

the twistor string produces the tree amplitudes for N = 4 SYM [44, 45]. This fact is relevant for our study

because, as we show in section 5, the twistor string is equivalent to the ambitwistor string at the classical

level. On the other hand, studying the loops of the D=4 twistor string, Berkovits and Witten found [79]

that these give rise to the amplitudes of conformal rather than Einstein supergravity. As this is not a

consequent theory, the problem of modifying the model in such a way that it’s gravity sector is Einstein

arose and was addressed in [80] (see also [41] and refs therein). Such a modification inevitably involves

a dimensional constant κ of Einstein gravity so that, in the light of the classical equivalence of twistor

string and D=4 null-superstring [42], it is tempting to speculate that just κ have to be used to correct the

dimension of the variables appearing in the term dominating the infinite tension limit of the superstring

action in such a way that it becomes the dimensionless ([S] = [~]) null-superstring action.
4Let us also stress that ambitwistor string action as proposed in [1], eq. (2.1), does possess the conformal

invariance which is not the case for the SYM models in D 6= 4. This reflects the fact that, besides the

action, some additional tools are needed to reproduce the correlation functions and scattering amplitudes.

This is similar to the situation with recently proposed action [57, 58] for the interacting ‘higher spin

gravity’ theories: it reproduces the ‘unfolded’ equations by Vasiliev [59–61] but, after linearization, does

not reproduce the propagators of Fronsdal’s theory [62].

One can also notice a similarity with Berkovits pure spinor approach to quantum superstring [63], which

uses just a free conformal field theory action for the standard superstring variables, pure spinors and their

momentum, while the actual content of the theory, its identification with superstring, is fixed by postulating

the BRST charge; also a prescription for path integral measure and its regularization were necessary [64, 65]

and are still under active study [66]. Notice however the absence of fundamental b and c ghosts in the pure

spinor approach: the b ghost is composite and its properties were the subject of separate study [67].

– 8 –
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4 No critical dimensions for tensionless limit of superstring. Neither for

the superstring of infinite tension.

It is important that the quantum theory of tensionless (super)string exists for any space-

time dimensions D [10–13, 22, 37, 38]. In the critical dimensions, where the quantum

(super)string with finite tension exists, this can be understood studying the tensionless

limit of quantum superstring, α′ 7→ ∞ [22, 37, 38]. To this end one observes that, after

a proper normalization of the physical operators of string theory (with dimensionless os-

cillators aan, a−na = a†na obeying
[

ana, a
†
mb

]

= δn,mηab), the Virasoro generators read (see

e.g. [38]; a†n · an := a†nba
b
n)

L0 =
α′

2
pap

a +
∑

n>0

na†n · an , (4.1)

Ln>0 = −i
√
2nα′paa

a
n+
∑

m>0

√

m(m+n)a†m · am+n−
1

2

n−1∑

m=1

√

m(m+n)am · an−m=(L−n)
† .

(4.2)

Notice that, at small tension T , this is to say at large α′ (3.20), the oscillator terms are

clearly sub-leading. Then the true symmetry generators in the tensionless limit α′ 7→ ∞
are defined by renormalized operators

L0/α
′ 7−→
α′→∞

l0 =
1

2
pap

a , (4.3)

Ln/
√
α′ 7−→

α′→∞
ln = −i

√
2n paa

a
n , (4.4)

which obeys the Heisenberg algebra with central element l0,

[ln, lm] = δn+ml0, [ln, l0] = 0 , n 6= 0 , (4.5)

rather than Virasoro algebra.5

Hence tensionless superstring can be defined in spacetime with arbitrary dimension D

using string-inspired creation and annihilation operators. With these variables the space-

time conformal invariance is provided by that the quantum state spectrum contains only

massless D-dimensional particles, which form massless supermultiplets in the case of su-

persymmetric tensionless string.

Now let us discuss the opposite, infinite tension limit T = 1
4πα′ 7→ ∞ which corresponds

to α′ 7→ 0. The näıve limit of the original Virasoro constraints is clearly dominated by

the oscillator terms. But this contradicts the intuitive expectation that at infinite tension

the string looks like particle, so that rather the center of energy motion should be more

important. This suggests to redefine the momentum variable as

pa 7→ p̃a = α′pa , (4.6)

5The critical dimensions are absent also when one quantizes the tensionless string in terms of coordinate

functions and conjugate momentum variables [9–13], however in this case the spectrum of mass of the theory

is continuous.
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write the Virasoro constraints in this terms, and renormalize them by suitable positive

powers of α′ before taking the α′ 7→ 0 (T 7→ ∞) limit. In such a way we again reproduce

the Heisenberg algebra operators (4.5)

α′L0 7−→
α′→0

l0 =
1

2
p̃ap̃

a ,

Ln/
√
α′ 7−→

α′→0
ln = −i

√
2n p̃aa

a
n , (4.7)

but now written in terms of renormalized p̃a (4.6).

Certainly the above discussion is not given in terms of variables of the spinor moving

frame formulation of null-superstring and has a character of suggestion rather than of the

proof; the quantum theory of null-superstring is beyond the scope of this paper. Notice,

however, that the rescaling (4.6) pa 7→ p̃a = α′pa is in correspondence with e# = T ẽ# (or

ρ# 7→ Tρ#) which was needed to reproduce the D=3, 4, 6, 10 null superstring action as a

limit of GS superstring action in the corresponding dimension.

The above observations suggest that null-superstring, which, as we have shown in

section 3.1, gives one of the classically equivalent formulations of the ambitwistor string

of [1], exists in any spacetime dimensions,6 including say D=11, where the tensionfull super-

string (superstring with nonzero tension) does not exist. Development of a generalization

of technique of [1, 5, 6] for this case might provide us with a tool to calculate tree and

one-loop amplitudes of 11D supergravity.

5 Ambitwistor string as D-dimensional generalization of twistor

(super)string. Spinor moving frame enters the game.

As it was shown in [42], the D=4 N = 4 version of the twistor-like formulation of null-

superstring [10–13] is equivalent to the closed twistor string action proposed by Siegel

in [43] (see [44] for original formulation and [45] for an alternative action for twistor string).

Actually this gives one more indirect argument in favor of our conjecture on the absence

of critical dimension for the infinite tension limit of superstring, as on one hand, according

to section 3, it can be described using the null-superstring action, and, on the other hand,

twistor string is known to give a consistent (anomaly free) theory in D=4. But this is not

the end of story.

It is natural to expect that D-dimensional null-superstring, and hence ambitwistor

string, also gives rise to a D-dimensional twistor superstring. In this section we show that

this is indeed the case for D=11, D=10 and 4D N -extended null-superstring.

6One may think about a possibility to rescale also the central charges so that they remain in the

tensionless limit. If realized, such a prescription would be clearly equivalent to taking the limit without

any rescaling. In this respect we have to stress that the statement on absence of critical dimensions implies

an existence of a possibility to chose the set of basic variables in such a way that the quantum theory can

be formulated in terms of these and is consistent in a spacetime of arbitrary dimensions (rather than non-

existence of such variables that quantization in terms of these result in D-dependent anomaly). An example

is the quantization of bosonic null string in terms of original stringy oscillators [17] which reproduces the

stringy result on critical dimensions D=26 also in the tensionless superstring limit. See [9–13] for more

discussion on this issue.
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The spinor moving frame formulation of null-superstrings is related to correspond-

ing formulation of massless superparticle in the same manner as originally proposed am-

bitwistor string action is related to the Brink-Schwarz superparticle action: basically by

replacing all the functions of proper time τ by the functions of two worldsheet coordinates,

ξm = (z, z̄). Thus the D-dimensional null-superstring actions can be easily written starting

form the spinor moving frame formulations of the massless superparticle actions presented

in [47] for D=4, in [48] for D=3, 4, 6 and 10 and in [49–52] for D=11.

5.1 Spinor moving frame

The moving frame formulation of the null-superstring (3.15) can be considered as twistor-

like spinor moving frame formulation in the following sense.

For every SO(1, D− 1) valued matrix U , including for the moving frame matrix (3.5),

one can define the matrix V ∈ Spin(1, D − 1) doubly covering U in the sense of that

V ΓbV
T = U

(a)
b Γ(a) , (a) V T Γ̃(a)V = Γ̃bu

(a)
b , (b) V CV T = C , (c) . (5.1)

These equations reflect the Lorentz invariance of the Dirac (or Pauli) matrices Γa and of

the charge conjugation matrix (when this exists in the minimal spinor representation)

The SO(1, 1)⊗SO(D−2) invariant splitting of the moving frame matrix U is reflected

by a splitting of its doubly covering spinor moving frame matrix V on two rectangular

blocks carrying different SO(1, 1) weights and either different or the same representations

of Spin(D − 2) group. For the 11D case the spinor moving frame matrix reads

D = 11 : V α
(β) =

(

v+α
q

v−α
q

)

∈ Spin(1, 10) , α = 1, . . . , 32 , q = 1, . . . , 16 . (5.2)

There 16×32 blocks, v−α
q and v+α

q , called spinor moving frame variables, carry the opposite

SO(1, 1) weights and the same 16 dimensional real (Majorana) spinor representation of

SO(9).

In D=10, the 16× 16 spinor moving frame matrix V

D = 10 : V α
(β) =

(

v+α
q̇

v−α
q

)

∈ Spin(1, 9) , α = 1, . . . , 16 ,

{

q̇ = 1, . . . , 8

q = 1, . . . , 8
, (5.3)

is split on 8×16 blocks, v+α
q̇ and v−α

q , carrying c− and s− spinorial representations of SO(8).

In both D=11 and D=10 cases, the moving frame variables are strongly constrained

by (5.1). In particular, the lower diagonal block of (5.1a) and (a) == component of (5.1b)

give the following constraints involving the light-like vector u=a ,

D = 10, 11 : v−α
q (Γa)αβv

−β
p = δqpu

=
a , 2v−α

q v−β
q = u=a Γ̃

aαβ . (5.4)

Actually, these are constraints for the spinor moving frame variables v−α
q , while the vector

u=a is defined by these constraints and its property to be light-like is determined by them.

The remaining blocks of the matrix constraint (5.1a) and components of (5.1b) involve the

second spinor moving frame variable v+α
q̇ (q̇ can be identified with q in D=11 case), define
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the other moving frame vectors, u#a and uia, and determine their properties listed in (3.7).

To resume, (with a suitable gamma matrix representation) the constraints (5.1a,b) imply

v−q Γ
av−p = u=a δqp , 2v−α

q v−β
q = u=a Γ̃

aαβ , (5.5)

v+q̇ Γav
+
ṗ = u#a δq̇ṗ , 2v+α

q̇ v+q̇
β = Γ̃aαβu#a , (5.6)

v−q Γav
+
ṗ = −uiaγ

i
qṗ , 2v−(α

q γiqq̇v
+
q̇
β) = −Γ̃aαβuia . (5.7)

Here, for D=10 γiqṗ = γ̃iṗq are the d=8 gamma (actually sigma) matrices, obeying γiγ̃j +

γj γ̃i = δijI8×8 (see e.g. [23–25, 48] for their properties), while for D=11 q̇, ṗ must be

identified with q, p and the 16× 16 Dirac matrices γiqṗ ≡ γiqp are real, symmetric γiqp = γipq
and obey γiγj+γjγi = 2δijI16×16 (see [78] for more details). The constraint (5.1c) allows to

express the elements of the inverse 11D spinor moving frame matrix through the same v±β
q ,

D = 11 : vα
−
q = iCαβv

−β
q , vα

+
q = −iCαβv

+β
q . (5.8)

In D=10 this constraint is absent (as far as the charge conjugartion matrix does not

exists in the D=10 Majorana-Weyl spinor representation) and the elements of the inverse

spinor moving frame matrix, v+q
α and v−q̇

α , should be introduced as additional variables

D = 10 : V (β)
α =

(

v+q
α , v−q̇

α

)

∈ Spin(1, 9) , α = 1, . . . , 16 ,

{

q̇ = 1, . . . , 8

q = 1, . . . , 8
(5.9)

constrained by V
(β)
α V(β)

γ := v−q̇
α v+γ

q̇ + v−α
q v−γ

q = δγα and

v−α
q v+p

α = δqp , v−α
q v−q̇

α = 0 ,

v+α
q̇ v+p

α = 0 , v+α
q̇ v−ṗ

α = δq̇ṗ . (5.10)

In terms of the elements of inverse spinor moving frame matrix the constraints (5.5)–(5.7)

read

v+q Γ̃
av+p = u#a δqp , 2v+q

α v+q
−β = u#a Γ

a
αβ , (5.11)

v−q̇ Γ̃av
−
ṗ = u=a δq̇ṗ , 2v−q̇

α v−q̇
β = Γa

αβu
#
a , (5.12)

v+q Γ̃av
−
ṗ = uiaγ

i
qṗ , 2v+q

(α|γ
i
qq̇v

−q̇
|β) = Γa

αβu
i
a . (5.13)

In the case of D=4, Spin(1, 3) = SL(2,C) so that the spinor moving frame can be

defined by complex unimodular 2×2 matrix,

D = 4 : V α
(β) =

(

V α̇
(β̇)

)∗
=

(

v+α

v−α

)

∈ SL(2,C) , α = 1, 2 , α̇ = 1, 2 (5.14)

so that v−α can be considered as nonvanishing, but in all other respect unconstrained com-

plex Weyl spinor, while v+α is restricted by the normalization condition v−αv+α = 1 only,7

D = 4 : det
(

V α
(β)

)

= 1 ⇔ v−αv+α = 1

det
(

V α̇
(β̇)

)

= 1 ⇔ v−α̇v+α̇ = 1 . (5.15)

7In our notation ǫ12 = −ǫ12 = 1 so that detV = −ǫαβv
+αv−β = v−αv+α .
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This can be put in correspondence with (5.1c), while eqs. (5.1a,b) just define the set of

light-like moving frame vectors as direct products of v±α and v̄±α̇ = (v±α )
∗,8

D = 4 : u±±
a = v±σav̄

± =
(
u±±
a

)∗ ⇔ u±±
a σa

αα̇ = 2v±α v̄
±
α̇ (5.16)

u−+
a = v−σav̄

+ =
(
u+−
a

)∗ ⇔ u±∓
a σa

αα̇ = 2v±α v̄
∓
α̇ . (5.17)

5.2 Spinor moving frame action for null-superstring in D=4 and Siegel’s form

of the twistor string action

We denote the coordinates of N -extended D=4 superspace by
(
Xa, θαi , θ̄

α̇i
)

with

a = 0, 1, 2, 3, α = 1, 2, α̇ = 1, 2 and i = 1, . . . ,N . The action for the spinor moving

frame formulation of null-superstring in this superspace can be obtained from the corre-

sponding moving frame action, which in its gauge fixed version has the form (3.13), (3.14),

by using u=a = v−σav̄
−,

S4D
smf =

∫

W2

d2ξρ#Ea
z̄u

=
a =

∫

W2

d2ξρ#v−α v̄
−
α̇

(
∂̄Xaσ̃α̇α

a − 2i∂̄θαi θ̄
α̇i + 2iθαi ∂̄θ̄

α̇i
)
. (5.18)

It is similar to the superparticle action considered in [69] which is known to allow for change

of variables to Ferber supertwistor [68]

ZΛ = (Υα; ηi) =
(
λα, µ

α̇; ηi
)
, (5.19)

and its conjugate

Z̄Λ := ΞΛΠ∗

(ZΠ)
† =

(

Ῡα

iη̄i

)

=






µ̄α

−λ̄α̇

iη̄i




 (5.20)

subject to the so-called (super–)helicity constraint

ZΛZ̄Λ := ΥαῩ
α + iηiη̄

i = λαµ̄
α − µα̇λ̄α̇ + iηiη̄

i = 0 . (5.21)

The relation between supertwistors and the variables of the spinor moving frame

action (5.18) is given by the Ferber-Penrose incidence relations [68]

µα̇ = λα

(
Xαα̇ + 2iθαi σ

aθ̄α̇i
)
=
(
Xa + iθiσ

aθ̄i
)
σ̃α̇α
a λα , ηi = 2θαi λα , (5.22)

supplemented by

λα =
√

ρ#v−α , λ̄α̇ =
√

ρ#v̄ −
α̇ . (5.23)

Notice that (5.22) provides the general solution of (5.21).

Now it is easy to check (see e.g. [42]) that the action (5.18) is equivalent to

S4D
smf = −

∫

W2

d2ξ
(
∂̄λα µ̄α − ∂̄µα̇ λ̄α̇ + i∂̄ηi η̄

i
)
= −

∫

W2

d2ξ∂̄ZΛ Z̄Λ , (5.24)

8The set of our light-like moving frame 4-vectors can be recognized as Newmann-Penrose or isotropic

tetrade of [70–72], la = u=
a , na = u#

a , ma = (m̄)a = u+−
a = (u+−

a )∗; the spinor moving frame variables

(called Lorentz harmonics in [47]) can be identified with diads, (v+α , v−α ) = (oα, ıα) (see [10–13]). In (5.16), to

write compact expressions we denoted u#
a =: u++

a and u=
a =: u−−

a . There and below v±σav̄
± = vα±σa

αα̇v̄
α̇±,

v−σav̄
+ = vα−σa

αα̇v̄
α̇+.
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with the supertwistor variables obeying (5.21). On the other hand, eq. (5.24) coincides

with Siegel’s proposal for the twistor (super)string action [43]. Thus [42] twistor string can

be identified with 4D null-superstring and also, in the present perspective, with the D=4

version of the ambitwistor string model of [1].

The special interest to the N = 4 version of the twistor string model was related to

the fact that the superspace spanned by N = 4 supertwistors allows for the existence of

the holomorphic integral measure

Ω(3|4) = ǫαβγδΥ
αdΥβ ∧ dΥγ ∧ dΥδǫijkl

∂

∂ηi
∂

∂ηj
∂

∂ηk
∂

∂ηl
(5.25)

invariant under the natural U(1) gauge transformations acting on supertwistors. However,

in the perspective of ambitwistor string proposal of [1] neither this, nor the spacetime

superconformal symmetry of the D=4 supertwistor action does play central role, as it has

been oriented on description of amplitudes of 10D SYM, which is not conformally invariant.

However, the classical equivalence of the D=4 N = 4 ambitwistor string to the twistor

string which is known to be consistent [44, 45] (at least in tree approximation) suggests

that this is the case also for the former, and thus gives us one more argument in favor

of the conjecture that ambitwistor string exists and is consistent in a spacetime of any

dimensions.

Below we describe the D=10 twistor string model which is classically equivalent to the

10D supersymmetric ambitwistor string of [1], and also D=11 twistor string model which

describes the 11D generalization of the ambitwistor string. The arguments of the previous

sections allow us to expect that this latter should be consistent and, upon application of the

quantization method similar to the one(s) used in [1, 5, 6], should generate the tree and one-

loop amplitudes of 11D supergravity. Actually, we prefer to begin with the D=11 model.

5.3 Twistor string in D=11 and D=10 from ambitwistor/null superstring

action

To make manifest the twistor-like structure of the moving fame action (3.13) of D=11 or

D=10 null superstring, which, as we have shown, is classically equivalent to ambitwistor

superstring, we have to substitute the expression for u=a in terms of spinor bilinear which

follow from the constraints (5.5) or (5.12).

5.3.1 Spinor moving frame action for 11D ambitwistor superstring and its

reformulation in the generalized 11D superspace

In D=11 it is convenient, following [50], to introduce

λαq =
√

ρ#v−q
α , (5.26)

which, as a consequence of (5.5) obey9

λqΓ̃aλp = Paδqp , 2λαqλβq = Γa
αβPa , PaP

a = 0 . (5.27)

9Remember that in 11D vα
−
q = iCαβv

−β
q , vα

+
q = −iCαβv

+β
q , eq. (5.8).
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Here the light-like vector Pa originates in the product of the Lagrange multiplier and the

moving frame vector, Pa = ρ#u=a , cf. eq. (3.4).

The relation with spinor moving frame, (5.26), guarantees the consistency of the con-

straints (5.27) (which probably is not so apparent).

Notice also that all the constraints (5.27), as well as all the expressions below, are

invariant under SO(16) transformations acting on the indices q, p = 1, . . . , 16, so that we

can solve the constraints by

λαq =
√

ρ#v−p
α Spq , Spp′Sqp′ = δpq . (5.28)

Now substituting 1
32λαqλβqΓ̃

aαβ for ρ#u=a in (3.13) we obtain

S11D
smf =

∫

W2

d2ξλαqλβq
1

32
Γ̃αβ
a

(
∂̄Xa − i∂̄ΘΓaΘ

)
=

=

∫

W2

d2ξλαqλβq

(

∂̄Xαβ − i∂̄Θ(α Θβ)
)

. (5.29)

Here to pass to the second form of the action we have defined

Xαβ =
1

32
XaΓ̃αβ

a (5.30)

and have used the Fiertz identity

1

32
Γ̃αβ
a ∂̄ΘΓaΘ = ∂̄Θ(α Θβ) +

1

64
Γ̃αβ
ab ∂̄ΘΓabΘ− 1

32 · 5! Γ̃
αβ
abcde∂̄ΘΓabcdeΘ (5.31)

to simplify the second term in the bracket. Notice that, as a consequence of (5.27), after

contraction with λαqλβq the second and the third terms in (5.31) do not contribute so that

the net result is provided by the first term, ∂̄Θ(α Θβ).

Furthermore, due to the same reasons one can consider Xαβ in (5.29) as generic sym-

metric matrix. Indeed, the general decomposition of such a 32× 32 symmetric matrix

Xαβ =
1

32
XaΓ̃αβ

a − 1

64
Γ̃αβ
ab Z

ab +
1

32 · 5! Γ̃
αβ
abcdeZ

abcde (5.32)

contains the contributions of “tensorial central charge coordinates” Zab = −Zba = Z [ab] and

Zabcde = Z [abcde]. However, these do not produce any contribution into the action (5.29)

because, as a consequence of (5.27),

λqΓ̃abλq = 0 , λqΓ̃abcdeλq = 0 , (5.33)

(cf. with the discussion of 11D superparticle action in [50]).

Hence, interestingly enough, the twistor-like spinor moving frame formulation of am-

bitwistor/null superstring allows to treat it as a dynamical system in the enlarged super-

space of 528 bosonic and 32 fermionic dimensions, Σ(528|32) with coordinates Xαβ and Θα.

This enlarged superspace was discussed for the first time in [81]. Various dynamical sys-

tem in this superspace were studied in [49, 82–84, 86]. Notice that it is also related with

hidden gauge symmetry structure of 11D supergravity [87–89] and with notion of BPS

preon [85, 90]; this allows us to hope on its possible significance in the ambitwistor/twistor

string context.

– 15 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
6

5.3.2 11D twistor string action from ambitwistor superstring

Moving the derivative ∂̄ we can write the 11D null/ambitwistor superstring action (5.29)

in the form characteristic for Siegel’s twistor string,

S11D
twS = −

∫

W2

(
∂̄λαq µ

α
q − λαq∂̄µ

α
q + i∂̄ηq ηq

)
= (5.34)

= −
∫

W2

∂̄ZΛqΞ
ΛΣZΣq , ΞΛΣ =






0 δαβ 0

−δα
β 0 0

0 0 i




 . (5.35)

The dynamical variables of this action, real bosonic spinors λαq and µα
q , and real fermionic

scalars ηq can be collected in 16 strongly constrained OSp(1|64) supertwistors10

ZΛq := (Υαq; ηq) =
(
λαq , µ

α
q ; ηq

)
, α = 1, . . . , 32 , q = 1, . . . , 16 . (5.36)

They are expressed through the coordinate functions and spinor moving frame variables

by the following generalization of the Penrose incidence relations

µα
q = Xαβλβq −

i

2
ΘαΘβλβq , ηq = Θβλβq . (5.37)

These relations with generic Xαβ = Xβα (5.32) and λαq obeying (5.27),

λqΓ̃aλp = Paδqp , 2λαqλβq = Γa
αβPa , Pa :=

1

16
λqΓ̃aλq , (5.38)

provide us with the general solution of the constraints (see [50])

Jpq = ZΛ[pΞ
ΛΣZq]Σ = 2λα[p µ

α
q] + iηp ηq = 0 . (5.39)

Expression (5.37) with particular Xαβ expressed through the standard 11D spacetime

coordinate, (5.30), appears if we impose, in addition to (5.39) (5.38), also the constraint

Kpq = λα(p µ
α
q) −

1

16
δpqλαp′ µ

α
p′ = 0 . (5.40)

Clearly, this breaks the OSp(1|64) invariance which might be attributed to the action (5.34),

(5.35) and to the constraint (5.39). To write (5.40) in terms of the whole supertwistor (5.36)

we have to use the degenerate symmetric matrix

GΛΣ =






0 δαβ 0

δα
β 0 0

0 0 0




 ; Kpq = ZΛ[pG

ΛΣZq]Σ = 0 . (5.41)

This matrix is preserved by bosonic GL(32) subgroup of OSp(1|64) supergroup only. But

even this invariance is actually broken already by the constraints (5.38) imposed on the

first, λ-component of the supertwistor.

10Generically such supertwistors with 64 bosonic and 1 fermionic components provide the fundamental

representation of the OSp(1|64) supergroup. The OSp(1|64) transformations leave invariant the matrix ΞΛΣ

defined in (5.35). See [83, 86] for more details.
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Notice that

IΛΣ
+ :=

1

2

(
GΛΣ +ΣΛΣ

)
=






0 0 0

δα
β 0 0

0 0 i




 (5.42)

or IΛΣ
− :=

1

2

(
GΛΣ − ΣΛΣ

)
=






0 δαβ 0

0 0 0

0 0 −i




 (5.43)

can be considered as a counterpart of D=4 ‘infinite twistor’ Iαβ
+ =

(

0 0

0 ǫα̇β̇

)

or Iαβ
− =

(

ǫαβ 0

0 0

)

[71, 72] (see also e.g. [80]).

Although our supertwistors are strongly constrained, their relation with spinor moving

frame variables, eq. (5.23), allows to define variational problem in a simple way. The most

essential is the variation of λαq which can be written in the form of (see [51, 52, 78] for

details)

δλαq = iδf
(0)λαq + λαpiδf

[pq] +
1

2
iδf

−ivαp
+γipq′Sq′q (5.44)

where iδf
(0), iδf

[pq] = −iδf
[qp] and iδf

−i (=
√

ρ#iδΩ
=i in the notation of [51, 52, 78])

denote independent variations and the last term refers explicitly to the solution (5.28) of

the constraints (5.27): in it Spq = S−1
qp is the SO(16)-valued matrix field, vαp

+ are the

spinor moving frame variables complementary to vαp
− (see (5.2), (5.11), (5.12), (5.13))

and γipq = γiqp are SO(9) invariant gamma matrices.

The twistor-like formulation of 11D massless superparticle model, which can be ob-

tained from our twistor superstring by replacing worldsheet W2 by a worldline, making all

the field dependent on one proper time variable τ instead of two worldsheet coordinates,

and replacing ∂̄ by ∂τ , was discussed in [50], where it was shown that its quantization gives

the linearized 11D supergravity multiplet. This allows us to hope that the quantization

of the spinor moving frame formulation of the ambitwistor string model along the lines

of [1, 6] and/or [39–41] can produce the amplitudes of the 11D supergravity.

5.3.3 10D twistor string action from ambitwistor superstring

The 10D version of the ambitwistor superstring action can also be rewritten in twistor-like

(spinor moving frame) form and as a twistor string action for a set of strongly constrained

twistors.11 The equations are very similar to the ones for 11D ambitwistor string, up to

that the spinor indices α, β are now taking 16 values (not 32 as in D=11), and the basic

set of bosonic spinor carries the dotted, c-spinor index of SO(8), q̇ = 1, . . . , 8. This allows

us to be short in this section.

11See [73–75] for the discussion on twistor transform of tensionful superstrings in D=3, 4, 6, 10 and [76, 77]

for related studies.
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Using the D=10 spinor moving frame variables we introduce the set of 8 composed

Majorana-Weyl spinors,

λαq̇ =
√

ρ#v −
αṗ Sṗq̇ , SST = I8×8 , α, β = 1, . . . , 16 (5.45)

which solves the constraints (cf. (5.27))

λq̇σ̃aλṗ = paδq̇ṗ , 2λαq̇λβq̇ = Γa
αβpa , (5.46)

involving a ten vector field pa. This is light-like, pap
a = 0, as can be deduced from the

identity σ̃aα(βσ̃
γδ)
a = 0 (in D=11, there is no such type identity, and the proof of light-

likeness of Pa in (5.46) requires to use the charge conjugation matrix, see e.g. [78]).

The spinor moving frame action for 10D twistor string reads

S10D
smf =

∫

W2

d2ξλαq̇λβq̇
1

16
σ̃αβ
a

(
∂̄Xa − i∂̄ΘσaΘ

)
=

=

∫

W2

d2ξλαq̇λβq̇

(

∂̄Xαβ − i∂̄Θ(α Θβ)
)

, (5.47)

where in the second line 16× 16 matrix field Xαβ = Xβα can be considered as constructed

from the 10-vector coordinate function,

Xαβ =
1

16
Xaσ̃αβ

a , (5.48)

or to be a generic symmetric spin-tensor field

Xαβ =
1

16
Xaσ̃αβ

a +
1

32 · 5! σ̃
αβ
abcdeZ

abcde (5.49)

which contains the contributions of 5-rank self-dual tensorial Zabcde =
1
5!ǫ

abcdea′b′c′d′e′f ′

Za′b′c′d′e′f ′ . This latter does not contribute to the action because

the bosonic spinor λq̇ in (5.45) obeys

λq̇σ̃abcdeλq̇ = 0 . (5.50)

As in eleven-dimensional case, the spinor moving frame action of 10D ambitwistor/null

string (5.47) can be equivalently written as twistor string action

StwS
10D = −

∫

W2

(
∂̄λαq̇ µ

αq̇ − λαq̇∂̄µ
αq̇ + i∂̄ηq̇ ηq̇

)
= −

∫

W2

∂̄ZΛq̇Ξ
ΛΣZΣq̇ , (5.51)

where ΞΛΣ has the same form as in (5.35), but with 16× 16 blocks δβα.

The action (5.51) is written in terms of a set of 8 strongly constrained OSp(1|32)
supertwistors

ZΛq̇ := (Υαq̇; ηq̇) =
(
λαq̇ , µ

α
q̇ ; ηq̇

)
, α = 1, . . . , 16 , q̇ = 1, . . . , 8 (5.52)

which can be expressed through the 10D coordinate functions and spinor moving frame

variables by the following generalization of the Penrose incidence relation

µαq̇ = Xαβλβq̇ −
i

2
ΘαΘβλβq̇ , ηq = Θβλβq̇ . (5.53)
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In addition to (5.46), the supertwistor components obey the constraint

Jṗq̇ = ZΛ[ṗΞ
ΛΣZq̇]Σ = 2λα[ṗ µ

α
q̇] + iηṗ ηq̇ = 0 , (5.54)

and, in the case of Xαβ expressed through Xa by (5.49), also

Kṗq̇ = λα(ṗ µ
α
q̇) −

1

16
δṗq̇λαṗ′ µ

α
ṗ′ = 0 . (5.55)

These relations with generic Xαβ = Xβα (5.32) and λαq̇ obeying the constraints (5.46)

provide us with the general solution of the constraints (see [50])

Jṗq̇ = ZΛ[ṗΞ
ΛΣZq̇]Σ = 2λα[ṗ µ

α
q̇] + iηṗ ηq̇ = 0 . (5.56)

Eq. (5.37) with particular Xαβ expressed through the standard 11D spacetime coordi-

nate, (5.30), appears if we impose, in addition to (5.39) (5.38), also the constraints

Kṗq̇ = λα(ṗ µ
α
q̇) −

1

16
λαṙ µ

α
ṙ δṗq̇ = 0 . (5.57)

The twistor string is classically equivalent to the 10D ambitwistor superstring

of [1], (2.2) [as its action (5.51) was obtained from (2.2) by solving the algebraic constraints

and changing the variables]. We can show that the quantization of its superparticle limit

gives the 10D SYM theory. As a result, we can expect that its quantization in the twistor

string line of [39] or in the line of [1] can produce the amplitudes of the 10D SYM.

Such a quantization is a natural continuation of our study. An apparent technical

problem on this way is the constrained nature of our supertwistors. However, it can be

resolved using their relation with the spinor moving frame variables: this allows to define

the admissible variation of the λ-spinor which preserve the constraints (5.46) which can be

written as (cf. with (5.44) of the D=11 case)

δλαq̇ = iδf
(0)λαq̇ + λαṗiδf

[ṗq̇] +
1

2
iδf

−ivαp
+γipṡSṡq̇ . (5.58)

Here iδf
(0), iδf

[pq] = −iδf
[qp] and iδf

−i denote independent variations and the last term

refers explicitly to the solution (5.45) of the constraints (5.27): Sṗq̇ = S−1
q̇ṗ is the matrix

field taking values in c-spinor representation of SO(8), vαp
+ are the spinor moving frame

variables complementary to vαṗ
− (see (5.3), (5.11), (5.12), (5.13)) and γipq̇ = γ̃iq̇p are SO(8)

invariant gamma matrices.

6 Conclusion

In this paper we first have shown that D=4, 10 and D=11 versions of the recently proposed

(for D=10) ambitwistor superstring [1]12 is classically equivalent to the null-superstring in

its moving frame and spinor moving frame formulations [10–13].

12The D=26 purely bosonic ambitwistor string and the D=10 NSR version of ambitwistor string were

also considered in [1].
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The null-string and null-superstring is usually associated to tensionless limit of Nambu-

Goto (NG) string and Green-Schwarz (GS) superstring. In contrast, the ambitwistor

(super)string was associated in [1] with infinite tension limit of the NG (GS super)string.

However, on the other hand, the authors of [1] noticed the similarity of the properties of the

ambitwistor string amplitudes with the very high energy limit of string amplitudes [7, 8],

which is naturally associated to the tensionless limit of superstring.

To clarify this issue in this paper we have shown how the null-superstring action

can dominate both the tensionless and infinite tension limit of the superstring action.

Furthermore, the tensionless limit of superstring theory does not have critical dimensions,

this is to say, it can be formulated in any D [18, 22, 36–38]. In this paper we have presented

arguments which suggest that this is also true in the limit of infinite tension. (Actually this

conjecture looks quite natural as in the infinite tension limit string is expected to behave

like a particle).

This conjecture is further supported by the observation that the spinor moving frame

formulation of D=4, N -extended supersymmetric null-superstring, which is classically

equivalent to D=4 version of the ambitwistor string, is also classically equivalent to Siegel’s

formulation of closed twistor superstring [43]. The twistor string was originally formulated

for D=4 N = 4 case, in which the twistor superspace is Calabi-Yau supermanifold [44, 45],

and is known to be a consistent theory (at least at the tree level, see [79, 80] and refs. therin).

The similar twistor transform allows us to present the spinor moving frame formula-

tion of D-dimensional null superstring, classically equivalent to D-dimensional version of

the ambitwistor string, as a D-dimensional twistor string. Besides D=4, we have described

the D=10 twistor string, classically equivalent to the original 10D ambitwistor superstring

action of [1], and the D=11 twistor superstring. Both D=10 and D=11 models are for-

mulated in terms of highly constrained OSp(1|2n) supertwistors (n = 16 for D=10 and

n = 32 for D=11). However, the relation of the component of supertwistors with spinor

moving frame variables allows us to present simple expressions for their admissible varia-

tions which preserve the constraints. The quantization of the 11D null-superstring/twistor

string model in the line of [1] or [39] is expected to produce amplitudes of 11D supergravity.

To develop such a quantization and to obtain the 11D amplitudes is an interesting task for

future study.

Interestingly enough, the generalized Ferber-Penrose (FP) incidence relations express-

ing the supertwistors through the coordinate functions and spinor moving frame variables

describing the ambitwistor string (null-superstring) are gauge equivalent to a more general

FP relations involving additional coordinates of enlarged or tensorial superspace, Σ(528|32)

parametrized by Xa, Zab = Z [ab] and Zabcde = Z [abcde] in 11D case. The gauge sym-

metry of the twistor like formulation of the ambitwistor string and of the twistor super-

string action, which allow to gauge away the additional 517(=55+462) coordinates Zab

and Zabcde = Z [abcde] seems to be related with the hidden gauge symmetry structure of

11D supergravity [87–89]. This makes tempting to speculate on possible relevance of the

enlarged ‘tensorial’ superspaces in the ambitwistor string context.

In the recent paper [91] the authors, approaching the scattering equation of [2] in

the context of (standard) string theory, formulated a new ‘dual resonance’ model which
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coincides with string theory in both the α′ 7→ 0 and α′ 7→ ∞ limits. They observed that

the solutions of this dual model can be found algebraically on the surface of scattering

equations producing the α′ corrections to the amplitudes, checked that these coincide with

known results in several previously studied cases. The authors of [91] have stress that,

despite they worked according the rules of string theory, their dual model cannot by the

usual string theory.

In the light of our present results, an interesting question for future study is whether

the dual model of [91] can be related to (10D verison of) twistor string which, as we have

shown, is classically equivalent to null superstring and ambitwistor string.

Note added. After this paper appeared on the net, the ambitwistor string technique

have been applied to the D=4 case in [92] and used there to obtain the expressions for

N -extended SYM and Einstein supergravity amplitudes. The authors of [92] reformulated

the ambitwistor string model in terms of supertwistors, similarly to what had been done in

sections 3.1, 5.1, 5.2 above, and noticed that their theory coincides with (“is superficially

identical to”) twistor string, thus agreeing with our conclusion in section 5.2. On the other

side they have stressed that the resulting formulae for amplitudes are different from that

following from twistor string approach as formulated in [44, 45, 79]. The study of [92]

confirms the conclusion of this paper on the existence of generalizations of ambitwistor

string technique [1, 5] for arbitrary spacetime dimensions.
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