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1 Introduction, summary of results and outlook

1.1 Motivations

Conductivity is one of the central observables of condensed matter systems. In standard

examples it is used to classify materials in classes labeled metals, superconductors and

insulators, and depends in many cases non-trivially on the underlying interactions of the

electronic component. It is relatively easy to measure both in DC and AC contexts. The
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DC conductivity of a metal increases as the temperature is lowered, while it decreases for

an insulator.

For Fermi liquids, few mysteries remain concerning their conductivity mechanisms.

For strongly-coupled materials like the high-Tc superconductors and heavy fermions, con-

ductivity has a non-trivial behavior, with a landmark linear form, and it is fair to say

that its origin is not known from first principles. In most of the phase diagrams there is

convincing evidence that the underlying normal states are not Fermi liquids. Moreover,

in exotic cases, like the c-axis conductivity of cuprates, the frequency dependence remains

largely a mystery.

Holographic approaches, originating in string theory and the AdS/CFT correspon-

dence, have been used recently to analyze models that may be in the same universality

class as strongly correlated electrons. Such approaches work in a context of large-N ad-

joint theories at strong coupling. The adjoint nature of such theories makes the large-N

limit intractable. In the strong coupling limit however, the theory can be solved using an

appropriate gravitational dual theory in higher space-time dimensions.

Such techniques and their applications to phenomena at finite density, relevant for con-

densed matter systems, have been analysed in the last few years and several new concepts

have emerged, see [1] for a recent review.

Most holographic systems analyzed at finite density are translationally invariant.1 The

standard symmetry argument then indicates that the real part of the AC conductivity will

have a δ(ω) contribution as in a translationally invariant system a constant electric field

generates an infinite current. The δ function has been argued in [6, 7] to be related, via

causality, to a 1
ω pole in the imaginary part of the conductivity. This δ function is distinct

from the one appearing in superfluid/superconducting phases.

In most holographic cases the translationally invariant systems are metals. There have

been also systems that have a gapped spectrum in the current-current correlator, and

they are therefore candidates for insulators. At zero density such systems were described

in [8–10].2

More interestingly, at finite density a large class of systems were found,3 [13, 14], that

has a gapped spectrum for the current correlator. The spectrum of excitations is discrete,

but there is again a zero mode because of translational invariance. This phase seems to

be unique to holography and is a hybrid between an insulator and a perfect metal. Under

strict DC fields it conducts perfectly, but under AC ones it is generically insulating.

Interestingly, the thermodynamics for such systems is a bit like Yang-Mills. At finite

temperature, up to a transition temperature Tc, the dynamics is temperature-independent

to leading order in the large-N limit. However there is a first-order transition at Tc to a

new phase that is conducting.

In all of the above, the saddle points are translationally invariant and the DC conduc-

tivity is strictly infinite because of the δ-function. This is however a problem when one is

interested in comparing to realistic finite density systems. In such cases, there is always a

1Exceptions also exist, using D-brane defects and magnetic vortices, [2]–[5].
2See [11] for a recent example of a gapless, dissipationless insulator at zero density.
3One particular case was, descending from an M-theory compactification was found independently in [12].
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breaking of translational invariance, due to the ionic lattice as well as other impurities that

may exist in the system and in most cases, their interactions with the electron gas determine

the DC conductivity, by controlling the rate of momentum dissipation of the electron gas.

The interaction with momentum dissipation agents has been discussed in rather general

terms in [15, 16, 18]. When the interaction with dissipators is IR irrelevant with respect

to RG fixed points, a perturbative IR calculation can determine the scaling of the IR DC

conductivity. When the dissipation is IR relevant, it can change the nature of the saddle

point, turning the system into an insulator as was first argued in [19] and demonstrated

for a class of models.

There have been several lines of research addressing the breaking of translational in-

variance in holographic saddle points at finite density and its impact on conductivity. A

first line of research introduced a holographic lattice imprinted by boundary conditions on

the bulk charge contribution, [20]–[24]. The system is then governed by PDEs that can

be solved so far only numerically. In the regimes accessible to the numerical calculations,

the lattice perturbation is irrelevant in the IR and it controls to leading order in the IR

the DC conductivity as predicted in [18] on general principles. In [20, 21] this has been

done for RN black-hole type geometries (or more generally geometries that asymptote to

those in the IR), while in [22, 23] the analysis has been extended to semilocal hyperscaling

violating geometries in the IR.

Another line of approach proposed first in [25] was to assume an effective action treat-

ment for momentum dissipation associated to the breaking of translational invariance. It

is known, [26, 27] that when translational invariance broken, the graviton obtains a mass

corresponding via the holographic correspondence to the anomalous dimension of the ap-

propriate stress tensor components. By introducing therefore a mass term in the effective

gravitational description, one introduces a source for translational invariance breaking and

associated momentum dissipation leading to a finite DC conductivity. It is worth noting

that even though the concept of the dual field theory energy momentum tensor is not

entirely clear in the context of massive gravity one can still study electric conductivities.

The massive graviton approach was extended in [28–30] and provided for a formula

for the DC conductivity in the context of massive gravity. As applied so far, it has its

own limitations. It is well-known (see [26, 27]) that the proper framework of momentum

non-conservation is to consider separately the two stress-tensors that exchange momentum.

In a fully holographic large N context this is modeled by two large-N QFTs that interact

with each other, exchanging momentum by some interaction.4 The geometric bulk picture

is of two asymptotically AdS spaces interacting via correlated boundary conditions at their

common boundary. In this context, the graviton mass is of order O(1) while the kinetic

terms are of order O(N2).

One may also entertain the situation where one of the two theories has an N ∼ O(1).

In this case, the graviton mass is of order O(N2) and the geometrical picture changes. The

small N QFT lives at the boundary of the holographic one and the coupling is localized

4The interactions described in [26, 27], namely
∫
dtddx O1(x, t)O2(x, t) exchange both momentum and

energy (O1(x, t), O2(x, t) are operators in respectively QFT1 and QFT2). One can obtain uniform momen-

tum exchange only by replacing this interaction by
∫
dt1dt2 d

dx O1(x, t1)O2(x, t2).
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in the bulk. To our knowledge, only the previous setup was analyzed and the relevant RG

flows were studied in great detail in [31].

The effective approach used in [25]–[30] should be obtained as a limit where the mo-

mentum dissipating sector has a much larger number of degrees of freedom so that the

backreaction of the dissipated momentum can be neglected and its metric frozen. It will be

interesting to work this out explicitly using the holographic picture and derive the effective

setup used so far.

A related issue concerns the graviton potential used in the studies [25]–[30]. This has

been chosen to belong to a very restricted class of potentials, [32], that for a single massive

graviton and no other degrees of freedom guarantee the nonlinear absence of the Boulware-

Deser ghost, [33]. It is known however by now that in the presence of other fields, massive

gravitons have many other ways to avoid the nonlinear BD ghost, if such interactions are

well-tuned, [31, 34]. This is the case in string theory and holographic setups, allowing for

more general graviton potentials.

The formula obtained for the DC conductivity in these studies is a sum of two contri-

butions:

σDC = σpc
DC + σdrag

DC (1.1)

The first, σpc
DC has been interpreted, [35], as a quantum critical pair creation contribution

as it persists at zero charge density. For the RN black hole it is a constant proportional

to the inverse of the bulk gauge coupling constant that counts the relative density of

charge-carrying degrees of freedom to the neutral ones in the strongly-coupled plasma.

More generally, at finite density, it can be interpreted as a contribution from the quantum

critical sector, [15, 16]. More recently, it was realised in [17] that the first term is the electric

conductivity in the absence of a heat current. The interpretation as a pair creation term is

then natural since charged pairs are created with zero total momentum and therefore not

contributing to a net matter flow.

The second contribution is due to the effects of dissipating momentum. When

translation-breaking operators are irrelevant, the system is expected to be metallic and

this term should give the leading contribution to the DC conductivity. Then, a descrip-

tion of momentum relaxation in terms of the memory matrix formalism is apposite, and

shows that the conductivity takes a Drude-like form, though no quasi-particle description

is assumed [18].

This general form of the DC conductivity was seen already pure metric backgrounds

in [35] and was generalized to dilatonic backgrounds in [13, 14]. In both cases, as the gauge

field action is the DBI action, (1.1) is replaced by

σDC =

√
(σpc

DC)2 + (σdrag
DC )2 (1.2)

giving results compatible with (1.1) in the regimes where pair creation or drag diffusion

dominates the conductivity. In general, we expect a nonlinear formula that reflects the bulk

action of the gauge field. In the probe DBI cases the momentum dissipation is due to the

fact that charge degrees of freedom are subleading compared to uncharged ones. In a sense,

there is a momentum conserving δ-function but its coefficient is hierarchically suppressed.

– 4 –
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In [13, 14] it was observed based on (1.2) that for running scalars other than the dilaton

and in 2+1 boundary dimensions, the drag DC resistivity, when it dominates, is propor-

tional to the electronic entropy. This is a general property of strange metals where both the

measured electronic entropy and resistivity are linear in temperature. This was extended

in [36] to more general cases using the massive graviton theory, and most importantly

provided a kinetic explanation for the correlation suggesting a more general validity.

The lattice and massive gravity approaches where put in contact, [37], where an in-

finitesimal lattice perturbation of a charged holographic system was considered and by

analyzing the bulk equations mapped to the massive gravity framework.

A technology to break translational invariance while maintaining the simplicity of

ODEs and remaining in the O(N2) supergravity limit was introduced in [19]. At a technical

level, the black hole construction was very similar to that of [38–40] with the difference that

translations where broken explicitly on the AdS5 boundary in order to give rise to a lattice.

The deformation was introduced through a vector boundary operator which was relevant

and three dimensional Euclidean symmetry is restored in the UV. The simplification of

these constructions carries on even when calculating transport properties.

The structures left invariant under Bianchi VII0 symmetry are helices of a fixed direc-

tor. Whilst homogeneous, the horizons of these black holes break translational invariance

and momentum along the director disipates. In the framework of spontaneous symmetry

breaking in holography, helical symmetry was first discussed in [41] (see also [42]). In

the context of holography, a gravitational Ansatz made out of invariant 1-forms was given

in [43] where a classification of solutions of various Bianchi types was carried out and which

moreover, are scale invariant.

More recently, along similar lines, two more proposals appeared in [44] and [45]. In [44]

the phase of UV relevant, charge neutral, complex scalars was used in order to break

translational symmetry on the boundary. From the bulk point of view this construction

has the interpretation of two neutral scalars, which can be rotated among each other, and

on the boundary the theory is deformed by both of their dual operators with a sinusoidal

pattern which is relatively shifted by a phase of π/2k. In this setup both a lattice amplitude

and a period are part of the UV boundary data.

The construction of [45] used bulk fields which are perturbatively massless on AdS. In

order to relax momentum, they were given a linear dependence on the spatial coordinates

of the boundary. This deformation has the interesting property that apart from being UV

marginal it was also IR relevant yielding a AdS2×R2 extremal horizon even in the absence

of background charge. In this case the only deformation parameter is a slope introduced

in the UV, setting one more scale apart from the chemical potential.

As with any gravitational semiclassical description, axions and the associated exact

translational symmetry are approximations in string theory. It is well-known from many

arguments and theorems with partial validity that there are no continuous global symme-

tries in string theory that are not space-time symmetries, (see for example, [46–48]). This

implies in particular that the axion translational symmetries are broken to discrete sym-

metries (known as duality symmetries) by various non-perturbative effects in string theory.

– 5 –
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The prototype such mechanism is the breaking of SL(2,R) continuous symmetry of

classical IIB supergravity in ten dimensions to SL(2, Z) by D-instantons, [49]. Such effects

will generate a nontrivial potential for the axion in gauged supergravity (they do not in

standard Poincaré supergravity), which will be periodic to respect the unbroken discrete

duality symmetries. The same phenomenon is generated in four-dimensional gauge theories

by instantons. However, if the scalar associated with such breaking is the dilaton as in N=4

sYM or YM, the potential is exponentially suppressed at large N as e−N , and therefore

can be neglected for the purposes discussed here.

For other scalars/axions where the instantons are world-sheet instantons the non-

perturbative (in α′) axion potential cannot be neglected. Despite this, axions can give a

reliable information on the conductivities. In the IR scaling regime, they seem to match

(very qualitatively) the physics associated with homogeneous disorder on transport dis-

cussed recently in [50]. To what extend this similarity goes beyond the scaling of conduc-

tivity remains to be explored.

When the massless scalars of [45] are coupled to additional dilatons or when the

moduli of the complex scalars of [44] are allowed to run unboundedly, the possible deep

IR solutions look identical. This has been exploited in [51, 52] in the context of EMD

theories to provide a large class of IR solutions which exhibit varying characteristics when

it comes to conductivity (which, as the action is linear in the gauge field kinetic term F 2,

have a form similar to (1.1), with the two components having a similar interpretation).5

The ODE structure of the system enabled the possibility of having explicit formulæ

for the conductivity, including the Hall angle [54] and the full thermoelectric coefficient

matrix [17]. The classes of ground states reached is comparable to the ones that will

be described in this paper and indicates that these different classes are expanding the

landscape of theoretical “holographic materials”.6

The purpose of the present work is to investigate the helical ground states in a system

that is general enough to allow for a diverse landscape of IR behaviors that would extend

those of [19]. The main motivation for this are two-fold:

• To produce novel holographic models of insulators and metals with or without sharp

Drude peaks, that go well beyond what is known.

• To potentially apply some of these findings to known strongly anisotropic systems

with metallic behavior without sharp Drude peaks, like the cuprates along the c-

axis, [56]–[59] or other materials that might exhibit a helical symmetry.

1.2 Setup

In this paper we will consider EMD2 theories with two U(1) gauge fields.7 They correspond

to two independently conserved U(1) charges in the dual QFT. For applications to more

realistic systems such charges could both be electric, but coming from sectors that at

5See [53] for a similar analysis with non-canonical kinetic terms.
6The universality classes described in this paper were announced before publication in [55].
7This is for convenience and simplicity. A similar analysis can be done also with a single U(1) gauge

field but it is more involved. It will be considered in a future work.

– 6 –
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low temperature/energy do not exchange charge. Therefore one can consider that their

individual charges are concerned. We will also assume 5 bulk space-time dimensions, or 4

boundary dimensions, in order to obtain non-trivial states with helical symmetry.

A general U(1)2 symmetric, two-derivative action, reads after redefinitions,

S = M3

∫
d5x
√
−g
[
R− 1

2
(∂φ)2 + V (φ)− Z1(φ)

4
F 2

1 −
Z2(φ)

4
F 2

2

]
. (1.3)

The action depends on three positive functions of the scalar field, V,Z1,2. The IR dynamics,

when the scalar is running to±∞ (dilatonic solutions), as advocated in [13, 14], is controlled

by the asymptotics of the functions V,Z1,2.

As usual, following the philosophy of [13, 14] we will assume that the scalar functions

asymptote in the IR like8

V (φ) ∼
IR
V0e
−δφ , Z1(φ) ∼

IR
Z10e

γ1φ , Z2(φ) ∼
IR
Z20e

γ2φ . (1.4)

Therefore, in the IR, the bulk action, apart from the dimensionful constants V0, Z10,20 that

affect simply the physics, depends on three important dimensionless parameters, δ, γ1,2.

We set Z10 = Z20 = 1 in the remainder of the paper.

We will consider solutions that are anisotropic in space, but have however a helical

symmetry, known as Bianchi VII0 symmetry. In a sense this symmetry group is a subgroup

of the Euclidean symmetries of black holes with flat horizons. They have been introduced

and analysed in the context of EMD theories in [43, 60], as well as in [19, 38–40] in theories

without neutral scalars. We postulate a helical Bianchi VII0 Ansatz for our metric and

gauge fields

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)ω2
1 + C2(r)ω2

2 + C3(r)ω2
3 (1.5)

where we have introduced the Bianchi VII0 left-invariant 1-forms

ω1 = dx1 , ω2 = cos(kx1)dx2 + sin(kx1)dx3 , ω3 = sin(kx1)dx2 − cos(kx1)dx3 . (1.6)

The Ansatz for the scalar and the gauge fields is:

φ = φ(r) , A1 = A1(r)dt , A2 = A2(r)ω2 (1.7)

so that A1 only carries electric charge and A2 is of magnetic type. The Bianchi VII0

symmetry is responsible for the fact that such an Ansatz leads to ODEs for the unknown

radially dependent functions D,B,C1,2,3, φ,A1,2.

It is clear from the Ansatz above that although there is translational symmetry in

the x2,3 directions, there is no translational symmetry in the x1 direction. It is replaced

by a more complicated one-parameter family of symmetries that involve an x1 translation

and at the same time a related rotation in the x2 − x3 plane. This is the reason that this

symmetry is also called helical symmetry.

8The notion of the IR limit is defined translated in field space. These are the asymptotics of the functions

as φ→∞ or φ→ −∞. They are relevant, if the scalar field flows to these values in the IR.

– 7 –
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Using this Ansatz we can derive the equations for the various radially-dependent func-

tions and they are spelled out in appendix A. In section 2, we derive a general formula for

the DC conductivity which takes the form (1.1) for all possible black hole within the radial

Ansatz (1.5).

Typically we expect to find domain-wall solutions to the equations of motion, which

are asymptotically AdS5 in the UV. We will analyse the IR scaling solutions as, in the spirit

of [13, 14] they will determine the possible IR end points of the RG flows within our metric

Ansatz.9 This is done in section 3 and 4. In section 3, we present saddle points which

display spatial anisotropy in the metric, and then compute the low frequency, zero tempera-

ture asymptotics of the AC conductivity, as well as the low temperature asymptotics of the

DC conductivity. In section 4, we study saddle points with irrelevant translation-breaking

deformations, as well as their DC conductivity. We also comment on their semi-locally

critical limits. Appendix B contains constraints from the Null Energy Condition. Many

technical details about the various solutions have been relegated to appendix C–E, while

the fluctuation equations for the conductivity can be found in appendix F.

1.3 Summary and outlook

In this work, we obtain broad families of extremal backgrounds with helical symmetry, and

characterize them by their behaviour under rigid scaling transformations (1.9). We are

interested in saddle points where the effects of translation symmetry breaking are strong,

imprinting some anisotropy between the helix director and the transverse plane, or even

between the x2, x3 directions of the transverse plane; and in saddle points where translation

symmetry breaking is mediated by irrelevant deformations.

We also compute their conductivity, in the AC regime at zero temperature using a

matched asymptotics argument, and in the DC regime through a general formula evaluated

at the event horizon, relying on the existence of a radial constraint. This gives a formula

for the DC conductivity, (2.7), made up of a quantum critical term and a dissipative term

as in (1.1).

The anisotropic backgrounds are captured at leading order by the Ansatz

ds2 = r2θ/3

[
− dt2

r2z1
+
L2dr2 + ω2

1

r2
+

1

r2z2

(
ω2

2 +
λ

k2r2
ω2

3

)] (
1 +O(k2r2)

)
,

φ = κ ln r+O(k2r2) , A1 =Q1r
ζ−z1 (1+O(k2r2)

)
dt , A2 =Q2

(
1+O(k2r2)

)
ω2

(1.8)

and behave under rigid scale transformations as

r→ξr , t→ξz1t , x1→ξx1 , (x2, x3)→ξz2(x2, x3) , k→ξ−1k

φ→φ+ κ ln ξ , ds2
k→ξ2θ/3 ds2

ξ−1 k, A1→ξζ A1, A2,k→ξz2A2,ξ−1 k (1.9)

θ and ζ parameterize the scale covariance of the metric and A1 under (1.9). They are

respectively related to the scaling of entropy and DC conductivity with temperature.

9As seen in [9, 10, 61], extremal backgrounds with metric elements displaying both power and exponential

behaviour are only possible in cases where the action parameters δ, γ1,2 are tuned to specific values.

– 8 –
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Note that (1.9) is not a symmetry of the background, but only of the equations of

motion, as suggested by the field transformations in the second line: as such, it generates a

new solution related to the original one by a marginal deformation and moreover scaling the

x1 coordinate changes the period of the helical lattice k which is meant to be fixed in the UV.

The electric potential can behave in two ways:

• Either it gives contributions in the stress-tensor appearing at the same power of the

radial coordinate as logarithmic derivatives coming from the Einstein tensor. The

density has zero scaling dimension and corresponds to a marginal deformation of the

solution in the spectrum of static, radial deformations. Then, ζ = θ − 2− 2z2.

• Or it gives contributions in the stress-tensor appearing at a subleading power of

the radial coordinate compared to logarithmic derivatives coming from the Einstein

tensor. The density no longer has zero scaling dimension and it now generates an

irrelevant deformation of the background. ζ is now unfixed, but z1 = 3z2/2.

The DC scaling of the states (1.8) is captured both for marginal/irrelevant density

deformation by

σDC ∼ T
ζ−2
z1 (1.10)

which is of the same form as that seen in [52].10 This suggests that the parameterization

of this quantum ciritical contribution in terms of the exponent ζ might be universal.

It is also of interest to match the scaling behaviour of the DC conductivity with

the low-frequency scaling of the AC conductivity at zero temperature. Near (isotropic)

quantum critical points, the conductivity is expected to be scale-covariant and behave as

T (d−2)/z1F (ω/T ) with F (x) ∼ x(d−2)/z1 for x � 1, F (x) ∼ 1 for x � 1, [63]. The scaling

in temperature/frequency of the DC conductivity/zero temperature, low frequency con-

ductivity should be identical and scale like T (d−2)/z1 or ω(d−2)/z1 , respectively. The former

differs from (1.10), unless ζ = 2 + 2z2 − θ,11 which is forbidden by our parameter space.

When the density deformation is marginal, we obtain only insulating states, where

the optical conductivity behaves covariantly at zero temperature and low frequencies as

σ(T � ω � µ) ∼ ω(ζ−2)/z1 . Both terms in the DC conductivity have the same temperature

dependence, but can be parametrically separated by the ratio of the charge density over k.

When the density deformation is irrelevant, the DC conductivity leading temperature

dependence comes from the quantum critical contribution. We obtain either insulators

with a scale covariant-conductivity, or metals where the conductivity is not always scale-

covariant, as summarized in figure 3.12 Moreover, the AC scaling with frequency can vanish,

suggesting that a delta function (unrelated to translation symmetry) might be present at

zero frequency.

10This anomalous behaviour can be predicted by scaling analysis when temperature is the only

scale [52, 62]. Note that we can restore a hyperscaling violating scale ` to render the running scalar

dimensionless, φ = κ ln(r/`), as well as to make up for the missing dimensions in the solution. It is a

marginal deformation. Upon doing this, the DC conductivity becomes σDC ∼ T
ζ−2
z1 `ζ−3, which restores it

usual dimension, d− 2 = 1 in five bulk dimensions.
11Accounting for spatial anisotropy and hyperscaling violation.
12This mismatch was also noted in previous works involving spatially dependent scalars, [51, 52].

– 9 –
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For ζ = 2, both the AC and DC conductivities are constant in the IR regime, while for

ζ = 2−3z2, only the AC conductivity is so, while the system conducts. This is perhaps rem-

iniscent of the transition between metals and insulators in under-doped cuprates, [57, 64].

The limit where z = z1/z2, θ̃ = θ/z2, ζ̃ = ζ/z2 are kept fixed while z1,2, θ, ζ → +∞
can be taken in (1.8), leading to an exact solution of the form

ds2 = r
2
3
θ̃

[
−dt2

r2z
+
L2dr2 + ω2

2 + λω2
3

r2
+ ω2

1

]
,

A1 = Q1r
ζ̃−zdt, A2 = Q2r

a2ω2 , φ = κ ln r .

(1.11)

Under rigid scale transformations, the x1 direction does not scale:

r → ξr , t→ ξzt , (x2, x3)→ ξ(x2, x3) ,

φ→ φ+ κ ln ξ , ds2
k → ξ2θ̃/3 ds2

k, A1 → ξζ̃ A1, A2 → ξa2+1A2 ,k (1.12)

prompting us to interpret them as partially hyperscaling violating [60].

An analysis of their DC conductivity shows these states are metallic with a power-law

scaling

σDC ∼ T
ζ̃
z (1.13)

which can also be obtained from (1.10) by the appropriate limit. For a marginal density

deformation ζ̃ = θ̃ − 2, the resistivity is found to scale with temperature like the entropy

density, which is very reminescent of the mechanism of linear resisitivity found in [36] for

semi-locally critical states in massive gravity.

Backgrounds where the metric does not break translation invariance at leading order

are just the usual hyperscaling violating backgrounds

ds2 =r2θ/3

[
− dt2

r2z1
+
L2dr2+dx1

2+dx2
2+dx3

2

r2

]
, A1 =Q1r

ζ−z1dt , φ=κ ln r , (1.14)

which behave under rigid scale transformations as:

r → ξr , t→ ξz̃1t , (x1, x2, x3)→ ξ(x1, x2, x3) ,

φ→ φ+ κ ln ξ , ds2
k → ξ2θ/3 ds2

k, A1 → ξζ A1 . (1.15)

They have a semi-locally critical limit where θ, z1, ζ → +∞ while the appropriate ratios

are kept finite, under which the spatial directions no longer scale under rigid scale trans-

formations.

For z1 < +∞, the translation-breaking (lattice) modes are exponentially suppressed,

which in turn lead to metallic states with an exponentially suppressed resistivity at low

temperatures, rather than with a power law. This is similar to [65, 66] and in agreement

with the expectation that no finite momentum mode can resonate at finite z1, [18]. In

this sense, our results complement those of [65, 66] where frequency-dependent spectral

densities were computed. As far as we know this is the first instance in holography where

exponential conductivities are explicitly computed.

– 10 –
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This can be evaded in the semi-locally critical limit where z1 diverges and indeed in

this case we recover metallic states with a power-law DC conductivity.

In this work, we have not constructed any finite temperature black hole solutions,

whose zero temperature limit would be described by the extremal backgrounds described

above. This is clearly an important step which we leave for future work.

We have found that the (boundary) DC conductivity is the sum of a dissipative and

quantum critical term. However, it is computed from horizon data, which complicates the

boundary interpretation of these two contributions, in particular the quantum critical one.

It would be nice to understand better its origin from the boundary point of view.

We have seen that metallic states could be obtained, with a different scaling for the

DC conductivity and the zero temperature AC conductivity, even possibly with a zero

frequency delta function. Moreover, the DC conductivity can be dominated by the quantum

critical contribution, either when it sets the leading low temperature dependence, or if both

terms have the same temperature dependence, when translation-breaking effects are strong.

Clearly, we would like to understand how this impacts the full frequency-dependent and

finite temperature conductivity, in particular whether it displays a sharp Drude-like peak

or not.

Finally, we turn to the question of metal/insulator transitions. They can be triggered

along two scenarii, either if the metallic phase displays a relevant mode, or if a mode

becomes relevant by tuning UV data such as the lattice scale. The same happens for the

anisotropic saddle points (1.8) which can also display an RG-relevant mode, as shown in

figure 2. In the semi-locally critical limit (1.11), the scaling dimension of the mode depends

explicitly on k, and there is a region of instability when an irrelevant mode sourced by the

magnetic field becomes relevant at small k, see figure 4. The endpoint of this instability

can then also be an insulating phase. Concrete UV completions in which such transitions

can occur are left for future investigation.

A method to derive the DC heat conductivity has been outlined in [17]. It would be

interesting to adapt it to our setup, and to work out whether the phases presented here

can conduct heat or not.

2 The DC conductivity along the helix director

We will now calculate the electric DC conductivity on black hole backgrounds which are

captured by the radial Ansatz (1.5). To proceed, we will follow the simple argument

developed in [51] by introducing a constant electric field perturbation on the asymptotic

boundary and reading off the response of the current.

More concretely, we will assume that our background geometry (1.5) asymptotes to

AdS5 as r → ∞ and that there is a regular Killing horizon at r = r+. Without loss of

generality, we will assume that Zi (φ(∞)) → 1 and V (φ(∞)) → 12 in the action (1.3).

Following the logic of [51] we consider the perturbation

δ ds2 = C1 (δgt1 dt+ δgr1 dr) ω1 + C3 δg23 ω2 ω3

δA1 = (−E t+ δa1) ω1, δA2 = δb ω3 (2.1)

– 11 –
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where all the functions {δgt1, δgr1, δg23, δa1, δb} used to parametrize the perturbation de-

pend only on r while E is the amplitude of the constant boundary electric field.

Without loss of generality, we will fix a gauge for our background (1.5) in which

B−1 = D = U . In this gauge, a regular horizon at r = r+ will yield the leading order

behaviour U ≈ 4πT (r − r+) + · · · , A1 ≈ A+
1 (r − r+) + · · · with T being the Hawking

temperature and all other functions in (1.5) taking constant values. We wish to impose

ingoing boundary conditions on the horizon and this can be achieved by requiring13

δa′1 = −E
U

+ · · · , δgt1 = U δgr1 + · · · (2.2)

at r = r+ and with δgt1 taking a constant value i.e. U δgr1 admits a Taylor expansion on

the horizon. In addition, we require that the functions {δg23, δb} are analytic at r = r+.

On the AdS5 boundary we will require that all the functions {δgt1, δgr1, δg23, δa1, δb} will

have normalizable fall offs. At this point we have to stress that the functions δa1 and δgt1
satisfy second order equations which allow for boundary conditions of the form (2.2). For

the function δa1 this can be seen from the gauge field equation of motion with which we

are dealing next.

The equations of motion of the gauge field A1 can be written in an integrated form

J =
√
C1C2C3

(
−C−1

1 U Z1 δa
′
1 − Z1A

′
1 δgt1

)
, J ′ = 0 . (2.3)

On the AdS5 boundary at r → ∞ we have that U ≈ Ci → r2. Moreover, for the current

perturbation we have that δa1 ∝ − j
r2

with j being the current we are after. Since we

require a normalizable fall off for δgt1 ∝ O(r−1) it follows that J is precisely the current we

would like to calculate. On the other hand, we can evaluate this expression on the black

hole horizon at r = r+. The first term can be easily evaluated by using the first boundary

condition in (2.2). For the second term we will have to take a closer look at the linearized

equations of motion. Doing so reveals that we can algebraically solve for the function δgr1

L2 δgr1 = −U−1E

k
C2C3 Z1A

′
1 + C3 (C3 − C2) δg′23

+ Z2

(
−C2A2 δb

′ + C3A
′
2 δb
)

+ C3

(
2C2

(
C ′2
C2
− C ′3
C3

)
+ Z2A2A

′
2

)
δg23

L2 = k (C2 − C3)2 + k C2 Z2A
2
2 . (2.4)

From the above equation and in combination with the analyticity properties, we deduce

that close to the horizon

δgr1 = −U−1 E

k2

C2C3 Z1A
′
1

(C2 − C3)2 + C2Z2A2
2

+O
(

(r − r+)0
)
. (2.5)

Using the second boundary condition in (2.2) we find that on the horizon

δgt1 = −E
k2

C2C3 Z1A
′
1

(C2 − C3)2 + C2Z2A2
2

+O (r − r+) . (2.6)

13It is only then that our perturbation will only depend on the regular ingoing Eddington-Finklestein

coordinates r and v = t + 1
4πT

ln (r − r+). In particular, we will have that δA1 ≈ −E v ω1 and

δgt1 dt+ δgr1 dr ≈ dv.

– 12 –



J
H
E
P
0
9
(
2
0
1
4
)
0
3
8

The above allows us to express the DC conductivity in terms of the black hole horizon

data as

σDC =

√
C2C3

C1

(
Z1 +

1

k2

Q2

(C2 − C3)2 + C2 Z2A2
2

)
|r=r+ (2.7)

Q = −Z1

√
C1C2C3A

′
1 . (2.8)

with Q being the charge density.

In the following sections, we will discuss the nature of charge transport mediated by

saddle points with helical symmetry. We will use the formula for the DC conductivity (2.7)

in order to derive the leading scaling behaviour in temperature.

Though we have not constructed families of black holes whose extremal limit reduces

to one of the ground states we will shortly describe, we have shown that a small temper-

ature deformation could always be turned on consistently. Since we are only interested

in the leading order behaviour of the DC conductivity, we can simply evaluate (2.7) at

the horizon radius r+ using the metrics of section 3 and 4, and then use the fact that

r−z1+ ∼ T . This is entirely similar to the manipulations involved in deriving the low-T

scaling of the thermal entropy.

3 Anisotropic metals and insulators with helical symmetry

In the next subsection 3.1, we present in detail anisotropic IR solutions with helical

symmetry with either marginal or irrelevant density deformation. We also present

the partially hyperscaling violating limit where the x1 direction decouples from the

scaling (1.9). Then, we turn to the low-frequency, zero temperature asymptotics of the

AC conductivity in section 3.2. Finally, we examine the low-temperature scaling of the

DC conductivity in section 3.3.

3.1 Anisotropic IR saddle points

Recalling the metric Ansatz (1.5), let us assume C2(r) 6= C3(r). At leading order in the

radial coordinate, this can be realised either when these two functions scale differently with

r, or if they have a different overall prefactor. We focus on each possibility in turn.

From the equation of motion (A.22), anisotropic solutions with different r dependence

for C2 and C3 cannot be expressed in closed form when k 6= 0, but rather as power series

expansions controlled by powers of r. To connect with previous studies of IR fixed points in

EMD theories [13, 14, 52, 67, 68], note that here it is not a stress-tensor contribution from

the matter fields which gives a subleading term in the IR, but rather a term coming from

the metric via the Einstein tensor which does not take the form of a logarithmic derivative.

– 13 –
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The solutions are captured by the following scaling Ansatz

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)ω2
1 + C2(r)ω2

2 + C3(r)ω2
3

B(r) = L2r
2
3
θ−2

(
1 +

∑
i=1

bi (kr)2i

)
, D(r) = r

2
3
θ−2z1

(
1 +

∑
i=1

di (kr)2i

)
,

C1(r) = r
2
3
θ−2

(
1 +

∑
i=1

c(1)i (kr)2i

)
, C2(r) = r

2
3
θ−2z2

(
1 +

∑
i=1

c(2)i (kr)2i

)
,

C3(r) = r
2
3
θ−2z2

(
V0z2

(1− θ + z1 + 2z2) (kr)2
+
∑
i=0

c(3)i (kr)2i

)

φ = κ log r +
∑
i=1

ϕi (kr)2i , A2(r) = Q2

(
1 +

∑
i=2

a(2)i (kr)2i

)
,

L2 =
(θ − 2− z1 − 2z2) (θ − 1− z1 − 2z2)

V0
, Q2

2 =
2 (z2 − 1)V 2

0 z2

(1− θ + z1 + 2z2)2 k4
.

(3.1)

In this coordinate system, the expansion is in even powers of r, and the various coefficients

a(2),i, bi, c(1,2,3),j , di and ϕi are completely fixed by the choice of radial coordinate and the

equations of motion. All amplitudes are proportional to k2, the periodicity of the helix,

which emphasizes the fact that the spatial anisotropy of the geometry is generated by the

choice of spatial Bianchi VII0 symmetry. Moreover, consistency of the expansion implies

that the IR is r → 0. The geometries always obey the NEC (B.6) at leading order in r.

The magnetic field A2 is constant in the IR at leading order.

The scaling exponents are related to the parameters of the action:

κ2 =
2

3

(
θ2 − 6− 6z2 − 6z2

2 + z1 (6− 3θ + 6z2)
)
, κδ=

2θ

3
, κγ2 =

2

3
(θ − 6− 3z2) . (3.2)

The fact that a series in powers of kr can be developed in this anisotropic case

is in sharp contrast with finite momentum deformations of translation-invariant back-

grounds, whose translation-breaking deformations are exponentially suppressed, as we de-

tail in appendix C.1. This is in agreement with expectations that their resistivities should

be exponentially suppressed: degrees of freedom which obey the nonrelativistic scaling

ω ∼ kz1 at low energies cannot live at finite momentum in presence of translation invari-

ance, [18, 65, 66].

It can be checked that the leading order powers in r of the tt and ω2
2 elements of the

metric always vanish in the IR, while the ω1,3
2 elements do not necessarily do so. Moreover,

the Ricci scalar goes at leading order like r−2θ/3, which means that there is a mild14 curva-

ture singularity in the IR given that θ > 0 (see the parameter space below in figures 1 and 2).

Given the expression for the non-zero temperature deformation (see below), the entropy

scales as

S = T
2z2+2−θ

z1 (3.3)

and always vanishes in the allowed parameter space as T → 0, ensuring the specific heat

is always positive.

14In the sense that it can be hidden behind an event horizon.
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As described in section 1.3, the density deformation can be marginal or irrelevant. We

now detail both cases.

Marginal density deformation. In this case, A1 reads

A1(r) = Q1r
θ−2−z1−2z2

(
1 +

∑
i=1

a(1)i (kr)2i

)
, (3.4)

with

κγ1 = 4− 4θ

3
+ 4z2 , Q2

1 =
2z1 − 3z2

2− θ + z1 + 2z2
(3.5)

Taking the constant scalar limit κ = δ = γ1 = γ2 = 0, we recover AdS2 ×R3 with both an

electric and a magnetic field turned on. Consistency of the solution requires

L2 > 0 , Q2
1 > 0 , Q2 > 0 , κ2 > 0 ,

V0z2

1− θ + z1 + 2z2
> 0 (3.6)

to ensure that all parameters are real and that the signature of the metric is Lorentzian.

Next, we turn to radial, static deformations around the solution,

∆B

B
=
∑
i

cBi r
βi ,

∆D

D
=
∑
i

cDi r
βi ,

∆Cj
Cj

=
∑
i

cji r
βi , j = 1, 2, 3

∆Φ

Φ
=
∑
i

cφi r
βi ,

∆A2

A2
= r2

∑
i

cmi r
βi ,

∆A0

A0
=
∑
i

cei r
βi .

(3.7)

The following modes can be found:

βi,± =
1

2
(2− θ + z1 + 2z2)± νi . (3.8)

We give explicit values to νi to only for two of them (the three other pairs are still of the

form above but are given by a 6th order polynomial which does not factorise and yields

cumbersome expressions)

ν1 =
1

2
(2− θ + z1 + 2z2) ,

ν2 = 3− θ

2
+
z1

2
+ z2 .

(3.9)

β1,± are both doubly-degenerate and correspond respectively to a finite temperature and

its conjugate marginal mode. So we require β1,+ < 0 given that the IR is r → 0. We now

have to check that βi,+ > 0 with i = 2 . . . 5, so they correspond to irrelevant modes. For

lack of nice analytical expressions for the modes, it is hard to do in full generality except

for β2,+. Once this is imposed though, a few explicit values seem to show that the other

+ modes are positive, at least in some region of the parameter space, which reads:

13− 3
√

21 < z2 < 0 ,
1

2
(1 + 2z2)− 1

2

√
3
√

7 + 8z2 < z1 <
3z2

2
,

3z1

2
+

1

2

√
3
√

8− 8z1 + 3z2
1 + 8z2 − 8z1z2 + 8z2

2 < θ < 4 + z1 + 2z2 .

(3.10)

Note that z1,2 < 0, while θ > 0. We plot it in figure 1 for z2 = (−1/10,−1/2).
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Figure 1. The parameter space of the ground states (3.1) with marginal density deformations, for

z2 = −1/2 (left) and z2 = −1/10 (right).

Irrelevant density deformation. In this case, A1 enters in the solution as an irrelevant

mode, and z1 = 3z2/2 is fixed in terms of z2.

Let us parameterize the deformations in the following way

∆B

B
=

4∑
i=1

cBi,±r
βi,± ,

∆D

D
=

4∑
i=1

cDi,±r
βi,± ,

∆Cj
Cj

=

4∑
i=1

cji,±r
βi,± , j = 1, 2, 3

∆Φ

Φ
=

4∑
i=1

cφi,±r
βi,± ,

∆A2

A2
= r2

4∑
i=1

cmi,±r
βi,± , A1 = r

ζ
2

+ θ
2
−1− 5

2
z2ce5,±r

β5,± .

(3.11)

The A1 modes are decoupled from the others at linear order, and are such that

A1 = ce5,+r
ζ− 3

2
z2 + c5,− , κγ1 = 2− ζ − θ

3
+ 2z2 . (3.12)

We have introduced a conduction exponent ζ to characterize the scaling of the + mode,

through the violation of the helical scaling (1.9). As we will see later, ζ also plays a role

in the scaling of the conductivity, hence its name. In the previous family of solutions with

A1 marginal, it took the value ζ = θ − 2− 2z2.

Using the standard technology, we find the following values for the radial, static per-

turbations, which we write:

βi,± = 1− θ

2
+

7z2

4
± νi (3.13)

with

ν1 = 1− θ

2
+

7z2

4
, ν2 =

1

4

√
4(θ − 2)2 − 76(θ − 2)z2 + 217z2

2 ,

ν3 =
1

4
(
2 (θ2 − 6) + (6− 9θ)z2 + 6z2

2

) (√(16(θ − 2)2(132− 96θ − 28θ2 + 16θ3 + θ4)
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− 32
(
−996 + 546θ + 614θ2 − 447θ3 + 32θ4 + 16θ5

)
z2

+ 24(201θ4−82+2992θ−2002θ2−144θ3)z2
2−8(8838−7089θ−3908θ2+2506θ3)z3

2

+
(
−11244− 61260θ + 39769θ2

)
z4

2 − 84(−386 + 419θ)z5
2 + 11172z6

2

))
,

ν4 = 3− θ

2
+

7z2

4
, ν5 =

ζ

2
− 3z2

4
. (3.14)

β1,± are both doubly-degenerate and correspond respectively to a (relevant) finite temper-

ature and its conjugate marginal mode, which implies β1,+ < 0. We now have to check

that βi,+ > 0 with i = 2 . . . 5 in order to correspond to irrelevant modes. This is always

true for β2,+ and β3,+. The others give some constraints. When either β4,+ or β5,+ are

relevant, then the system is expected to be RG-unstable, and can mediate a quantum phase

transition between an RG-stable metallic and insulating phase, as shown in [19].

The constant scalar limit is θ = 0, z2 = −2 and ζ = −2, which is outside of the region

where all the deformations are irrelevant: indeed, β4,+ and β5,+ are both relevant in this

region. This is in contrast with [19] where these deformations could be irrelevant through

the action of a Chern-Simons coupling. Upon taking that limit, we find agreement with [19]

for the expression of the extremal solution (3.1).

The detailed parameter space (z2, θ, ζ) is complicated:

13− 3
√

21 < z2 < 0 ,
9z2

4
+

1

4

√
3
√

32− 16z2 + 11z2
2 < θ <

1

2
(8 + 7z2) ,

ζ > −2 + θ − 2z2 ,
(3.15)

but note that z2 < 0, while θ, ζ > 0. We reproduce it fixing z2 = −1/2 or ζ = 3 in figure 2.

Partially hyperscaling violating limit z2 → +∞. Upon taking the limit z2 → ∞,

θ → +∞, ζ → +∞ while keeping θ̃ = θ/z2 and ζ̃ = ζ/z2 finite as well as changing radial

coordinate to r → r1/z2 , the power expansion collapses and we recover exact extremal

backgrounds. Sending z1 → +∞ while keeping z = z1/z2 finite, we obtain

ds2 = r
2
3
θ̃

[
−dt2

r2z
+
L2dr2 + ω2

2 + λω3
2

r2
+ ω1

2

]
, φ = κ ln r . (3.16)

Under this limit, the helix director ∂x1 has decoupled from the rigid scaling transforma-

tions (1.12). These solutions are presented in greater detail in appendix D. The magnetic

potential can now be non-constant,

A2 = Q2r
a2ω2 , (3.17)

which was not allowed at finite z2: for a2 6= 0, the IR of (3.1) would lie at r → +∞ and

hence the power expansion was not consistent. The electric potential still behaves

A1 = Q1r
ζ̃−zdt , (3.18)

and two cases must be separated, depending on whether the density sources a marginal

(and then ζ̃ = θ̃ − 2) or irrelevant deformation (and then λ and z are related). When

the electric potential is set to zero, they are cousins of solutions presented in [43] (which

studied solutions with no electric field and a mass turned on for A2, both with and without

a running scalar).
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Figure 2. The parameter space of the ground states (3.1) with irrelevant electric potential, for

z2 = −1/2 (left) and ζ = 3 (right). In blue, the region where all deformations are irrelevant; in

green, where β4,+ is relevant; in brown, where β5,+ is relevant; and in red, where both β4,+ and

β5,+ are relevant.

3.2 Low frequency behaviour of the AC conductivity at zero temperature

We would like to calculate the low-frequency, zero temperature scaling of the AC conduc-

tivity for the solutions of the previous section. After we have also calculated their DC

conductivity, we will be able to check whether the conductivity is scale covariant, that is

whether it displays the same low frequency and low temperature scaling.

We perturb around the background fields with the following Ansatz

δA1 = e−iωtb1(r)ω1 , δA2 = e−iωtb2(r)ω3 (3.19)

δ(ds2) = e−iωt [g1(r)dt⊗ ω1 + g2(r)ω2 ⊗ ω3] (3.20)

and obtain five equations for three propagating modes, (F.3)–(F.7). Keeping ω 6= 0 will

enable us to calculate the low-frequency, zero temperature scaling of the conductivity.

Our strategy is the following. We will decouple the propagating modes in the IR, by

neglecting various terms in the fluctuation equations (F.3)–(F.7) which are subleading as

r → 0. We will be able to express the remaining equations as Schrödinger equations, by tak-

ing certain linear combinations of the original modes and changing to the radial coordinate

dρ

dr
=

√
B(r)

D(r)
. (3.21)

This will let us access the imaginary part of the IR Green’s function of these fields by the

standard argument, [69, 70]. This is not quite yet what we are after, as the conductivity

is related to the imaginary part of the UV Green’s function. Happily, the argument
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developed in appendix A of [71] still applies, and allows to relate the IR and UV data at

low frequencies via a matched asymptotics expansion. More explicitly,

σ (ω, T ) =
1

ω
=
[
GR,UVJ xJ x (ω, T )

]
∼ 1

ω

∑
I

dI=
[
GR,IROIOI (ω, T )

]
(3.22)

where the index I runs over all the irrelevant operators OI coupling to the current J x. The

least irrelevant IR operator will dominate the low-frequency scaling of the conductivity.

The two families, with marginal or irrelevant density deformation, have to be treated

separately.

Marginal density deformation. After some work, the following changes of variables

allows to decouple the linearized equations:

σ(ρ) = b2(ρ)− ρ
6−2θ+6z2

3z1
λg2(ρ)

2Q2
,

Θ(ρ) = 2λρ
−4+θ−2z2

2z1 b2(ρ) + ρ
− θ−6z2

6z1 Q2g2(ρ)

Σ(ρ) =
ikλ2ρ

4−θ+2z2
2z1 ωB0Q1 (θ + 3z1 − 6z2) (3z2 − 2) b1(ρ)

6Q2 (z1 − 1) z2
+
ρ
θ−4−2z2

2z1 3z1 (3z2 − 2z1)σ′(ρ)

2 (z1 − 1) (θ + 3z1 − 6z2)
,

Φ(ρ) = ρ
4−θ+2z2

2z1 b1(ρ) +
9iρ

−4+θ−2z2
2z1 Q2z1z2σ

′(ρ)

kλ2ωB0Q1 (θ + 3z1 − 6z2) 2
(3.23)

in the Schrödinger coordinate (3.21). Θ(ρ), Σ(ρ) and Φ(ρ) obey the equations:(
−θ

2 − 2z1 (θ − 8z2)− 8(−3 + 2θ)z2 + 28z2
2

4ρ2z2
1

− ω2

)
Θ + Θ′′ = 0(

−(−4 + θ − 2z2) (−4 + θ + 2z1 − 2z2)

4ρ2z2
1

− ω2

)
Σ + Σ′′ = 0(

8z2
1 − 6z1 (θ − 2z2) + (θ − 2z2) 2

4ρ2z2
1

− ω2

)
Φ + Φ′′ = 0 .

(3.24)

which give the following contributions to the conductivity, after changing notation to z1,2, θ

σ ∼ ωni , i = Σ, θ, Φ

nΣ = −1 +

∣∣∣∣(−4 + θ + z1 − 2z2)

z1

∣∣∣∣ ,
nΦ = −1 +

∣∣∣∣(θ − 3z1 − 2z2)

z1

∣∣∣∣ ,
nΘ = −1 +

√
θ2 + z2

1 − 2z1 (θ − 8z2)− 8(−3 + 2θ)z2 + 28z2
2

z2
1

.

(3.25)

Given the parameter space (3.10), σΣ is always the most relevant contribution to the

optical conductivity, and moreover nΣ > 0, so the power tail in the frequency always

decays as ω → 0.
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Irrelevant density deformation. In this case, it is clear that (F.3) yields an indepen-

dent equation for the b1 perturbation in the IR limit, which is expected since the electric

potential sources an irrelevant deformation. It straightforwardly yields a Schrödinger po-

tential equal to

Vb1(ρ) =
(ζ − 2) (ζ − 2 + 3z2)

9z2
2ρ

2
(3.26)

in the Schrödinger coordinate (3.21).

The other equations (F.4)–(F.7) remain coupled for the variables g1, g2 and b2. After

substituting in the generic Ansatz for the fields and neglecting the appropriate powers of

r by taking the IR limit, they can be decoupled in the following variables

Θ(ρ) = −3zρ−
12+4z−3θ

6z b2(ρ)

z − θ
− 3zρ

2
3
− θ

6zQ2g2(ρ)

2zλ− 2θλ

Σ(ρ) = ρ−
12+4z−3θ

6z
d

dρ

[
ρ−

6+4z−2θ
3z b2(ρ)− λg2(ρ)

2Q2

]
,

(3.27)

as well as changing to the Schrödinger coordinate (3.21). The two modes obey Schrödinger

equations:

0 =
d2Θ

dρ2
+

[
ω2 +

θ2 + 24z2 − 19θz2 + 52z2
2

9z2
2ρ

2

]
Θ ,

0 =
d2Σ

dρ2
+

[
ω2 +

(5z2 − θ) (8z2 − θ)
9z2

2ρ
2

]
Σ .

(3.28)

Now that we have all the effective Schrödinger potentials, we can use the standard

matching argument and solve the Schrödinger equations in terms of a Hankel function

with ingoing boundary conditions at the horizon. We obtain

σ ∼ ωni , i = Σ, θ, b1

nΣ = −1 +

∣∣∣∣13

3
− 2θ

3z2

∣∣∣∣ ,
nb1 = −1 +

∣∣∣∣−4 + 2ζ + 3z2

3z2

∣∣∣∣ ,
nθ = −1 +

1

3

√
4θ2 + 96z2 − 76θz2 + 217z2

2

z2
2

.

(3.29)

These exponents reduce to the values found in [19] in the constant scalar limit, θ = 0,

z2 = −2 and ζ = −2. The exponent nb1 is extremely similar to those found in [52, 68] in

the case where k = 0. We may now proceed and determine which is the most relevant in

our parameter space. It is straightforward to observe that the powers for nθ and nΣ are

always positive, while nb1 can become negative.

We plot this in figure 3 for z2 = −1/2. In the blue and red regions nb1 dominates and

is positive, while in the green and brown region it dominates but is negative. In the purple

region, σθ dominates and is positive.
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3.3 Low temperature behaviour of the DC conductivity

We examine in turn the two anisotropic families (3.1), distinguishing between marginal

and irrelevant density deformation. Remember that in the marginal case, z1 and z2 are

unrelated and ζ = θ − 2− 2z2, while z1 = 3z2/2 with ζ unfixed in the irrelevant case. We

also contrast the DC scaling with the AC scaling derived previously.

Solution (3.1) with marginal density deformation. Both the quantum critical and

dissipative terms scale identically with temperature in the DC conductivity:

σDC ∼ T
−4+θ−2z2

z1

(
1 +O(T−2/z1)

)
+ · · · ∼ T

ζ−2
z1

(
1 +O(T−2/z1)

)
+ · · · (3.30)

where the extra terms are always subleading since z1 < 0 in the parameter space.

Moreover, σDC always vanishes at zero temperature, so these solutions are insulators.

We found previously that the zero temperature optical conductivity in this case was given

by

σ ∼ ω
∣∣∣−4+θ−2z2

z1
+1
∣∣∣−1 ∼ ω

−4+θ−2z2
z1 (3.31)

where the parameter space allows to drop the absolute value. Then, the ω scaling above

matches the DC scaling, so the power tail always vanishes at zero frequency, as expected

for an insulator: no spectral weight remains at low frequencies as it has been transferred

to higher frequencies.

Solution (3.1) with irrelevant density deformation. The DC conductivity reads at

leading order

σDC ∼ T
2(ζ−2)
3z2

√
λ
(

1 +O(T−2/z1)
)

+
Q2T

2(−4+θ−2z2)
3z2

√
λ

k2
(
Q2

2 + λ2
) (

1 +O(T−2/z1)
)

+ · · · (3.32)

It can be checked that the first, quantum critical term gives the leading temperatude

dependence. The state can be metallic, though it is unclear whether it has a sharp Drude

peak or not. It can also be an insulator if

− 2 + θ − 2z2 ≤ ζ < 2 (3.33)

where the lower bound is saturated when the density deformation becomes marginal.

We found previously that the conductivity could be given either by the two following

operators

σb1 ∼ ω

∣∣∣ 2(ζ−2)
3z2

+1
∣∣∣−1

,

σθ ∼ ω

1
3

√
4θ2+96z2−76θz2+217z22

z22
−1

.

(3.34)

Only σb1 with a positive absolute value can match the DC scaling, when:

− 2 + θ − 2z2 < ζ < 2− 3

2
z2 (3.35)
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Figure 3. The solutions (3.1) with irrelevant density deformation are insulating in the blue region

with a decaying frequency tail given by σb1 , ζ < 2; metallic with a diverging frequency tail given

by σb1 in the green and brown regions 2 < ζ < 2 − 3z2; metallic with a decaying frequency tail

given by σb1 in the red region; metallic with a decaying frequency tail given by σθ in the purple

region. The scaling with frequency of the power tail agrees with the DC conductivity scaling with

temperature in the blue and green regions, for ζ < 2− 3z2/2.

which englobes the whole insulating region, as well as part of the metallic region (in which

the optical conductivity then blows up at zero frequency). This is the scale covariant

regime, characterized by the conduction exponent being bounded from above and below by

other scaling exponents. At the transition to the non scale-covariant regime ζ = 2− 3z2/2,

the resistivity is linear with temperature, while the AC conductivity has a 1/ω tail.

It can be verified that

• Whenever the system insulates (blue), the conductivity is given by σb1 and matches

the DC scaling with a decaying frequency power tail.

• When σθ dominates (purple), the system is metallic with a decaying frequency power

tail. In this case a delta function might be be present at zero frequency to make up for

the missing spectral weight, but it would not be connected to translation symmetry

and its coefficient unrelated to the density of charge carriers.
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• When the system is metallic and σb1 dominates, it can have a diverging frequency

power tail and match the DC scaling (green), a diverging frequency power tail which

does not match the DC scaling (brown), or a decaying frequency power tail (red,

which of course does not match the DC scaling).

When ζ = 2, at the transition between the insulating and metallic regions, both the

DC conductivity and the optical conductivity are constant at leading order in temperature

and frequency, possibly with log corrections in ω and T .

At the transition between the brown and red region, the AC conductivity exponent

changes sign but the DC one does not. For ζ = 2 − 3z2, we thus have that the AC

conductivity is constant plus log corrections, while the DC conductivity scales like T−2.

This is to be contrasted with the other transition in the scale covariant regime between

insulating (blue) and metallic (green) where both the AC and DC are constant with possible

log corrections. This is reminiscent of the behaviour seen at the transition between metallic

and insulating phases of under-doped cuprates, [64].

Partially hyperscaling violation solution (3.16). Finally, we come to the partially hy-

perscaling violating solutions (3.16), for which the density deformation can also be marginal

or irrelevant. The DC conductivity takes the general form

σDC ∼ T
ζ̃
z +

Q2

k2
T
θ̃−2
z + · · · (3.36)

and always diverges at low temperature: the system is always metallic.

When the density deformation is marginal, ζ̃ = θ̃ − 2, so both the quantum critical

and dissipative terms scale identically with temperature, but can be distinguished by the

value of the ratio Q2/k2. Intriguingly, the DC scaling is identical to the thermal entropy

scaling, S ∼ T−
θ̃−2
z , so positivity of the specific heat is sufficient to argue that the system

is metallic. This is very similar to the results in [36], which obtained a similar result for

semi-locally critical states in massive gravity.

When the density deformation is irrelevant, the DC conductivity is always dominated

by the quantum critical contribution and no longer proportional to the inverse of the

entropy density.

4 Isotropic metals with helical symmetry

We briefly describe in this section simpler saddle points, which are exact solutions of the

equations of motion and isotropic in the spatial directions at leading order in the metric.

We also report on their semi-locally critical limit. In 4.2, we examine the low-temperature

asymptotics of the DC conductivity.

4.1 Isotropic IR saddle points

In this section, we would like to report the existence of a number of simpler IR saddle

points where translation symmetry is not broken at leading order in the metric, but by

the static deformations or by the magnetic field. Details can be found in appendix C. The
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simplest option is to start by asking whether hyperscaling violating solutions at finite z1

and θ [13, 14] can exist, with Bianchi VII0 deformations:

ds2 = r
2
3
θ

[
L2dr2 + dx1

2 + dx2
2 + dx3

2

r2
− dt2

r2z1

]
, A1 = Q1r

ζ−z1dt , φ = κ ln r . (4.1)

The answer is yes, but the translation-breaking deformations are exponentially suppressed

towards the IR, like e−kr, see appendix C.1. This is in sharp contrast to the previous,

anisotropic saddle points, where deformations were all power-like. This is however

expected: degrees of freedom at nonzero momentum ~k should be exponentially suppressed

at finite z1 [18, 65, 66], and this is precisely what we observe. Note that the IR here is

r → +∞, again differently from the anisotropic case. The behaviour of the translation-

breaking modes in (3.1) and (4.1) is extremely reminiscent of the behaviour of Bessel

functions for small and large values of their argument, hinting that these two classes of

solutions may be complementary to one another.

Note that there are two families of solutions, depending on whether the density sources

a marginal (ζ = θ − 3) or irrelevant (power-like) deformation (z1 = 1).

An obvious second step is to check the existence of semi-locally critical solutions,

corresponding to the formal limit z1 → +∞, θ̃ = θ/z1 finite, of the solutions (4.1). We

thus find solutions conformal to AdS2 ×R3

ds2 = r
2
3
θ̃

(
dx1

2 + dx2
2 + dx3

2 +
L2dr2 − dt2

r2

)
, A1 = Q1r

θ̃−1dt , φ = κ ln r . (4.2)

There are two families, depending on whether the magnetic field is marginal or irrelevant

in the IR:

A2 = r
ψ
2

(
Q2 +Q21r

α−6
)
ω2 . (4.3)

In the marginal case, Q2 6= 0, while in the irrelevant case, Q2 = 0 and the stress-tensor from

A2 is subleading in the field equations. Both families are detailed in appendices C.2 and C.3.

The deformations are all power-like, and can depend on the momentum along the helix

director, as already observed for finite momentum deformations of semi-locally critical

states [18, 65, 66]. Moreover, there can be a region of dynamical instability, see figure 4.

4.2 Low temperature behaviour of the DC conductivity

Isotropic saddle points (4.1). The ground states (4.1) display, perhaps unsurprisingly,

an exponentially-enhanced DC conductivity at low temperatures, swamping out completely

the quantum critical term (which goes like a power of T ). As a consequence, we expect

them to describe metals with a sharp Drude peak.

σDC ∼
T
z1−1
z1

k̄2
e2k̄T−1/z1

+ · · · , k̄ = Lk (4.4)

which is consistent with similar results for spectral weights at finite k and z1 obtained

in [65, 66].
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Semi-locally critical saddle points (4.2). On the other hand, taking an infinite z1

limit, the semi-locally critical ground states (4.2) display power-like DC conductivities.

For the solution with a marginally relevant magnetic field,

σDC ∼
T θ̃

k2
+

Q2

Q2
2k2

T θ̃ + · · · (4.5)

The quantum critical term and the magnetic term have the same scaling with temperature

at leading order. Positivity of the specific heat implies θ̃ < 0, so the system is always a

metal. If the second term is enhanced (small breaking of translation symmetry), we can

expect a sharp Drude peak. Note that as seen in other semi-locally critical setups, a linear

resistivity implies a linear heat-capacity/entropy [36].

Turning to the saddle point (4.2) with an irrelevant magnetic field, we find that the

dominant contribution to the DC conductivity comes from the magnetic, dissipative piece

σDC ∼
Q2

Q2
2k2

T θ+α
−
6

(
1 +O(T−α

−
6 )
)

+ · · · (4.6)

Here, the IR is r → +∞, so α−6 is negative when irrelevant, and then indeed the subleading

pieces decay as the temperature decreases. By the same argument as above and given

positivity of the specific heat, the system is always metallic and expected to display a

sharp Drude peak.
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A The equations of motion

In this appendix we provide the detailed equations of motion in the helical Ansatz. The

action is

S = M3

∫
d5x
√
−g
[
R− 1

2
(∂φ)2 + V (φ)− Z1(φ)

4
F 2

1 −
Z2(φ)

4
F 2

2

]
(A.1)
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The Ansatz for the metric is

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)ω2
1 + C2(r)ω2

2 + C3(r)ω2
3 (A.2)

where

ω1 = dx1 , ω2 = cos(kx1)dx2 + sin(kx1)dx3 , ω3 = sin(kx1)dx2 − cos(kx1)dx3 (A.3)

are the three Bianchi VII0 one-forms. The Ansatz for the scalar and the gauge fields read:

φ = φ(r) , A1 = A1(r)dt , A2 = A2(r)ω2 (A.4)

The Maxwell equation for A1 reads√
1

BC1C2C3D

(
Z1(φ)

√
C1C2C3

BD
A′1

)′
= 0 (A.5)

The Maxwell equation for A2 reads√
1

BC1C2C3D

(
Z2(φ)

√
C1C3D

C2B
A′2

)′
=
k2A2

C1C3
Z2(φ) (A.6)

The scalar equation reads:

0=

√
B

C1C2C3D

(
φ′
√
C1C2C3D√

B

)′
+BV ′(φ)+

Z ′1(φ)(A′1)2

2D
−Z

′
2(φ)(A′2)2

2C2
−Z

′
2(φ)(kA2)2B

2C1C3D
(A.7)

The Einstein equations can be written as follows. Denote by Eµν the equation Rµν −
1
2gµνR− Tµν = 0. Then, Err is

−1

2
φ′2 −BV +

(
Z2A

2
2

C3
+
C2

C3
+
C3

c2
− 2

)
k2B

2C1
+
Z1A

′2
1

2D
− Z2A

′2
2

2C2
+ (A.8)

+
D′

2D

(
C ′1
C1

+
C ′2
C2

+
C ′3
C3

)
+

1

2

(
C ′1
C1

C ′2
C2

+
C ′1
C1

C ′3
C3

+
C ′3
C3

C ′2
C2

)
= 0

where primes denote derivatives with respect to r.

The combination −Err − Ett gives

C ′′1
C1

+
C ′′2
C2

+
C ′′3
C3

+φ′2−1

2

(
D′

D
+
B′

B

)(
C ′1
C1

+
C ′2
C2

+
C ′3
C3

)
−1

2

(
C ′21
C2

1

+
C ′22
C2

2

+
C ′23
C2

3

)
+
Z2A

′2
2

C2
= 0

(A.9)

The combination Ett + E11 gives(
2− Z2A

2
2

C3
− C2

C3
− C3

C2

)
k2B

C1
− Z1A

′2
1

D
+

C ′1
2C1

(
C ′1
C1
− C ′2
C2
− C ′3
C3

+
B′

B

)
+ (A.10)

+
D′

2D

(
−D

′

D
+
C ′2
C2

+
C ′3
C3
− B′

B

)
− C ′′1
C1

+
D′′

D
= 0

– 26 –



J
H
E
P
0
9
(
2
0
1
4
)
0
3
8

The combination Ett + 1
2C2

[
cos(2kx1)+1

cos(2kx1) E22 + cos(2kx1)−1)
cos(2kx1) E33

]
gives(

C2

C3
− C3

C2

)
k2B

C1
− Z1A

′2
1

D
− Z2A

′2
2

C2
+

C ′2
2C2

(
−C

′
1

C1
+
C ′2
C2
− C ′3
C3

+
B′

B

)
+ (A.11)

+
D′

2D

(
−D

′

D
+
C ′1
C1

+
C ′3
C3
− B′

B

)
− C ′′2
C2

+
D′′

D
= 0

The combination Ett + 1
2C3

[
cos(2kx1)−1

cos(2kx1) E22 + cos(2kx1)+1)
cos(2kx1) E33

]
gives(

−C2

C3
+
C3

C2
− Z2A

2
2

C3

)
k2B

C1
− Z1A

′2
1

D
+

C ′3
2C3

(
−C

′
1

C1
− C ′2
C2

+
C ′3
C3

+
B′

B

)
+ (A.12)

+
D′

2D

(
−D

′

D
+
C ′1
C1

+
C ′2
C2
− B′

B

)
− C ′′3
C3

+
D′′

D
= 0

Finally a linear combination using also E23 gives

C ′′3
C3
− C ′′2
C2

+
1

2

(
−B

′

B
+
D′

D
+
C ′1
C1

+
C ′2
C2

+
C ′3
C3

)(
−C

′
2

C2
+
C ′3
C3

)
− Z2a

′2
2

C2
+ (A.13)

+

(
2
C2

c3
− 2

C3

C2
+
Z2a

′2
2

c3

)
k2B

C1
= 0

Equation (A.13) however can be obtained by subtracting (A.12) from (A.11). We will

ignore therefore (A.13) from now on.

The Einstein equations above can also be written in a condensed form as

0 = φ′2 + Z2(φ)
(A′2)2

C2
+

√
BD

C1

(
C′1√
BC1D

)′
+

√
BD

C2

(
C′2√
BC2D

)′
+

√
BD

C3

(
C′3√
BC3D

)′
(A.14)

0 = BV (φ)−
√

B

C1C2C3D

(√
C1

B

(√
C2C3D

)′)′
(A.15)

0 =
2Bk2

C1C2
(C3 − C2)−

√
B

DC2C3

(√
DC2

BC3
C′3

)′
+

√
B

DC2C1

(√
DC2

BC1
C′1

)′
(A.16)

0 = (φ′)2 +
k2A2

2B

C1C3
Z2(φ)− D′

D

(
C′1
C1
− C′2
C2
− C′3
C3

)
+

√
B

C1C2C
1/3
3 D

(
C2

C3
+ 2

)C′1
√
C

1/3
3 C2D

√
BC1

′

−
√

B

C
1/3
1 C2C3D

(
C2

C3
− 1

)C′3
√
C

1/3
1 C2D

√
BC3

′ − C′1C
′
2

C1C2
− C′3C

′
2

C3C2
(A.17)

0 =
(A′1)2

D
Z1(φ)− (φ′)2 +

C′1C
′
2

C1C2
+
C′3C2

C3C2
− C′1C

′
3

C1C3
+

1

2

√
BC1

C2C3D

(
C2

C3
− 1

)(
C′3
√
C2D√

BC1C3

)′
−1

2

√
BC3

C1C2D

(
C2

C3
+ 3

)(
C′1
√
C2D√

BC1C3

)′
−
√
BC1C2C3

D

(
D′√

BC1C2C3D

)′
(A.18)

To extract generic scaling ground states, we make a generic scaling Ansatz that respects

the Bianchi symmetries as in (A.2), (A.4),

A1(r) = Q1r
a0 + · · · , A2(r) = Q2r

a2 + · · · , φ(r) = κ log r + · · · , B(r) = B0r
b0 + · · · ,

C1(r) = rc1 + · · · , C2(r) = rc2 + · · · , C3(r) = λrc3 + · · · , D(r) = rd0 + · · · .
(A.19)
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Introducing it in the field equations, we obtain equations which have to be made

algebraic. Some of them yield straightforward constraints which cannot be evaded at

leading order. Thus, equations (A.14), (A.15), (A.16), (A.17), (A.18), (A.5) and (A.6)

give respectively:

0=2κ2 + c2
1 + c2

2 − 2c3 − b0c3 + c2
3 − c3d0 − c1 (2 + b0 + d0)

− c2 (2 + b0 + d0) + 2r2a2−c2+κγ2a2
2Q

2
2 (A.20)

0=− (c2 + c3 + d0) (−2− b0 + c1 + c2 + c3 + d0) + 4r2−δκ+b0B0V0 (A.21)

0=4k2λB0 − 4k2rc2−c3B0 + r−2−b0+c1+c2−c3 (c1 − c3) (c1 + c2 + c3 + d0 − 2− b0) (A.22)

0=rc2−c3 (c3 − c1) (−2− b0 + c1 + c2 + c3 + d0)− 2k2r2+2a2+b0−c1−c3+κγ2B0Q
2
2

+ λ
(
c3 (2 + b0 + c2 + d0)− 2κ2 − 2c2

1 + c1 (4 + 2b0 − c3)− c2
3 + 2c2d0

)
(A.23)

0=
1

λ
rc2−c3 (−c1 + c3) (−2− b0 + c1 + c2 + c3 + d0) + 4r2a0−d0+κγ1a2

0Q
2
1 (A.24)

+ c1 (6+3b0+c2−d0)−4κ2−3c2
1−c2

3+4d0+2b0d0+2c2d0−2d2
0+c3 (2+b0+3c2+d0)

0=a0Q1 (−2 + 2a0 − b0 + c1 + c2 + c3 − d0 + 2κγ1) (A.25)

0=−2k2r2+b0−c1+c2−c3B0Q2

λ
+ a2Q2 (−2 + 2a2 − b0 + c1 − c2 + c3 + d0 + 2κγ2) (A.26)

The analysis of solutions of these leading equations provides a classification of the IR

fixed point solutions, which we detail in sections 3, 4 and appendix C.

B Null Energy Condition

Given the metric Ansatz

ds2 = −D(r)dt2 +B(r)dr2 + C1(r)ω2
1 + C2(r)ω2

2 + C3(r)ω2
3 , (B.1)

we can identify a null vector

Nµ =

(
1√
D(r)

,
cr√
B(r)

,
c1√
C1(r)

,
c2√

C2(r) cos(kx)2 + C3(r) sin(kx)2
,

c3√
C3(r) cos(kx)2 + C2(r) sin(kx)2

)
.

(B.2)

The Null Energy Condition is a condition such that the geometry is supported by ‘reason-

able’ matter content and reads

TµνN
µNν ≥ 0 (B.3)

which via Einstein’s equations translates into a conidtion on the geometry

GµνN
µNν ≥ 0 (B.4)

– 28 –



J
H
E
P
0
9
(
2
0
1
4
)
0
3
8

where Gµν is the Einstein tensor. As there are four independent coefficients (cr, c1, c2, c3),

this yields four inequalities on the metric functions

0 ≤
3∑
i=1

B′C ′i
B2Ci

+
D′C ′i
BCiD

− 2C ′′i
BCi

+
C ′2i
BC2

i

0 ≤ −2k2C2

C1C3
− 2k2C3

C1C2
+

4k2

C1
− 2C ′′1
BC1

+
2D′′

BD
+

C ′21
BC2

1

− D′2

BD2
+
B′C ′1
B2C1

+
D′C ′3
BC3D

+
D′C ′2
BC2D

− C ′1C
′
2

BC1C2
− C ′1C

′
3

BC1C3
− B′D′

B2D

0 ≤ 2k2C2
3

C1C2
− 2k2C2

C1
− 2C ′′3

B
+

2C3D
′′

BD
+
C3D

′C ′1
BC1D

+
C3D

′C ′2
C2DB

− C ′2C
′
3

BC2
− C3B

′D′

B2D

− C3D
′2

BD2
+

C ′23
BC3

− C ′1C
′
3

BC1
+
B′C ′3
B2

0 ≤ 2k2C2
2

C1C3
− 2k2C3

C1
− 2C ′′2

B
+

2C2D
′′

BD
+
C2D

′C ′1
BC1D

+
C2D

′C ′3
C3DB

− C ′3C
′
2

BC3
− C2B

′D′

B2D

− C2D
′2

BD2
+

C ′22
BC2

− C ′1C
′
2

BC1
+
B′C ′2
B2

(B.5)

Evaluated on the geometries (3.1), at leading order in r, these inequalities translate

into:

0 ≤ −2− 2z2
2 − 2z2 + θ2

/
3 + 2z1 + 2z1z2 − z1θ

0 ≤ −λ
2
k2L2 − (z1 − 1) (θ − 2− z1 − 2z2)

0 ≤ λ

2
k2L2 − (z1 − z2 − 1) (−z1 − 2− 2z2 + θ)

0 ≤ −λ
2
k2L2 − (z1 − z2) (θ − 2− z1 − 2z2)

(B.6)

and one may check that they are not violated in the allowed parameter space.

C Isotropic IR solutions

C.1 Hyperscaling violating solutions with helical deformations

In this section, we describe ground states which are translation invariant with both hyper-

scaling violation θ 6= 0 and anisotropicity between time and space z1 6= 1:

ds2 = r
2
3

(θ−3)
(
ω2

1 + ω2
2 + ω2

3 + L2dr2
)
− r

2
3

(θ−3z1)dt2,

A1 = Q1r
ζ−z1dt , L2 =

(3 + z1 − θ)(2 + z1 − θ)
V0

, eφ = r

√
2
3

√
(θ−3)(3−3z1+θ)

κδ =
2

3
θ, κγ1 = 3− ζ − 1

3
θ , κ =

√
2

3

√
(θ − 3)(3− 3z + θ)

(C.1)

There are two families, depending on whether the density generates a marginal deformation:

ζ = θ − 3 , Q1 =

√
2(z1 − 1)

3 + z1 − θ
(C.2)
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or an irrelevant one

z1 = 1 . (C.3)

Now we turn to modes corresponding to the magnetic field, as well as breaking trans-

lation invariance. Parameterizing the perturbations such that δgω2ω2 = −δgω3ω3 , we find

exponential deformations

δgω3ω3 = e−2krr
1
6

(3z1+θ)
∑
i≤1

ci3r
−i

δA2 = e−krr
1
6

(3z1−θ−3κγ2)
∑
i≤0

ai2r
−i

(C.4)

which are valid when the IR is r → +∞. It can be checked that these two perturba-

tions backreact at quadratic order on other perturbations with factors of e−4kr, e−2kr

respectively.

The parameter space then reads for a marginal density deformation

V0 > 0 , (1 < z1 ≤ 2 , θ < −3 + 3z1) ‖ (z1 > 2 , θ < 3) (C.5)

and

V0 > 0 , ζ > 4 ‖ ζ < θ − 3 (C.6)

for an irrelevant density deformation. There are other modes, which can be developed as

power series. One is the universal temperature mode βu = 3 + z1 − θ dual to a marginal

mode. Finally, for a marginal density deformation, there is a pair

β± =
1

2
(3 + z1 − θ)±

√
X

2(3z1 − 3− θ)
X = (3 + z1 − θ)(3z1 − 3− θ)

(
−57 + 30z1 + 27z2

1 + 24θ − 28z1θ + θ2
) (C.7)

where β− is always irrelevant and β+ always relevant for the parameter space (C.5). On

the other hand, when the density deformation is irrelevant, the electric potential generates

a mode that behaves like O(Q2
1r

3+ζ−θ) at quadratic order in the other fields.

C.2 AdS2 ×R3 solutions

An electric AdS2 × R3 can be found, with the magnetic field and helical deformations

turned off in the background solution:

B(r) =
eγ1φ0

V0r2
, D(r) =

1

r2
, C1(r) = C10 , C2(r) = C3(r) = λ ,

A1(r) =
√

2e−
1
2
γ1φ0 1

r
, A2(r) = 0 , φ(r) = φ0 , δ = γ1 .

(C.8)

Note that we have assumed the form (1.4) for the scalar potential and gauge couplings, and

that the solution only exists for the relation δ = γ1. This can be alleviated by making no

assumption such as (1.4) but rather keeping the couplings generic and assuming the scalar

field extremizes the effetive scalar potential at some finite value φ?, along the lines developed
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in [67]. The expressions become a little cumbersome but qualitatively similar. For instance,

the relation above becomes V ′?Z1,? = Z ′1,?V? where the couplings are evaluated at φ?.

We now consider the deformations. We expect 12 modes, coming in pairs that sum

to 1. For brevity we only give the expressions for the irrelevant modes i = 1 . . . 6, their

conjugates can be worked out from their sum.

B(r) =
eγ1φ0

V0r2

[
1 +

∑
i

cBi r
αi

]
, φ(r) = φ0 +

∑
i

c2
i r
αi , i = 1 . . . 5

D(r) =
1

r2

[
1 +

∑
i

cDi r
αi

]
, C1(r) = C10

[
1 +

∑
i

c1
i r
αi

]
,

C2(r) = λ

[
1 +

∑
i

c2
i r
αi

]
, C3(r) = λ

[
1 +

∑
i

c3
i r
αi

]
,

A1(r) =
√

2e−
1
2
γ1φ0 1

r

[
1 +

∑
i

cei r
αi

]
, A2(r) = ca6r

α6 .

(C.9)

The magnetic deformations ca6 and α6 decouple from the others at linear order.

First, there are three marginal modes α1,2,3 = 0 with cD1 , c1
2 and c3

3 turned on which

corresponds to rescalings of time, C10 and λ.

Then there are three irrelevant modes. One is associated with the magnetic field with

cm6 turned on and

α6 =
1

2
−
√

1

4
+ L2k2 (C.10)

as well as two others

α4 = −1 , α5 =
1

2
−

√
1

4
+

4k2L2

C10
(C.11)

with cB4 and c2
5 turned on respectively. Note that α4,5,6 are always irrelevant, contrary

to the results of [19], where it was essential to turn on a Chern-Simons term to trigger

a metal/insulator transition. In the next appendix C.3, we shall see that allowing for a

running scalar can allow for instabilities, where a mode becomes relevant when varying

the helix periodicity k.

C.3 Semi-locally critical solutions

In this section, we write down solutions where the metric is conformal to AdS2 × R3,

which means they are semi-locally critical, [13, 14, 65, 66]. We find two families, which

are distinguished by whether the magnetic field appears as a marginal or an irrelevant

deformation. Then we also work out their static, purely radial deformations. In any case,

the solutions are written

B(r) = L2r
2θ̃
3
−2

[
1 +

∑
i

cBi r
αi

]
, L2 =

(1− θ̃)2

V0
, D(r) = r

2θ̃
3
−2

[
1 +

∑
i

cDi r
αi

]

Cj(r) = r
2θ̃
3

[
1 +

∑
i

cji r
αi

]
, j = 1, 2, 3 ,
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φ(r) = κ

[
log r +

∑
i

cφi r
αi

]
, A1(r) = Q1r

θ̃−1

[
1 +

∑
i

cei r
αi

]

A2(r) = r
ψ
2

(
Q2 +

∑
i

cmi r
αi

)
, γ1 = −2δ . (C.12)

These solutions are of interest, since time and space scaling under rigid scale transforma-

tions are decoupled. Consequently, degrees of freedom can be created at finite momentum

for no cost [65, 66]. Formally, they correspond to taking a limit θ → +∞, z1 → +∞ in

the solutions (C.1) while keeping their ratio finite, where z1 parametrizes how time scales.

Note that they exist only if γ1 = −2δ.

Marginal magnetic field. The rest of the solution reads

Q2
1 =

4θ̃2 − 6δ2
(
−3 + θ̃2

)
9δ2(−1 + θ̃)2

, Q2
2 =

4
(

6δ2(−3 + θ̃)− 4θ̃
)
θ̃

9δ2(−1 + θ̃)2
,

γ2 =
3δ − δθ̃

2θ̃
, κ =

2θ̃

3δ
, ψ = θ̃ − 1

(C.13)

γ2 and δ are not fixed a priori but should be in a range where both Q1,2 are real:

γ2 < −
1√
6
, − 1

3γ2
< δ < γ2 +

√
1 + 3γ2

2 ‖

γ2 >
1√
6
, γ2 −

√
1 + 3γ2

2 < δ < − 1

3γ2

(C.14)

Given the range (C.14), the IR can be determined to be r → +∞, as this is where the

metric (t, x1, x2, x3) elements vanish. Moreover the gauge fields also vanish there.

The αi characterizing the deformations come in pairs summing to 1−θ̃ with i = 1 . . . 12.

Below, we only give the potentially irrelevant deformations i = 1 . . . 6, their conjugates can

then be deduced. There are two marginal modes α1 = α2 = 0, which are a rescaling of

time and a constant shift of the scalar field with cD1 and cφ2 the independent amplitudes

respectively. Then, there are four more modes which can be irrelevant, but they are

solutions to a polynomial of order 8 and their analytic expression is intricate. Depending

on the parameter space some can be complex, which points to a dynamical instability,

though the modes do not depend on the value of the helix periodicity k. We give below

the expression of the polynomial for the modes

0 =

8∑
i=0

Xiβ
i , X8 = 243δ4 , X7 = 972δ4(−1 + θ̃) ,

X6 = 9
(
−8δ2θ̃2 + 9δ6

(
−9− 6θ̃ + 7θ̃2

)
+ 3δ4

(
27− 78θ̃ + 35θ̃2

))
,

X5 = 27δ2
(

8(1−θ̃)θ̃2+δ2
(

45−63θ̃+39θ̃2−21θ̃3
)

+9δ4
(

9−3θ̃−13θ̃2+7θ̃3
))

X4 = −16θ̃4 − 36δ2θ̃2
(

7− 6θ̃ + 3θ̃2
)
− 54δ4

(
27− 66θ̃ + 94θ̃2 − 66θ̃3 + 19θ̃4

)
+ 27δ6

(
−135 + 180θ̃ + 6θ̃2 − 108θ̃3 + 41θ̃4

)
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X3 = −32(−1 + θ̃)θ̃4 + 144δ2θ̃2
(

1 + θ̃ − 3θ̃2 + θ̃3
)

+ 27δ4
(
−9 + 93θ̃ − 130θ̃2 + 50θ̃3 − 5θ̃4 + θ̃5

)
(C.15)

− 27δ6
(
−135 + 315θ̃ − 318θ̃2 + 222θ̃3 − 107θ̃4 + 23θ̃5

)
X2 = −6(−1 + θ̃)2

(
−8θ̃4 + 6δ2θ̃2

(
−7− 10θ̃ + 5θ̃2

)
+ 27δ6

(
−27 + 12θ̃ + 22θ̃2 − 20θ̃3 + 5θ̃4

)
−9δ4

(
9 + 6θ̃ + 46θ̃2 − 50θ̃3 + 13θ̃4

))
X1 = −8

(
3δ2(−3 + θ̃)− 2θ̃

)2
(−1 + θ̃)3

(
−2θ̃2 + 3δ2

(
−3 + θ̃2

))
X0 = 2

(
3δ2(−3 + θ̃)− 2θ̃

)2
(−1 + θ̃)4

(
−2θ̃2 + 3δ2

(
−3 + θ̃2

))
Irrelevant magnetic field. In this case, the rest of the solution reads

κ =

√
2

3
θ̃(θ̃ − 3) , Q1 =

√
2

1− θ̃

Q2 = 0 , δ =

√
2θ̃

3(θ̃ − 3)
, γ2 =

2θ̃ − 3ψ√
6(θ̃ − 3)θ̃

.

(C.16)

The background solution implies that θ̃(θ̃ − 3) > 0 in order to be well-defined. Since

the entropy density reads S ∼ T−θ̃ as usual, the local stability condition implies θ̃ < 0,

which means that the IR is r → +∞.

Only the marginal or irrelevant deformations are given. α−1...6 have conjugates α+
1...6

which sum to 1 − θ̃. There are three marginal deformations α−1,2,3 = 0 which match

to rescalings of time, C10 and λ with cD1 , c1
2 and c2

3 = c3
3 turned on. Their conjugates

α+
1,2,3 = 1− θ̃ are always relevant in the IR, as they should be.

Then there are two other deformations with cB4 and c2
5 = −c3

5 turned on.

α±4 =
1− θ̃

2

1±

√
θ̃ − 27

θ̃ − 3

 , α±5 =
1− θ̃

2
±

√
(1− θ̃)4

4
+

4k2L2

C10
(C.17)

The last deformation comes from the magnetic field. To determine its dimension, it is

necessary to backreact it on the other fields and find the subleading behaviour it generates:

α±6 =
1

2
(1− θ̃)±

√
k2L2

C10
+

1

4
(1− θ̃ + ψ)2 (C.18)

α+
4 is always relevant, while α−4 is irrelevant for θ̃ < 0, relevant otherwise and even

complex if 3 < θ̃ < 27. So let us restrict to θ̃ < 0, for which the IR is r → +∞. Since

1− θ̃ > 0, all the α+
i are always positive and so relevant. Then the α−i need to be negative

to be irrelevant.

For θ̃ < 0, α+
5 is always relevant, α−5 always irrelevant.
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Figure 4. RG-stability of the solution (C.12) with an irrelevant deformation α−
6 < 0 sourced by

the magnetic field. In purple, region of stability (α−
6 < 0) and in blue, the region of instability

(α−
6 > 0) for a representative value of θ̃ < 0. On the horizontal axis is ψ, on the vertical axis is the

ratio k2L2/C10. C10 can be tuned by UV data in order to destabilize the solution.

Finally, α−6 can become relevant at small enough k2L2/C10 if

0 <
k2L2

C10
< −1

4
ψ(2− 2θ̃ + ψ) , θ̃ < 0 , 2(θ̃ − 1) < ψ < 0 (C.19)

This should be achievable by varying the coupling corresponding to C10 in the UV, so that

we would find the insulating solution at large k/µ. The constant scalar case is θ̃ = ψ = 0,

so that explains why in this case this not possible without the Chern-Simons term, since

the condition reduces to k2L2/C10 = 0. Also, note that this is not a dynamical instability,

since the mode does not become complex.
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D Anisotropic partially hyperscaling violating IR solutions

In this section, we describe solutions which are only partially hyperscaling violating. By

this, we mean that they are written

ds2 = r
2
3
θ̃

[
−dt2

r2z
+
L2dr2 + ω2

2 + λω2
3

r2
+ ω2

1

]
, L2 =

(2 + z − θ̃)2

V0

φ = κ log r , A2 = Q2r
a2ω2 , A1 = Q1r

ζ̃−zdt .

(D.1)

The x1 direction no longer scales under rigid scale transformations, though the transverse

directions (x2, x3) still do according to (1.12). Formally, they correspond to the θ → +∞,

z1 → +∞, z2 → +∞, ζ → +∞ limit of the solutions (3.1), where the ratios θ̃ = θ/z2,

ζ̃ = ζ/z2 and z = z1/z2 are kept finite. Indeed, taking such a limit, the series in powers of

r2 vanishes, leaving an exact solution.

Two families are described, depending on whether the density deformation is marginal

or irrelevant. The radial, static deformations are straightforward to work out, but are

extremely cumbersome, so we will not report them here.

Marginal density deformation. The rest of the solution reads

κ =
4

2δ + γ1
=

2θ̃

3δ
, γ1 = −2δ(−3 + θ̃)

θ̃
, γ2 =

δ
(
−3 + θ̃ − 3a2

)
θ̃

ζ̃ = θ̃ − 2 , Q2
1 =
−6− 6λ− 2θ̃2λ+ 3κ2λ+ θ̃(3 + 9λ)− 3(1 + 3λ)z + 6λz2

3λ
(

2− θ̃ + z
)

2

k2 =
V0

(2 + z − θ̃)(−1 + λ)
, Q2

2 =
2(2 + z − θ̃)

(
−1 + λ2

)
2 + z − θ̃ − (−1 + λ)λa2

2

(D.2)

and the additional constraints have to be solved

2 + z − θ̃ + (2 + z − θ̃)(λ− 1)λa2 + (λ− 1)λa2
2 = 0 (D.3)

0 = 6(θ̃ − 3)2λ+ 9(θ̃ − 3)2(λ− 1)λ2a2

+
3

2
(λ− 1)λ

(
3 + 15λ− 6θ̃λ− 18λ2 + 12θ̃λ2 − 2θ̃2λ2 + 18λ3 − 12θ̃λ3 + 2θ̃2λ3

)
a2

2

− 9

2
(λ− 1)2λ2(θ̃λ− 1− 3λ)a3

2 +
θ̃2

δ2

(
2λ+ 3(λ− 1)λ2a2 + (λ− 1)2λ3a2

2

)
(D.4)

Irrelevant density deformation. The other quantites become

κδ =
2θ̃

3
, κγ2 =

2

3

(
θ̃ − 3− 3a2

)
, κ2 =

2

3

(
6(z − 1)a2 − 6 + 3z(2− θ̃) + θ̃2

)
,

λ =
2 + z − θ̃

(−3 + 2z)(2 + z − θ̃) + 4(−1 + z)a2

, Q2
2 =

4(1− z)
a2

,

k2 = −
a2

(
2 + z − θ̃ + a2

)
V0

(2 + z − θ̃)
(

(2z − 3)(2 + z − θ̃) + 4(z − 1)a2

)
(D.5)
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and a2 obeying the equation:

(−3 + 2z)2(2 + z − θ̃)2 + 2(2 + z − θ̃)
(

16− 20z + 7z2 − 2θ̃ + zθ̃
)
a2+

+2
(

16− 18z + 5z2 − 4θ̃ + 3zθ̃
)
a2

2 − 4(−1 + z)a3
2 = 0

(D.6)

The electric potential is be turned on through a deformation, and parameterized as

A1 = Q1r
ζ̃−zdt , κγ1 = 2− ζ̃ − θ̃

3
(D.7)

which generates a mode on the metric and other fields like

1 + #Q2
1r

2+ζ̃−θ̃ (D.8)

E Dyonic, translation invariant IR solutions

For completeness, we also mention a solution with both the electric and the magnetic fields

turned on, which however does not break translation symmetry (k = 0):

ds2 = r
2θ
3

(
−dt2

r2z
+
L2dr2+dx2+dy2+dz2

r2

)
, L2 =

(3 + z − θ)(2 + z − θ)
V0

0 = Q2
1 +

Q2
2

4
+

(z − 1)V0

2(θ − z − 2)
, A1 =

LQ1

θ − 3− z
rθ−3−zdt

A2 = Q2(x2dx1 − x1dx2) , eφ = r
θ
δ

δ2 =
2θ2

3(3− θ)(3z − 3− θ)
, γ1 =

(9−2θ)δ

θ
, 3γ2+2γ1+δ=0

(E.1)

F Linear fluctuation equations for the AC conductivity

In this appendix we will consider the gauge field perturbations around the helical

Ansatz (1.5), (1.7).

We perturb the fields as follows

δA1 = e−iωtb1(r)ω1 , δA2 = e−iωtb2(r)ω3 (F.1)

δ(ds2) = e−iωt [g1(r)dt⊗ ω1 + g2(r)ω2 ⊗ ω3] (F.2)

The perturbation of the gauge field equations gives

1

Z1

√
BC1

DC2C3

(
Z1

√
DC2C3

BC1
b′1

)′
+ ω2B

D
b1 +

A′1
D

(
g′1 −

C ′1
C1
g1

)
= 0 (F.3)

1

Z2

√
BC3

DC1C2

(
Z2

√
DC1C2

BC3
b′2

)′
+ ω2B

D
b2 − k2 BC3

C1C2
b2 −

A′2
2C2

(
g′2 −

C ′3
C3
g2

)
+ (F.4)

−
(

1

C2
+

1

C3

)
k2A2Bg2

2C1
+
ikωA2Bg1

C1D
= 0

– 36 –
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From the perturbation of the (rx1) Einstein equation we obtain

k

C2C3

[
(C2 − C3)g′2 − (C ′2 − C ′3)g2 − Z2A2A

′
2g2

]
+

2iω

D

(
g′1 −

C ′1
C1
g1 + Z1A

′
1b1

)
+ (F.5)

+2kZ2

(
A2b

′
2

C3
− A′2b2

C2

)
= 0

From the perturbation of the (tx1) Einstein equation we obtain

g′′1 +

(
C′2
C2

+
C′3
C3
− C′1
C1
− D′

D
− B′

B

)
g′1
2

+
ikωB

2

(
1

C3
− 1

C2

)
g2 + Z1A

′
1b
′
1 +

ikωBA2Z2

C3
b2+ (F.6)

+

[
φ′2−C

′
1

C1

C′2
C2
−C

′
1

C1

C′3
C3
−C

′
2

C2

C′3
C3

+

(
2
C′1
C1
−C

′
2

C2
−C

′
3

C3

)
D′

D
+

(
2−C2

C3
−C3

C2
−2

Z2A
2
2

C3

)
k2B

C1

]
g1
3

= 0

Finally from the perturbations of the (x2x2) (x2x3) (x3x3) Einstein equations we

obtain

g′′2 −
(
C′2
C2

+
C′3
C3

+
B′

B
− C′1
C1
− D′

D

)
g′2
2

+
2ikωB(C2 − C3)g1

C1D
+ 2Z2

(
A′2b

′
2 −

k2A2Bb2
C1

)
+ (F.7)

+

[
φ′2 − C′1

C1

C′2
C2
− C′1
C1

C′3
C3

+ 2
C′2
C2

C′3
C3
−
(
C′1
C1

+
C′2
C2

+
C′3
C3

)
D′

D
+ 3ω2B

D
+

−
(

1 +
C2

C3
+
C3

C2
+
Z2A

2
2

2C3

)
4k2B

C1

]
g2
3

= 0

By differentiating (F.5) and using the other equations to remove the second derivatives

of the fluctuations we obtain a new equation with first order derivatives that is equivalent

to (F.5).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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