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1 Introduction and conclusion

The study of scattering amplitudes in gauge theories has gone through many stages of

exciting developments (see [1] for an up-to-date review). A common theme in many re-

cent breakthroughs is reformulation of the gauge theory in such a way to uncover hidden

structures that are hardly visible in the traditional approach.

The Grassmannian integral [2] is a relatively new reformulation notably far removed

from the traditional approach. Tree amplitudes and loop integrands of a planar gauge the-

ory are produced from a contour integral over the Grassmannian G(k, n), where n is the

total number of external particles and k is the number of external particles with negative

helicity. The geometric structure makes the conformal symmetry and dual conformal sym-

metry completely manifest while relegating locality and unitarity to an emergent property.

Although the Grassmannian integral inherits some crucial features from its predecessors

such as the twistor string theory [3, 4] and the BCFW recursion relation [5, 6], its physical

origin had remained elusive for years.

In a remarkable paper [7], Arkani-Hamed et al. introduced the notion of ‘on-shell

diagrams’ which in a sense provides a microscopic structure underlying the Grassmannian

integral. The vertices of on-shell diagrams are the gauge invariant three-point amplitudes

with (+ + −) or (+ − −) helicity assignments. They showed how to rewrite the vertices in

terms of integrals over G(1, 3) or G(2, 3). By integrating out internal lines, they combine

small Grassmannian integrals to form a big integral over G(k, n) for arbitrary k and n.
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The BCFW deformation of momenta appears naturally in on-shell diagrams and ‘bridges’

two external legs with a new internal line and two vertices. While probing the structure of

Grassmannian integral at a deeper level, the authors of [7] also encountered a number of

modern topics in mathematics such as affine permutation, positive Grassmannian, positroid

stratification, and cluster algebra. They also noted that the on-shell diagram approach can

be applied to any gauge theory in four dimensions, although it takes by far the simplest

form for the N = 4 super-Yang-Mills theory (SYM4).

In three dimensions, a class of N = 6 superconformal Chern-Simons matter theories [8–

12], widely known as ABJM theory, serves as a main testing ground for novel methods

on scattering amplitudes. An initial step toward the on-shell diagram approach to ABJM

theory was already taken in [7], based on the an integral over the orthogonal Grassmannian

OG(k, 2k) [13]. The on-shell diagrams of ABJM theory consist of a unique quartic vertex

and an internal line. The permutation governing the planar diagrams is a complete pairing

of the 2k external particles. Two diagrams sharing the same permutation are equivalent to

each other up to Yang-Baxter equivalence moves. The BCFW bridge connects two external

legs by creating an extra vertex between them.

Recently, Huang and Wen [14] further studied the on-shell diagrams for ABJM am-

plitudes. They refined the on-shell diagrams with some sign factors to account for the

two disjoint ‘branches’ of orthogonal Grassmannian. This is crucial since the full tree am-

plitudes receive contributions from both branches, as noted earlier in [15]. By rewriting

the BCFW recursion relation for ABJM theory [15] in terms of on-shell diagrams, they

constructed on-shell diagram representation of all tree-level amplitudes. They also intro-

duced a set of coordinates in which all consecutive minors take a simple form. Finally,

they defined the notion of positive orthogonal Grassmannian. In contrast to the ordinary

Grassmannian G(k, n), it is slightly non-trivial to define reality conditions on OG(k, 2k).

The aim of this paper is to cover a topic that was notably missing in [7, 14]. Given

a permutation, it is desirable to select a particular representative of the equivalence class

of on-shell diagrams, and assign canonically positive coordinates to it. The construction

of canonical coordinates elucidates how the Grassmannian integral is decomposed into a

series of BCFW bridging. The canonical coordinates also enjoy several nice properties; for

instance, the measure of the Grassmannian integral takes a simple ‘d(log)’ form, and the

boundaries of the positive orthogonal Grassmannian become zero loci of the coordinates.

This problem of assigning canonical coordinates was solved completely in four dimensions

in [7] using a relation to the mathematics of ‘positroid stratification’ [16, 17]. We will solve

the problem in three dimensions by introducing a combinatorial device similar to those

of [16], which we call ‘OG tableaux’. To our knowledge, mathematical studies of positive

orthogonal Grassmannian remain incomplete and not readily accessible to physicists. See,

e.g., [18] for a related work.

The rest of this paper is organized as follows. Section 2 is a brief review of what is

known for on-shell diagrams for ABJM theory from earlier works [7, 14]. The elemen-

tary 4-particle vertex can be understood both as a BCFW bridge and an integral over

OG(2, 4). Integration over internal lines ‘amalgamates’ copies of OG(2, 4) and builds up

bigger OG(k, 2k). In section 3, we take a closer look at the geometry of orthogonal Grass-
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mannian. We examine real slices of OG(k, 2k) and discuss how to define positivity on a

real slice. The real version of the BCFW bridge OG(2, 4) and amalgamation naturally

suggests how to introduce manifestly real coordinates on the orthogonal Grassmannian.

Section 4 reports the main results of this paper. We begin with mapping the on-shell

diagrams to what we call ‘OG tableaux’. The tableau notation serves several purposes.

It fixes the ambiguity coming from Yang-Baxter equivalence relation in a canonical way.

That helps us to count distinct on-shell diagrams, which are interpreted geometrically as

cells of the positive Grassmannian. Moreover, the OG tableaux can be used to assign

‘canonical positive coordinates’ for all on-shell diagrams. The integration measure in the

canonical coordinates is a product of simple d log factors. The OG tableaux also help us

to study mathematics of OG+(k, 2k). The positive Grassmannian G+(k, n) is known to

form a combinatorial polytope called ‘Eulerian poset’ [19]. The graded counting of OG

tableaux suggests that the positive orthogonal Grassmannian OG+(k, 2k) similarly defines

an Eulerian poset at each k. Geometrically, the graded counting hints at the possibility

that OG+(k, 2k) may have a topology of a ball. We verify this conjecture for k = 2, 3 and

leave the generalization to higher k as an open problem.

This paper focuses on a formal aspect of orthogonal Grassmannian and makes little

direct contributions to ABJM amplitudes. However, the results of this paper clearly opens

up a few directions of further research. Here, we list three prominent possibilities.

First, the issue of Yangian symmetry, which unites the ordinary and dual supercon-

formal symmetries, could be revisited. While there are strong evidences for the Yangian

symmetry of ABJM amplitudes [13, 15, 20–22], a formulation with manifest dual super-

conformal symmetry has not been found. For SYM4, such a dual formulation was found

earlier [23, 24] and laid a foundation for further discoveries such as the ‘amplituhedron’ [25].

In [7], the Yangian symmetry was interpreted geometrically as diffeomorphisms which leave

the measure on G+(k, n) invariant. A similar interpretation for OG+(k, 2k), if possible,

would shed new light on the Yangian symmetry of ABJM amplitudes.

Second, our work could be related to twistor string models for ABJM amplitudes. For

tree-level amplitudes of SYM4, the equivalence between the twistor string formula [4] and

the Grassmannian formula [2] was established in [26]. Simply put, the derivation consists

of three steps: specifying the integration contour of the Grassmannian integral, deforming

its integrand with no loss of residues, and integrating out some variables. Along the same

line of reasoning, a twistor string formula was proposed in [27] (and recently rederived

from different viewpoints in [28, 29]), but the derivation was less solid due to limited

understanding of the integration contours. The canonical coordinates defined in this paper

could be useful in finding a refined derivation comparable to that of [26].

Third, the formal structure of the positive orthogonal Grassmannian could be probed

at a deeper level. To define the canonical coordinate system, we suppressed the Yang-

Baxter equivalence moves in a particular ‘frame’. If we move to another frame, the new

coordinates would be related to the old ones in a non-trivial way. For SYM4, the coordinate

transformation has an intriguing connection to the mathematics of cluster algebra [30, 31].

It would be interesting to figure out the ABJM counterpart of the story. See a recent work

by Huang, Wen and Xie [32] for a related discussion.
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We conclude this introduction with some shorthand notations. We will write (P)OG

for (positive) orthogonal Grassmannian, and abbreviate OG(k, 2k) and OG+(k, 2k) by OGk

and POGk, respectively.

Note added. While an early version of this paper was being revised for publication, we

received a preprint by Lam [38] which rigorously prove a mathematical theorem stating

that POGk defines an Eulerian poset for all k.

2 On-shell diagrams for ABJM amplitudes

In this section, we review some salient features of the on-shell diagrams for ABJM ampli-

tudes [7, 14]. We first recall the kinematics of the ABJM amplitudes and the definition of

the OG integral to set the stage for the on-shell diagram. After introducing the fundamen-

tal building blocks, a quartic vertex and an internal line, we examine two ways to construct

the most general on-shell diagrams. One is BCFW bridging, which enables us to add a

vertex one at a time to a given diagram. The other is amalgamation, which merges two di-

agrams into a larger one by integrating over an internal line. For both methods, we explain

how the diagrammatics is reflected in the OG integral, thereby making the microscopic

decomposition of OG integral manifest. Finally, we comment briefly on the ‘Yang-Baxter’

equivalence relation for different diagrams corresponding to the same amplitude as well as

the bubble diagrams.

2.1 Elements of on-shell diagrammatics

Kinematics. The ABJM theory is a Chern-Simons-matter gauge theory in three dimen-

sions with N = 6 superconformal symmetry. The symmetry group is OSp(6|4) whose

bosonic part contains Sp(4,R) ' Spin(2, 3) conformal symmetry and SO(6) R-symmetry.

As shown in [20], the OSp(6|4) symmetry becomes manifest if we work in a superspace

Λ = (λα; ηI) ∈ C2|3.

In this representation, the superconformal generators come in three types:

Λ
∂

∂Λ
, ΛΛ ,

∂2

∂Λ∂Λ
. (2.1)

The superspace notation will guarantee the invariance of the amplitudes under the (Λ∂/∂Λ)

generators. Let us decompose the (ΛΛ) generators,

pαβ = λαλβ, qαI = λαηI , rIJ = ηIηJ . (2.2)

In a scattering process, the invariance under pαβ and qαI can be imposed by the super-

momentum conserving delta functions

δ3(P )δ6(Q) with P :=
∑

i

pαβi , Q :=
∑

i

qαIi . (2.3)

The rIJ invariance introduces a coset O(2k − 4)/U(k − 2) for the 2k-point amplitude [20].

The coset structure was a precursor to the OG integral for ABJM theory [13]. Once the
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invariance under the (ΛΛ) generators is confirmed, the invariance under the remaining

(∂2/∂Λ∂Λ) generators will follow from the superconformal inversion, which acts on Λ as

Fourier transformation (Λ ↔ ∂/∂Λ).

The spinors λi are contracted via the invariant tensor εαβ (ε12 = −ε12 = 1) of

SL(2,R) ' Spin(1, 2) Lorentz group,

〈ij〉 := λαi λjα = λαi εαβλ
β
j . (2.4)

The ABJM theory contains two matter multiplets with opposite gauge charge. The

particle/anti-particle superfields take the form

Φ = φ4 + ηIψI +
1

2
εIJKηIηJφK +

1

6
εIJKηIηJηKψ4 ,

Φ̄ = ψ̄4 + ηI φ̄I +
1

2
εIJKηIηJ ψ̄K +

1

6
εIJKηIηJηK φ̄4 . (2.5)

The color-ordered tree-level super-amplitudes, A2k(Λ1, · · · , Λ2k), are functions of Λi. Fol-

lowing the convention of [13, 15], we choose to associate Λodd/even to Φ̄/Φ multiplet. As

noted in [20], the kinematics and the multiplet structure imply the ‘Λ-parity’,

A2k(Λ1, · · · , −Λi, · · · , Λ2k) = (−1)iA2k(Λ1, . . . ,Λi, · · · , Λ2k) . (2.6)

and symmetry under the cyclic shift by two sites,

A(Λ1, Λ2, · · · , Λ2k) = (−1)kA(Λ3, Λ4, · · · , Λ2k, Λ1, Λ2) . (2.7)

OG integral. A central object of interest in this paper is the OG integral [13]:

L2k(Λ) =

∫
dk×2kC

vol[GL(k)]

δk(k+1)/2(C · CT ) δ2k|3k(C · Λ)

M1M2 · · · Mk−1Mk
. (2.8)

The integration variable C is a (k × 2k) matrix. The dot products denote (C · CT )mn =

CmiCni, (C · Λ)m = CmiΛi. The i-th consecutive minor Mi of C is defined by

Mi = (Ci, Ci+1, · · · , Ci+k−1) = εm1···mkCm1(i)Cm2(i+1) · · · Cmk(i+k−1) . (2.9)

In [13], this formula was conjectured to reproduce the 2k-point tree level amplitude upon

a suitable choice of integration contour. The conjecture was verified up to k = 4 in [15].

We will review the on-shell diagram approach to the OG integral (2.8), initiated in [7] and

elaborated in [14], in a way to facilitate the introduction of the positroid stratification to

be presented in section 4.

Building blocks. The on-shell diagrams for ABJM amplitudes are planar diagrams

drawn on a disk with 2k boundary points representing cyclically ordered external particles.

Schematically, the building blocks of the diagrams take the following form [7]:

Internal line: =

∫
d2λ d3η :=

∫
d2|3Λ :=

∫
“dΛ“ , (2.10)

– 5 –
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Vertex:

12

3 4
= A4(Λ1, Λ2, Λ3, Λ4) . (2.11)

The quartic vertex is precisely the 4-point tree amplitude first computed in [33] and repro-

duced from the OG integral in [13, 15].

The graphical notations in (2.10) and (2.11) are not fully well-defined as they stand.

The 4-point amplitude A4 does not have a Z4 cyclic symmetry. Instead, it is odd under a

cyclic shift by two sites,

A4(1, 2, 3, 4) = −A4(3, 4, 1, 2) . (2.12)

Accounting for this symmetry, when the simpler notation is likely to cause confusion, we

will use a refined notation for the vertex.

Vertex:

1

2

3

4 =
δ3(P )δ6(Q)

〈12〉〈23〉 . (2.13)

The internal line (2.10) means that two sub-diagrams, say F (Λ) and G(Λ), can be

‘glued’ by an integral of the form,

∫
dΛ F (Λ)G(−iΛ) =

∫
dΛ1dΛ2 δ(iΛ1 + Λ2)F (Λ1)G(Λ2) . (2.14)

The factor of i reflects momentum conservation between two particles: λλ + (iλ)(iλ) = 0.

By convention, we will assign Λ1 and Λ2 in (2.14) to an odd (Φ̄) and an even (Φ) multiplet,

respectively.

2.2 BCFW bridge

Vertex as BCFW bridge. As shown in [7, 14], it is possible to build up complicated

on-shell diagrams from a simpler one by adding vertices via ‘BCFW bridges’. In this

subsection, we review how to interpret the elementary vertex (2.13) as a BCFW bridge,

and establish our convention for coordinates and sign factors.

We recall from [15] that the BCFW deformation acts as an O(2k,C) rotation on the

kinematic variables Λi, which leaves the total super-momentum invariant. For the four-

particle vertex, the total super-momentum is

P = λ1λ1 + λ2λ2 + λ3λ3 + λ4λ4 = 0 , (2.15)

Q = λ1η1 + λ2η2 + λ3η3 + λ4η4 = 0 . (2.16)

Moving λ3 and λ4 to the right-hand-side in (2.15) and squaring, we find

〈12〉2 = 〈34〉2 =⇒ 〈12〉 = σ〈34〉 (σ = ±1) . (2.17)

– 6 –
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The sign factor σ defines two ‘branches’ of kinematic configuration. As we will see shortly,

the same σ will define two branches of OG2.

To reveal the structure of the BCFW bridge, we begin with the vertex

A4(Λ1, Λ2, Λ3, Λ4) =
δ(P )δ(Q)

〈12〉〈23〉 . (2.18)

Inserting two identities,1

1 = −〈34〉
∫

dci3 ∧ dci4 δ2(λi + ci3λ3 + ci4λ4) for i = 1, 2 , (2.19)

changes the momentum-conserving delta function into

δ3(P ) = δ3
(
λ3λ3(1 + c2

13 + c2
23) + λ4λ4(1 + c2

14 + c2
24) + (λ3λ4 + λ4λ3)(c13c14 + c23c24)

)

= −〈34〉−3 δ(1 + c2
13 + c2

23) δ(1 + c2
14 + c2

24) δ(c13c14 + c23c24) . (2.20)

Taking the change of variables
(

c13 c14

c23 c24

)
= i

(
r3 sin t3 r4 cos t4

r3 cos t3 r4 sin t4

)
, (2.21)

and integrating out r3 and r4, we find

A4 = − δ6(Q)

4i〈34〉3

∫
dt3 ∧ dt4

sin t4 cos (t3 + t4)
δ(sin (t3 + t4))

× δ2(λ1 + i sin t3 λ3 + i cos t4 λ4)δ
2(λ2 + i cos t3 λ3 + i sin t4 λ4)

=
δ6(Q)

4i〈34〉3

∫
σ dt3

sin t3

∑

σ

δ2(λ1 + is3 λ3 + iσc3 λ4) δ2(λ2 + ic3 λ3 − iσs3 λ4) , (2.22)

where the first delta function is localized at t3 + t4 = 0 or π. The fermionic delta function

can be rearranged as

δ6(Q) = −〈12〉−3 δ3 (〈12〉η1 + 〈32〉η3 + 〈42〉η4) δ3 (〈21〉η2 + 〈31〉η3 + 〈41〉η4)

= σ〈34〉3δ3(η1 + i sin t3 η3 + iσ cos t3 η4) δ3(η2 + i cos t3 η3 − iσ sin t3 η4) . (2.23)

Collecting all the ingredients, we obtain

A4 =
∑

σ=±

∫
dt

4i sin t
δ2|3(Λ1 + Λσ4 (t)) δ2|3(Λ2 + Λσ3 (t)) , (2.24)

where (
Λσ3 (t)

Λσ4 (t)

)
=

(
i cos t −iσ sin t

i sin t iσ cos t

) (
Λ3

Λ4

)
. (2.25)

Pictorially, as shown in figure 1(a), the result might be summarized as building a BCFW

bridge between two ‘free propagators’ (14) and (23). During the derivation, we chose two

adjacent legs {1, 2} as ‘sources’ and the other legs {3, 4} as ‘sinks’.

1Essentially the same computation was done in [34] with particular reality conditions on λi. Here, we

leave λi as complex variables, and treat the delta-functions as analytic functions.
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12

3 4

12

3 4

1

2 3

4 1

2 3

4

(a) (b)

Figure 1. 4-point vertex as a BCFW bridge with two adjacent ‘sources’ legs.

F

F 0

Figure 2. Adding a vertex to an on-shell diagram via BCFW bridge.

Other choices of sources and sinks are possible. Up to the cyclic symmetry (2.12), the

only other possibility for adjacent source legs is {1, 4}, as depicted in figure 1(b). With the

branch parameter defined by 〈14〉 = σ〈23〉, A4 becomes

A4 =
∑

σ=±

∫
dt

4i sin t
δ2|3(Λ1 + Λσ2 (t)) δ2|3(Λ4 + Λσ3 (t)). (2.26)

where (
Λσ2 (t)

Λσ3 (t)

)
=

(
iσ cos t −i sin t

−iσ sin t −i cos t

) (
Λ2

Λ3

)
. (2.27)

We may also consider taking non-adjacent source legs, {1, 3} or {2, 4}. They will not be

used in subsequent sections, so we omit them here. Interested readers are referred to [14].

General BCFW bridging. The BCFW bridge can be used to add a vertex to an on-

shell diagram at a fixed number of external legs. The idea is sketched in figure 2.

The rotation matrix, as in (2.25) or (2.27), is an element of an O(2,C) subgroup of

O(2k,C) acting on the kinematic variables Λi. It is worth noting whether the rotation

matrix belongs to the orientation preserving SO(2k,C) subgroup of O(2k,C) or the orien-

tation reversing one. In the case depicted in figure 1(a), σ = +1 preserves orientation. In

contrast, in the case of figure 1(b), σ = −1 is the one that preserves orientation.

Vertex as OG2. We proceed to relate the BCFW bridge to OG2. Consider the integral,

L4(Λ) =

∫
d2×4C

vol[GL(2)]

δ3(C · CT ) δ4|6(C · Λ)

(12)(23)
. (2.28)

We will show that L4 reproduces A4 in the form (2.24) or (2.26). For the former, depicted

in figure 1(a), the choice of source legs {1, 2} naturally translates into a gauge fixing of the

– 8 –
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matrix C with ‘pivot’ columns {1, 2},

C =

(
1 0 c13 c14

0 1 c23 c24

)
. (2.29)

We can proceed in two different ways. First, as explained in [15], we can solve the bosonic

part of the kinematic delta function δ4|6(C · Λ). Since there are four delta functions for

four variables, for generic values of λi (i = 1, 2, 3, 4), the solution to the delta function

constraint is unique. Inserting the solution back to the integral, we arrive at the expression

for A4 in (2.18). Alternatively, we can leave δ4|6(C · Λ) aside and insert the gauge-fixed

C (2.29) into the orthogonality constraint delta function,

δ3(C · CT ) = δ(1 + c2
13 + c2

14) δ(1 + c2
23 + c2

24) δ(c13c23 + c14c24) , (2.30)

which takes a similar form as (2.20). Taking the change of variables,

(
c13 c14

c23 c24

)
→ i

(
r1 sin t1 r1 cos t1

r2 cos t2 r2 sin t2

)
, (2.31)

and integrating out (r1, r2, t2), we obtain

L4 =
∑

σ

∫
dt

4i sin t
δ2|3(Λ1 + i sin tΛ3 + iσ cos tΛ4) δ2|3(Λ2 + i cos tΛ3 − iσ sin tΛ4), (2.32)

in agreement with (2.24). Repeating the same analysis with pivot columns {1, 4}, we find

that L4(Λ1, Λ2, Λ3, Λ4) reduces precisely to A4 given by (2.26). Thus, the OG integral

provides a geometric representation of the 4-point vertex.

2.3 Amalgamation and permutation

An on-shell diagram for k > 2 can be constructed by gluing two or more diagrams to-

gether. The corresponding OGk>2 is obtained by ‘amalgamating’ a collection of OG2’s by

integrating out the internal lines. The amalgamation proceeds as follows (see figure 3).

1. Put two on-shell diagrams together, preserving all external legs. The resulting C-

matrix is a direct product of the two sub-matrices and thus lives in OGk+k′ .

2. Pick an external line from each diagram. Identify them by setting the one as ΛI and

the other as −iΛI , and perform the integral (2.14). Since it reduces a number of

external legs by 2, the result must be an element of OGk+k′−1.

Integrating out the internal line explicitly, we have

∫
d2|3ΛI

k∏

m=1

δ2|3
( 2k−1∑

i=1

cmiΛi + cmIΛI

) k′∏

n=1

δ2|3
( 2k′−1∑

j=1

c′njΛ
′
j − i c′nIΛI

)
(2.33)

= cI1

k∏

m=2

δ2|3
( 2k−1∑

i=1

(
cmi −

c1i

c1I
cmI

)
Λi

) k′∏

n=1

δ2|3
( 2k′−1∑

j

c′njΛ
′
j + i

2k−1∑

i=1

c1i

c1I
c′nIΛi

)
.
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Figure 4. Yang-Baxter equivalence move.

The resulting matrix C̃ is represented by

C̃m̃ı̃ =




cmi −
cmI
c1I

c1i 0

i
c′nI
c1I

c1i c′nj



m̃ı̃

, (2.34)

where m̃ runs over {m = 2 · · · k, n = 1 · · · k′} and ı̃ over {i = 1 · · · 2k − 1, j = 1 · · · 2k′− 1}.

As shown in [14], it is straightforward to verify that C̃ respects the orthogonality condition

C̃ · C̃T = 0 if C and C ′ satisfy the same condition,

2k−1∑

i=1

cmicni + cmIcnI = 0 ,

2k′−1∑

j=1

c′mjc
′
nj + c′mIc

′
nI = 0 . (2.35)

Equivalences move and reducible diagrams. Different on-shell diagrams correspond-

ing to the same amplitude can be related to each other through a series of equivalence

moves. The elementary move for ABJM amplitudes is the Yang-Baxter-like move depicted

in figure 4. The lines 1 to 6 in the figure may be internal or external. In view of the BCFW

bridging, the equivalence relation simply amounts to two different Euler angle decomposi-

tion of the same SO(3) rotation matrix.

As the name ‘Yang-Baxter’ suggests, the equivalence move leaves the permutation

among external particles invariant. If we draw all possible diagrams with the same permu-

tation content, we may encounter bubble diagrams such as those in figure 5. It was shown

in [14] that the bubbles can be completely factorized from the rest of the on-shell diagram,

leaving an integral with a d log measure. In the rest of this paper, we will work exclusively

with bubble-free diagrams.
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3 Reality and positivity of orthogonal Grassmannian

The orthogonal Grassmannian OGk is a subspace of G(k, 2k) restricted by the orthogo-

nality constraint. In this section, we shall examine the notion of reality and positivity for

OGk. The real slice of OGk is determined by the reality condition on external kinematic

variables. For discussion on positivity, a particular reality condition, called the ‘split sig-

nature’ [14] condition, turns out to be the most convenient. Performing a ‘Wick rotation’

on the kinematic and the BCFW variables, we can rewrite the BCFW bridging rule with

manifestly real and positive coordinates on OGk. Following [7, 14], we spell out the con-

version rule which enables us to read off the postive C-matrix directly from an on-shell

diagram without going through BCFW bridging one at a time.

3.1 Complex OG

Here we review the geometry of OGk on which the integral (2.8) is defined [15]. Recall that

the ordinary Grassmannian G(k, n) is the moduli space of k-planes in n dimensions. In the

standard matrix representation, G(k, n) is described by a (k×n) matrix C with rank k sub-

ject to the ‘gauge symmetry’ C ∼ g C with g ∈ GL(k). OGk is a subspace of G(k, 2k) sub-

ject to an ‘orthogonality’ constraint (C ·CT )mn = CmiCni = 0 (m = 1, . . . , k; i = 1, . . . , 2k).

The constraint and the GL(k) gauge symmetry determine the dimension of OGk as

dimC [OGk] = 2k2 − k2 − k(k + 1)

2
=

k(k − 1)

2
. (3.1)

It is also known that OGk is isomorphic to the coset, OGk = O(2k)/U(k). Since O(2k) con-

tains two disjoint SO(2k) components, OGk is also decomposed into two disjoint subspaces.

We will call them two ‘branches’ of OGk.

Let us discuss how the two branches are defined in terms of coordinates. Recall that

the Plücker coordinates of G(k, n) are determinants of (k×k) submatrices of C, regarded as

homogeneous coordinates of some projective space. The Plücker coordinates are subject to

quadratic algebraic relations originating from linear dependencies among the columns of C.

Coming back to OGk, let I = {i1, i2, . . . , ik} be an ordered set of indices labeling k distinct

columns of C, and MI = (i1, i2, · · · , ik) := det(Ci1 , Ci2 , · · · , Cik) be the corresponding

Plücker coordinate. As noted in [13], the orthogonality constraint C · CT = 0 imposes

linear relations among MI ’s in addition to the quadratic relations for G(k, n). Define

the complement of I by Ī = {ı̄1, ı̄2, . . . , ı̄k} such that {i1, . . . , ik, ı̄1, . . . , ı̄k} is an even

permutation of {1, 2, . . . , 2k}. The linear relation can be written as

MI = σ(ik)MĪ . (3.2)
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The overall sign factor σ = ±1 defines the two branches of OGk. This linear relation

implies a quadratic relation for consecutive minors on both branches [13],

MiMi+1 = Mi+kMi+1+k(−1)k−1 . (3.3)

The orthogonality constraint can be expressed in terms of Plücker coordinates as

∑

a

(i1, · · · , ik−1, a)(j1, · · · , jk−1, a) = 0 , (3.4)

where a runs over all columns of the C-matrix.

For k = 2, we can solve all the relations explicitly. The two branches are defined by

OG±k : (M12, M23, M31) = ∓(M34, M14, M24) . (3.5)

Combining this with the Schouten identity,

M12M34 + M23M14 + M31M24 = 0 , (3.6)

and renaming the coordinates as (X, Y, Z) = (M14, M24, M34), we find that each of the two

branches, OG±2 , is described by an algebraic variety,

{(X, Y, Z) ∈ CP2 | X2 + Y 2 + Z2 = 0} , (3.7)

which is topologically a CP1. We can compare this with the coset description,

OG+
2 = SO(4)/U(2) ' SU(2) × SU(2)/U(1) × SU(2) ' SU(2)/U(1) = CP1 . (3.8)

Repeating the algebraic analysis for higher k would be possible but quite cumbersome. For

k = 3, we can use the coset description to find

OG+
3 = SO(6)/U(3) ' SU(4)/U(3) = CP3 . (3.9)

3.2 Reality and positivity of OG

Reality. In the spinor helicity formulation pαβ = λαλβ with real momentum, the spinor

λα should be real or purely imaginary. Our convention is such that the spinor λα is real for

outgoing particles and purely imaginary for incoming particles. If we want to work with

strictly real momenta, we have to assign reality conditions on each of the external legs.

Momentum conservation forces all on-shell diagrams to have the same number of in-

coming and outgoing particles. First, the elementary 4-vertex (2.13) does not vanish only

if two of the particles are incoming and the other two are outgoing. If all four particles are

outgoing, the total momentum, λ1λ1 + λ2λ2 + λ3λ3 + λ4λ4 is positive definite or negative

definite, respectively, so cannot vanish. If particle 1, 2, 3 are outgoing and 4 incoming,

λ1λ1 + λ2λ2 + λ3λ3 generically has rank two while λ4λ4 has rank one, in conflict with

momentum conservation. The other two unbalanced cases (4 incoming or 3 incoming + 1

outgoing) can be treated similarly. Next, an internal line (2.14) always connects an incom-

ing particle and an outgoing particle, hence the balance between incoming and outgoing

particles continue to hold for arbitrary on-shell diagrams.
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The reality conditions for the kinematic variables λi naturally translate into the reality

conditions for the matrix C representing a point on OGk. The linear delta function δ(C ·Λ)

in (2.8) requires that
2k∑

i=1

Cmiλi = 0 . (3.10)

We may use the GL(k) gauge symmetry to make the k columns corresponding to incoming

particles to form a (k×k) identity matrix, and denote the other k columns by a non-trivial

(k × k) matrix:

λi + cij̄λj̄ = 0 , (3.11)

where the index i runs over incoming particles and j̄ over outgoing particles. Reality of

λ implies that icij̄ is a real matrix. The orthogonality constraint C · CT = 0 then implies

that icij̄ is an element of O(k,R). Thus, the reality condition for λi defines a real slice

of OGk. The two disconnected components of O(k,R) correspond to the two branches of

OGk. For instance, the real slices of k = 3 are two copies of SO(3) = RP3.

We find it instructive to give a gauge invariant, geometric description of the reality con-

ditions. We will focus on the simplest example for k = 2. In the algebraic description (3.7),

in a coordinate patch with Z 6= 0, we can consider four distinct reality conditions:

(a) (b) (c) (d)

X/Z iR R iR R
Y/Z R iR iR R

(3.12)

But, the condition (d) with X2 + Y 2 + Z2 = 0 yields an empty set in CP2. The three

remaining real slices are identified with great circles, S1 = SO(2,R), embedded in S2 = CP1

as depicted in figure 6. The intersections among different real slices are denoted as

A± : X = 0, Y/Z = ±i , B± : Y = 0, Z/X = ±i , C± : Z = 0, X/Y = ±i . (3.13)

We should emphasize that the reality condition is a gauge invariant notion. Although it

is sometimes useful to align the gauge choice with the reality condition as in (3.11), other

gauge choices might be more convenient for certain purposes. In section 4, we will use

gauge choices different from (3.11).

Positivity. As pointed out in [14], the ‘split signature’ reality condition, in which all

odd-labelled particles are incoming and all even-labelled ones outgoing, deserves a special

attention. It is the only reality condition that respects the cyclic symmetry of A2k (2.7).

Moreover, the split signature allows for a simple notion of ‘positivity’. Following [14], we

do a ‘Wick rotation’ on the C-matrix and λ2i−1 simultaneously such that all elements of

C and all λi are real, while the orthogonality constraint takes the form,

C · η · CT = 0 , ηij = (−1)iδij = diag(−, +, · · · , −, +) . (3.14)

In this convention, the positivity defined in [14] asserts that all ordered minors of C are

non-negative.2 This particular definition of positivity picks out one of the two branches of

2A similar notion for G(k, n) is called ‘totally non-negative’ in mathematics literature [16–18]. For

brevity, we will write ‘positive’ in place of ‘totally non-negative’.
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Figure 6. Real slices of a OG2+.

OGk at each k. For instance, we have

(1, 2, . . . , k) = (k + 1, k + 2, . . . , 2k) and (1, 3, . . . , 2k − 1) = (2, 4, . . . , 2k) . (3.15)

It was shown in [14] that the definition of positivity is compatible with all essential prop-

erties of OG such as (3.3) and (3.4).

These results strongly suggest that the positive orthogonal Grassmannian (POG) has

the same dimension as the real slice of OG. One of the main goals of this paper is to

introduce a complete set of coordinate patches for POG for all k. We give a simplest

example (k = 2) here for illustration and discuss the general construction in section 4. Let

us choose a gauge such that

C =

(
1 0 c13 c14

0 1 c23 c24

)
. (3.16)

In the split signature, η = diag(−, +, −, +), the orthogonality constraint C · η · CT = 0

gives

− 1 − c2
13 + c2

14 = 0 , 1 − c2
23 + c2

24 = 0 , −c13c23 + c14c24 = 0 . (3.17)

Positivity requires that

c13, c14 ≤ 0 , c13, c14 ≥ 0 . (3.18)

The complete solution to this problem is

(
c13 c14

c23 c24

)
=

(
− sinh t − cosh t

cosh t sinh t

)
, t ≥ 0 . (3.19)

As t approaches ∞, we can take a gauge transformation to find

C =

(
1 − sinh t

0 cosh t

) (
1 tanh t 0 −secht

0 secht 1 tanh t

)
→

(
1 1 0 0

0 0 1 1

)
. (3.20)

Including the ‘point’ at t = +∞, the full geometry of POG2 is an interval with two end-

points included. In figure 6, the POG2 is identified with the interval A−C+.
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3.3 Conversion rule

Recall that the elementary vertex, A4, is resolved in two ways, (2.24) and (2.26), according

to the choice of pivot columns for OG2. The first one (2.24) contains a delta-function,

δ2|3(Λ1 + i sin tΛ3 + iσ cos tΛ4) δ2|3(Λ2 + i cos tΛ3 − iσ sin tΛ4) . (3.21)

We perform a Wick rotation on the odd-labelled particles as Λ2i−1 → −iΛ2i−1 and on

the BCFW variables as t → it. After the Wick rotation, up to an overall phase, the

delta-function becomes

δ2|3(Λ1 − sinh tΛ3 − σ cosh tΛ4) δ2|3(Λ2 + cosh tΛ3 + σ sinh tΛ4) . (3.22)

Similarly, in the other case (2.26), the Wick rotation gives

δ2|3(Λ1 + iσ cos tΛ2 − i sin tΛ3) δ2|3(Λ4 − iσ sin tΛ2 − i cos tΛ3) .

→ δ2|3(Λ1 − σ cosh tΛ2 + sinh tΛ3) δ2|3(Λ4 + σ sinh tΛ2 − cosh tΛ3) . (3.23)

We apply the same Wick rotation to the internal line (2.14) as well,

δ(iΛ1 + Λ2) → δ(Λ1 + Λ2) , (3.24)

where Λ1 and Λ2 represent odd and even multiplets, respectively.

As explained in [7, 14], we can collect the linear relations imposed by the delta-functions

and read off the components of the C-matrix without going through BCFW bridging and

amalgamation one at a time. To find the component cij̄ in the gauge-fixed form, λi+cij̄λj̄ =

0, we trace all possible paths p from the source i to the sink j̄ in the corresponding on-shell

diagram. Each internal line (3.24) contributes a factor of (−1), since δ(λ1 + λ2) implies

λ1 = −λ2. At each vertex, we pick up (−fv), where fv is one of the matrix elements of

the (2 × 2) matrix defined at the vertex, λi + c
(v)

ij̄
λj̄ = 0, chosen by how the path traverses

the vertex.3 The vertex factors in the two cases of BCFW bridging considered above are

summarized in figure 7. The factors in figure 7(a) are read off from (3.22) and those in

figure 7(b) from (3.23). Combining the contributions from internal lines and vertices, we

arrive at a simple conversion rule for cij̄ :

cij̄ = −
∑

p∈{i→j̄}


∏

l∈p
(−1) ·

∏

v∈p
(−fv)


 =

∑

p∈{i→j̄}

(∏

v∈p
fv

)
. (3.25)

The matrix elements are manifestly real. The factors of (−1) have cancelled out completely,

since a path always traverse np internal lines and np + 1 vertices. We will study how

positivity restricts the matrix elements in the next section.

3The minus sign in (−fv) arises because we view the relation λi + c
(v)

ij̄
λj̄ = 0 as λi = −c(v)

ij̄
λj̄ . The

overall minus sign right after the first equality sign in (3.25) is inserted for the same reason.
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Figure 7. Vertex factors fv in the canonical gauge to be used in the conversion rule.

4 Positroid stratification

The ‘positroid stratification’ of G+(k, n) was developed in [16, 17] and brought to physics

in [7]. It relates the combinatorics of on-shell diagrams to the geometry of G+(k, n). At an

intermediate step, a notation similar to Young tableaux plays a crucial role, which encodes

the linear dependency among the columns of the matrix representative of G+(k, n). In this

section, we shall develop a similar story for the positive stratification of OG. Some partial

results in this direction were obtained in [14].

As a first step, we introduce an auxilary aid called ‘OG tableau’ which encodes the

combinatorics of on-shell diagrams. It naturally provides a set of canonical gauge choices

for the C-matrix such that the restriction imposed by positivity takes a simple form.

With the help of the OG tabeaux, we construct the ‘canonical’ coordinate system, which

exhibits positivity by construction for each cell of POGk for all k. We verify that the

canonical coordiates obtained from the positive stratification agrees with the ones given by

the conversion rule derived in section 3.

In the last subsection, we turn to the mathematics of POGk. It is known that the

positive Grassmannian G+(k, n) forms a combinatorial polytope called ‘Eulerian poset’ for

each (k, n) [19]. The graded counting of OG tableaux suggests that POGk may also define

an Eulerian poset for each k. Geometrically, it seems plausible that POGk has a topology

of a ball. We verify this conjecture for k = 2, 3. Finally, we give a preliminary discussion on

the boundary operation on POGk. We expect that a more complete study of the boundary

operation will help us better understand the topology and geometry of POG.

4.1 OG tableaux

As we discussed earlier, on-shell diagrams are determined by a splitting of {1, 2, . . . , 2k}
into k pairs of integers, {(a1b1), · · · , (akbk)}. By convention, we set am < bm for all m.

Barring bubbles and modulo Yang-Baxter equivalence moves, the diagrams are in one-

to-one correspondence with the pairings. The total number of inequivalent diagrams are

(2k)!/(2kk!) = 1, 3, 15, 105, · · · . Some subclasses of diagrams are easy to enumerate. For a

given k, there is a unique ‘top’ diagram with the maximal number, k(k − 1)/2, of vertices

(see figure 8). All external legs in a top diagram are paired diagonally.

At the opposite extreme, there are ‘bottom’ diagrams with no vertex (see figure 9).

The counting of non-intersecting diagrams connecting 2k cyclically ordered points is an
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Figure 8. Top-cell diagrams for k = 2, 3, 4.
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Figure 9. Bottom-cell diagrams for k = 2 (upstairs) and k = 3 (downstairs).

elementary problem in combinatorics. The answer is the k’th Catalan number Ck [35],

Ck =
1

k + 1

(
2k

k

)
=

(2k)!

(k + 1)!k!
= 1, 2, 5, 14, 42, · · · . (4.1)

To enumerate the diagrams with intermediate number of vertices, and relate them to

subspaces of OGk, we introduce a new notation called ‘OG tableaux’. There are two

related versions of the tableaux: ‘unfolded’ and ‘folded’.

Unfolded tableaux. Figure 10 illustrates how to map an on-shell diagram to a tableau

with an example. We first prepare the off-diagonal upper-left half of a (2k×2k) chessboard.

The diagonal boxes of the chessboard are numbered from 1 to 2k, with 1 placed at the lower-

left corner and 2k at the upper-right corner. The empty tableau contains 2k(2k − 1)/2

boxes, in one-to-one correspondence with a pair chosen from {1, . . . , 2k}. For each pair

(ambm) ∈ {(a1b1), · · · , (akbk)}, we put a ‘hook’ on the corresponding box. If we extend

the right/lower arm of the hook horizontally/vertically toward the diagonal, we recover

precisely a copy of the on-shell diagram. So far, the only novelty of the tableau notation

is that it defines a canonical way to fix the Yang-Baxter ambiguity.

Folded tableaux. It is possible to ‘fold’ the unfolded tableaux without reducing its

information content. We begin with examining each of the (k − 1) columns and (k − 1)

rows of the unfolded tableaux. If a column/row contains no hook, all the boxes in the

column/row are removed. The surviving boxes can be moved in horizontal or vertical

directions and fit into a (k × k) chessboard. See figure 11 for an illustration.

The content of an on-shell diagram is preserved through the folding procedure, so the

map between on-shell diagrams and folded tableaux is still bijective. The labels for source

– 17 –



J
H
E
P
0
9
(
2
0
1
4
)
0
8
5

1

2

3

4

5

6

1 2

3

45

6

1

2

3

4

5

6

(a) (b)

1 2

3

45

6
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Figure 11. Folding the OG3 tableaux.

legs {ai} are attached to the boundaries at the bottom edges of the folded tableau, while

those for sink legs {bi} are attached to the right edges. Thus, on-shell diagrams with the

same set of sink/source legs share the same configuration of boxes for the folded tableaux,

but are distinguished by the placement of hooks.

One of the fundamental feature of an on-shell diagram is its number of vertices (‘level’).

We can classify the on-shell diagrams according to the type of the corresponding (folded)

tableau and the level. The full classification for k = 2, 3 is given in figure 12.

We introduced the unfolded tableaux first and switched to the folded tableaux for a

pedagogical reason. But, it is no more difficult to work directly with the folded tableaux.

We shall construct the OGk tableaux as follows (see figure 13).

1. Draw a (k × k) chessboard.

2. Remove some boxes among the k(k − 1)/2 boxes in the lower-right off-diagonal half,

such that the remaining boxes form a Young tableau of at least k(k + 1)/2 boxes.

3. Assign 1 to 2k to the bottom and right edges of the stack of boxes in order.

4. Mark a box with a hook for each column, under the restriction that each row should

contain one and only one hook.

Each marked tableau gives an on-shell diagram. Its level can be determined as follows.

1. Count how many boxes were removed from the (k × k) chessboard.
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Figure 12. All diagrams for k = 2, 3 classified by folded tableaux and levels.
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Figure 13. Shaded boxes are removable.

2. Compute the number of row permutations required to arrange marked boxes diago-

nally from the bottom left corner to the top right.

3. Add up the two numbers, then subtract it from k(k − 1)/2.

As a special case, a top diagram requires no removal of boxes or rearrangement of marked

boxes. So, the prescription above gives the expected level k(k − 1)/2. The readers are

invited to test the prescription against less trivial examples in figure 12.

4.2 Canonically positive coordinates

Positroid stratification relates the combinatorics of on-shell diagrams and OG tableaux to

the geometry of POGk. Each tableau is mapped to a subspace of POGk. Importing the

terminology from the positroid stratification of G(k, n) [16, 17], we will call the subspaces

‘cells’ of POGk. The number of vertices of an on-shell diagram (level of its tableau) equals

the dimension of the cell. In this subsection, we will introduce a canonical coordinate

system to the cells. The cells sharing the same unmarked tableau (see figure 12) will share

a common coordinate patch.
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Figure 14. Source legs of tableaux translate into pivot columns of C-matrices.

+c

�c

�s

+s

+1

(a) hook (b) BCFW bridge

c = cosh t ,

s = sinh t .

Figure 15. Rules for reading off matrix elements from a tableau.

From tableaux to matrices. The (folded) OG tableaux reveals a decomposition of

OGk similar to the standard Schubert decomposition of G(k, n). The source legs translate

into ‘pivot’ columns. Let {pm} (m = 1, . . . , k) be a monotonically increasing labels for the

source legs. We put C into a row-echelon form by setting Cm,pm = 1, Cm,i<pm = 0 and

Cn6=m,pm = 0. An example is given in figure 14.

Note that using the GL(k) gauge symmetry, we can write every element of OGk in

the row-echelon form. The whole OGk can be written as a disjoint union, OGk =
⊔
λ Ωλ,

where λ runs over unmarked tableaux. One can interpret Ωλ as disjoint coordinate patches,

covering the whole OGk, then an on-shell diagram always belongs to a particular λ.

Unlike the Schubert decomposition of G(k, n), in the current setup, the orthogonality

constraint restricts the allowed set of pivot columns. Since the folded tableaux descend

from the unfolded tableaux which in turn are copied from allowed on-shell diagrams, the

folded tableaux naturally capture the allowed sets of pivot columns.

The matrix elements of non-pivot columns are determined by adopting the conversion

rule introduced in section 3.3 and modifying it slightly to fit into the tableaux notation.

Two modifications are needed. First, since the definition of positivity requires a specific

branch (3.15), we are forced to select the orientation-preserving BCFW bridges: σ = +1

in figure 7(a) and σ = −1 in figure 7(b). Second, the labels for external legs are ordered

clockwise in on-shell diagrams but counter-clockwise on OG tableaux. Taking these factors

into account, we arrive at a remarkably simple final rule, depicted in figure 15. Note that

the two types of bridges in figure 7 has been unified into a single one in figure 15. An

example of the application of the conversion rule is given in figure 16.

At this point, it is not clear how the positivity of Plücker coordinate is related to the

positivity of BCFW variables appearing in the conversion rule. To reveal the connection,

we will turn to an equivalent, and often more convenient, way to determine the matrix

elements. We will begin with bottom cells whose matrix elements are completely fixed by

positivty. We will then successively turn on BCFW bridges by multiplying the C-matrix

from the right by an SO(k, k) rotation matrix.
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C36 = (+s2)(+s3)(+1) = s2s3

C15 = (+1)(�c1)(+1)(�s3) + (+1)(�s1)(�c2)(+c3)

= c1s3 + s1c2c3

Figure 16. Reading off matrix elements from a tableau: an example.

1 2
3

4

1
2

3
4 ✓

1 1 0 0
0 0 1 1

◆✓
1 0 0 �1
0 1 1 0

◆
,

Figure 17. The C-matrices for 0-cycles at k = 2.

Bottom cells. Each unmarked tableau hosts a unique bottom cell (see figure 12). Given

an unmarked tableau with pivot columns {pm}, let {qm} be the labels for the ‘sink’ columns.

By construction, Cm,pm = 1 and Cm,i = 0 for i 6= pm, qm. The orthogonality constraint

requires that Cm,qm = ±1. Positivity determines the sign of Cm,qm uniquely. For bottom

cells, a minor is non-vanishing if and only if it contains either a pivot column pm or its sink

column qm but not both or neither. We start with (p1, p2, · · · , pk) = 1, which is positive

by construction. Suppose we replace a pivot column pm with its sink column qm. If the

two columns are adjacent (qm = pm + 1), the ordering of the columns in the minor will be

preserved, and the minor will remain positive if and only if Cm,qm = +1. Suppose now pm
and qm are not adjacent. Since we are dealing with bottom diagrams with no intersection

among lines, the interval between pm and qm may contain a pair (pn, qn) for some n, but

not pn or qn separately. We can recover the ordering of the minor by shifting the column

qm to the right by (qm−pm−1)/2 steps. The resulting ordered minor will become positive

if and only if we set

Cm,qm = (−1)(qm−pm−1)/2 . (4.2)

See figure 17 for the explicit form of C matrices for the bottom diagrams at k = 2.

BCFW rotation. Having specified the bottom cells, we can start turning on the BCFW

bridges. The BCFW bridges act on the C-matrix by a right multiplication of an SO(k, k)

‘rotation’. The rotations act only on the sink columns and leave the pivot columns intact.

When there are two or more BCFW bridges, the order of the rotation matrices can be

determined as follows. Let us define the ‘floor’ of a pivot column as their vertical distance

from the bottom of the OG tableau. For example, in figure 11(b), pivot columns 1 and 2

reside on the 0th floor, while column 5 resides on the 2nd floor.

The BCFW bridging begins with those pivot columns on the 0th floor. We bridge the

two left-most pivot columns, say 1 and 2, in the sense that the rotation matrix acts on the
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Figure 18. BCFW bridging of the top cell (above) and level 2 cell (below) for k = 3.

Figure 19. BCFW bridging of the level-5 cell for k = 4.

corresponding sink columns. The hook above pivot 1 is lowered from its original location.

If there are more pivot columns on the 0th floor, say column 3, then we bridge pivots 1

and 3. We continue the process until the hook above pivot 1 comes down to the 0th floor.

Finally, we decouple column 1 and elevate other columns on the 0th floor to the 1st floor.

We proceed in the same way on the 1st floor including those elevated from the 0th

floor and those born on the 1st floor. The second leftmost column from the 0th floor, if

exists, becomes the leftmost column of the 1st floor. The final result can be summarized

in a simple way. Given an empty OG tableau, to go from level 0 to the highest level, we

perform the BCFW bridging such that the order or rotation is read off from left to right

on the 0th floor, and then from left to right on the 1st floor, and so on. Two examples are

given in figure 18 and figure 19.

Positivity. A rotation matrix R for swapping a pair of sink columns ci and cj (i < j) is

the tensor product of the non-trivial 2 × 2 block,

Rii = Rjj = cosh t , Rij = Rji = (−1)(j−i−1)/2 sinh t , (4.3)
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and a (2k − 2) × (2k − 2) identity matrix. The sign factor in (4.3), which resembles (4.2),

has been inserted to preserve positivity for t ≥ 0. The rotation swaps the sink columns ci
and cj . It leads to mixing of the Plücker coordinates (· · · i · · · ) and (· · · j · · · ),

(· · · i · · · ) → Rii (· · · i · · · ) + Rij (· · · j · · · ) (4.4)

(· · · j · · · ) → Rji (· · · i · · · ) + Rjj (· · · j · · · ) (4.5)

When ci and cj are adjacent (j = i + 1), the two minors (· · · i · · · ) and (· · · j · · · ) share a

common ordering. Thus, to ensure positivity of minors after the rotation, we should require

that Rij ≥ 0. When ci and cj are not adjacent, the ordering of (· · · i · · · ) and (· · · j · · · )
differ precisely by the sign factor (−1)(j−i−1)/2, such that the rotation (4.3) with the sign

factor preserves positivity. Finally, we note that

(· · · i · · · j · · · ) → cosh2 t (· · · i · · · j · · · ) + sinh2 t (· · · j · · · i · · · )
= (cosh2 t − sinh2 t)(· · · i · · · j · · · ) = (· · · i · · · j · · · ) . (4.6)

We give an explicit form of the C-matrix for the two examples shown in figure 18. Since

the pivot columns form a (k × k) identity matrix by construction, it suffices to present the

sink columns. For the k = 3, level 2 cell with pivot columns {1, 2, 4}, we have

(C3, C5, C6) =




0 0 1

1 0 0

0 1 0







c1 0 −s1

0 1 0

−s1 0 c1







1 0 0

0 c2 s2

0 s2 c2


 =




−s1 c1s2 c1c2

c1 −s1s2 −s1c2

0 c2 s2


 , (4.7)

where we used the notations ci = cosh ti, si = sinh ti. For the k = 3 top-cell with pivot

columns {1, 2, 3}, we have

(C4, C5, C6) =




0 0 1

0 −1 0

1 0 0







1 0 0

0 c1 s1

0 s1 c1







c2 s2 0

s2 c2 0

0 0 1







1 0 0

0 c3 s3

0 s3 c3




=




s1s2 s1c2c3 + c1s3 c1c3 + s1c2s3

−c1s2 −c1c2c3 − s1s3 −s1c3 − c1c2s3

c2 s2c3 s2s3


 . (4.8)

It is straightforward to verify that all ordered minors of the corresponding C-matrices are

manifestly non-negative, provided that ti ≥ 0.

We have described two ways to construct the C-matrix. One is to use the conversion

rule summarized in figure 15 and the other is to perform a sequence of BCFW rotations.

The latter exhibits manifest positivity, while the former reveals the connection to on-shell

diagrams more clearly. As an astute reader may have expected, with hindsight, we have

adjusted the variables in the two approaches such that the they agree without any change

of variables. Although we have not been able to find a general proof for this agreement,

we have verified it in all examples up to k = 5 and expect that it will hold for all k.
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Integration measure. We note in passing that the integration measure is factorized into

a d log form in a way similar to that of [7]. Taking the measures from the elementary BCFW

vertices (2.24), (2.26) and taking account of Wick rotation, we see that the integration

measure for the full Grassmannian integral can be written as

∫ ∏

i

dti
sinh ti

=

∫ ∏

i

dzi
zi

=

∫ ∏

i

d log zi

(
zi := tanh

ti
2

)
. (4.9)

4.3 Polytope

It is known that G+(k, n) defines a combinatorial polytope also known as ‘Eulerian

poset’ [19]. We will verify one of the requirements for OGk to be an Eulerian poset.

Eulerian poset. It is straightforward to count the number of cells at each level for

arbitrary k. The result is most compactly summarized in terms of a generating function,

Tk(q) =

k(k−1)/2∑

l=0

Tk,l ql . (4.10)

Tk,l is the number of on-shell diagrams with 2k external legs and l vertices without any

bubble. Equivalently, Tk,l is the number of OGk tableaux at level l. A counting algorithm

based on the construction of OG tableaux in section 4.1 can be easily implemented on a

computer and generate Tk(q). The results for Tk(q) for small values of k are given by

T2(q) = 2 + q ,

T3(q) = 5 + 6q + 3q2 + q3 , (4.11)

T4(q) = 14 + 28q + 28q2 + 20q3 + 10q4 + 4q5 + q6 ,

T5(q) = 42 + 120q + 180q2 + 195q3 + 165q4 + 117q5 + 70q6 + 35q7 + 15q8 + 5q9 + q10 .

After computing Tk(q) up to k = 15 using our own algorithm, we found that a beautiful

closed-form expression for Tk(q) had been known for decades,4,5

Tk(q) =
1

(1 − q)k

k∑

j=−k
(−1)j

(
2k

k + j

)
qj(j−1)/2 . (4.12)

In special cases, this formula reproduces the simple general features discussed in section 4.1,

Tk(1) =
(2k)!

2kk!
, Tk,0 = Ck , Tk,k(k−1)/2 = 1 . (4.13)

Another property of Tk(q) that can be derived from (4.13) is that, for any k,

Tk(−1) =
∑

l

(−1)lTk,l = 1 . (4.14)

We recognize this as one of the central properties of an Eulerian poset. In section 4.2, we

assigned a coordinate patch of POGk to each tableau. In this geometric context, Tk(−1) is

interpreted as the Euler characteristic of POGk. For k = 2, 3 (see figure 20), (4.14) matches
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Figure 20. The ball topology of POG for k = 2, 3.
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2 3
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@ = +

Figure 21. Schematics of the boundary operation.

with the fact that the POG has the topology of a ball. It remains to be seen whether the

POG is a topological ball for all k.

Using the positroid stratification, we can refine the Eulerian poset structure.6

Consider the k = 2 and k = 3 examples in figure 12. We can compute an analogue of Tk(q)

for each chart containing several cells. They turn out to vanish in all charts, except for

the smallest one with pivot columns {1, 3, · · · , 2k − 1} which trivially gives 1. We checked

that the same phenomenon continues up to k = 7, but have not attempted a proof for

all k. Geometrically, it indicates that the subspaces of POGk are likely to be topological

balls. For instance, a level 2 cell for k = 3 shown in figure 12 is topologically a square

with four edges and four vertices.

Boundary operation. Following [7], we define the boundary operation ∂ acting on on-

shell diagrams such that it resolves each BCFW vertex in two ways shown in figure 21. The

corresponding OG2 tableaux (see figure 12) shows that the first term remains in the same

coordinate chart as the original one, {1, 2}, while the second term belongs to {1, 3}. It is

a general property of the canonical coordinate system; there always exist some boundaries

that cannot be reached without changing coordinates.

One possible approach to put every boundary within reach in a single coordinate patch

would be to use the cyclic gauge, where the odd-labelled columns form an identity matrix

and the even-labelled columns form an SO(k) rotation matrix. This approach has its own

drawbacks. First, the cyclic gauge necessarily introduces a BCFW bridge with non-adjacent

source legs {1, 3} or {2, 4}. As explained in [14], this type of BCFW bridge is substantially

more complicated than the ones used in this paper. Second, positivity imposes coupled,

non-linear relations among the angle variables of SO(k) rotation, in contrast to the simple

4See [36] and references therein.
5A similar result for G+(k, n) was obtained in [37].
6We thank Yu-tin Huang for bringing [19] to our attention. See also [32].
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Figure 22. Boundary operation.
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Figure 23. Boundary Operation ∂2 = 0 (mod 2).

ti ≥ 0 conditions in this paper. For these reasons, we will stay within the canonical

coordinate system and look for an alternative way to reach all boundaries.

It is convenient to separate the boundary operation ∂ into ∂L and ∂R, according to the

orientation of the resolved diagrams (see figure 22).

In [7], it was shown that ∂2 = 0 (mod 2) holds for G+(k, n) and conjectured that

the (mod 2) restriction could be dropped if suitable signs are attached to each on-shell

diagram.7 Here, we will outline a similar argument for POG using an example without

attempting a general proof. Applying ∂ to the k = 3 top-cell, we first observe that ∂L
results in bubble configurations, which we will discard by hand. Figure 23 shows not

only that each diagram has two incoming arrows, implying ∂2 = 0 (mod 2), but also that

∂2
R = 0 (mod 2) = ∂L · ∂R. In general, we have

∂L · ∂R + ∂R · ∂L = 0 (mod 2) = ∂2
R = ∂2

L. (4.15)

7This conjecture for G+(k, n) is in fact known. It was shown in [17] that the poset for G+(k, n) is a

subposet of ‘Bruhat order, and it is a classical result that the statement of the conjecture holds for Bruhat

order. We thank T. Lam for explaining this point to us.
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Boundaries of a top-cell. The top-cell at each k has precisely k boundaries as can

be seen in (4.11). We will identify them with the vanishing loci of the k independent

consecutive minors that appear in the original OG integral (2.8).

We begin with k = 3 (see figure 23). In our coordinate system (4.7), the three inde-

pendent consecutive minors are

(123) = 1 , (234) = sinh t1 sinh t2 , (345) = sinh t2 sinh t3 . (4.16)

We can easily obtain these minors without constructing the whole C-matrix. The only

relevant matrix elements for (234) and (345) are c14 and c36, respectively, which can be

read off from the paths 1 → 4 and 3 → 6, respectively. These paths do not involve a turn

so that each vertex contributes a sinh ti. Finally, the construction of POG guarantees that

the overall sign should be positive.

A similar argument can be applied to consecutive minors for higher k. We simply

summarize the results. First, (123 · · · k) = 1 = (k + 1, · · · , 2k) by construction. For

other consecutive minors, we can always draw a rectangle within the OG tableau whose

right/bottom edges correspond to the sink/pivot columns participating in the minor. If we

collect all BCFW variables inside the rectangle, the product of sinh t factors produces the

correct result for the minor. For example, for a general k,

(234 · · · , k + 1) =

k−1∏

i=1

sinh ti, (345 · · · k + 2) =

2k−3∏

i=2

sinh ti, and so on. (4.17)

One may try to reach the boundaries of the top-cell by turning off some ti. However,

sometimes it forces two or more consecutive minors to vanish at the same time, leaving a

bubble configuration. Among the k(k − 1)/2 BCFW variables, only (k − 1) of them can

be safely turned off without generating a bubble. It is easy to see that they correspond to

the (k − 1) vertices along the diagonal of the OGk tableau.

By definition of the top-cell, the canonical coordinate does not allow (123 · · · k) to

vanish. Recall from section 3.2 that, for k = 2, the boundary with ‘(12)=0’ was reached

by taking t → ∞ in the canonical coordinates and performing a gauge transformation. A

similar change of variable, which leads to a different coordinate patch, can reach the last

boundary of a top-cell. In our prescription for computing the minors using rectangles, it is

clear that all but (123 · · · k) contains sinh tk−1 coming from the lower right corner of the OG

tableau for the top-cell. Taking tk−1 → ∞ makes all consecutive minors except (123 · · · k)

diverge. Since only the ratios between minors are gauge invariant, we may divide all minors

by sinh tk−1 so that (123 · · · k) converges to zero and all other minors remain finite. This

configuration is equal to the OGk tableau whose the rightmost-bottom box is removed.

Going back to the k = 3 example, setting t2 → ∞ and dividing all minors by sinh t2 gives

(123) = 0, (234) = sinh t1, (345) = sinh t3. (4.18)

This agrees with the result obtained from the (13)(25)(46) tableau in figure 18.

In summary, we have observed that POGk is likely to form an Eulerian poset and to

have a ball topolgy. As a partial attempt to state and prove these conjectures rigorously,
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we took an initial step to define the notion of boundary operation satifying ∂2 = 0. Such ∂

would be naturally identified with the boundary operation of the usual simplicial homology

on the geometric side. We verified that ∂2 = 0 (mod 2) works for POGk up to k = 3 and is

likely to generalize straightforwardly for higher k. But, dropping the ‘modulo 2’ restriction

seems to be a difficult task. We hope to revisit these problems in a future work.
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