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Abstract: The analytic study of differential cross sections in QCD has typically focused

on individual observables, such as mass or thrust, to great success. Here, we present a

first study of double differential jet cross sections considering two recoil-free angularities

measured on a single jet. By analyzing the phase space defined by the two angularities

and using methods from soft-collinear effective theory, we prove that the double differential

cross section factorizes at the boundaries of the phase space. We also show that the cross

section in the bulk of the phase space cannot be factorized using only soft and collinear

modes, excluding the possibility of a global factorization theorem in soft-collinear effective

theory. Nevertheless, we are able to define a simple interpolation procedure that smoothly

connects the factorization theorem at one boundary to the other. We present an explicit

example of this at next-to-leading logarithmic accuracy and show that the interpolation is

unique up to α4
s order in the exponent of the cross section, under reasonable assumptions.

This is evidence that the interpolation is sufficiently robust to account for all logarithms in

the bulk of phase space to the accuracy of the boundary factorization theorem. We compare

our analytic calculation of the double differential cross section to Monte Carlo simulation

and find qualitative agreement. Because our arguments rely on general structures of the

phase space, we expect that much of our analysis would be relevant for the study of

phenomenologically well-motivated observables, such as N -subjettiness, energy correlation

functions, and planar flow.
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1 Introduction

Historically, there has been significant effort devoted to understanding and computing the

all-orders distributions of jet observables in QCD [1–20]. This has led to incredibly precise

predictions for the differential cross sections of these observables which have been used, for

example, to determine the strong coupling αs to high precision [9, 11, 21]. For all their

successes, though, this program can only answer questions about individual observables. In

this paper, we move beyond this paradigm of single differential cross sections, to exploring

the full phase space of multi-differential cross sections analyzed on a single jet.1 Multi-

differential cross-sections have been studied before in an SCET context, but these are also

multi-jet cross-sections as well, where each jet sector receives at most one measurement [10,

23–25]. The closest in spirit to our current study was the construction of SCET+ [26].

Using angularities as a case study, we find that factorization methods are confined to the

boundaries on the physical phase space regions, and we propose an interpolation method

to connect all the various forms of factorization possible.

There exist multiple motivations for why one might want to study such multi-

differential cross sections. Aside from purely formal interest in connecting different effective

field theory regimes, we focus on two motivations here: for studying the correlations be-

tween different observables and for understanding the properties of observables formed

from the ratio of two infrared and collinear (IRC) safe observables. Phenomenologically

one would want to know the correlations between different observables so as to determine

the extent to which they probe identical physics. However, this cannot be done by studying

the differential cross sections of individual observables alone. Correlations are encoded in

the multi-differential cross section of the observables and so to understand the correlations

between two observables we must study their double differential cross section.

Studying the correlations between two observables is not necessary to make highly

precise predictions for QCD. However, with the advent and boom of the jet substructure

program [27–29] increasingly detailed questions about the dynamics of QCD jets are being

asked and probed by experiment [30–56]. In particular, one of the goals of jet substructure

is to design highly efficient observables and procedures for discriminating QCD jets from

boosted heavy particle decays. Many of the proposed procedures for doing so involve the

measurement of several observables on the jet and making appropriate cuts. Thus, to deter-

mine if a QCD jet can fake looking like a boosted W , Z, H or top quark requires a thorough

analysis of the correlations of the observables that go into the discrimination procedure.

Several of the most powerful discrimination observables are formed from the ratio

of two IRC safe observables. This includes N -subjettiness [57, 58], energy correlation

functions [7, 59], planar flow [60, 61] and angular structure functions [62, 63]. While it might

seem like the ratio of two IRC safe observables is still IRC safe and so calculable order-

by-order in perturbation theory, it was shown in ref. [64] that ratio-type observables are

actually IRC unsafe, if the denominator observable can become arbitrarily small. Näıvely,

this is an insurmountable barrier to understanding these observables in perturbative QCD.

1A first example (to our knowledge) of joint resummation of any form was in ref. [22].
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Indeed, this is true with the standard procedure of computing single differential cross

sections which require IRC safety to be well-defined in perturbation theory.

However, in ref. [65] it was shown that ratio observables can actually be made well-

defined, if all-orders effects are taken into account. There, the simple observable formed

from the ratio of two angularities [6, 10, 61] measured on a single jet was studied, where

the angularity eα is2

eα =
1

EJ

∑
i∈J

Ei
sin θi tanα−1 θi

2

sinR0 tanα−1 R0
2

≈ 1

EJ

∑
i∈J

Ei

(
θi
R0

)α
. (1.1)

EJ is the jet energy, R0 is the jet radius, θi is the angle between particle i and an appropri-

ately defined jet axis, and α > 0 for IRC safety. The approximation is accurate for R0 � 1,

which we assume throughout this paper. In practice, we will take R0 ' 0.4, which is not

strictly much smaller than 1; however, it has been shown that finite jet radius corrections

are small [17, 66].

The differential cross section of the ratio r of two angularities eα and eβ can be found

by marginalizing the double differential cross section of the two angularities:

dσ

dr
≡
∫
deαdeβ

d2σ

deα deβ
δ

(
r − eα

eβ

)
. (1.2)

Ref. [65] showed that, while the ratio observable is not IRC safe and so cannot be computed

order-by-order in αs, by resumming the large logarithms present in the double differential

cross section to all orders, the differential cross section for the ratio r is well-defined and

calculable. This property was called “Sudakov safety” because the calculability of the

cross section of r relied on the fact that small values of the angularities eα and eβ are

exponentially suppressed by the Sudakov factor. The calculation of the double differential

cross section of angularities was done to leading logarithmic (LL) accuracy in ref. [65] with

no robust predictions about what happens at higher logarithmic orders. In particular,

Sudakov safety was only exhibited to LL accuracy, and some important and subtle physics

might arise at higher orders that could change the story.

Given these motivations, the double differential cross section of two angularities mea-

sured on a jet provides a laboratory for understanding multi-differential cross sections. To

have adequate control over large logarithmic corrections, we need to prove a factorization

theorem which would provide an order-by-order recipe for resumming to arbitrary accu-

racy. We will find that establishing such a factorization theorem for all of phase space in

the double differential cross section is not possible with identified soft and collinear modes.

In particular, a subtlety in the resummation of double differential cross sections is that

the two measured observables do not define a unique set of scales for soft and collinear

radiation in the jet.

Nevertheless, we will show that there do exist factorization theorems on the boundaries

of phase space for the double differential cross section of two angularities using soft-collinear

effective theory (SCET) [67–71]. Single differential cross sections factorize when the ob-

servable is sufficiently small, when one can say that soft and collinear dynamics dominate

2We normalize to the jet radius so that when comparing two angularities with different angular exponents,

the jet radius is not relevant.

– 3 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
6

the structure of the jet. For the case of the double differential cross section of angularities

eα and eβ, small values of the angularities does mean that soft and collinear dynamics

dominate the jet. However, the physical phase space for the double differential cross sec-

tion is two dimensional, and the precise scaling of eα and eβ with respect to one another

emphasizes soft over collinear physics, or vise-versa. Strictly speaking, only on the bound-

aries of the phase space are the soft and collinear modes on-shell, where the factorization

theorems hold.3

The boundaries of phase space are defined by the requirements of energy conservation

and clustering of emissions into the jet of radius R0. Energy conservation corresponds to the

boundary4 where eβα = eαβ and the jet radius requirement is the boundary line eα = eβ. The

physical phase space lies in between. We will show that, at these boundaries, the double

differential cross section of the angularities eα and eβ reduces to the single differential cross

section for one of the angularities times a δ-function for the other angularity, depending

on the boundary, plus terms that integrate to 0. For example, near the boundary eβα = eαβ ,

the double differential cross section reduces to

d2σ

deα deβ

∣∣∣∣
eβα∼eαβ

' σ0H × J(eα, eβ)⊗ S(eα)

=
dσ

deα
δ(eβ) +

1

e
1+ β

α
α

fα+

(
eβ

e
β/α
α

)
, (1.3)

where ' denotes the relationship that follows from the factorization theorem and fα+ is a

function that integrates to zero on eβ ∈ [0, e
β/α
α ]. H represents the hard function, J(eα, eβ)

is the double differential jet function and S(eα) is the soft function for eα alone.

Importantly, this relationship captures the effect of canonical resummation on this

boundary as predicted by the factorization theorem and the only non-trivial dependence

on eβ exists in the ratio eβ/e
β/α
α . The fact that the soft function is independent of eβ

implies that the ultraviolet singular structure of the cross section exists on the line eβ = 0,

as enforced by δ(eβ). This is a non-trivial statement of the factorization theorem on this

boundary that to all orders the RG evolution does not generate a non-zero value for eβ.

On the other boundary of phase space, where eα = eβ, we find a similar relationship for

the singular terms, with the single differential cross section of eβ times δ(eα):

d2σ

deα deβ

∣∣∣∣
eα∼eβ

' σ0H × J(eβ)⊗ S(eα, eβ)

=
dσ

deβ
δ(eα) +

1

e2
β

fβ+

(
eα
eβ

)
. (1.4)

Non-trivial dependence on eα only exists in the ratio eα/eβ.

Because the factorization theorem only applies near the boundaries of the phase space,

we cannot formally claim any logarithmic accuracy of the double differential cross sec-

tion in the bulk of the phase space. However, we are able to determine a function that

3Chris Lee has humorously referred to this as a “holographic factorization theorem”.
4This is true to logarithmic accuracy in the double differential cross section. Power-suppressed correc-

tions deform this boundary, but for most of this paper we will ignore these effects.
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Figure 1. Summary of the results of the factorization theorem of the double differential cross

section of angularities. The factorization theorems exists near the boundaries of the allowed phase

space where the double differential cross section reduces to the appropriate single differential cross

section plus terms that integrate to 0. The bulk of the phase space is described by an interpola-

ting function.

interpolates into the bulk of the phase space between the boundaries; crucial to this is

the existence of factorization theorems at the boundaries. The interpolation between the

boundary factorization theorems can be determined most simply by appropriately setting

scales in the logarithms and by adding terms that are subleading at the boundaries. This

conjectured double differential cross section must satisfy several consistency conditions,

such as correctly reproducing the single differential cross section of one of the angulari-

ties. Thus, while we are unable to fully demonstrate formal logarithmic accuracy in all

of the phase space, we will present a conjecture for the double differential cross section

to next-to-leading-logarithmic accuracy (NLL) which satisfies all consistency conditions.5

The summary of this factorization theorem discussion is illustrated in figure 1.

The structure of the cross section as found from the interpolation procedure is fasci-

nating and manifests the barrier to proving a factorization theorem in the bulk of the phase

space. The interpolation procedure defines a double cumulative cross section containing

the following logarithms:

Σ(eα, eβ) ⊃ log eα, log e
1/β
β , log e

1−β
α−β
α e

α−1
α−β
β . (1.5)

log eα and log e
1/β
β can naturally be understood as arising from soft and collinear diver-

gences, respectively, and so correspond to the modes that are identified in SCET. The other

5In this paper, we will only consider the resummation of global logarithms. A study of non-global [72]

and clustering [73] logarithms from the jet algorithm restriction in the double differential cross section will

be left to future work.
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logarithms, which we refer to as “kT ”,6 are novel, arising neither from soft nor collinear

modes over all of the phase space of eα and eβ. Indeed, the fact that there are three

logarithmic structures in the bulk of the phase space suggests that there must be three

modes in a factorization theorem of the double differential cross section that would be

valid everywhere.7 At the boundaries of phase space, the kT logarithms degenerate to

soft or collinear logarithms, which is why SCET factorization applies there. This situation

is very different than, for example, the recoil convolution in the broadening factorization

theorem [12, 74]. In that case, the relevant modes were still only soft and collinear. Any

factorization theorem of the double differential cross section must be super-SCET.

A possible complaint with the interpolation procedure8 is that it is not unique and

therefore there is no control over the logarithms that appear in the bulk of the phase

space in the double differential cross section. This is an especially valid point because

there is no factorization theorem in the bulk of the phase space and therefore no formal

accuracy of the interpolation conjecture in this region is guaranteed. However, we will

show that (under reasonable assumptions on the double differential cross section) to NLL

accuracy, the boundary conditions are sufficiently robust to forbid all logarithms that are

not generated by our procedure for interpolation up to O(α4
s) in the exponent of the double

cumulative cross section. This is strong evidence that our interpolation procedure of setting

scales can capture all logarithms that exist in the double differential cross section of two

angularities to NLL accuracy over all of the phase space.

The outline of this paper is as follows. In section 2 we discuss the relevant phase

space for the double differential cross section in the two angularities eα and eβ. This will

also necessitate a discussion of the definition of the axis about which the angularities are

measured. To remove sensitivity to recoil from soft wide angle emissions, we measure an-

gularities about the broadening axis of a jet [20, 59, 65]. In section 3 we compute the

double differential cross section at fixed-order. This will illustrate some of the subtleties of

resummation of the double differential cross section. In section 4 we present the factoriza-

tion theorem of the double differential cross section. We first discuss what can be learned

simply from the phase space, then turn to the relevant SCET modes that contribute to

the two angularities, and finally explicitly show that the double differential cross section

factorizes near the boundaries of the phase space. Because the factorization theorem con-

tains unfamiliar double differential jet and soft functions, we discuss the structure of these

objects in section 5 from constraints of power counting and consistency of the factoriza-

tion. In section 6 we suggest a simple procedure for interpolating the double differential

cross section from the boundaries into the bulk of the phase space. We will show that this

interpolating conjecture for the double differential cross section satisfies non-trivial consis-

6For a single emission, this new logarithm reduces to the relative transverse momentum of the emit-

ted parton.
7It might seem that the case when α = 1 or β = 1 is special, where the logarithms degenerate, which

may suggest that the number of modes that contribute to these cases is reduced. However, as in the case

of traditional broadening, just because the contributions from different modes to the observable degener-

ate does not mean that the number of modes that contribute changes. As was observed with recoil-free

angularities in ref. [20], we expect that there is smooth behavior through α = 1 and β = 1.
8We thank Jesse Thaler for extensive discussions of this point.
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tency conditions and provide evidence that it captures all logarithms to NLL accuracy. In

section 7 we compare our expression for the double differential cross section to Monte Carlo

simulation and find good qualitative agreement. Finally we close in section 8 and suggest

several future directions and applications for studying double differential cross sections.

2 Angularities phase space

We begin with a discussion of the phase space of the differential cross section of two

angularities. From the introduction, we define the angularity eα measured on a narrow

jet as

eα =
1

EJ

∑
i∈J

Ei

(
θi
R0

)α
, (2.1)

where EJ is the jet energy, R0 � 1 is the jet radius, and the sum runs over all constituents

in the jet. For IRC safety, α > 0. θi is the angle between particle i and an appropriately

chosen axis. Historically, this has been chosen to be the jet axis, defined as the sum of

three-momenta of all particles in the jet. However, recently [59] it has been emphasized

that this choice of axis is sensitive to recoil effects from the emission of soft, wide angle

particles. At small values of the angular exponent α, the effect of recoil dominates the value

of the angularity, significantly reducing its power for quark versus gluon jet discrimination,

for example.

Instead, one can define an axis that is insensitive to these recoil effects and one example

of this is the broadening axis [59, 65].9 The broadening axis is defined as the axis in the jet

that minimizes the β = 1 measure of N -subjettiness [57, 58]; equivalently, the broadening

axis is defined as the axis that minimizes the jet broadening [3, 76, 77]. That is, the

broadening axis b̂ corresponds to the axis that minimizes the scalar sum of momentum

transverse to it:

min
b̂

[∑
i∈J

Eiθib̂

]
. (2.2)

For a jet with two constituents, the broadening axis aligns with the hardest particle. In

general, the broadening axis typically aligns with the direction of the hard core of energy

in the jet. We also define the broadening axis to be the center of the jet so that all particles

in the jet are closer than the jet radius R0 to the broadening axis.

With this set-up, now consider the allowed phase space of the double differential cross

section of two angularities eα and eβ. We will assume that α > β and so, because all angles

between particles and the broadening axis are less than R0, eα < eβ. This implies that

as eβ → 0, then eα → 0. Also, because the angularities eα and eβ are first non-zero at

the same order in perturbation theory, then eα → 0 implies that eβ → 0. Therefore, in

addition to the upper bound on the phase space, there must also be a lower bound on the

phase space for two angularities eα and eβ. This lower bound of the phase space follows

from energy conservation.

9It should be noted that the broadening axis is one definition that results in recoil-free observables.

Other recoil-free examples include energy correlation function observables [7, 59, 62] and the axis defined

by the winner-take-all jet algorithm recombination scheme [20, 75]. To the accuracy that we work in this

paper, all of the recoil-free choices are identical.
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These properties can be seen explicitly in a jet with two constituents. The phase space

can be described by the splitting angle θ and the energy fraction z of the emission. For

the emission to be in the jet, θ < R0 and for energy to be conserved z < 1. The matrix

element then necessarily contains the restrictions

Θ(1− z)Θ(R0 − θ) . (2.3)

In these phase space coordinates, in the soft emission limit, the recoil-free angularity eα is10

eα = z

(
θ

R0

)α
, (2.4)

which ranges from 0 to 1. The phase space coordinates z and θ can be rewritten in terms

of the two angularities eα and eβ as

z = e
− β
α−β

α e
α

α−β
β ,

θ

R0
= e

1
α−β
α e

− 1
α−β

β . (2.5)

The phase space restrictions written in terms of eα and eβ are then

Θ(1− z)Θ (R0 − θ) ⇒ Θ
(
eβα − eαβ

)
Θ (eβ − eα) , (2.6)

where the first Θ-function follows from energy conservation and the second Θ-function fol-

lows from demanding that the emission is in the jet. The allowed phase space in the (eα, eβ)

plane is illustrated in figure 2, setting α = 2 and scanning over a range of values for β.11

3 Fixed-order cross section

In this section, we will explicitly compute the double differential cross section of two jet

angularities at O(αs). The process we will consider is gluon emission from a quark and

we will use the soft emission form of the angularities from eq. (2.4). For simplicity, we

will just use the QCD splitting function as representative of the matrix element, but this

only differs from the full QCD matrix element at O(αs) by non-singular terms. To the

accuracy that we consider, the (normalized) cumulative distribution of two angularities

can be computed from

Σ(eα, eβ) = 1 +
αs
π

∫ R0

0

dθ

θ

∫ 1

0
dz Pq(z)

[
Θ

(
eα − z

θα

Rα0

)
Θ

(
eβ − z

θβ

Rβ0

)
− 1

]
(3.1)

= 1− αs
π

∫ 1

0

dθ

θ

∫ 1

0
dz Pq(z)

[
Θ
(
zθβ − eβ

)
+ Θ (zθα − eα) Θ

(
eβ − zθβ

)]
,

10Strictly speaking, the recoil-free angularities to this order in αs are

eα = min[z, 1− z] θ
α

Rα0
.

Throughout this paper, we will only consider logarithmically-enhanced contributions to the angularities.

Therefore, to the accuracy that we consider, the definition of the angularities in eq. (2.4) is sufficient.
11This phase space has been discussed previously in ref. [65].

– 8 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

eΒ

eΑ

Angularities Phase Space
Α = 2.0

Β = 1.5
Β = 1.0
Β = 0.5
Β = 0.2

Figure 2. The allowed phase space of the double differential cross section of angularities eα and

eβ . The angular exponent α is fixed to be 2 and β is varied. For a given value of β, the phase space

consists of the respective shaded region and all shaded regions above.

where Pq(z) is the quark splitting function given by

Pq(z) = CF
1 + (1− z)2

z
. (3.2)

The −1 in the first line is the subtraction of the virtual contribution which, by unitarity,

we can assume is defined on the same phase space as the real contribution. On the physical

phase space defined by eβ > eα and eβα > eαβ , we find12

Σ(eα, eβ) = 1 +
αs
π
CFΘ (eβ − eα) Θ

(
eβα − eαβ

){
− 7

4β
− 3

2

log eβ
β
− log2 eβ

β

+
2

α
eα −

e2
α

4α
+

2(α− β)

αβ
e
− β
α−β

α e
α

α−β
β − α− β

4αβ
e
− 2β
α−β

α e
2α
α−β
β −

log2 eα
eβ

α− β

}
. (3.3)

From the double cumulative cross section, the double differential cross section is found

by differentiating with respect to eα and eβ. Away from the boundaries of the phase space,

we find

d2σ

deα deβ
≡ ∂

∂eα

∂

∂eβ
Σ(eα, eβ) (3.4)

= 2
αs
π

CF
α− βΘ (eβ − eα) Θ

(
eβα − eαβ

)−e− α
α−β

α e
β

α−β
β +

e
−α+β
α−β

α e
α+β
α−β
β

2
+

1

eαeβ

 .

12Note that we have ignored contributions to the cumulative cross section that affect the total cross

section at O(αs).
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The structures of the cumulative cross section and the differential cross section have

some surprising distinctions. In the cumulative distribution, there are several terms which

appear power-suppressed in the physical phase space region. For example, consider the term

2(α− β)

αβ
e
− β
α−β

α e
α

α−β
β .

Because eαβ < eβα in the physical phase space, this term is suppressed by powers of the

angularities. Specifically, it is constant on the curve eβα = eαβ , but otherwise vanishes in the

physical phase space as eα, eβ → 0. However, in the double differential cross section, this

term produces

−2
e
− α
α−β

α e
β

α−β
β

α− β .

Because eα < eβ on the physical phase space, this term actually diverges as eα, eβ →
0. Clearly, this term is integrable so one would not necessarily think that it needs to

be resummed.

This term, however, is actually vital to reproduce the single differential cross section of

one angularity to single logarithmic accuracy. By marginalizing over one of the angularities,

we have

dσ

deβ
=

∫ 1

0
deα

d2σ

deα deβ
=

∫ 1

0
deα

∂

∂eα

∂

∂eβ
Σ(eα, eβ)

=
∂

∂eβ
Σ(eα, eβ)

∣∣∣∣
eα=eβ

− ∂

∂eβ
Σ(eα, eβ)

∣∣∣∣
eα=e

α/β
β

. (3.5)

Note that the first term is evaluated at the upper limit of the phase space. This means

that in this term, eα has been integrated over its entire physical range and so by itself, this

term must be the differential cross section of eβ. That is,

dσ

deβ
=

∂

∂eβ
Σ(eα, eβ)

∣∣∣∣
eα=eβ

. (3.6)

The second term on the second line of eq. (3.5) therefore must be zero to reproduce the

correct cross section.

This can be checked explicitly. The derivative of the cumulative distribution with

respect to eβ is

∂

∂eβ
Σ(eα, eβ) =

αs
π
CFΘ

(
eβα − eαβ

)
Θ(eβ − eα)

− 3

2β

1

eβ
− 2

β

log eβ
eβ

+
2

β
e
− β
α−β

α e
β

α−β
β −

e
− 2β
α−β

α e
α+β
α−β
β

2β
− 2

α− β
log

eβ
eα

eβ

 . (3.7)
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For eα = eβ, this produces

∂

∂eβ
Σ(eα, eβ)

∣∣∣∣
eα=eβ

=
αs
π
CF

(
− 3

2β

1

eβ
− 2

β

log eβ
eβ

+
2

β
− eβ

2β

)
, (3.8)

which is correct to this accuracy. For eα = e
α/β
β , it indeed vanishes. However, there is a

delicate cancelation of terms that is necessary for this term to vanish. Note that if the

näıvely power-suppressed terms in the double cumulative cross section are removed, the

derivative becomes

∂

∂eβ
Σ(eα, eβ)log =

αs
π
CFΘ

(
eβα − eαβ

)
Θ(eβ − eα)

(
− 3

2β

1

eβ
− 2

β

log eβ
eβ

− 2

α− β
log

eβ
eα

eβ

)
.

(3.9)

At the boundary where eα = e
α/β
β , we find

∂

∂eβ
Σ(eα, eβ)log

∣∣∣∣
eα=e

α/β
β

= −αs
π
CFΘ

(
eβα − eαβ

)
Θ(eβ − eα)

3

2β

1

eβ
, (3.10)

which is clearly non-zero. Therefore, to guarantee that the double differential cross sec-

tion is accurate and consistent to single logarithmic accuracy requires that the cumulative

cross section contains terms that are näıvely power-suppressed with respect to logarithmic

terms. This is unfamiliar from the calculation of resummed single differential cross sections

because there is no analogous consistency condition and will be important in the following

sections. Note that the double logarithms are correct, even when all power-suppressed

terms are removed.

4 Factorization theorem

Having discussed the phase space and fixed-order calculation of the double differential cross

section, we now turn to studying its all-orders properties. We present the factorization

theorem for the double differential cross section of angularities measured on a single jet.

This section consists of three parts ordered in increasing technical detail, but only the first

part is necessary to understand the remainder of this paper. First, we return to discussing

the phase space of the double differential cross section. Nearly all of the conclusions from

this section follow from simple geometric arguments about the limiting behavior of the

double cumulative distribution at the boundaries of the phase space. We then discuss the

relevant on-shell SCET modes which contribute to the angularities. We will show that

there are two soft modes with different invariant mass which are relevant in the bulk of

the phase space of the angularities. This will be an obstacle to factorization on the full

phase space but, by an appropriate partition, we are able to prove factorization of the cross

section at the boundaries of the phase space. The form of the factorization theorem will

result in non-trivial identities between the cross sections at the two boundaries and we will

use this in the following section to interpolate the cross section from the two boundaries

into the bulk region.
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(a) (b)

Figure 3. Illustration of the double cumulative distribution evaluated on the boundaries of phase

space. Left: evaluated on the boundary eβα = eαβ which reduces the double cumulative distribution to

Σ(eα). Right: evaluated on the boundary eα = eβ which reduces the double cumulative distribution

to Σ(eβ).

4.1 A study of the phase space

Consider again the allowed phase space for the two angularities eα and eβ, with α > β.

The double cumulative distribution Σ(eα, eβ) is the integral of the double differential cross

section over a rectangle that includes the origin of the phase space. In particular, the

double cumulative distribution can be evaluated at one of the boundaries of the phase space,

illustrated in figure 3. For example, if the double cumulative distribution is evaluated at

the boundary where eβα = eαβ , note that eβ has been integrated over its entire allowed range:

from eβ = eα to eβ = e
β/α
α . Therefore, on this boundary, the cumulative distribution can

only depend on eα:

Σ(eα, eβ = eβ/αα ) = Σ(eα) , (4.1)

where Σ(eα) is the cumulative distribution for eα alone. A similar relationship exists on

the other boundary, where

Σ(eα = eβ, eβ) = Σ(eβ) . (4.2)

To determine the differential cross section, we differentiate the double cumulative dis-

tribution. The boundary behavior of the cumulative distribution implies that

∂

∂eα
Σ(eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=
∂

∂eα
Σ(eα) =

dσ

deα
, (4.3)

which is the single differential cross section for eα. This can be related to the double

differential cross section by integration:

∂

∂eα
Σ(eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=

∫ e
β/α
α

deβ
d2σ

deαdeβ
=

dσ

deα
, (4.4)
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which holds for all values of e
β/α
α > 0. For this relationship to be true at this boundary,

the double differential cross section should be expressable as13

d2σ

deαdeβ

∣∣∣∣
eβ∼e

β/α
α

=
dσ

deα
δ(eβ) + f+(eα, eβ) , (4.5)

where the f+ function integrates to zero on eβ ∈ [0, e
β/α
α ]. A similar relationship holds for

the other boundary, where eα = eβ.

Then, the statement of the boundary factorization theorem is: the double differential

cross section simplifies at the boundaries:

d2σ

deαdeβ

∣∣∣∣
eβ∼e

β/α
α

' dσ

deα
δ(eβ) +

1

e
1+ β

α
α

fα+

(
eβ

e
β/α
α

)
,

d2σ

deαdeβ

∣∣∣∣
eα∼eβ

' dσ

deβ
δ(eα) +

1

e2
β

fβ+

(
eα
eβ

)
. (4.6)

We have made use of the fact that the arguments of the non-trivial functions assume a very

specific form dictated by the factorization, as discussed in detail in section 5. Factorization

theorems for differential cross sections of individual angularities are well-known [6, 10,

12, 20]; therefore, the double differential cross section factorizes at the boundaries. In

the following sections, we argue for factorization by studying the on-shell modes of the

double differential cross section in detail. This relationship between the single and double

differential cross section is quite remarkable, and can be understood as a precise statement

of the UV structure of the effective theory. The eα = 0 and eβ = 0 lines are where

all UV divergences are localized. This is consistent with the fact that these lines are

parametrically far away from the boundary where the factorization theorem is valid, since

this is a statement about the UV structure of the theory.

4.2 Modes of the double differential cross section

We now turn to studying the on-shell SCET modes that contribute to the double differential

cross section. For small values of a jet angularity eα, the dominant contributions to eα
come from collinear and soft radiation in the jet. In general, the contribution to eα from

collinear modes scales like θα, where θ is the characteristic angular size of the collinear

splittings. Soft modes, by contrast, contribute an amount that scales like their energy.

Therefore, for the soft and collinear modes to be on-shell and contribute comparably to

the angularity eα, their momenta must scale like14

pC ∼ Q(1, λ2, λ)

pS ∼ Q(λα, λα, λα) , (4.7)

13All that is necessary is that the function that multiplies the differential cross section of eα integrates to

1 and the remainder function integrates to 0. Using distributions, a function that integrates to 1 can always

be expressed as an appropriate δ-function plus a distribution that integrates to 0. Therefore, the expression

in eq. (4.5) is not unique, but will be justisfied with the factorization theorem in the following sections.
14The literature is not in agreement whether to assign the α dependence to the soft or collinear mode,

since it is only their relative invariant mass that is physical. If we instead put the α dependence in the

collinear mode, we would find two jet modes (instead of two soft modes) in table 1. However, the form of

the factorization theorem would be identical.
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z θ eα eβ
C 1 λ λα λβ

Sα λα 1 λα λα

Sβ λβ 1 λβ λβ

Table 1. Scaling of the on-shell collinear (C) and soft (Sα, Sβ) modes of the double differential

cross section. z is the energy fraction of the mode and θ is the angle of the mode from the jet axis.

in the −, + and ⊥ lightcone coordinates, respectively. λ is a small parameter which sets

the size of the angularity; here λ ∼ e1/α
α .

For the double differential cross section, this analysis can be extended to the two

angularities, eα and eβ. We will only consider on-shell modes, which for small values of

eα and eβ are only soft and collinear radiation. For on-shell collinear modes, the scaling

of their momenta must be the same as for a single observable, from eq. (4.7). Because the

angular scaling of the angularities eα and eβ is different, the collinear modes contribute

an amount of order λα to eα and λβ to eβ. Soft modes are more subtle. Now, because

there are two angularities, there are two possible scalings of the soft modes. Either the

momenta of the soft modes scale like λα or they scale like λβ. Any other scaling would

either be off-shell or would not be consistent with the collinear modes. Therefore, while

there is a single collinear mode that contributes to the double differential cross section of

eα and eβ, there are two soft modes whose scalings are set by the angular exponents of

the angularities.

This is shown in table 1 where the scaling in the small parameter λ of the collinear

and soft modes is given in terms of their energy fraction z and their splitting angle θ. Also,

we show the contribution to the two angularities from each mode. The collinear mode

contributes a different amount to each angularity, depending on the angular exponent. By

contrast, each soft mode contributes the same amount to the two angularities, because the

angularities are linear in the energy of the modes. Thus, in addition to having to deal with

two soft modes on a single jet, the scaling of the angularities will be unfamiliar from the

single differential cross section.

We will prove in the following section that with this scaling of the modes, the double

differential cross section does factorize. Here, we will give a heuristic argument for the

factorization of the cross section. If we assume that α > β, we can determine the dominant

modes that contribute at leading power in λ to the cross section. For now, we will assume

that the cross section can be written in the factorized form:

1

σ0

d2σ

deα deβ
= H × J(eα, eβ)⊗ S(eα, eβ) , (4.8)

where σ0 is the Born-level cross section, H is the hard function, J(eα, eβ) is the jet function

describing the collinear modes’ contribution and S(eα, eβ) is the soft function describing

the soft modes’ contribution. The ⊗ symbol denotes convolution. This form of the cross

section is suggestive, but must be expanded in powers of λ to ensure that the divergences

in the hard, jet and soft functions cancel consistently at leading power in λ.
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This expansion can be done depending on the chosen scaling of the soft modes. By

choosing a particular scaling of the soft modes, we restrict ourselves to a small region of the

full angularities phase space, described in section 2, where those soft modes are on-shell. If

we first choose the Sα soft modes, then the soft and collinear contributions to the angularity

eα both scale like λα. Therefore, they both will appear in the leading-power cross section.

However, for this choice of soft mode scaling, the contribution from soft modes to eβ, which

scale like λα, is power-suppressed with respect to the contribution from collinear modes,

which scale like λβ. Explicitly, this is the limit in which eα � eβ, corresponding to a region

of phase space far from the boundary eα = eβ. Therefore with this choice of scaling of the

soft modes, the leading-power factorized cross section has the form:

1

σ0

d2σα

deα deβ
= H × J(eα, eβ)⊗ S(eα) , (4.9)

where the superscript α denotes the scaling of the soft modes. Note that both angularities

appear in the jet function and so the angle of the splitting is dominating the double

differential cross section. Thus, this form of the cross section is valid in the region of

phase space controlled by collinear emissions, near the boundary where eβα = eαβ . By

similar arguments, choosing the other scaling of the soft modes produces the factorized

cross section
1

σ0

d2σβ

deα deβ
= H × J(eβ)⊗ S(eα, eβ) , (4.10)

which corresponds to an expansion with eβ � e
β/α
α , which is far from the boundary where

eαβ = eβα. Therefore, the factorization theorem of eq. (4.10) is valid near the boundary

dominated by soft emissions, where eα = eβ.

Therefore, the double differential cross section factorizes near the boundaries of the

phase space. The form of the factorization is quite interesting. Near the α boundary,

consistency of the renormalization group implies that

γH + γJ(eα, eβ) + γS(eα) = 0 , (4.11)

where γF denotes the anomalous dimensions of the appropriate function F . The hard

function has no dependence on the observable and the soft anomalous dimension only

depends on the angularity eα. Thus, near this boundary of phase space the anomalous

dimension of the jet function can only have non-trivial dependence on eα. Now we are in

a position to see that the analytic forms of the double differential factorization theorems

given in eq. (4.6) capture the UV structure of each factorization. The δ-function term

(which multiplies the single differential cross-section) contains all of the divergences of the

factorization, and hence dictates its canonical resummation. It must be the case that the

UV-divergence structure is localized by these δ-functions, since each factorization contains

a single differential function, and between all sectors divergences cancel. Put simply, on

a boundary the UV structure of the factorization reduces to that of the single differential

cross-section.
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4.3 Proof of boundary factorization theorem

We now present a proof in SCET that the double differential cross section factorizes near

the boundaries of the phase space. In this proof, we will implicitly use many results from

ref. [10] which discussed the factorization of jet observables for the first time, and so, here,

will only focus on the novel aspects of the factorization theorem of the double differential

cross section. Also, our analysis will focus on jets in e+e− → qq̄ events, but using ref. [10],

this can be extended to jets in e+e− collision events with any number of well-separated jets.

We begin with the double differential cross section in QCD for e+e− → qq̄:

d2σ

deαdeβ
= Lµν

∫
ddx 〈0|Jµ(x)δ(êα − eα)δ(êβ − eβ)OJJν(0)|0〉 , (4.12)

where Lµν is the leptonic tensor and Jµ(x) is the QCD current at position x. The two

δ-functions enforce the measured values of the angularities and the operator OJ is the jet

algorithm restriction. Here, we will mostly be agnostic to the form of this operator. It is

defined to return a jet in the event on which the angularities are measured. To the order to

which we work, the jet algorithm in e+e− → qq̄ events can be enforced by integrating over

one hemisphere of the event and boosting to constrain radiation of the other hemisphere

to exist in a cone of radius R0. This setup will be sufficient for our discussion here, with

a more detailed discussion of jet algorithm factorization left to ref. [10]. As mentioned in

the introduction, we will only discuss the resummation of global logarithms. Factorization-

violating non-global and clustering logarithms will be left to future work.

To be able to factorize the cross section, we match the QCD current with the corre-

sponding current written in terms of fields in SCET as

Jµ(x) =
∑
n

Cχ̄nS
†
nΓµSn̄χn̄(x) , (4.13)

where n̄ (n) is the (anti-)quark light-cone direction, χ (χ̄) is the collinear (anti-)quark

field, S (S†) is a light-like Wilson line, and C is the matching coefficient matrix. Spinor

indices have been suppressed for simplicity. However, matching SCET to QCD is more

subtle than for single differential cross sections. For the case of the double differential

cross section of two angularities, the form of the factorization depends not only on the fact

that the angularities are small, but also the way in which they scale with respect to one

another. This is important because the current matching does not set the virtuality of the

soft radiation. For a single differential cross section, the measurement of the observable

sets the virtuality of the soft emission, but for the double differential cross section, the soft

radiation does not have a unique, well-defined virtuality, as discussed in section 4.2. Only

once the relative scaling of the angularities eα and eβ is specified does the soft radiation

have a well-defined virtuality.

To enforce a virtuality of the soft modes, we can restrict the measurement operator to

only have support in the region of phase space where the relative scaling of the angularities

eα and eβ produce a unique soft mode. From section 4.2 we found two on-shell soft modes,

and so to do this, we can partition the phase space into two regions: one in which the soft
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Figure 4. Angularities phase space divided into boundary regions α and β in which different

factorization theorems live, defined by the soft modes’ virtuality. The virtuality of the soft modes

in region α (β) is λ2α (λ2β). The dividing line of the regions is eα = eκβ , where κ ∈ [1, α/β].

modes have virtuality λ2α and the other in which the soft modes have the virtuality λ2β.

That is, the measurement operator can be written as

δ(êα − eα)δ(êβ − eβ) = δ(êα − eα)δ(êβ − eβ)[Θ(eα − eκβ) + Θ(eκβ − eα)] , (4.14)

where we have inserted the identity. κ controls the relative scaling of eα with respect to eβ.

On the physical phase space, κ ∈ [1, α/β]. At this level, eq. (4.14) is an operator identity,

however, each Θ-function constrains the angularities in a region of phase space with a

unique, on-shell soft mode. This partitioning is illustrated in figure 4 where boundary

region α corresponds to eκβ > eα and boundary region β corresponds to eα > eκβ.

Inserting eq. (4.14) into the expression for the full QCD cross section, we have

d2σ

deαdeβ
= Lµν

∫
ddx 〈0|Jµ(x)δ(êα − eα)δ(êβ − eβ)OJJν(0)|0〉

= Lµν

∫
ddxΘ(eα − eκβ) 〈0|Jµ(x)δ(êα − eα)δ(êβ − eβ)OJJν(0)|0〉

+ Lµν

∫
ddxΘ(eκβ − eα) 〈0|Jµ(x)δ(êα − eα)δ(êβ − eβ)OJJν(0)|0〉 . (4.15)

Note that the Θ-functions commute with all operators because they are functions of pure

numbers (i.e., the value of the angularities). Because each term after the second equal sign

in eq. (4.15) only has a single on-shell soft mode, each term separately can be factorized by

matching currents as defined in eq. (4.13). For single angularities measured with respect

to the jet thrust axis, this was done in ref. [10] and for angularities measured with respect

to the jet broadening axis this was done in ref. [20]. Because it is a relatively standard

and familiar procedure, we do not present the details of the factorization of the QCD cross

section into SCET operators.
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Performing the factorization and expanding to leading power, we find the following

form for the cross section for angularities eα and eβ measured on a single jet

1

σ0

d2σ

deαdeβ
= Θ(eκβ−eα)H×J(eα, eβ)⊗αS(eα)+Θ(eα−eκβ)H×J(eβ)⊗β S(eα, eβ) , (4.16)

where the hard function H is the absolute square of the matching coefficient matrix C,

H = C†C. The subscript on the symbol ⊗ denotes the appropriate convolution. For

example, in the first term, because the soft function is independent of eβ, the jet and soft

functions are only convolved in eα. The single differential functions are

J(eβ) =
(2π)3

Nc
〈0| χ̄n̄ δ(n · P̂ −Q) δ(êβ − eβ)OJδ(2)(P̂⊥)

n/

2
χn̄ |0〉 ,

S(eα) =
1

Nc
tr 〈0|T

{
S†n̄ Sn

}
δ(êα − eα)OJ T̄

{
S†n Sn̄

}
|0〉 , (4.17)

where the jet’s − component of momentum is Q and we have assumed that the jet is in

the n̄ direction. The double differential jet and soft functions are

J(eα, eβ) =
(2π)3

Nc
〈0| χ̄n̄ δ(n · P̂ −Q) δ(êα − eα)δ(êβ − eβ)OJ δ(2)(P̂⊥)

n/

2
χn̄ |0〉 ,

S(eα, eβ) =
1

Nc
tr 〈0|T

{
S†n̄ Sn

}
δ(êα − eα)δ(êβ − eβ)OJ T̄

{
S†n Sn̄

}
|0〉 . (4.18)

The calculation of the double differential jet and soft functions will be discussed in section 5.

The definitions of the various operators appearing in these functions can be found ref. [12]

and references therein.

Thus, the double differential cross section factorizes in the boundary regions of phase

space. By the arguments of the previous section the double differential cross section re-

duces to a single differential cross section of the appropriate angularity, depending on the

boundary. Because the double differential cross section must be independent on the choice

of partitioning defined by κ, this will provide powerful constraints on the double differential

cross section and will allow us to define an interpolating function from the boundaries into

the bulk of the phase space. This will be studied in detail in section 6.

4.4 Limit of soft-collinear factorization

We are now in a position to understand why only two factorization theorems can be written

down for the double differential cross section, and using the traditional ingredients of

soft-collinear factorization, no universal factorization formula could be presented.15 Two

separate arguments apply, leading to this conclusion. First, the fact that there exist two

distinct soft modes as defined in table 1 implies that there is no unique singular fixed-order

cross section. Rather, there are two different singular cross sections that depend on the

scaling of the soft mode. No one soft mode covers all of phase space.

Alternatively, one can be wholly ignorant of the power-counting and still come to

the same conclusion. Formally, the SCET Lagrangians for the soft and collinear sectors at

15We thank Daekyoung Kang, Iain Stewart, and Jesse Thaler for extensive discussions on this point.
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leading power are equivalent to full QCD [78]. Thus one can forget about the relative power

counting of the low-scale components of the momenta between the soft and jet modes, and

simply write down all possible jet and soft functions that could contribute. As long as

the number of jets in the process is fixed, and hence also both the hard function and the

number of eikonal lines in the soft function, the set of jet and soft functions is finite, and

is controlled only by how many angularity measurements are imposed on a sector. So for

a two-jet process, the only on-shell functions that can be written down are the single and

double differential jet and soft functions from eqs. (4.17) and (4.18). Fixing the phase

space fixes the form of the divergences, regardless of how one power-counts the modes in

the sector relative to each other.16 Given these functions, a simple one-loop calculation is

sufficient to show which combinations are RG consistent with each other.

As can be seen from the results of appendix A, the only RG consistent combinations

are those in eq. (4.16). In particular, using only soft or collinear modes, there is no sense

to the factorization theorem eq. (4.8), independent of any argument about power counting.

This constitutes a remarkable test of the consistency and power of the effective theory

approach: fixing the scaling of the soft modes and appropriately expanding the phase

space according to the power counting automatically generates RG-consistent combinations

of on-shell functions. The precise power counting must be taken seriously to have consistent

factorization. Of course one must eventually consider the power counting to know where

in the phase space a given factorization formula holds, and this then shows that there is no

universal factorization formula using traditional ingredients of soft-collinear factorization.

The non-uniqueness of the low-scale theory has an important consequence new to multi-

differential cross sections. Namely, there is no operator product expansion (OPE) from one

region to the other that allows a tower of effective theories that one could construct that

covers all of phase space. Thus no RG scheme can connect the different regions of phase

space. This is in distinction to the single differential cross section, where the singular

distribution is unique. Indeed, this uniqueness of the singular terms is what allows the

various regions of the differential cross section to be connected by controlling the RG

evolution of the sectors. Even when one is in the tail of the distribution, the factorization

theorem is correctly reproducing a unique set of terms in the fixed-order cross section, so

one only needs to add the non-singular terms in the cross section to achieve the full result.

5 Double differential jet and soft functions

The factorized form of the double differential cross section from eq. (4.16) contains single

as well as double differential jet and soft functions. Soft and jet functions for individ-

ual angularities measured on a jet have been computed in refs. [10, 20], but the double

differential objects are new. As discussed in the previous section, the divergences of the

double differential jet and soft functions can only have non-trivial dependence on one of

the angularities, for consistency of the factorization. However, the finite terms will have

16This is why the equivalence between the SCET and QCD Langrangians is important: to calculate the

function once the operators are fixed, one does not need to know the power counting.
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non-trivial dependence on both angularities and these contributions are necessary for im-

proved accuracy of the double differential cross section. Here, we use general arguments

to determine the form of the double differential jet and soft functions to all orders. The

explicit calculation of the jet and soft functions is presented in appendix A.

5.1 Jet function

Much of the structure of the double differential jet function can be determined by power

counting and the form of the factorization theorem. From the power counting of the

factorization theorem, the jet function must scale as

J(eα, eβ) ∼ 1

λα+β
, (5.1)

where the angularities scale as eα ∼ λα and eβ ∼ λβ. In addition, for consistency of

the factorization theorem, the divergences in the double differential jet function can only

have non-trivial dependence on eα, of exactly the same form as the single differential jet

function:

[J(eα, eβ)]div = [J(eα)]div δ(eβ) , (5.2)

where div denotes the divergent parts of the jet functions. These two observations imply

that the jet function has the following general form to all orders:

J(eα, eβ) = C(αs) δ(eα)δ(eβ) + e
−1− β

α
α

∞∑
L=1

DL(αs)

(
µ

e
1
α
αQ

)2Lε

FL

(
eβ

e
β
α
α

)
. (5.3)

The sum runs over all loop orders L with C(αs) = 1+O(αs) and DL(αs) = O(αLs ). ε is the

dimensional regularization parameter and the jet scale µ must appear in the combination

µ

e
1/α
α Q

to be consistent with the anomalous dimension. FL is a function that depends on the loop

order but scales like λ0 to all orders. The only such combination of eα and eβ with this

scaling is is e
β
α
α /eβ.

This last quality is critical so that all of the divergences can be localized at eβ = 0 (as

required by the factorization theorem) with the +-prescription [79]. For a function f with

support on [0, b], where b > 0, the function can be expressed as

Θ(x)Θ(b− x) f
(x
b

)
= δ(x)

∫ b

0
dx′ f

(
x′

b

)
+
[
Θ(x)Θ(b− x) f

(x
b

)]b
+
. (5.4)

The b superscript denotes that the +-distribution is defined on (0, b]. It has the property

that it integrates to zero:∫ b

0
dx′

[
Θ(x′)Θ(b− x′) f

(
x′

b

)]b
+

= 0 . (5.5)
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For the jet function, eβ is defined on [0, e
β/α
α ], up to an O(1) factor for the upper bound.

Therefore, order-by-order, the function FL can be regulated by the +-prescription:

Θ (eβ) Θ(e
β
α
α −eβ)FL

(
eβ

e
β
α
α

)
=δ(eβ)

∫ e
β
α
α

0
de′β FL

(
e′β

e
β
α
α

)
+

[
Θ (eβ) Θ(e

β
α
α −eβ)FL

(
eβ

e
β
α
α

)]e βαα
+

.

(5.6)

The power counting guarantees that all of the dependence of the jet function on eβ can

be regulated by the +-prescription as it only appears in jet function in the combination

e
β
α
α /eβ. This is a powerful test of the consistency of the factorization theorem, since the

power counting forced the particular form of the factorization in eq. (4.16). The explicit

calculation of the double differential jet function at one-loop is presented in appendix A.1.

5.2 Soft function

We apply similar arguments to the the double differential soft function, S(eα, eβ). The

scaling of the soft function is different than the jet function, because it exists near the

boundary where eα = eβ ∼ λβ. Then, from the factorization theorem the soft function

scales like

S(eα, eβ) ∼ 1

λ2β
. (5.7)

For consistency of the factorization theorem, the divergences in the double differential soft

function can only have non-trivial dependence on eβ and must be of the same form as the

single differential soft function:

[S(eα, eβ)]div = [S(eβ)]div δ(eα) . (5.8)

As with the jet function, these observations imply that the soft function has the following

general form to all orders:17

S(eα, eβ) = C(αs) δ(eα)δ(eβ) + e−2
β

∞∑
L=1

DL(αs)

(
µ

eβQ

)2Lε

FL

(
eα
eβ

)
. (5.9)

Again, the sum runs over all loop orders L with C(αs) = 1 +O(αs) and DL(αs) = O(αLs ).

The soft scale µ must appear in the combination

µ

eβQ

to be consistent with the anomalous dimension. FL is a function that depends on the loop

order but scales like λ0 to all orders. For the scaling of the double differential soft function,

the only such combination of eα and eβ that scales like λ0 is eα/eβ.

The singularities of the soft function can be localized at eα = 0 by the +-prescription.

As discussed with the jet function, because eα is defined on [0, eβ] in the soft function, the

function FL can be written as a +-distribution:

Θ (eα) Θ(eβ − eα)FL

(
eα
eβ

)
= δ(eα)

∫ eβ

0
de′α FL

(
e′α
eβ

)
+

[
Θ (eα) Θ(eβ − eα)FL

(
eα
eβ

)]eβ
+

.

(5.10)

17Of course, the functions C, DL, and FL will be different for the double differential jet and soft functions.
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The calculation of the double differential soft function at one-loop is presented in

appendix A.2.

6 Interpolating between boundary regions

With the boundary factorization theorem, we would like to determine the double differential

cross section throughout the allowed phase space for the two angularities. Because the

factorization theorem only holds near the boundaries, we cannot claim any formal accuracy

in the bulk of the phase space. Nevertheless, because the double differential cross section

must satisfy several non-trivial constraints, these can be used to determine an interpolation

from one boundary of the phase space to the other. In this section, we will present the

interpolation to NLL accuracy in the boundary factorization theorem.

First, we will define what we mean by “NLL accuracy” for the double differential cross

section. Typically, for a single observable e, NLL is defined to capture the leading terms

in the exponent of the cumulative distribution with the scaling that αs log e ∼ 1. That is,

NLL accuracy is

log ΣNLL(e) ⊃ αns logn+1 e, αns logn e , (6.1)

for all n > 0. For the double cumulative distribution of angularities eα and eβ, we define

NLL similarly, but include all possible logarithms of eα and eβ:

log ΣNLL(eα, eβ) ⊃ αns logn+1−m eα logm eβ, α
n
s logn−l eα logl eβ , (6.2)

for all n > 0, 0 ≤ m ≤ n+ 1 and 0 ≤ l ≤ n. This definition assumes that the logarithms of

the double cumulative distribution exponentiates, which we believe is a reasonable expec-

tation.18 Also, as we measure the angularities on a jet, there will be non-global logarithms

that arise at NLL; however, we will ignore them here.

Now, we collect the constraints that were discussed in section 4 on the double dif-

ferential cross section of two angularities and its factorization theorem. With Σ(eα, eβ)

the double cumulative distribution of the angularities eα and eβ, it must reduce on the

boundaries to:

Σ(eα, eβ = eβ/αα ) = Σ(eα) , Σ(eα = eβ, eβ) = Σ(eβ) . (6.3)

The derivatives of the cumulative distribution are also constrained:

∂

∂eα
Σ(eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=
dσ

deα
,

∂

∂eβ
Σ(eα, eβ)

∣∣∣∣
eα=eβ

=
dσ

deβ
,

∂

∂eα
Σ(eα, eβ)

∣∣∣∣
eβ=eα

= 0 ,
∂

∂eβ
Σ(eα, eβ)

∣∣∣∣
eα=e

α/β
β

= 0 . (6.4)

The fact that these constraints are satisfied only for the total cross section implies that

the factorization into soft and collinear modes cannot occur throughout the allowed phase

space. The form of the boundary factorization theorem from eq. (4.16) is

1

σ0

d2σ

deαdeβ
= Θ(eκβ−eα)H×J(eα, eβ)⊗αS(eα)+Θ(eα−eκβ)H×J(eβ)⊗β S(eα, eβ) . (6.5)

18This subtlety will be discussed further in section 6.3.
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This must be independent of κ for the factorization theorems at the two boundaries to be

consistent with one another.

To determine a conjecture for the double differential cross section that interpolates

between the boundaries of phase space subject to the above constraints, we will do the

simplest thing possible. We will set the scales in the logarithms that appear in the boundary

factorization theorem appropriately so that the total cross section constraints in eqs. (6.3)

and (6.4) are satisfied and the two boundary factorization theorems match onto one another

continuously. However, because the RG evolution in the double differential cross section

can only ever generate a non-zero value for one of the two angularities at the boundaries,

this interpolation must be done at the level of the double cumulative cross section.

With this approach, we can then set scales in the logarithms of the double cumulative

distribution on the boundary where eβ = e
β/α
α (where it reduces to the cumulative distri-

bution for eα alone) so that when continued to the boundary where eα = eβ, it reduces to

the cumulative distribution for eβ and satisfies the other constraints. As we observed in

the fixed-order calculation of section 3, to satisfy the derivative constraints on the double

cumulative distribution to single logarithmic accuracy required including näıvely power-

suppressed terms in the cumulative distribution. Similar power-suppressed terms will need

to be included in the resummed double cumulative distribution, in addition to setting

scales, to satisfy all constraints. Because these power-suppressed terms are not exponenti-

ated in the boundary factorization theorem, they are otherwise arbitrary and correspond

to an uncertainty in the calculation.

To illustrate our procedure for interpolation, we will study in detail the double cu-

mulative distribution to NLL accuracy. This will allow us to use known results for the

cumulative distributions for individual recoil-free angularities at NLL.19 Higher accuracy

can be achieved by matching to fixed-order double differential cross sections, profiling the

jet and soft scales in the factorization theorem [11] or resumming the individual angular-

ities to higher logarithmic order. Here, we will only consider NLL order and will address

improved accuracy in future work.

6.1 NLL interpolation

At the boundaries of the phase space, the double cumulative distribution of two angularities

eα and eβ must reduce to the cumulative distribution of a single angularity, so we start by

considering the form of the cumulative distribution for a single recoil-free angularity. To

NLL accuracy,20 the normalized cumulative distribution of a single recoil-free angularity

eβ measured on a jet can be expressed as [7, 10]

Σ(eβ) =
e−γER

′(eβ)

Γ(1 +R′(eβ))
e−R(eβ)−γiT (eβ) . (6.6)

R(eβ) is often referred to as the radiator and consists of the cusp pieces of the anomalous

dimensions of the jet and soft function and to NLL accuracy, is evaluated at two-loop

19At NLL, recoil-free angularities are identical to two-point energy correlation functions for the same

value of the angular exponent β.
20Of course, we are ignoring non-global logarithms that first arise at NLL.
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order. The second term in this exponent, γiT (eβ), is the non-cusp piece of the anomalous

dimensions which result from hard collinear splittings. For NLL accuracy, it is evaluated

at one-loop order. The prefactor accounts for the effects of multiple emissions adding

together to produce a given value of the angularity eβ. R′(eβ) is the logarithmic derivative

of the radiator:

R′(eβ) ≡ − ∂

∂ log eβ
R(eβ) . (6.7)

γE is the Euler-Mascheroni constant. The explicit expression for the cumulative distribu-

tion at NLL is given in appendix B.

Because our strategy for achieving the interpolation is to only change the scale of the

logarithms appearing in the single cumulative distribution, the normalized double cumu-

lative distribution must be of the same functional form:

Σ(eα, eβ) =
e−γER̃(eα,eβ)

Γ(1 + R̃(eα, eβ))
e−R(eα,eβ)−γiT (eα,eβ) , (6.8)

for some functions R(eα, eβ), T (eα, eβ) and R̃(eα, eβ). This then enforces the boundary

conditions on the double cumulative distribution onto its constituent functions:

R(eα, eβ = eβ/αα ) = R(eα) , R(eα = eβ, eβ) = R(eβ) ,

T (eα, eβ = eβ/αα ) = T (eα) , T (eα = eβ, eβ) = T (eβ) ,

R̃(eα, eβ = eβ/αα ) = R′(eα) , R̃(eα = eβ, eβ) = R′(eβ) ,

up to terms suppressed by positive powers of eα, eβ. In addition, the derivatives of each

constituent function must satisfy the boundary conditions so as to correctly reproduce the

differential cross sections of individual angularities at the boundaries. For example, for the

derivative with respect to eα, we have the following derivative boundary conditions:

∂

∂eα
R(eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=
∂

∂eα
R(eα) ,

∂

∂eα
R(eα, eβ)

∣∣∣∣
eβ=eα

= 0 ,

∂

∂eα
T (eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=
∂

∂eα
T (eα) ,

∂

∂eα
T (eα, eβ)

∣∣∣∣
eβ=eα

= 0 ,

∂

∂eα
R̃(eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=
∂

∂eα
R′(eα) ,

∂

∂eα
R̃(eα, eβ)

∣∣∣∣
eβ=eα

= 0 .

Similar constraints exist for derivatives with respect to eβ. With these results, we can

consider each function separately and determine how it can be defined so as to interpolate

between the boundary regions. As illustration of the interpolation, we will analyze the

one-loop cusp component of the radiator R(eα, eβ) and the non-cusp function T (eα, eβ).

The complete expression for the double cumulative distribution that satisfies all constraints

is given in appendix C.

An important point to note is that, because they are defined by one-gluon emission,

R(eα, eβ) and T (eα, eβ) can be directly computed in QCD. Here, we choose to compute

them via the interpolation to illustrate the procedure. Also, we expect that the logarithmic

– 24 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
6

structures generated by the interpolation are generic, and could be tested by computing

anomalous dimensions at higher orders directly. On the other hand, the multiple emis-

sions factor R̃(eα, eβ) can not be interpreted as the logarithmic derivative of the radiator

R(eα, eβ) and so the method for computing it directly is not clear. However, its loga-

rithmic structure can be determined by matching to the boundary conditions. This is an

illustration of the power of the interpolation.

6.1.1 One-loop cusp/radiator interpolation

Consider first the one-loop radiator function for the angularity eα:

R(1)(eα) =
Ci

2παsβ2
0

[
1

α− 1
(1 + 2αsβ0 log eα) log(1 + 2αsβ0 log eα)

− α

α− 1

(
1 + 2αsβ0

log eα
α

)
log

(
1 + 2αsβ0

log eα
α

)]
, (6.9)

where β0 is the coefficient of the one-loop β-function. Equivalently, this can be written as

an integral over the jet and soft function cusp anomalous dimensions:

R(1)(eα) = −2

∫ αs(µ)

αs(µJ )

dα′

β[α′]
ΓJ [α′]

∫ α′

αs(µJ )

dα′′

β[α′′]
− 2

∫ αs(µ)

αs(µS)

dα′

β[α′]
ΓS [α′]

∫ α′

αs(µS)

dα′′

β[α′′]
,

(6.10)

where β[αs] is the β-function and the cusp anomalous dimensions of the jet and soft function

to one-loop are

ΓJ [αs] =
αs
π
Ci

α

α− 1
, ΓS [αs] = −αs

π
Ci

1

α− 1
. (6.11)

µ is the renormalization scale and µJ and µS are the jet and soft scales, which we take to

be their canonical values:

µJ = e1/α
α Q , µS = eαQ , (6.12)

where Q is the energy of the jet. Making this identification, we will refer to the terms

in eq. (6.9) with log eα as soft logarithms and those with log e
1/α
α as collinear.21 In this

section, we will use the expression for the radiator in eq. (6.9) because we are only working

to one-loop order. However, the expression eq. (6.10) is true to all orders, and so the

interpolation obtained in this section could be tested at higher orders, given the cusp

anomalous dimensions of the jet and soft functions at higher orders.

This expression in eq. (6.9) is the one-loop component of the radiator R(eα, eβ) on the

boundary eβ = e
β/α
α . To this accuracy, we are free to change the argument of the soft and

collinear logarithms by an order-1 number near this boundary of the phase space. The

natural such number is eαβ/e
β
α, which will enable the radiator to be continued into the bulk

of the phase space, away from the boundary eβ = e
β/α
α .

When eα = eβ, the radiator must be a function of eβ alone. For example, starting

from the soft logarithms at the eβ = e
β/α
α boundary, this means that we must choose an

21Note that the anomalous dimensions are singular at α = 1. However, as shown explicitly in ref. [20], the

cross section is continuous through α = 1 and at α = 1 the relevant divergences transform into ultraviolet

and rapidity divergences.
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exponent c such that

log eα

(
eαβ

eβα

)c∣∣∣∣
eα=eβ

= log eβ,
log eβ
β

. (6.13)

Note that soft logarithms on one boundary can mix and become soft or collinear logarithms

on the other boundary of phase space (and similarly for collinear logarithms). Therefore,

there are four possible terms that we must consider:

log eα → log eβ , log eα →
log eβ
β

,

log eα
α
→ log eβ ,

log eα
α
→ log eβ

β
, (6.14)

where the arrow indicates the interpolation from boundary eβ = e
β/α
α to the boundary

eα = eβ. For example, consider the interpolation log eα → log eβ. We multiply the argument

of the soft logarithm on the eβ = e
β/α
α boundary by 1 on that boundary and then continue

to the other boundary:

log eα

(
eαβ

eβα

)c∣∣∣∣
eα=eβ

= log eβ . (6.15)

The exponent c that satisfies this equation is c = 0. The three other logarithmic interpo-

lations can be determined similarly.

With this prescription for scale setting, the one-loop radiator is

R(1)(eα, eβ)=
Ci

2παsβ2
0

xU (2αsβ0 log eα)+

(
1

α−1
−x
)
U

2αsβ0

log eα−1
α e

α
β

(1−β)

β

α−β


+

(
− α

α− 1
− y
)
U

(
2αsβ0

log eβ
β

)
+y U

(
2αsβ0

log e1−β
α eα−1

β

α−β

) ,
(6.16)

for some constants x, y. We have used the short-hand

U(z) = (1 + z) log(1 + z) . (6.17)

When eβ = e
β/α
α , this reduces correctly to R(1)(eα), and when eα = eβ, only soft and

collinear logarithms of eβ are produced.

We now enforce the boundary conditions on R(1)(eα, eβ) to determine the constants x

and y. When eα = eβ, eq. (6.16) becomes

R(1)(eα, eβ)
∣∣∣
eα=eβ

=
Ci

2παsβ2
0

[
(x+ y) U(2αsβ0 log eβ)

+ (−1− x− y)U

(
2αsβ0

log eβ
β

)]
. (6.18)

For this to reproduce R(1)(eβ), we must have

x+ y =
1

β − 1
. (6.19)
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To fix the remaining coefficient, we consider the derivative boundary conditions. Taking

the derivative of the radiator with respect to eα and evaluating it on the boundary eβ = eα
it must vanish:

∂

∂eα
R(1)(eα, eβ)

∣∣∣∣
eβ=eα

= 0

=
Ci
πeα

[(
x+

1− β
α− β y

)
U ′(2αsβ0 log eβ)

+

(
1

α− 1
− x
)
U ′
(

2αsβ0
log eβ
β

)]
, (6.20)

which then requires

x+
1− β
α− β y = 0 ,

1

α− 1
− x = 0 . (6.21)

The other derivative boundary conditions produce the same constraints on x and y. It

then follows that

x =
1

α− 1
, y =

α− β
(α− 1)(β − 1)

, (6.22)

and so the radiator function at one-loop is

R(1)(eα, eβ) =
Ci

2παsβ2
0

[
1

α− 1
U (2αsβ0 log eα)− β

β − 1
U

(
2αsβ0

log eβ
β

)

+
α− β

(α− 1)(β − 1)
U

(
2αsβ0

log e1−β
α eα−1

β

α− β

)]
, (6.23)

which satisfies all boundary conditions.

The form of this expression is interesting and we will discuss it in more detail in sec-

tion 6.2. For the radiator of a single angularity, there were only two logarithmic structures

corresponding to soft or collinear logarithms. However, the interpolating radiator for two

angularities has three logarithmic structures: soft (log eα), collinear (log e
1/β
β ) and what we

will call “kT ” logarithms:

kT logarithms = log e
1−β
α−β
α e

α−1
α−β
β . (6.24)

We use the term kT because this combination of eα and eβ reduces to kT = zθ/R0 for one

emission:

e
1−β
α−β
α e

α−1
α−β
β =

(
z
θα

Rα0

) 1−β
α−β

(
z
θβ

Rβ0

) α−1
α−β

= z
θ

R0
. (6.25)

Near the boundaries of the phase space the kT logarithms appropriately reduce to either

soft or collinear logarithms. This would seem to suggest that to fully describe the bulk of

the phase space requires introducing an additional mode into the effective theory. However,

because there are only two types of singularities in QCD, we do not know how this would

be done. The existence of a possible meta-effective theory that is well-defined over the

entire phase space would be intriguing and deserves further study.
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6.1.2 Non-cusp interpolation

As a second example of interpolation from the boundary into the bulk of the phase space,

we will study the non-cusp piece, T (eα, eβ). To NLL accuracy, the non-cusp piece for a

single angularity eβ is

T (eβ) =
1

πβ0
log

(
1 + 2αsβ0

log eβ
β

)
. (6.26)

This expression itself satisfies the non-derivative boundary conditions on T (eα, eβ) when

continued to the boundary where eβ = e
β/α
α . Then, we have

T (eα, eβ) =
1

πβ0
log

(
1 + 2αsβ0

log eβ
β

)
. (6.27)

Nevertheless, this expression does not satisfy the derivative boundary conditions. For

example, the derivative with respect to eα vanishes, which satisfies the boundary condition

when eβ = eα. However, it clearly does not reproduce the correct term when eβ = e
β/α
α so

as to reproduce the differential cross section of eα. Other terms will need to be added to

T (eα, eβ) to accomplish this.

The terms that must be added cannot spoil the logarithmic accuracy of T (eα, eβ) and

must produce the correct single logarithmic expressions when differentiated. Therefore, we

must add a term to T (eα, eβ) that is power suppressed, but when differentiated produces

singular terms. This was anticipated in section 3 where it was observed that näıvely power-

suppressed terms in the cumulative cross section were necessary to reproduce the correct

single logarithms of the differential cross section. Motivated by the expressions there, we

add to T (eα, eβ) a term that is suppressed by powers of eα and eβ:

T (eα, eβ) =
1

πβ0
log

(
1 + 2αsβ0

log eβ
β

)
+ 2

αs
π
c

eaαe
b
β

β + 2αsβ0 log eβ
, (6.28)

for exponents a, b and coefficient c. For the added term to be truly power suppressed in the

small eα, eβ limit, we require a+ b > 0. The derivative boundary conditions will constrain

a, b, c further.

Taking the derivative with respect to eα, we find

∂

∂eα
T (eα, eβ) = 2

αs
π
ac

ea−1
α ebβ

β + 2αsβ0 log eβ
. (6.29)

When eα = eβ this must vanish. Clearly, this is only possible if either a or c is zero;

therefore, we only require this term to be power suppressed or beyond NLL accuracy.

For it to be power suppressed when eβ = eα requires a + b − 1 > −1, which is the same

constraint as being power-suppressed in T (eα, eβ) itself. When eβ = e
β/α
α , it must reproduce

the derivative of T (eα):

∂

∂eα
T (eα, eβ)

∣∣∣∣
eβ=e

β/α
α

=
∂

∂eα
T (eα) =

2

eα

αs
π

1

α+ 2αsβ0 log eα

= 2
αs
π

α

β
ac

e
a−1+ β

α
b

α

α+ 2αsβ0 log eα
. (6.30)
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This then requires
α

β
ac = 1 , a− 1 +

β

α
b = −1 . (6.31)

There are no constraints beyond these from taking the derivative with respect to eβ.

The constraints on T (eα, eβ) do not fully specify the parameters a, b, c so we must

impose an additional, arbitrary condition. This should be interpreted as an uncertainty in

the calculation that can be formally corrected by matching to the fixed-order cross section.

Note that in the cumulative distribution these power-suppressed terms are beyond NLL

accuracy anyway, so are only required to satisfy the boundary conditions and not to obtain

formal NLL accuracy. Here, we will fix the parameters by considering

a+ b = 1 , (6.32)

but any positive value for the sum of a and b would work. One could also consider adding

several power-suppressed terms to satisfy the boundary conditions. With our choice on the

sum of a and b, the non-cusp piece becomes

T (eα, eβ) =
1

πβ0
log

(
1 + 2αsβ0

log eβ
β

)
− 2

αs
π

α− β
α

e
− β
α−β

α e
α

α−β
β

β + 2αsβ0 log eβ
, (6.33)

which satisfies all of the boundary conditions to leading power at NLL accuracy. Using

the procedures developed here, all other pieces of the double cumulative cross section can

be determined that satisfy the boundary conditions. We present the full expression in

appendix C.

6.2 Mixing structure of collinear and soft logarithms

We now discuss in more detail the mixing of the collinear and soft logarithms found in the

radiator interpolation. When performing the interpolation we allowed for the mixing of the

soft and collinear logarithms on one boundary into either of the soft or collinear logarithms

on the other boundary. This allows for the presence of four possible logarithmic structures

in the radiator for the double cumulative distribution. However, the consistency conditions

at the phase space boundaries enforced that only three appear: the soft, collinear and kT
logarithms, discussed in the previous sections. The fourth possible logarithmic structure

arising from the interpolation between a soft logarithm on the eβ = e
β/α
α boundary and a

collinear logarithm on the eα = eβ boundary, which has the form

log e
α−1
α−β
α e

α
β

(
1−β
α−β

)
β , (6.34)

does not appear. For a single emission, this combination of eα and eβ corresponds to

e
α−1
α−β
α e

α
β

(
1−β
α−β

)
β =

(
z
θα

Rα0

) α−1
α−β

(
z
θβ

Rβ0

)α
β

(
1−β
α−β

)
= z

1
β
θα

Rα0
(6.35)

which combines collinear energy scaling and soft angle scaling. The form of the factorization

theorems on the boundary guarantees that such a structure does not appear in the bulk of

the phase space.
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The non-appearance of this logarithmic structure implies that as we transition from

one boundary to the other, either the collinear or soft logarithms (but not both) split

to become a sum of collinear and soft logarithms on the other boundary. In particular,

consider the transition from the eβ = e
β/α
α boundary through the bulk to the eα = eβ

boundary. From eq. (6.23) for the one loop radiator, we see that the logarithms which

reduce to soft logarithms near the eβ = e
β/α
α boundary remain as soft logarithms in the

bulk, and on the eα = eβ boundary. However, the collinear logarithms near the eβ = e
β/α
α

boundary split into a sum of collinear and kT logarithms in the bulk, and the kT logarithms

then reduce to soft logarithms near the eα = eβ boundary.

This can also be phrased in terms of the mixing of the anomalous dimensions of the

jet and soft functions appearing in the factorization theorems on the different boundaries.

Recall from eq. (6.10) that the one loop radiator for a single angularity can be written in

terms of integrals of the jet and soft function cusp anomalous dimensions:

R(1)(eα) = −2KJ(µJ)− 2KS(µS) (6.36)

with

KJ,S(µJ,S) =

∫ αs(µ)

αs(µJ,S)

dα′

β[α′]
ΓJ,S [α′]

∫ α′

αs(µJ,S)

dα′′

β[α′′]
. (6.37)

The mixing of the logarithms described in the previous paragraph is equivalent to the

following mixing of the jet and soft function anomalous dimensions:

Kβ
S (µS,β) = zKα

J (µJ→S) +Kα
S (µS→S)|eα eβ (6.38)

Kβ
J (µJ,β) = (1− z)Kα

J (µJ→J)|eα eβ . (6.39)

In this expression, Kβ
S (µS,β),Kβ

J (µJ,β) are the integrals of the cusp anomalous dimensions

for the factorization theorem near the eα = eβ boundary, evaluated at their canonical scales,

and the Kα are the similar integrals of the anomalous dimensions for the factorization

theorem near the eβ = e
β/α
α boundary, but evaluated at the appropriately modified scales,

and z = β−α
α(β−1) . From this expression, we can see that as we move from the region where

eβ ∼ e
β/α
α to eα ∼ eβ, the anomalous dimension of the jet function near the eβ = e

β/α
α

boundary splits into two pieces, one of which contributes to the anomalous dimension of

the soft function near the eα = eβ boundary and the other to the anomalous dimension

of the jet function. This mixing structure is illustrated in figure 5. Figure 5 also makes

it transparent how the form of the factorization theorems on the two boundaries dictates

that there can only be mixing between the jet functions near the eβ = e
β/α
α boundary and

the soft functions near the eα = eβ boundary, as only these depend on both angularities.

This clarifies why the only new logarithms in the bulk are the kT logarithms, and not the

logarithms of eq. (6.35).

To summarize, the structure of the radiator logarithms found via the interpolation

procedure gives rise to a single new logarithmic structure in the bulk of the phase space,

the kT logarithms. Unlike the soft (log eα) and collinear (log e
1
β

β ) logarithms, which reduce

to, respectively, the soft and collinear logarithms of the two different factorization theorems
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J(eα, eβ)

S(eα, eβ)S(eα)

J(eβ)

log eα

log e
1/β
β

log e
1−βα−βα

e
α−1α−ββ

eα ∼ eβeβ ∼ eβ/α
α

Figure 5. Illustration of the interpolation of the logarithmic structure between the boundaries of

the phase space. Collinear logarithms (log e
1/β
β ) always interpolate between the jet functions defined

on the boundaries and soft logarithms (log eα) always interpolate between the soft functions. kT

logarithms (log e
1−β
α−β
α e

α−1
α−β

β ) interpolate between the double differential jet and soft functions.

near the boundaries, the kT logarithms reduce to the soft logarithms near the eα = eβ

boundary and the collinear logarithms near the eβ = e
β/α
α boundary. This further clarifies

the impediment to writing down a factorization theorem valid in the entire bulk region.

6.3 Evidence for uniqueness of interpolation

While the interpolation between the boundary regions presented above satisfies all con-

straints on the cross section from eqs. (6.3) and (6.4), there is no guarantee that this

interpolation is in any way unique. If this is the case, then there is no sense in which

the interpolation captures the logarithms to any formal accuracy in the bulk of the phase

space and so matching the resummed double differential cross section to the fixed-order

cross section would be meaningless. However, making some reasonable assumptions about

the structure of the logarithms in the bulk of the phase space, we will argue that the

boundary conditions on the cumulative cross section are sufficiently strong to enforce the

uniqueness of the interpolation up to O(α4
s).

To prove this, we assume that the logarithms in the bulk of the phase space expo-

nentiate. Then, the true double cumulative cross section to logarithmic accuracy can be

written as

log Σ(eα, eβ) = log Σint(eα, eβ) +
∞∑
n=4

fn (log eα, log eβ)
n−2∑
i=2

cni logi
eα
eβ

logn−i
eαβ

eβα
, (6.40)

where Σint(eα, eβ) is the interpolation cross section that satisfies all of the boundary con-

ditions. To NLL accuracy, the function fn is

fn (log eα, log eβ) =
∞∑
m=0

m∑
j=0

(
d1n
mjα

n+m−1
s + d2n

mjα
n+m
s

)
logj eα logm−j eβ , (6.41)

where d1n
mj and d2n

mj are coefficients, independent of αs. We assume that the logarithms in

fn cannot be rewritten in such a way that factors of

log
eα
eβ
, log

eαβ

eβα

exist. That is, all dependence on these logarithms has been explicitly factored out in

eq. (6.40).
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Because we assume that the interpolation cross section Σint(eα, eβ) satisfies all bound-

ary conditions, the second term, corresponding to interpolation-violating contributions,

must vanish when either eα = eβ or eβα = eαβ so that the double cumulative cross section

reduces appropriately at the boundaries. In addition, the derivatives of this term must also

vanish when evaluated at the boundaries of the phase space to correctly reproduce the sin-

gle differential cross sections. These boundary conditions are automatically satisfied for the

the sum over n in eq. (6.40) to start at n = 4 and for the sum over i to range from i = 2 to

i = n−2. From eq. (6.41), this shows that the lowest order at which interpolation-violating

terms can arise is α3
s in the exponent. However, the only possible interpolation-violating

(IV) contribution at O(α3
s) is leading logarithmic, which has the form

log Σ
(3)
IV (eα, eβ) ∼ α3

s log2 eα
eβ

log2
eαβ

eβα
, (6.42)

which should be fully captured by one-loop running of αs. If this expectation is true, then

the lowest order at which interpolation-violating terms can arise is α4
s in the exponent of

the cumulative distribution.

If exponentiation of the logarithms in the double cumulative cross section does not oc-

cur, then the lowest order at which interpolation-violating logarithms could arise is O(α2
s),

with a term of the form

Σ
(2)
IV (eα, eβ) ∼ α2

s log2 eα
eβ

log2
eαβ

eβα
. (6.43)

The existence of these logarithms in the double cumulative cross section could be checked

explicitly. However, it seems very unlikely that such a term could exist because it is

double logarithmic and so should be totally captured by the resummation of the double

cumulative cross section presented in ref. [65]. While the lack of existence of this term

would not necessarily prove exponentiation, it would demonstrate that the interpolation

for the double differential cross section is significantly robust.

Therefore, assuming exponentiation of logarithms in the double cumulative cross sec-

tion and one-loop running capturing all leading logarithms, the lowest order at which the

interpolation-violating contributions can exist is O(α4
s) in the exponent. If exponentiation

of the logarithms of the double cumulative cross section does not occur, then the bulk of

the phase space would only be described at fixed-order. Thus, this is strong evidence that,

at least to NLL accuracy, the interpolation captures the dominant logarithmic structure of

the double cumulative cross section. We further conjecture that the interpolation presented

in section 6.1 correctly resums all logarithms to the accuracy of the single cumulative cross

sections at the boundaries. Testing this requires at least an O(α3
s) calculation, which is

well beyond the state-of-the-art for fixed-order distributions of jet observables.

7 Comparison to Monte Carlo

With analytic results for the double differential cross section to NLL accuracy as defined

by interpolation between the boundaries of phase space, we present a numerical analysis

and compare to Monte Carlo simulation. Because we are interested in comparing the
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logarithmic structure of the analytic and Monte Carlo double differential cross section of

angularities eα and eβ, we will plot it in the plane (log eβ, log eα), with α > β. In this

plane, the upper and lower boundaries of phase space are straight lines with slopes equal

to 1 and α/β, respectively. We will plot the double differential cross section weighted by

the two angularities:

eαeβ
d2σ

deα deβ
= eαeβ

∂2

∂eα ∂eβ
Σ(eα, eβ) . (7.1)

The Sudakov double logarithms manifest themselves as a concave down paraboloid in the

(log eβ, log eα) plane.

We generate e+e− → qq̄ events simulated with Pythia 8.165 [80, 81] at a center-of-

mass energy of 1 TeV with hadronization turned off, two-loop running of αs, and αs(mZ) =

0.118.22 To analyze the jets, we cluster jets with the e+e− anti-kT algorithm [82] with

FastJet 3.0.3 [83] with a fat jet radius R0 = 1.5. We analyze only the hardest jet in

the event, requiring that the cosine of the angle between the jet momentum axis and the

initial hard parton be greater than 0.9. We only include particles that lie within an angle

R0 = 0.4 from the broadening axis of the hardest jet. The energy of the jets is required

to be in the range of Q ∈ [450, 550] GeV. We then measure the recoil-free angularities for

various values of the angular exponents α and β of the jets in the sample.

In figures 6 and 7 we plot the distributions, fixing one angularity to be thrust, e2,

and scanning over the other angularity: β = 1.5, 1, 0.5, 0.2. In the NLL interpolation

plots, figure 6, the double differential distribution has been set to zero at very small values

corresponding to scales near the Landau pole of αs. While the scale of the contours

in the corresponding NLL interpolation and Pythia plots differ by up to a factor of 2,

there is good qualitative agreement between the distributions. Both exhibit a peak in

the distribution in the bulk of phase space at approximately the same location. This

suggests that the correlations between angularities with different angular exponents are

well-modeled in Monte Carlo.

The comparison between the analytic and Monte Carlo results can be made more

quantitative by comparing the location and height of the peak of the distribution. In table 2,

we list the location and height (“Peak”) of the peak in (log eα, log eβ) space for α = 2, β =

1.5, 1, 0.5, 0.2. There are several features that illustrate qualitative agreement including:

• The location of the peak in log e2 generally becomes more negative as β decreases.

• The location of the peak in log eβ moves to less negative values as β decreases.

• The height of the peak is relatively large for β near α = 2 and β near 0 and smaller

for intermediate values of β.

While this qualitative agreement is encouraging, an honest quantitative comparison be-

tween Monte Carlo and analytic results would require going to at least NLL′ accuracy.

That is, we would include the contributions from low scale matrix elements convolved with

the NLL resummation kernel.

22The quarks that are produced are only u, d, or s, so mass effects should be minimal.
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Figure 6. Plots of the double differential cross section defined from the analytic NLL interpolation

of section 6 measured on quark jets with one angularity fixed to be thrust (α = 2) and scanning

over the other angularity: β = 1.5, 1, 0.5, 0.2. The energy of the jets is Q = 500 GeV and the jet

radius is R0 = 0.4. The dashed lines on the plot correspond to the expected phase space boundary.

– 34 –



J
H
E
P
0
9
(
2
0
1
4
)
0
4
6

-4 -3 -2 -1 0
-4

-3

-2

-1

0

log e1.5

lo
g

e 2
Double Differential Cross Section
Pythia, quark jets, Α = 2, Β = 1.5

Q Î @450,550D GeV, R0 = 0.4

e2e1.5
d2 Σ

de2 de1.5
:

0 - 0.04
0.04 - 0.12
0.12 - 0.20
0.20 - 0.28
0.28 - 0.36
0.36 - 0.44
0.44 - 0.48
0.48 - 0.53

(a)

-4 -3 -2 -1 0
-4

-3

-2

-1

0

log e1

lo
g

e 2

Double Differential Cross Section
Pythia, quark jets, Α = 2, Β = 1

Q Î @450,550D GeV, R0 = 0.4

e2e1
d2 Σ

de2 de1
:

0 - 0.02
0.02 - 0.04
0.04 - 0.06
0.06 - 0.10
0.10 - 0.15
0.15 - 0.20
0.20 - 0.25
0.25 - 0.30

(b)

-4 -3 -2 -1 0
-4

-3

-2

-1

0

log e0.5

lo
g

e 2

Double Differential Cross Section
Pythia, quark jets, Α = 2, Β = 0.5

Q Î @450,550D GeV, R0 = 0.4

e2e0.5
d2 Σ

de2 de0.5
:

0 - 0.02
0.02 - 0.04
0.04 - 0.06
0.06 - 0.09
0.09 - 0.13
0.13 - 0.17
0.17 - 0.21
0.21 - 0.25

(c)

-4 -3 -2 -1 0
-4

-3

-2

-1

0

log e0.2

lo
g

e 2

Double Differential Cross Section
Pythia, quark jets, Α = 2, Β = 0.2

Q Î @450,550D GeV, R0 = 0.4

e2e0.2
d2 Σ

de2 de0.2
:

0 - 0.02
0.02 - 0.05
0.05 - 0.10
0.10 - 0.16
0.16 - 0.22
0.22 - 0.26
0.26 - 0.30
0.30 - 0.32

(d)

Figure 7. Plots of the double differential cross section from Pythia with one angularity fixed to

be thrust (α = 2) and scanning over the other angularity: β = 1.5, 1, 0.5, 0.2. The energy of the

jets is Q ∈ [450, 550] GeV and the jet radius is R0 = 0.4. Hadronization has been turned off. The

dashed lines on the plot correspond to the expected phase space boundary.

One apparent distinction between the analytic result and Pythia is that the double

differential cross section in Pythia vanishes in the region near the line eα = eβ, while it

does not in the NLL cross section. We attribute this difference to angular ordering/veto

imposed in the Monte Carlo. The line eα = eβ requires that all emissions contributing

there are located at θ = R0, the edge of the jet. Such a configuration is exponentially

suppressed in a Monte Carlo, but is allowed in our NLL expression for the double differential

cross section.
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log e2 log e1.5 Peak log e2 log e1 Peak

NLL Int. −1.36 −1.36 0.27 −1.84 −1.40 0.14

Pythia −1.20 −1.08 0.53 −1.24 −0.92 0.28

log e2 log e0.5 Peak log e2 log e0.2 Peak

NLL Int. −2.24 −1.12 0.16 −2.04 −0.56 0.46

Pythia −1.48 −0.68 0.22 −1.56 −0.36 0.32

Table 2. Table comparing location and height of peaks of the double differential cross sections

from the analytic NLL interpolation and Pythia.

However, one can show that at NLL′ in each individual factorization, the double dif-

ferential cross section vanishes at the boundaries of the phase space. The argument is as

follows. As noted above eq. (4.5), the general form of the fixed order singular cross section

for the eα ∼ e
α
β

β factorization boundary is:

d2σαfo
deα deβ

=
dσfo

deα
δ(eβ) + Θ

(
eα − c e

α
β

β

)
1

e
1+β/α
α

fα+

(
eβ

e
β/α
α

)
, (7.2)

where we have explicitly indicated we are taking the cross sections at fixed order (fo).

Note that fα+ encodes all non-trivial eβ dependence, and is solely fixed by the jet function

matrix element for this factorization, and we have made explicit the boundary Θ-function

enforced by the phase space of the jet function.23 If we canonically resum this distribution,

the resulting cross section is:

d2σα

deα deβ
=

∫ eα

0
de′α U(eα − e′α)

{
dσfo

de′α
δ(eβ) + Θ

(
e′α − c e

α
β

β

)
1

e
′1+β/α
α

fα+

(
eβ

e
′β/α
α

)}

=
dσresum

deα
δ(eβ) +

∫ eα

0
de′α U(eα − e′α)Θ

(
e′α − c e

α
β

β

)
1

e
′1+β/α
α

fα+

(
eβ

e
′β/α
α

)
, (7.3)

where U(eα) is the resummation kernel for eα. For non-zero eβ, only the second term

contributes, thus as eα approaches the boundary of phase space c e
α
β

β the cross section

vanishes, since the limits of integration become squeezed to zero. Note that this argument

does not depend on the particular order to which one has calculated the cross section, and

thus is a robust prediction of the factorization theorem for the double-differential cross

section. We leave a detailed analysis at NLL′, including interpolation into the bulk of the

phase space, to future work.

8 Conclusions

In this paper, we have used the double differential cross section of two angularities measured

on a single jet as a case study for understanding the factorization properties of double

23In this Θ-function, c is fixed number that depends on the precise definition of the angularity. For

a given recoil-free observable, this boundary condition can become more complicated, but our argument

remains unchanged.
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differential cross sections. We have explicitly shown that the double differential cross

section for two angularities factorizes near the boundaries of the phase space, where it

reduces to the single differential cross section of one of the angularities. Indeed, we have

also shown the impossibility of a factorization theorem valid in the entire phase space region

using only soft and collinear modes.

We presented a conjecture for the NLL double differential cross section using an inter-

polation procedure, based on scale setting and the addition of subleading terms, between

the two factorization theorems defined on the boundaries of phase space. This interpolation

procedure has the interesting property of introducing what we termed kT logarithms in the

bulk region of phase space. These logarithms reduce to soft or collinear logarithms on the

boundaries of the phase space where the factorization theorem applies, but are required

in the bulk to interpolate between the soft logarithms on one boundary and the collinear

logarithms on the other. The conjectured double differential cross section is subject to

numerous consistency constraints from the boundary factorization theorems, which guar-

antee that it is unique to logarithmic accuracy up to at least O(α4
s). The interpolation

scale choices that we found at NLL could be tested at higher accuracy by computing the

anomalous dimensions of the jet and soft functions to higher loop order. We compared

our calculation for the double differential cross section of angularities with a parton shower

Monte Carlo, and found qualitative agreement, evidence that Monte Carlos model the

correlations between angularities well.

While we have only discussed the perturbative aspects of the double differential cross

section, the effect of non-perturbative physics is also important. Because the recoil-free

angularities are additive and there exists a factorization theorem, this suggests that non-

perturbative corrections can be incorporated by some kind of shape function [84, 85]. In

ref. [65], a shape function was assumed to exist for the double differential cross section

of angularities and it qualitatively agreed with the hadronization corrections in Pythia

Monte Carlo. Nevertheless, a rigorous definition of the non-perturbative corrections to the

double differential cross section is vital for determining the effect of low energy physics

on the correlations of angularities. Angularities are additive observables and so the shape

function for the double differential cross section should be similar in form to the shape

function for a single differential cross section. However, the phase space constraints can be

deformed by the non-perturbative corrections, which could result in subtle, but important,

effects on the differential cross section.

8.1 Future directions

This paper presents the first step in a wider program with the goal of understanding

the factorization and resummation properties of double differential cross sections of IRC

safe observables. We therefore conclude with a number of future directions and possible

applications of these techniques.

Extension to other observables. Although this paper has focused specifically on the

example of angularities, the conclusions and techniques should be applicable to the double

differential cross sections of more phenomenologically relevant observables. In particular,
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the argument for the reduction of the double cumulative distribution to a single cumulative

distribution on the boundary of phase space presented in section 4.1 is geometric in nature

and does not rely on the detailed form of the boundaries. The only requirement is that

the boundary is described by a monotonically increasing function. We therefore believe

this reduction to be generic. This simplifies the problem of proving factorization theorems

for double differential cross sections to that of proving factorization theorems for single

differential cross sections, several of which are already known.

Armed with factorization theorems near the boundaries of phase space one can at-

tempt an interpolation procedure by shifting scales and adding subleading terms in the

cumulative distribution, as was done explicitly for the case of angularities in section 6. For

the relevant case when the two observables define boundary factorization theorems with

different scalings for the soft modes, this interpolation procedure necessarily introduces a

new logarithmic structure in the bulk of the phase space, which reduces appropriately on

the boundaries to either a soft or collinear logarithm. For the case of two angularities, this

was the kT logarithm discussed in section 6.1.1. Furthermore, with certain assumptions

on the logarithmic structure, a proof similar to that given in section 6.3 could be used to

argue for the uniqueness of the interpolation procedure. We believe that if this procedure

is indeed possible for a particular pair of observables, then it gives a strong conjecture for

the NLL resummed double differential cross section. This further allows for the computa-

tion of the ratio observable through marginalization. It is also interesting to speculate on

the existence of a super-SCET formalism allowing for the incorporation of the additional

modes required in the bulk, however, we leave this to future study.

One observable of particular phenomenological interest is N -subjettiness, which merits

a more detailed discussion due to the interesting structure of its phase space. The N -

subjettiness observable τ
(β)
N is defined as [57, 58]

τ
(β)
N =

1∑
i∈J pT iR

β
0

∑
i∈J

pT i min
{
Rβ1,i, R

β
2,i, . . . , R

β
N,i

}
, (8.1)

where R0 is the jet radius and the sums run over all particles in the jet. Rn,i is the angle

between axis n and particle i and β > 0 for IRC safety. The axes in the jet can be chosen in

several ways; the most elegant being to choose the axes so as to minimize the value of τ
(β)
N .

The ratio of τ2/τ1 has proven very powerful for discriminating boosted W jets from massive

QCD jets [28, 46, 56].24 Progress has been made in computing the distribution of τ2/τ1

for signal jets by relating it to the event-wide thrust distribution in e+e− collisions [13].

Understanding the background distribution is a formidable challenge that has not been

studied for arbitrary values of the ratio of jet mass to jet energy.

Nevertheless, we suspect that a boundary factorization theorem exists for the double

differential cross section of N -subjettiness observables τ2 and τ1. Because τ2 is defined

about two axes in the jet while τ1 is only defined about one axis, τ2 < τ1, with no non-

trivial lower bound on the phase space. That is, τ2 can be zero and τ1 be non-zero, which is

different from the angularities considered in this paper. However, as we illustrate in figure 8,

24When clear from context, we will drop the superscript β for brevity.
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(a) (b)

Figure 8. Illustration of the double cumulative distribution of 1- and 2-subjettiness evaluated on

the boundaries of phase space. The physical region of the phase space is indicated. Left: evaluated

on the boundary τ1 = 1 which reduces the double cumulative distribution to Σ(τ2). Right: evaluated

on the boundary τ2 = τ1 which reduces the double cumulative distribution to Σ(τ1).

the double cumulative distribution should still reduce to a single cumulative distribution

on the appropriate boundaries. For example, evaluating the double cumulative distribution

on the boundary τ2 = τ1 should reduce to the cumulative distribution for τ1 alone as τ2 has

been integrated over its entire range. From the arguments in section 4.1 this then implies

that the double differential cross section reduces near this boundary:

d2σ

dτ1 dτ2

∣∣∣∣
τ2∼τ1

' dσ

dτ1
δ(τ2) + . . . , (8.2)

up to terms that integrate to zero on τ2 ∈ [0, τ1]. A similar relationship holds near the

boundary τ1 = 1 where the cross section reduces as

d2σ

dτ1 dτ2

∣∣∣∣
τ1∼1

' dσ

dτ2
δ(τ1 − 1) + . . . , (8.3)

again, up to terms that integrate to zero on τ1 ∈ [0, 1].25

Therefore, to prove that the double differential cross section of τ2 and τ1 factorizes on

the boundaries of phase space only requires proving that the single differential cross sections

factorize. τ1 is just the jet angularities, for which there exists a factorization theorem and so

the double differential cross section should factorize on the τ2 = τ1 boundary. While there

is up to now no factorization theorem for the differential cross section of τ2 for QCD jets,

we expect that there is a factorization theorem for τ2 when τ1 = 1. On this boundary, when

25We have assumed that the maximum value of τ1 is 1. More generally, for τ1 near its maximum value,

the double differential cross section should reduce to the single differential cross section for τ2.
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τ1 = 1, the structure that dominates τ1 is a hard, perturbative emission. This essentially

defines the jet to have two, well-separated subjets. In this configuration, τ2 is dominated

by soft and collinear radiation about those subjets, suggesting that its differential cross

section is factorizable.26 A proof of the factorization of τ2 and subsequently the calculation

of the double differential cross section of τ1 and τ2 would provide deep insights into the

power of N -subjettiness as a discrimination observable as well as substantial information

about the structure of QCD jets.

Exclusive PDFs. Our results may also have consequences for the recent program of fully

unintegrated or fully exclusive parton distribution functions (PDFs) [86–94] that depend

on all components of colliding parton momentum, not only the longitudinal component.

As we have shown in the context of angularities, the measurement of multiple observables

on a single parton defines a region of the allowed phase space that is determined by the

scaling of the observables with respect to one another. Typically, analyses that resum the

logarithms of the unintegrated PDFs are constrained to a particular region of phase space;

in ref. [94], they essentially take the beam broadening comparable to the square-root of the

beam thrust.27 Though the PDF is more exclusive and should contain more information

about the colliding parton, much of that information is lost because one is forced into a

small region of the phase space. By studying the boundaries of the PDF phase space, it

may be possible to interpolate between the boundary regions, producing a description of

the unintegrated PDFs throughout the phase space.

Monte Carlos. Beyond its purely theoretic applications, the double differential cross

section of two angularities can be used to tune Monte Carlos. Typically, tuning involves

adjusting the arbitrary parameters in a Monte Carlo so as to match the measured differen-

tial cross section of several observables that are sensitive to the parameters. Tuning is not a

precise science and involves significant art to choose parameters consistently so as to match

many different distributions. However, if instead Monte Carlos were tuned to joint differ-

ential cross sections of observables, correlations would be naturally incorporated. With

theoretical input for the double differential cross sections of angularities, parameters in the

Monte Carlo could be adjusted appropriately to correctly model the higher order pertur-

bative effects and separately, non-perturbative physics. This tuning program would also

require the measurement of the double differential cross sections from the experiments,

something that has not yet been published in studies at the Large Hadron Collider.28

Because of theoretical progress, its potential application for Monte Carlo tuning, and the

information it contains regarding correlations of observables, we strongly advise the ATLAS

and CMS experiments to provide the measurements of double differential cross sections of

jet observables.

26Because the jet has two hard subjets, the factorization theorem would probably follow from SCET+ of

ref. [26].
27This is analogous to the lower bound resulting from energy conservation in the phase space of thrust,

e2, and broadening, e1, where e2 ∼ e21.
28However, ref. [46] does contain plots of double differential cross sections from simulation comparing

Qjet volitility [95] and N -subjettiness ratio τ2/τ1 for QCD jets and boosted W bosons.
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A The double differential jet and soft functions

In this appendix we provide explicit calculations of the double differential jet and soft

functions that appear in the factorization theorem for the double differential cross section

of broadening-axis jet angularities, eq. (4.16).

A.1 Jet function

At one-loop, the jet consists of two particles whose momentum can be written as

(q−, q+, ~q⊥) , (Q− q−, l+ − q+,−~q⊥) , (A.1)

for a total jet momentum of (Q, l+,~0) in light-cone coordinates. In this frame, the double

differential jet function of a quark jet is

J (1)(eα, eβ) = g2µ2εCF

∫
dl+

2π

1

(l+)2

∫
ddq

(2π)d

(
4
l+

q−
+ (d− 2)

l+ − q−
Q− q−

)
2πδ(q+q− − q2

⊥)

×Θ(q+)Θ(q−)Θ(Q− q−)Θ(l+ − q+)2πδ

(
l+ − q+ − q2

⊥
Q− q−

)
×
{

Θ

(
Q

2
− q−

)
δ
(
eα −Qα−1(Q− q−)−α(q−)1−αqα⊥

)
× δ

(
eβ −Qβ−1(Q− q−)−β(q−)1−βqβ⊥

)
+ Θ

(
q− − Q

2

)
δ
(
eα −Qα−1(Q− q−)1−α(q−)−αqα⊥

)
× δ

(
eβ −Qβ−1(Q− q−)1−β(q−)−βqβ⊥

)}
. (A.2)

We have assumed that the jet radius R0 is O(1) and so the jet algorithm constraint is

trivial to leading power in λ� 1. Evaluating this in d = 4− 2ε dimensions, we find

J (1)(eα, eβ) =
αs
π

(
4πµ2

Q2

)ε
CF

Γ(1− ε)
e
−1+2ε β−1

α−β
α e

−1−2ε α−1
α−β

β

α− β Θ
(
eβα − 2α−βeαβ

)
Θ(eβ)

×
(

1−e−
β

α−β
α e

α
α−β
β

)−1−2ε(
2−(3+ε)e

− β
α−β

α e
α

α−β
β +(3+ε) e

− 2β
α−β

α e
2α
α−β
β

)
,

(A.3)
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The boundary condition enforced by the Θ-functions is

eβ ∈
[
0, 2−

α−β
α eβ/αα

]
,

and so, by the general arguments of section 5.1, all eβ dependence in the jet function must

appear in the combination

2
α−β
α

eβ

e
β/α
α

.

With this substitution in eq. (A.3), we find

J (1)(eα, eβ) =
αs
π

(
4πµ2

e
2/α
α Q2

)ε
CF

Γ(1− ε)
e
−1− β

α
α x

−1−2ε α−1
α−β

α− β Θ
(

2−
α−β
α − x

)
Θ(x)

×
(

1− x
α

α−β
)−1−2ε (

2− (3 + ε)x
α

α−β + (3 + ε)x
2α
α−β
)
, (A.4)

where

x =
eβ

e
β/α
α

. (A.5)

All x dependence (or equivalently eβ) can be treated with the +-prescription as defined

in eq. (5.4). To the lowest orders in the dimensional regularization parameter ε, all eβ
dependence can be expressed as29

x
−1−2ε α−1

α−β
(

1− x
α

α−β
)−1−2ε (

2− (3 + ε)x
α

α−β + 3x
2α
α−β
)

Θ
(

2−
α−β
α − x

)
Θ(x)

=

[
−α− β
α− 1

1

ε
− 3

2

α− β
α
− εα− β

3α2

(
−9 + π2 + 18α− 2απ2 − 9 log 2 + 3α log 2

)]
eβ/αα δ(eβ)

+

Θ(eβ)Θ(eβα − 2α−βeαβ)

1− e−
β

α−β
α e

α
α−β
β

2
e
β/α
α

eβ
− 3

(
eβ

e
β/α
α

) β
α−β

+ 3

(
eβ

e
β/α
α

)α+β
α−β



2−
α−β
α e

β/α
α

+

.

(A.6)

The remaining ε dependence in eq. (A.4) after this expansion can be regularized by familiar

+-distributions in eα. With the MS prescription the double differential jet function is

J (1)(eα, eβ) = J (1)(eα, eβ)div + J (1)(eα, eβ)fin , (A.7)

where the divergent term is

J (1)(eα, eβ)div =
αs
2π
CF δ(eβ)

{[
α

α−1

1

ε2
+

α

α−1

1

ε
log

µ2

Q2
+

3

2

1

ε

]
δ(eα)− 2

ε

1

α−1

[
Θ(eα)

eα

]
+

}
(A.8)

29This expansion has been performed with the Mathematica package HypExp [96, 97].
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and the finite term is

J (1)(eα, eβ)fin =
αs
2π
CF δ(eβ)

{[
3

2
α log

µ2

Q2
+

α

α−1

1

2
log2 µ

2

Q2
− α

α−1

π2

12

− 3

α
+

1

α

π2

3
+6− 2π2

3
− 3 log 2

α
+log 2

]
δ(eα)

− 3

α

[
Θ(eα)

eα

]
+

− 2

α−1
log

µ2

Q2

[
Θ(eα)

eα

]
+

+
4

α(α−1)

[
Θ(eα)

log eα
eα

]
+

}

+
αs
π

CF
α−β e

−1− β
α

α

Θ(eβ)Θ(eβα−2α−βeαβ)

1−e−
β

α−β
α e

α
α−β
β

2
e
β/α
α

eβ
−3

(
eβ

e
β/α
α

) β
α−β

+ 3

(
eβ

e
β/α
α

)α+β
α−β
2−

α−β
α e

β/α
α

+

(A.9)

These expressions are consistent with the general arguments of section 5.1.

A.2 Soft function

At one-loop, the double differential soft function of a jet in the process e+e− → qq̄ has the

following form:

S(1)(eα, eβ) = 2g2µ2εCF

∫
ddk

(2π)d
2

k+k−
2πδ(k+k− − k2

⊥)Θ

(
1− k+

k−

)
× δ

(
eα −Q−1(k+)

α
2 (k−)1−α

2

)
δ
(
eβ −Q−1(k+)

β
2 (k−)1−β

2

)
. (A.10)

The Θ-function is the constraint of the jet algorithm for the definition of the angularities

from eq. (1.1). In d = 4− 2ε dimensions, the result is

S(1)(eα, eβ) = 2
αs
π

(
4πµ2

Q2

)ε
CF

Γ(1− ε)
e
−1+2ε β−1

α−β
α e

−1−2ε α−1
α−β

β

α− β Θ(eβ − eα)Θ(eα) . (A.11)

From the arguments of section 5.2, we expect that the expansion in ε produces appropriate

+-distributions. To show this explicitly, focus on the factor containing eα and eβ first.

This can be rewritten as

e
−1+2ε β−1

α−β
α e

−1−2ε α−1
α−β

β Θ(eβ−eα)Θ(eα) = e−2−2ε
β ×

(
eα
eβ

)−1+2ε β−1
α−β

Θ(eβ−eα)Θ(eα) , (A.12)

which is very similar in form to the expected result of eq. (5.9). The second factor can be

expanded with the +-prescription as(
eα
eβ

)−1+2ε β−1
α−β

Θ(eβ − eα)Θ(eα) =
1

2ε

α− β
β − 1

eβ δ(eα) +

[
eβ
eα

Θ(eβ − eα)Θ(eα)

]eβ
+

+O(ε) .

(A.13)
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With this expansion of eα, we can now expand the remaining ε dependence in +-

distributions of eβ. With the MS prescription, the soft function is

S(1)(eα, eβ) = S(1)(eα, eβ)div + S(1)(eα, eβ)fin , (A.14)

where the divergent term is

S(1)(eα, eβ)div =
αs
2π

CF
β − 1

δ(eα)

{[
− 1

ε2
− 1

ε
log

µ2

Q2

]
δ(eβ) +

2

ε

[
Θ(eβ)

eβ

]
+

}
(A.15)

and the finite term is

S(1)(eα, eβ)fin =
αs
2π

CF
β−1

δ(eα)

{[
−1

2
log2 µ

2

Q2
+
π2

12

]
δ(eβ)+2

[
Θ(eβ)

eβ

]
+

− 4

[
Θ(eβ)

log eβ
eβ

]
+

}

+ 2
αs
π

CF
α− β e

−2
β

[
eβ
eα

Θ(eα)Θ(eβ − eα)

]eβ
+

, (A.16)

where higher-order terms in ε have been ignored. This form of the soft function is in

agreement with the general arguments made in section 5.2.

B The cumulative distribution of a single angularity

To NLL order, the cumulative distribution of a recoil-free angularity eβ can be expressed as

Σ(eβ) =
e−γER

′(eβ)

Γ(1 +R′(eβ))
e−R(eβ)−γiT (eβ) . (B.1)

R(eβ) is the radiator and consists of the cusp pieces of the jet and soft function anomalous

dimensions. To NLL accuracy, the cusp anomalous dimensions are evaluated at two loop

order and the radiator is

R(eβ) =
Ci

2παsβ2
0

1

β − 1

[
(1 + λ) log(1 + λ)− (β + λ) log

(
1 +

λ

β

)]
+

Ci
4π2β2

0

1

β − 1

[(
Γ1

cusp

Γ0
cusp

− 2π
β1

β0

)(
β log

(
1 +

λ

β

)
− log(1 + λ)

)

+π
β1

β0

(
log2(1 + λ)− β log2

(
1 +

λ

β

))]
. (B.2)

Here, Ci is the color of the jet, λ = 2αsβ0 log eβ, β0 and β1 are the one- and two-loop

β-functions:

β0 =
11

12π
CA −

nf
6π

, β1 =
17

24π2
C2
A −

5

24π2
CAnf −

CFnf
8π2

, (B.3)

and the ratio of the two- to the one-loop cusp anomalous dimensions is

Γ1
cusp

Γ0
cusp

=

(
67

18
− π2

6

)
CA −

5

9
nf . (B.4)
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For the non-cusp term in the exponent, the function T (eβ) is

T (eβ) =
1

πβ0
log

(
1 + 2αsβ0

log eβ
β

)
, (B.5)

and γi is the non-cusp anomalous dimension to one loop. For quarks and gluons, it is

γq =
3

4
CF , γg =

11CA − 2nf
12

. (B.6)

Finally, R′(eβ) is just the logarithmic derivative of the radiator:

R′(eβ) ≡ − ∂

∂ log eβ
R(eβ) . (B.7)

For NLL accuracy, this only needs to be evaluated at one-loop:

R′(eβ)NLL =
Ci
πβ0

1

β − 1

[
log

(
1 + 2αsβ0

log eβ
β

)
− log (1 + 2αsβ0 log eβ)

]
. (B.8)

C The double cumulative distribution for two angularities

From section 6.1, the ansatz of the form of the double cumulative cross section for angu-

larities eα and eβ to NLL is

Σ(eα, eβ) =
e−γER̃(eα,eβ)

Γ(1 + R̃(eα, eβ))
e−R(eα,eβ)−γiT (eα,eβ) . (C.1)

The functions R(eα, eβ), T (eα, eβ) and R̃(eα, eβ) can be found by setting scales in the

logarithms so as to satisfy the boundary conditions. We find, for the radiator R(eα, eβ)

R(eα, eβ) =
Ci

2παsβ2
0

[
1

α−1
U (2αsβ0 log eα)− β

β−1
U

(
2αsβ0

log eβ
β

)
+

α−β
(α−1)(β−1)

U

(
2αsβ0

log e1−β
α eα−1

β

α−β

)]

+
Ci

4π2β2
0

[(
Γ1

cusp

Γ0
cusp

−2π
β1

β0

)(
β

β−1
log

(
1+2αsβ0

log eβ
β

)

− 1

α−1
log(1+2αsβ0 log eα)− α−β

(α−1)(β−1)
log

(
1+2αsβ0

log e1−β
α eα−1

β

α−β

))

+ π
β1

β0

(
1

α−1
log2(1+2αsβ0 log eα)− β

β−1
log2

(
1+2αsβ0

log eβ
β

)

+
α−β

(α−1)(β−1)
log2

(
1+2αsβ0

log e1−β
α eα−1

β

α−β

))]
, (C.2)

where U(z) = (1 + z) log(1 + z). For the non-cusp piece T (eα, eβ) we find.

T (eα, eβ) =
1

πβ0
log

(
1 + 2αsβ0

log eβ
β

)
− 2

αs
π

α− β
α

e
− β
α−β

α e
α

α−β
β

β + 2αsβ0 log eβ
. (C.3)
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Finally, for the multiple emissions piece R̃(eα, eβ) we find

R̃(eα, eβ) =
Ci
πβ0

 1

β − 1
log

(
1 + 2αsβ0

log eβ
β

)
− 1

α− 1
log (1 + 2αsβ0 log eα)

− α− β
(α− 1)(β − 1)

log

(
1 + 2αsβ0

log e1−β
α eα−1

β

α− β

)

+ 2αsβ0
α− β
α

e
− β
α−β

α e
α

α−β
β

β + 2αsβ0 log eβ

 . (C.4)

The power suppressed terms have been chosen so that the sum of the exponents of eα and

eβ is 1. Explicitly evaluating these functions on the appropriate boundaries reproduces

eq. (B.1) with the appropriate values for (B.2), (B.5), and (B.8).
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