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1 Introduction

The instanton Nekrasov partition function [1–3] for 4 dimensional N = 2 supersymmetric

SU(2) quiver gauge theory has the remarkable correspondence with 2 dimensional Liou-

ville conformal field theories, so called AGT conjecture [4]. And the correspondence was

generalized into SU(N) quiver gauge theories in [5, 6] .

There are various proofs for the AGT conjecture [7–11]. In most cases, the Virasoro

and W algebras play the essential role. In contrast, spherical degenerate double affine Hecke

algebra (spherical DDAHA or SH) [12–18] turns out to be another useful tool to prove the

AGT conjecture. DDAHA is generated by 2N operators, zi and Di (i = 1, · · · , N) where

Di = zi∇i +
∑
j<i

σij , ∇i =
∂

∂zi
+ β

∑
j( 6=i)

1

zi − zj
(1− σij) , (1.1)

and permutation operators. Here ∇i is the Dunkl operator which plays a fundamental role

in Calogero-Sutherland system and σij is the transposition of variables, ziσij = σijzj . The

operators zi and Di satisfies the following commutation relations,

[zi, zj ] = 0, [Di,Dj ] = 0 , (1.2)

[Di, zj ] =


−βziσij i < j

zi + β
(∑

k<i zkσik +
∑

k>i ziσik

)
i = j

−βzjσij i > j .

(1.3)
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DDAHA is the algebra freely generated by zi, Di and σ ∈ SN . Spherical DDAHA (SH)

is obtained by the restriction to the symmetric part. For the special value of β = 1, SH

reduces to W1+∞ algebra which is described by free fermions.

Recently it was found that some representations of SH are equivalent to those of Wn

algebra with additional U(1) current [16]. It is known that SH has a natural action on the

equivariant cohomology class of the instanton moduli space while Wn algebra describes the

symmetry of Toda field theory. This correspondence was used to prove the AGT conjecture.

For example, in [16] such mechanism was applied to the pure SU(N) super Yang-Mills

theory, and the representative of the cohomology class is mapped to the orthogonal basis

in the Hilbert space of Wn algebra. In this way, the Gaiotto state [19] is constructed

to arbitrary order through the conditions on the action of the generators of SH. Later

in [17, 18], such correspondence was applied to quiver type gauge theories. The action

of SH on the basis appears as the recursion relation for the Nekrasov partition function,

which is then interpreted as the Ward identities associated with the Wn-algebra.

Here we apply the similar trick to construct explicit Gaiotto states with fundamental

multiplets in SU(N) gauge theories. The computation is in parallel with those in [16]. Note

that the Gaiotto state appears as an irregular module of Virasoro and Wn algebra. There

were already a few attempts to construct the irregular states algebraically in [19–22]. Our

construction is not limited to SU(3) but is extended to SU(N) with Nf < N .

It is also noted that the Gaiotto state construction was proposed but in a different

manner, which uses the coherent state approach in [23–25]. Some of irregular state was

constructed explicitly using random matrix formalism in connection with SU(2) quiver

gauge theories [26, 27]. Thus, our construction will be instructive and complementary to

understand the Gaiotto state in different approaches.

This paper is organizes as follows. In section 2 we define the Gaiotto states with

fundamental multiplets in terms of the orthonormal basis of SH. In section 3, we briefly

review the algebra SH and the relation with Wn algebra. In section 4, we give the explicit

correspondence between SH and Wn generators through the use of free boson fields. In

section 5 we show that the states satisfy generalized Whittaker condition in terms of SH.

Finally in section 6 we rewrite the conditions in terms of the generators of Wn algebra and

confirm the consistency with the existing literature [20–22, 24].

In the appendix, we derive the Ward identities for the Virasoro operator L±2. Though

this is not directly relevant to the main claim of this paper, we include it since the analysis

is technically very close and also it completes the analysis of [17, 18].

2 Construction of Gaiotto states

For the pure super Yang-Mills theory where the fundamental multiplet is absent, Nf = 0,

the instanton part of the partition function has the form,

Z(~a) =
∑
~Y

Λ4|~Y |Zvect(~a, ~Y ), (2.1)

– 2 –
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with

Zvect(~a, ~Y ) := f(~a, ~Y ) :=
∏
p,q

1

gYpYq(ap − aq)
(2.2)

where Λ is the dynamical scale, ~a ∈ Cn is the VEV for an adjoint scalar field in the vector

multiplet and ~Y = (Y1, · · · , YN ) is a set of Young tableaux characterizing fixed points of

localization in the instanton moduli space. And

gY,W (x) =
∏

(i,j)∈Y

(x+ β(Y ′j − i+ 1) +Wi − j)
∏

(i,j)∈W

(−x+ β(W ′j − i) + Yi − j + 1) , (2.3)

where Yi is the length of the ith column of Y , and Y ′ stands for the transposed Young

tableaux. β is related to Ω-deformation parameters by β = −ε1/ε2.

According to AGT conjecture, we may put the partition function as the inner product

of two Gaiotto states Z(~a) = 〈G̃|G〉. It is a nontrivial issue to realize |G〉 in the Hilbert

space of W-algebra. On the other hand, in SH, we know the orthonormal basis and the

action of generators which will be reviewed in the next section. The Gaiotto state takes

the form,

|G〉 =
∑
~Y

Λ2|~Y |(Zvect(~a, ~Y ))1/2|~a, ~Y 〉 . (2.4)

Here |~a, ~Y 〉 is introduced in [17, 18] as an basis of a Hilbert space H~a. The dual basis 〈~a, ~Y |
is defined such that 〈~a, ~Y |~a, ~W 〉 = δ~Y , ~W . It is trivial to confirm that it has the desired inner

product due to the orthonormal property of the basis. However, it is nontrivial to confirm

that it satisfies the condition for generalized Whittaker condition as given in [16].

One may proceed likewise for Nf = 2. The partition function has extra contributions

from the fundamental multiplets with masses mi,

ZNf=2(~a,m1,m2,Λ) =
∑
~Y

Λ2|~Y |Zvect(~a, ~Y )Zfund(~a, ~Y ,m1)Zfund(~a, ~Y ,m2) (2.5)

where

Zfund(~a, ~Y ,m) =
N∏
p=1

∏
(i,j)∈Yp

(ap + βi− j −m) . (2.6)

Noting that

ZNf=2(~a,m1,m2,Λ) = 〈G,m2|G,m1〉 (2.7)

one may have the Gaiotto state with one additional parameter m

|G,m〉 =
∑
~Y

Λ|
~Y |(Zvect(~a, ~Y ))1/2Zfund(~a, ~Y ,m) |~a, ~Y 〉 . (2.8)

In this way, it is straightforward to generalize it to additional k < N parameters m1,m2,· · ·,
mk, namely,

|G,m1, · · · ,mk〉 =
∑
~Y

Λ|
~Y |(Zvect(~a, ~Y ))1/2

k∏
A=1

(Zfund(~a, ~Y ,mA))|~a, ~Y 〉 . (2.9)

– 3 –
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One may easily confirm that the inner product of two Gaiotto states with k parameters

will give the instanton partition function with Nf = 2k. The nontrivial part is to confirm

the Whittaker vector conditions. The case for Nf = 0 was given by [16]. The proof for

additional fundamental multiplets is new. Our task is to find the generalized Whittaker

conditions using SH generators and rewrite them in terms of Wn generators.

3 Brief introduction of SH

The generators of Spherical DDAHA (SH) are obtained by symmetrizing those of DDAHA

by S = 1
N !

∑
σ∈SN σ, SOS where O ∈ DDAHA. Such generators act naturally on the

ring of symmetric functions of zi. The independent generators of SH is given by Dnm ∼
S
∑N

i=1(zi)
n(Di)mS (n ∈ Z, m ∈ Z≥0) in N → ∞ limit. The definition of Dnm is only

sketchy here and will be more carefully defined later. For a special value for β = 1, SH

reduces to W1+∞ algebra which is described by free fermions.

In large N limit, one may introduce free boson description of SH in terms of power

sum polynomial pn =
∑∞

i=1(zi)
n. We identify,

pn := α−n, n
∂

∂pn
:= αn, n ∈ Z≥0 (3.1)

which satisfies the standard commutation relation [αn, αm] = nδn+m,0. The space of sym-

metric functions is described by the Fock space F of the free boson.

The Hilbert space of Wn-algebra shows up when we take coproduct of n representations

of F and make some restriction on the representation (taking the ‘symmetric part’ which is

referred as [1n] representation in [16]). After taking such coproduct it has nontrivial central

charges given below. To distinguish the algebra with central extensions from others, we will

denote the algebra SHc. It has generators Dr,s with r ∈ Z and s ∈ Z≥0. The commutation

relations for degree ±1, 0 generators are defined by,

[D0,l, D1,k] = D1,l+k−1, l ≥ 1 , (3.2)

[D0,l, D−1,k] = −D−1,l+k−1, l ≥ 1 , (3.3)

[D−1,k, D1,l] = Ek+l l, k ≥ 0 , (3.4)

[D0,l, D0,k] = 0 , k, l ≥ 0 , (3.5)

where Ek is a nonlinear combination ofD0,k determined in the form of a generating function,

1 + (1− β)
∑
l≥0

Els
l+1 = exp

∑
l≥0

(−1)l+1clπl(s)

 exp

∑
l≥0

D0,l+1ωl(s)

 , (3.6)

with

πl(s) = slGl(1 + (1− β)s) , (3.7)

ωl(s) =
∑

q=1,−β,β−1

sl(Gl(1− qs)−Gl(1 + qs)) , (3.8)

G0(s) = − log(s), Gl(s) = (s−l − 1)/l l ≥ 1 . (3.9)

– 4 –
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The parameters cl (l ≥ 0) are central charges. Other generators are defined recursively by,

Dl+1,0 =
1

l
[D1,1, Dl,0] , D−l−1,0 =

1

l
[D−l,0, D−1,1] , (3.10)

Dr,l = [D0,l+1, Dr,0] D−r,l = [D−r,0, D0,l+1] . (3.11)

for l ≥ 0, r > 0 .

There is an explicit form of the action on the orthonormal basis |~a, ~Y 〉,

D−1,l|~a, ~Y 〉 = (−1)l
N∑
q=1

fq∑
t=1

(aq +Bt(Yq))
lΛ(t,−)
q (~Y )|~a, ~Y (t,−),q〉 , (3.12)

D1,l|~a, ~Y 〉 = (−1)l
N∑
q=1

fq+1∑
t=1

(aq +At(Yq))
lΛ(t,+)
q (~Y )|~a, ~Y (t,+),q〉 , (3.13)

D0,l+1|~a, ~Y 〉 = (−1)l
N∑
q=1

∑
µ∈Yq

(aq + c(µ))l|~a, ~Y 〉 . (3.14)

where c(µ) = βi− j for µ = (i, j). The factor Λ
(t,−)
q (~a, ~Y ) is defined by

Λ(k,+)
p (~a, ~Y ) = (3.15) N∏

q=1

 fq∏
`=1

ap−aq+Ak(Yp)−B`(Yq)+ξ

ap−aq+Ak(Yp)−B`(Yq)
∏′fq+1

`=1

ap−aq+Ak(Yp)−A`(Yq)−ξ
ap−aq+Ak(Yp)−A`(Yq)

1/2

,

Λ(k,−)
p (~a, ~Y ) = (3.16) N∏

q=1

fq+1∏
`=1

ap−aq+Bk(Yp)−A`(Yq)−ξ
ap−aq+Bk(Yp)−A`(Yq)

∏′fq

`=1

ap−aq+Bk(Yp)−B`(Yq)+ξ

ap−aq+Bk(Yp)−B`(Yq)

1/2

.

We decompose Y into rectangles Y = (r1, · · · , rf ; s1, · · · , sf ) (with 0 < r1 < · · · < rf ,

s1 > · · · > sf > 0, see figure 1 for the parametrization). We use fp (resp. f̄p) to represent

the number of rectangles of Yp (resp Wp). The factors Ak(Yp), B`(Yq) are

Ak(Y ) = βrk−1 − sk − ξ, (k = 1, · · · , f + 1) , (3.17)

Bk(Y ) = βrk − sk, (k = 1, · · · , f) , (3.18)

where ξ := 1−β. Ak(Y ) (resp.Bk(Y )) represents the kth location where a box may be added

to (resp. deleted from) the Young diagram Y composed with a map from location to C.

We denote Y (k,+) (resp. Y (k,−)) as the Young diagram obtained from Y by adding

(resp. deleting) a box at (rk−1 + 1, sk + 1) (resp. (rk, sk)). Similarly we use the notation
~Y (k±),p = (Y1, · · · , Y (k,±)

p , · · · , YN ) to represent the variation of one Young diagram in a

set of Young tables ~Y . For more detail of the notation, we refer [17, 18].

4 The relation between SHc and W -algebra

SHc and Wn-algebra look very different but the Hilbert space of both algebras are identical

for [1n] representation of SHc. The content of this section is a brief summary of [16].

– 5 –
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Figure 1. Decomposition of Young diagram by rectangles

The generators of Wn-algebra are defined through the quantum Miura transformation,

− :

n∏
j=1

(Q∂z + ~hj · ∂~ϕ) :=

n∑
d=0

W (d)(z)(Q∂z)
n−d . (4.1)

where ~hi = ~ei− 1
n

∑n
i=1 ~ei and ~ei is the i-th orthonormal basis of Rn. ∂~ϕ = (∂ϕ1, · · · , ∂ϕn)

is n free bosons with the standard OPE,

∂ϕi(z)∂ϕj(0) ∼ δij
z2

, ∂ϕi(z) =
∑
r∈Z

α(i)
r z
−r−1 . (4.2)

We introduce J (z) =
∑n

i=1 ∂ϕi(z) to describe the U(1) factor.

Expansion of (4.1) gives,

W (0)(z) = −1, (4.3)

W (1)(z) = 0, (4.4)

W (2)(z) =
1

2
(∂~ϕ)2 − 1

2n
: J 2(z) : +Q~ρ · ∂2~ϕ, (4.5)

with ~ρ = (−n−1
2 ,−n−3

2 , · · · , n−1
2 ). W (2) is the standard form of Virasoro generators with

the central charge, c = (n − 1)(1 − Q2n(n + 1)). The higher generators are in general

complicated but the part with highest power of ∂ϕ is written in a relatively simple way,

W (d) =−
∑

j1<···<jd

: (~hj1 · ∂~ϕ) · · · (~hjd · ∂~ϕ) : + lower terms

=−
d∑
s=0

(−n)s−d

(
n− s
n− d

) ∑
j1<···<js

: J (z)d−s∂ϕj1(z) · · · ∂ϕjs(z) + lower terms . (4.6)

– 6 –
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Meanwhile, SHc is given in free boson representation, obtained from the expression for

D±1,0 and D0,2. For [1n] representation, they are

D±1,0 = −
n∑
i=1

α
(i)
∓1 , (4.7)

D0,2 =

n∑
i


√
β

6

∑
r,s∈Z

(: α(i)
r α

(i)
s α

(i)
−r−s :)+

ξ

2

∑
r>0

(r + 1− 2i)α
(i)
−rα

(i)
r

+ξ

n∑
i<j

∑
r>0

rα
(i)
−rα

(j)
r .

(4.8)

While D±1,0 is diagonal with respect to the sum over i, there exist off-diagonal term in

D0,2 which represents the nontrivial twist in the coproduct. D0,2 for n = 1 case is identical

to the Hamiltonian of Calogero-Sutherland [28–30].

Generators of Heisenberg (Jl) and Virasoro algebras (Ll) are embedded in SHc as [16],

Jl = (−
√
β)−lD−l,0, J−l = (−

√
β)−lDl,0, J0 = E1/β,

Ll = (−
√
β)−lD−l,1/l + (1− l)c0ξJl/2 ,

L−l = (−
√
β)−lDl,1/l + (1− l)c0ξJ−l/2 ,

L0 = [L1, L−1]/2 = D0,1 +
1

2β

(
c2 + c1(1− c0)ξ +

ξ2

6
c0(c0 − 1)(c0 − 2)

)
, (4.9)

where cl =
∑N

p=1(ap − ξ)l when act on |~a, ~Y 〉. The elements Dl,1 are obtained from the

commutation relation, D±r,1 = ±[D0,2, D±r,0] . Here J(z) = 1√
β

∑n
i=1 ∂ϕi(z), and one may

evaluate the Virasoro generator as,

Ln =
1

2

∑
i

∑
m

: α
(i)
n+mα

(i)
−m : +Q

∑
i

nρiα
(i)
n . (4.10)

This agrees with the Virasoro generator in (4.5) (with the contribution from U(1) factor).

It implies that the Hilbert space of the Wn algebra with U(1) factor coincides with the [1n]

representation of SHc.

In the following, we derive the explicit form of some generators of SH which are used in

the next sections. The relation between higher generators can be similarly obtained using

the commutators. The procedure is simplified once we compare the terms with highest

generators. For such purpose it is more convenient to introduce a new set of elements Yl,d
which are defined inductively starting from Y±1,d = D±1,d. For l ≥ 2 and d ≥ 1,

Yl,d =

{
[D1,1, Yl−1,d] if l − 1 6= d

[D1,0, Yl−1,d+1] if l − 1 = d,
Y−l,d =

{
[D−1,1, Y1−l,d] if l − 1 6= d

[D−1,0, Y1−l,d+1] if l − 1 = d,
(4.11)

There exists a constant c(l, d) 6= 0 such that

Yl,d ≡ c(l, d)

r∑
i=1

∑
l0+...+ld=−l

: α
(i)
l0
· · ·α(i)

ld
: + lower order terms. (4.12)

– 7 –
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In particular,

c(0, d) =

√
β
d−1

d(d+ 1)
, (4.13)

and

c(1, d) = −
√
β
d
/(d+ 1), c(−1, d) = −

√
β
d
/(d+ 1). (4.14)

The other coefficients are determined recursively.

Here we introduce a notation which is useful later. Let f(z1, . . . , zn) =
∑

i aiz
i1
1 · · · zinr

is a symmetric polynomial with respect to n variables z1, · · · , zn. We will also denote the

n-powers of bosonic fields with coefficients ai by

:f(z) :=
∑
i

ai : (∂ϕ1(z))i1 · · · (∂ϕn(z))in : . (4.15)

Furthermore we use a notation
(
u(z)

)
i

= ui when u(z) with conformal dimension d has the

expansion u(z) =
∑

i uiz
−i−d. With this preparation, we use the power sum polynomial

pl(z) =
∑

i(zi)
l to represent the first few generators in a compact form,

D−1,d ∼
−
√
β
d

d+ 1

(
:pd+1(z) :

)
1
, D0,d ∼

√
β
d−1

d(d+ 1)

(
:pd+1(z) :

)
0
. (4.16)

Here ∼ is used to imply that we neglect lower powers of ∂ϕ. The next generator D−2,d has

the form:

D−2,d ∼
2
√
β
d+1

d+ 1

(
:pd+1(z) :

)
2

(4.17)

which will be used in the next sections. Here is an explicit proof of (4.17). We start with

D−1,d ∼ c(−1, d)
r∑
i=1

∑
l0+...+ld=1

: α
(i)
l0
· · ·α(i)

ld
: . (4.18)

By [αn, αm] = nδn+m, we obtain

[D−1,1, D−1,d] = Y−2,d ∼ c(−1, 1) c(−1, d)× 2(d− 1)

r∑
i=1

∑
l0+...+ld=2

: α
(i)
l0
· · ·α(i)

ld
: . (4.19)

Compare this with (4.12), it follows that

c(−2, d) = c(−1, 1) c(−1, d)× 2(d− 1) =
√
β
d+1

(d− 1)/(d+ 1) . (4.20)

Similarly,

[D−1,0, D−1,d+1] ∼ c(−1, 0) c(−1, d+ 1)× (d+ 2)
r∑
i=1

∑
l0+...+ld=2

: α
(i)
l0
· · ·α(i)

ld
:

=
√
β
d+1

r∑
i=1

∑
l0+...+ld=2

: α
(i)
l0
· · ·α(i)

ld
: . (4.21)

– 8 –
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Therefore, we have

D−2,d = [D−1,0 , D−1,d+1]−[D−1,1 , D−1,d]∼ 2
√
β
d+1
/

(d+ 1)
r∑
i=1

∑
l0+...+ld=2

: α
(i)
l0
· · ·α(i)

ld
:

=
2
√
β
d+1

d+ 1

(
:pd+1(z) :

)
2
. (4.22)

Some of the explicit expressions of W -algebra in terms of SHc are given in the end of

section 6.

5 Whittaker conditions in terms of SHc

5.1 Nf = 0 case

In order to prepare the generalization for Nf 6= 0, we present the Whittaker condition for

Nf = 0 using our notation. In the following, we demonstrate,

D−1,d|G〉 = κd|G〉 0 ≤ d ≤ N (5.1)

with

κd =


0 d < N − 1

(−1)N−1 1√
β

Λ2 d = N − 1

(−1)N 1√
β

∑N
p (ap − ξ)Λ2 d = N .

(5.2)

Proof. Set the coefficients in the Gaiotto state as,

u ~W := Λ2| ~W |(Zvect(~a, ~W ))1/2 . (5.3)

Considering the action of SH operator given in (3.12) and (3.13), one has that for the

Gaiotto state

D−1,d|G〉 = (−1)d
∑
~W

N∑
q=1

f̃q∑
t=1

(aq +Bt(Wq))
lΛ(t,−)
q ( ~W )u ~W |~a, ~W

(t,−),q〉. (5.4)

If the Gaiotto state satisfies the Whittaker condition in (5.1), the following relation should

hold:

(−1)d
∑
~W (⊃~Y )

(aq +Bt(Wq))
lΛ(t,−)
q ( ~W )

u ~W
u~Y

= κd, (5.5)

where ~Y is obtained from ~W by removing one box: W
(t,−)
q = Yq, i.e., Wq = Y

(t,+)
q . We

note that Λ2| ~W |

Λ2|~Y | = Λ2 . For a Young diagram with one box removed or added (see figure 2),
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we find At(Y ), Bt(Y ) (defined in (3.17) and (3.18)) in terms of their counterparts of the

original Young diagram W :

At
(
W (k,−)

)
=


At(W ) 1 ≤ t ≤ k

Bk(W ) t = k + 1

At−1(W ) k + 2 ≤ t ≤ f̃ + 2

, Bt
(
W (k,−)

)
=



Bt(W ) 1 ≤ t ≤ k − 1

Bk(W )− β t = k

Bk(W ) + 1 t = k + 1

Bt−1(W ) k + 2 ≤ t ≤ f̃ + 1

,

(5.6)

As
(
W (k,+)

)
=



As(W ) 1 ≤ s ≤ k − 1

Ak(W )− 1 s = k

Ak(W ) + β s = k + 1

As−1(W ) k + 2 ≤ s ≤ f̃ + 2

, Bs
(
W (k,+)

)
=


Bs(W ) 1 ≤ s ≤ k − 1

Ak(W ) s = k

Bs−1(W ) k + 1 ≤ t ≤ f̃ + 1

.

(5.7)

Using the above relations, after some lengthy computation referring to the appendix A.2

of [17, 18], we arrive at

u ~W
u~Y

=
u~Y (t,+),q

u~Y
(5.8)

=

 1

β

N∏
p=1

( ∏fp
`=1(aq−ap+At(Yq)−B`(Yp)+ξ)(aq−ap+At(Yq)−B`(Yp))∏′fp+1
`=1 (aq−ap+At(Yq)−A`(Yp)−ξ)(aq−ap+At(Yq)−A`(Yp))

)1/2

Λ2 .

Therefore,

κd = (−1)d
1√
β

N∑
q=1

f̃q∑
t=1

(aq +At(Yq))
d
N∏
p=1

(∏fp
`=1(aq − ap +At(Yq)−B`(Yp) + ξ)∏′fp+1
`=1 (aq − ap +At(Yq)−A`(Yp))

)
Λ2 .

Setting  xI = {ap +Ak(Yp)} 1 ≤ I ≤
∑N

p=1(fp + 1) = N

yJ = {ap +B`(Yp)− ξ} 1 ≤ J ≤
∑N

p=1 fp =M
(5.9)

where N −M = N , we have κd in a simplified form

κd = Λ2(−1)d
1√
β

N∑
I=1

(xI)
d

∏M
J=1(xI − yJ)∏N
J(6=I)(xI − xJ)

. (5.10)

According to the formula used in [17, 18]:

N∑
I=1

(xI)
m

∏M
J=1(xI − yJ)∏N
J( 6=I)(xI − xJ)

=

m+1+M−N∑
n=0

fm−n+1+M−N (−y)bn(x), (5.11)

where fn(x) =
∑

I1<···<In xI1 · · ·xIn , and bn(x) =
∑

I1≤···≤In xI1 · · ·xIn , we conclude that

κd in (5.10) equals zero when d < N − 1, reduces to constant values in (5.2) when d =

N − 1, N , but depends explicitly on Y when d > N .
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Figure 2. Locations of boxes

5.2 Nf = k case

In the following, we demonstrate that for k < N ,

I : D−1,d|G,m1, . . . ,mk〉= λd|G,m1, . . . ,mk〉 0 ≤ d ≤ N − k (5.12)

II : D−2,d|G,m1, . . . ,mk〉= λ′d|G,m1, . . . ,mk〉 0 ≤ d ≤ 2N − 2k (5.13)

with

λd =


0 d < N − k − 1

(−1)N−k−1 1√
β

Λ d = N − k − 1

(−1)N−k 1√
β

(∑N
p (ap − ξ)−

∑k
i=1mi

)
Λ d = N − k

(5.14)

λ′d =


0 d < 2N − 2k − 1

Λ2 d = 2N − 2k − 1

−2

(∑N
p (ap − ξ)−

∑k
i=1mi

)
Λ2 d = 2N − 2k

(5.15)

The above expressions still hold for k = 0 case, but with the replacements Λ→ Λ2. Notice

that λN−k+1 is not an eigenvalue but an operator which contains derivative of Λ:

λN−k+1 = (−1)N−k+1 1√
β

βΛ
∂

∂Λ
+

1

2

N∑
p

(ap − ξ)2 +
1

2

(
N∑
p

(ap − ξ)

)2

+

k∑
i<j

mimj −

(
k∑
i=1

mi

)
N∑
p

(ap − ξ)

Λ.

We include this expression for later convenience.

Proof of I. Our proposal for the Gaiotto state takes the following form,

|G,m1, . . . ,mk〉 =
∑
~Y

Λ|
~Y |(Zvect)

1/2
k∏
i=1

Zfund(~a, ~Y ,mi)|~a, ~Y 〉 . (5.16)
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Since

Zfund(~a, ~Y (t,+),q,m1)

Zfund(~a, ~Y ,m1)
= aq +Bt(Wq)−m1 = aq +At(Yq)−m1,

we find the action of D−1,l results to the similar form as the one (5.5) of the Nf = 0 case,

and λd is the generalized form of κd in (5.10):

λd = Λ(−1)d
1√
β

N∑
I=1

(xI)
d

∏k
i=1(xI −mi)

∏M
J=1(xI − yJ)∏N

J(6=I)(xI − xJ)
. (5.17)

Again using (5.11), we find that λd reduces to (5.14).

Proof of II. To evaluate the action of D−2,l, we use the following commutation relations,

D−2,0 = [D−1,0 , D−1,1] (5.18)

D−2,1 = [D−1,0 , D−1,2] (5.19)

D−2,d = [D−1,0 , D−1,d+1]− [D−1,1 , D−1,d] . (5.20)

Let us write the Gaiotto state as the following,

|G,m1, . . . ,mk〉 =
∑
~W

c ~W |~a, ~W 〉, c ~W := Λ|
~W |(Zvect)

1/2
k∏
i=1

Zfund(~a, ~Y ,mi) . (5.21)

The action of D−2,d on the Gaiotto state is evaluated as

(−1)d+1D−2,d|G,m1〉

=
N∑
q=1

fq∑
`=1

β
(
(aq+B`(Wq))

d+(aq+B`(Wq)−β)d
)
Λ(`,−2H)
q ( ~W )c ~W |~a, ~W

(`,−2H),q〉

−
(
(aq+B`(Wq))

d+(aq+B`(Wq)+1)d
)
Λ(`,−2V )
q ( ~W )c ~W |~a, ~W

(`,−2V ),q〉

−
N∑
q=1

fq∑
u<`

(
(Bu(Wq)−B`(Wq)){(aq+Bu(Wq))

d+(aq+B`(Wq))
d}
)

·Λ(`,−)
q ( ~W )Λ(u,−)

q ( ~W (`,−),q)c ~W |~a, ~W
(`,−;u,−),q〉

−
N∑
q=1

fq∑
u<`

(
B`(Wq)−(Bu(Wq)){(aq+Bu(Wq))

d+(aq+B`(Wq))
d}
)

·Λ(u,−)
q ( ~W )Λ(`+1,−)

q ( ~W (u,−),q)c ~W |~a, ~W
(`,−;u,−),q〉

=λ′d
∑
~Y

c~Y |~a, ~Y 〉 (5.22)

where Y (k,+2H), Y (k,+2V ) and Y (k,+;u,+) (resp. Y (k,−2H), Y (k,−2V ) and Y (k,−;u,−)) stand for

the Young diagrams obtained from adding (resp. deleting) two boxes horizontally, vertically

and two different places, respectively.

Λ
(`,−2H)
q etc. are defined in A.3.
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The relations between At(W ), Bt(W ) and their counterparts of the original Young

diagram Y are

Ak(W ) = Ak

(
Y (l,+2H)

)
=


Ak(Y ) 1 ≤ k ≤ l − 1

Al(Y )− 1 k = l

Al(Y ) + 2β k = l + 1

Ak−1(Y ) l + 2 ≤ k ≤ f̃ + 2

,

Bk(Y ) = Bk

(
Y (l,+2H)

)
=


Bk(Y ) 1 ≤ k ≤ l − 1

Al(Y ) + β k = l

Bk−1(Y ) l + 1 ≤ k ≤ f̃ + 1

.

(5.23)

Again, after lengthy computations, we evaluate the four terms on the right hand side

of (5.22) as below:

Λ(`,−2H)
q ( ~W )

(
Zvect( ~W )

Zvect(~Y )

)1/2
=

1

β(1+β)

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

∏M
I=1(xI−yJ+β)∏N
J(6=I)(xI−xJ+β)

,

Λ(`,−2V )
q ( ~W )

(
Zvect( ~W )

Zvect(~Y )

)1/2
=

1

1+β

N∑
I=1

∏M
I=1(xI−yJ)∏N
J( 6=I)(xI−xJ)

∏M
I=1(xI−yJ−1)∏N
J( 6=I)(xI−xJ−1)

,

Λ(`,−)
q ( ~W )Λ(u,−)

q ( ~W (`,−),q)

(
Zvect( ~W )

Zvect(~Y )

)1/2
=

1

2β

N∑
I=1

∏M
J=1(xI−yJ)∏N
J 6=I(xI−xJ)

N∑
K 6=I

∏M
J=1(xK−yJ)∏N
J 6=K(xK−xJ)

×(xK−xI)(xK−xI+1−β)

(xK−xI+1)(xK−xI−β)
,

Λ(u,−)
q ( ~W )Λ(`+1,−)

q ( ~W (u,−),q)

(
Zvect( ~W )

Zvect(~Y )

)1/2
=

1

2β

N∑
I=1

∏M
J=1(xI−yJ)∏N
J 6=I(xI−xJ)

N∑
K 6=I

∏M
J=1(xK−yJ)∏N
J 6=K(xK−xJ)

× (xK−xI)(xK−xI−1+β)

(xK−xI − 1)(xK − xI+β)
, (5.24)

where the redefinition of variables as in (5.9) are made.

As a result, λ′d has the form,

(−1)d+1λ′d (5.25)

=
Λ2

1+β

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

∏M
I=1(xI−yJ+β)∏N
J(6=I)(xI−xJ+β)

×
(
xdI+(xI+β)d

)
×

k∏
i=1

(
(xI−mi)(xI+β−mi)

)
− Λ2

1+β

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

∏M
I=1(xI−yJ−1)∏N
J(6=I)(xI−xJ−1)

×
(
xdI+(xI−1)d

)
×

k∏
i=1

(
(xI−mi)(xI−1−mi)

)
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+
Λ2

2β

N∑
I=1

∏M
J=1(xI−yJ)∏N
J 6=I(xI−xJ)

N∑
K 6=I

∏M
J=1(xK−yJ)∏N
J 6=K(xK−xJ)

× (xK−xI)2(xK−xI+1−β)

(xK−xI+1)(xK−xI−β)
×
(
xdK+xdI

)

×
k∏
i=1

(
(xK−mi)(xI−mi)

)
−Λ2

2β

N∑
I=1

∏M
J=1(xI−yJ)∏N
J 6=I(xI−xJ)

N∑
K 6=I

∏M
J=1(xK−yJ)∏N
J 6=K(xK−xJ)

× (xK−xI)2(xK−xI−1+β)

(xK−xI−1)(xK−xI+β)
×
(
xdK+xdI

)

×
k∏
i=1

(
(xK −mi)(xI −mi)

)
.

We note that a similar computation appears in the recursion formula with bifundamental

multiplet (A.16). After some algebra, it is simplified to

(−1)d+1λ′d (5.26)

=
Λ2

2(1+β)

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

×
(
xdI+(xI+β)d

) ∏M
I=1(xI−yJ+β)∏N
J( 6=I)(xI−xJ+β)

×
k∏
i=1

(
(xI−mi)(xI+β−mi)

)
− Λ2

2(1+β)

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

∏M
I=1(xI−yJ−β)∏N
J(6=I)(xI−xJ−β)

×
(
xdI+(xI−β)d

)
×

k∏
i=1

(
(xI−mi)(xI−β−mi)

)
− Λ2

2(1+β)

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

∏M
I=1(xI−yJ−1)∏N
J(6=I)(xI−xJ−1)

×
(
xdI+(xI−1)d

)
×

k∏
i=1

(
(xI−mi)(xI−1−mi)

)
+

Λ2

2(1+β)

N∑
I=1

∏M
I=1(xI−yJ)∏N
J(6=I)(xI−xJ)

∏M
I=1(xI−yJ+1)∏N
J(6=I)(xI−xJ+1)

×
(
xdI+(xI+1)d

)
×

k∏
i=1

(
(xI −mi)(xI+1−mi)

)
,

with N −M = N . In this form, one may use the trick (5.11) to arrive at (5.15).

6 Whittaker conditions in terms of W -algebra

In this section, we rewrite the generalized Whittaker conditions obtained in the previous

section in terms of W -algebra W (d)(z) =
∑

iW
(d)
i z−i−d. Theorem 2 in the following is the

main claim of the paper.
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Theorem 1 For Nf = 0 case [16],

W
(d)
1 |G〉 = λ

(d)
1 |G〉 0 ≤ d ≤ N + 1 (6.1)

with

λ
(d)
1 =


0 d < N

(
√
β)−NΛ2 d = N

(
√
β)−N−1

(
1

N+1

∑N
p (ap − ξ) + (N−1)N2ξ

2(N+1)

)
Λ2 d = N + 1

, (6.2)

and

W
(d)
2 |G〉 = 0 0 ≤ d ≤ 2N. (6.3)

Actually, for SU(N) case we only have to consider up to W (N). From the commutation

relations, it is obvious that W
(d)
m |G〉 = 0 for m ≥ 2 and 0 ≤ d ≤ N .

Theorem 2 For the Gaiotto state with k fundamentals, one has

W
(d)
1 |G,m1, . . . ,mk〉 = λ

(d)
1 |G,m1, . . . ,mk〉 0 ≤ d ≤ N − k + 1, (6.4)

W
(d)
2 |G,m1, . . . ,mk〉 = λ

(d)
2 |G,m1, . . . ,mk〉 0 ≤ d ≤ 2N − 2k + 1. (6.5)

When N − k > 1,

λ
(d)
1 =


0 d<N−k
(
√
β)k−NΛ d=N−k

(
√
β)k−N−1

(
1

N−k+1

∑N
p (ap−ξ)−

∑k
i=1mi+

(N−k)(N−1)Nξ
2(N−k+1)

)
Λ d=N−k+1

, (6.6)

and

λ
(d)
2 = 0 d < 2N − 2k + 2. (6.7)

When N − k = 1,

λ
(1)
1 = − 1

β
Λ, λ

(2)
1 =

1

β

( N∑
p

(ap − ξ)−
k∑
i=1

mi

)
Λ, (6.8)

λ
(2)
2 =

1

2β
Λ2, λ

(3)
2 =

1

3
√
ββ

( N∑
p

(ap − ξ)−
k∑
i=1

mi

)
Λ2. (6.9)

Before giving the proof of theorems, we give some comments.
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Comments on the other generators.

1. The action of λ
(N−k+2)
1 becomes an operator involving the derivative of Λ as we show

later in (6.29), and we see that

W
(N−k+2)
1 |G,m1, · · · ,mk〉 ∼

(
1√
β

Λ
∂

∂Λ
+ const.

)
Λ|G,m1, · · · ,mk〉. (6.10)

On the other hand, referring to [17, 18] we have

J0|G,m1, . . . ,mk〉

=
1

β

(
−

N∑
p

(ap − ξ) +
ξN(N − 1)

2

)
|G,m1, . . . ,mk〉, (6.11)

L0|G,m1, . . . ,mk〉

=

(
Λ
∂

∂Λ
+

1

2β

(
N∑
p

(ap−ξ)2+(1−N)ξ

N∑
p

(ap−ξ)+
ξ2

6
N(N−1)(N−2)

))
·|G,m1, . . . ,mk〉. (6.12)

Compare to (6.12), we find in the action of
(
W

(N−k+2)
1 − 1√

β
ΛL0

)
, the derivative of

Λ cancels.

2. W
(d)
3 and higher can be generated by commutators of W

(r)
2 , W

(r)
1 and W

(r)
0 , with

r ≤ d, more precisely speaking, with the help of (4.11). For example, when the

action of both Ln−1 and (W
(N−k+2)
1 − 1√

β
ΛL0) on the Gaiotto state are constant, we

have W
(3)
n = 1

2n−3 [Ln−1,W
(3)
1 ] ∼ 1

2n−3 [Ln−1,
1√
β

ΛL0], so

W (3)
n |G,m1, . . . ,mk〉 =

1

2n− 3

[
Ln−1,

1√
β

ΛL0

]
|G,m1, . . . ,mk〉

=
(n− 1)Λ

(2n− 3)
√
β
Ln−1|G,m1, . . . ,mk〉. (6.13)

Examples. Here we give some simple cases of our theorem which match with the known

results in the literature.

• SU(2) case

L1|G〉 =
1

β
Λ2|G〉, (6.14)

L1|G,m〉 =
1

β

( 2∑
p

(ap − ξ)−m
)

Λ|G,m〉, (6.15)

L2|G,m〉 =
1

2β
Λ2|G,m〉. (6.16)

All higher Ln have eigenvalue 0.
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• SU(3) case

L1|G,m〉 =
1

β
Λ|G,m〉 , (6.17)

W
(3)
1 |G,m〉 =

1√
ββ

(
1

3

3∑
p

(ap − ξ)−m+ 2ξ

)
Λ2|G,m〉 , (6.18)

L1|G,m1,m2〉 =
1

β

( 3∑
p

(ap − ξ)− (m1 +m2)

)
Λ|G,m1,m2〉 , (6.19)

L2|G,m1,m2〉 =
1

2β
Λ2|G,m1,m2〉 , (6.20)

W
(3)
1 |G,m1,m2〉 =

1√
ββ

{
βΛ

∂

∂Λ
+

1

2

3∑
p

(ap − ξ)2+
1

6

(
3∑
p

(ap−ξ)

)2

+m1m2 (6.21)

+2ξ(m1 +m2)− 1

3
(m1 +m2)

3∑
p

(ap − ξ) + 3ξ2

}
Λ|G,m1,m2〉 ,

W
(3)
2 |G,m1,m2〉 =

1

3
√
ββ

( 3∑
p

(ap − ξ)− (m1 +m2)

)
Λ2|G,m1,m2〉 , (6.22)

W
(3)
3 |G,m1,m2〉 =

1

3
√
ββ

Λ3|G,m1,m2〉 . (6.23)

All higher Ln, Wn have eigenvalue 0. Since
∑N

p (ap − ξ) can take arbitrary value,

after setting it to be zero we find the above equations are in agreement with the

known results [19–22], up to overall constant coefficients. In order to compare with

the result of [22], we have to remove the U(1) factor J (z) =
∑n

i=1 ∂ϕi(z) =:p1(z) :.

Then we have L′1 = L1 − 1
N

(
: p1(z) :

)
0

(
: p1(z) :

)
1

= L1 + 1
ND−1,0

√
βJ0, and

L′2 = L2 − 1
2N

(
:p1(z) :

)2
1

= L2 − 1
2N (D−1,0)2, thus

L′1|G,m1,m2〉 =
1

β

(
2

3

3∑
p

(ap)− ξ − (m1 +m2)

)
Λ|G,m1,m2〉 , (6.24)

L′2|G,m1,m2〉 =
1

3β
Λ2|G,m1,m2〉 , (6.25)

which are consistent with those in [22] by setting
∑N

p (ap) = 0.

Proof of the theorems. Up to terms of order d−1, the generators of W-algebra has the form

W (d)(z) ∼ −
d∑
s=0

(−d)s−d :p1(z)d−ses(z) : (6.26)

where el =
∑

i1<···<il zi1 · · · zil is the elementary symmetric polynomial. Then using the

expansion

en = −(−1)n
1

n
pn +

1

2

∑
r+s=n,r,s≥1

(−1)n
1

rs
prps −

1

6

∑
r+s+t=n,r,s,t≥1

(−1)n
1

rst
prpspt + · · · ,

(6.27)
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it is deduced that, up to terms of order d− 1,

W
(d)
1 = (−1)d−1(

√
β)1−dD−1,d−1 + u (6.28)

where u is a linear combination of monomials (D0,r1 · · ·D0,rsD−1,r) with r < d−1, most of

which vanish when operate on the Gaiotto states. Take into consideration of (5.14), (5.15),

we find explicit correspondence between the generators. In the following “≡” means equiv-

alent up to terms which vanish when operate on the Gaiotto states).

Firstly for W
(d)
1 generators,

• For N − k > 1,

W
(N−k+2)
1 ≡(−1)N−k+1(

√
β)k−N−1D−1,N−k+1−(−1)N−k+1N−k+1

N−k+2
(
√
β)k−N+1J0D−1,N−k

+ (−1)N−k+1 (N−k+2)2−2(N−k+2)−2

2(N−k+2)2
(
√
β)k−N+3J2

0D−1,(N−k−1) , (6.29)

W
(N−k+1)
1 ≡(−1)N−k(

√
β)k−ND−1,N−k − (−1)N−k

N − k
N − k + 1

(
√
β)2+k−NJ0D−1,N−k−1 ,

(6.30)

W
(N−k)
1 ≡(−1)N−k−1(

√
β)1+k−ND−1,N−k−1 . (6.31)

• For N − k = 1,

W
(3)
1 ≡ 1

β
D−1,2 −

2

3
J0D−1,1 +

1

3
βJ2

0D−1,0 , (6.32)

W
(2)
1 = L1 ≡ (−

√
β)−1D−1,1 , (6.33)

W
(1)
1 = J1 ≡ (−

√
β)−1D−1,0 . (6.34)

Secondly for W
(d)
2 generators are related to SH as,

W
(d)
2 =

1

2
√
β
d
(−1)dD−2,d−1 + u′. (6.35)

This time u′ is a linear combination of monomials (D0,r1 · · ·D0,rsD−1,rD−2,r) with r < d−1,

again most of which vanish when operate on the Gaiotto states. Explicitly,

• For N − k > 1,

W
(2N−2k+1)
2 ≡ − 1

2
√
ββN−k

D−2,2N−2k +
N − k

2N − 2k + 1

√
β

βN−k
J0D−2,2N−2k−1

+
1√

ββN−k−1
D−1,N−k−1D−1,N−k−

N−k
2N−2k+1

√
β

βN−k−1
J0(D−1,N−k−1)2,

(6.36)

W
(2N−2k)
2 ≡ 1

2βN−k
D−2,2N−2k−1 −

1

2βN−k−1
(D−1,N−k−1)2. (6.37)
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• For N − k = 1,

W
(3)
2 ≡ − 1

2
√
ββ

D−2,2 +
2

3
√
β
D−1,0D−1,1 +

1

3
√
β
J0D−2,1 −

√
β

3
J0(D−1,0)2, (6.38)

W
(2)
2 = L2 ≡

1

2β
D−2,1 . (6.39)

Combining with (5.2), (5.14)and (5.15), the above equations lead straightforwardly to (6.2),

(6.6) and (6.7) in the beginning of this section.

7 Conclusion

Inspired by AGT conjecture, we construct Gaiotto states with fundamental multiplets

in SU(N) gauge theories by splitting the corresponding Nekrasov partition function in a

proper way, and prove that they satisfy the requirements of Whittaker vectors. We make

use of a useful algebra SH. Though SH is complicated in form, it has nice properties when

acts on the Hilbert space. Also by clarifying its relation with Wn algebra, we are able to

obtain the eigenvalues of higher spin Wn generators for general SU(N) case, extending the

current methods limited to SU(3). For the future work we will construct Gaiotto states

for linear quiver theory, and compare with another type of Gaiotto state arising from the

colliding limit [24, 25]. In this way, it would be interesting to find the explicit connection

between this result and the coherent state approach found in [26, 27].

As another application of SH we complete the discussion of Virasoro constraint for

Nekrasov partition function’s recursion relation, by calculating the L±2 constraints directly.

Combined with the J±1and L±1 constraints showed in [17, 18], this non-trivial relation gives

a strong support for SU(N) AGT conjecture of linear quiver type. Especially for SU(2)

case, Virasoro constraint is enough to serve as a proof of AGT conjecture. An interesting

extension to W algebra constraint is now made more accessible since we can easily write

down the explicit relation between SH and Wn algebra.
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A Derivation of L±2 constraints on the bifundamental multiplets

In this appendix, we derive a proof of Ward identities for L±2 which was not given in [17, 18].

While this is extremely technical, it is important to show the Nekrasov partition function

for the bifundamental matter has the invariance with respect to Virasoro generators Ln.

This section in general follows the same construction as [17, 18].
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The instanton partition function for linear quiver gauge theories is decomposed into

matrix like product with a factor Z~Y , ~W which depends on two sets of Young diagrams.

Here the Young diagrams ~Y = (Y1, · · · , YN ) represent the fixed points of U(N) instanton

moduli space under localization. Z~Y , ~W consists of contributions from one bifundamental

hypermultiplet and vectormultiplets. We find that the building block Z~Y , ~W satisfies an

infinite series of recursion relations,

δ±m,nZ~Y , ~W − U±m,nZ~Y , ~W = 0 , (A.1)

where δ±m,nZ~Y , ~W represents a sum of the Nekrasov partition function with instanton num-

ber larger or less than Z~Y , ~W by m with appropriate coefficients, and U±m,n are polynomials

of parameters such as the mass of bifundamental matter or the VEV of gauge multilets.

The subscript m takes arbitrary integer values and n takes any non-negative integer values.

We observe that AGT conjecture can be proved once we prove the relation

Z(~a, ~Y ;~b, ~W ;µ) = 〈~a+ ν~e, ~Y |V (1)|~b+ (ξ + ν + µ)~e, ~W 〉, (A.2)

A.1 Modified vertex operator for U(1) factor

The free boson field which describes the U(1) part is given by the operators Jn defined in

the previous section. We modify the vertex operator Ṽ H for the U(1) factor as,

V H
κ (z) = e

1√
N

(NQ−κ)φ−e
−1√
N
κφ+ , (A.3)

φ+ = α0 log z −
∞∑
n=1

αn
n
z−n , φ− = q +

∞∑
n=1

α−n
n
zn . (A.4)

The general commutator [Ln, Vκ(z)] is given in [17, 18], here we write the special cases

n = ±2 for the convenience of later calculation.

[L2, Vκ(z)] = z3∂zVκ(z) +
3(NQ− κ)2

2N
z2Vκ(z) +

√
NQz2Vκ(z)α0 +

√
NQzVκ(z)α1

+
√
NQVκ(z)α2 + 3z2∆WVκ(z) , (A.5)

[L−2, Vκ(z)] = z−1∂zVκ(z)− κ2

2N
z−2Vκ(z)−

√
NQz−1α−1Vκ(z)− z−2∆WVκ(z) . (A.6)

where ∆W = κ(κ−Q(N−1))
2 − κ2

2N is the conformal dimension of WN vertex operator V W
κ

with Toda momenta ~p = −κ(~eN − ~e
N ).

A.2 Ward identities for J±1 and L±1

These analysis have already been performed in [17, 18], and we obtained the following:

• The Ward identity for J1 is proved since it is identified with the recursion formula

δ−1,0Z~Y , ~W − U−1,0Z~Y , ~W = 0.

It shows the equivalence between the recursion formula δ1,0Z~Y , ~W − U1,0Z~Y , ~W = 0 and the

Ward identity for J−1.
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The Ward identity for L1 is reduced to the recursion relation δ−1,1Z~Y , ~W−U−1,1Z~Y , ~W =

0. In the same way, for L−1, the recursion formula δ1,1Z~Y , ~W − U1,1Z~Y , ~W = 0 can be

identified with the Ward identity. These consistency conditions are highly nontrivial and

strongly suggest that the identify (A.1) are a part of the Ward identities for the extended

conformal symmetry.

A.3 Ward identities for L±2

Our goal is to show the recursion formula δ±2,1Z~Y , ~W −U±2,1Z~Y , ~W = 0. From the definition

of Ln(4.9),

L2 =
(−
√
β)−2

2
D−2,1 −

Nξ

2
J2 =

1

2β
[D−1,0, D−1,2]− 1

2β
Nξ[D−1,0, D−1,1]. (A.7)

The action of the commutator on the basis reads,

〈~a+ν~e, ~Y | 1
β

[D−1,0, D−1,2]

=
1

β

N∑
p=1

fp∑
k=1

〈~a+ν~e, ~Y (k,+2H),p|β(2ap+2ν+2Ak(Yp)+β)Λ(k,+2H)
p (~Y )

−〈~a+ν~e, ~Y (k,+2V ),p|(2ap+2ν+2Ak(Yp)−1)Λ(k,+2V )
p (~Y )

+
−1

β

N∑
p=1

fp+1∑
u<k

〈~a+ν~e, ~Y (k,+;u,+),p|Λ(k,+)
p (~Y )Λ(u,+)

p (~Y (k,+),p)

·
(

(Au(Yp)−Ak(Yp))(2ap+2ν+Ak(Yp)+Au(Yp))

)

+
−1

β

N∑
p=1

fp+1∑
u<k

〈~a+ν~e, ~Y (k,+;u,+),p|Λ(u,+)
p (~Y )Λ(k+1,+)

p (~Y (u,+),p)

·
(
Ak((Yp)−Au(Yp)(2ap+2ν+Ak(Yp)+Au(Yp))

)
(A.8)

1

β
[D−1,0, D−1,2]|~b+(ξ+ν+µ)~e, ~W 〉

=
1

β

N∑
q=1

fq∑
`=1

β(2bq+2ν+2µ+2B`(Wq)+2ξ−β)Λ(`,−2H)
q ( ~W )|~b+(ξ+ν+µ)~e, ~W (`,−2H),q〉

−(2bq+2ν+2µ+2B`(Wq)+2ξ+1)Λ(`,−2V )
q ( ~W )|~b+(ξ+ν+µ)~e, ~W (`,−2V ),q〉

− 1

β

N∑
q=1

fq∑
u<`

(
(Bu(Wq)−B`(Wq))(2bq+2ν+2µ+Bu(Wq)+B`(Wq))

)
·Λ(`,−)
q ( ~W )Λ(u,−)

q ( ~W (`,−),q)|~b+(ξ+ν+µ)~e, ~W (`,−;u,−),q〉

− 1

β

N∑
q=1

fq∑
u<`

(
B`(Wq)−(Bu(Wq))(2bq+2ν+2µ+Bu(Wq)+B`(Wq))

)
·Λ(u,−)
q ( ~W )Λ( +̀1,−)

q ( ~W (u,−),q)|~b+(ξ+ν+µ)~e, ~W (`,−;u,−),q〉. (A.9)
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In the two above equations, we have used the relation (5.6) and (5.7), and

Λ(`,−2H)
q ( ~W )

=

{
2

β+1

N∏
p=1

(f̃p+1∏
k=1

(bq−bp+Bl(Wq)−Ak(Wp)−ξ)(bq−bp+Bl(Wq)−Ak(Wp)−ξ−β)

(bq−bp+Bl(Wq)−Ak(Wp))(bq−bp+Bl(Wq)−Ak(Wp)−β)

∏′f̃p

k=1

(bq−bp+Bl(Wq)−Bk(Wp)+ξ)(bq−bp+Bl(Wq)−Bk(Wp)+ξ−β)

(bq−bp+Bl(Wq)−Bk(Wp))(bq−bp+Bl(Wq)−Bk(Wp)−β)

)}1/2

(A.10)

Λ(`,−2V ),q( ~W )

=

{
2β

β+1

N∏
p=1

(f̃p+1∏
k=1

(bq−bp+Bl(Wq)−Ak(Wp)−ξ)(bq−bp+Bl(Wq)−Ak(Wp)−ξ+1)

(bq−bp+Bl(Wq)−Ak(Wp))(bq−bp+Bl(Wq)−Ak(Wp)+1)

∏′f̃p

k=1

(bq−bp+Bl(Wq)−Bk(Wp)+ξ)(bq−bp+Bl(Wq)−Bk(Wp)+ξ+1)

(bq−bp+Bl(Wq)−Bk(Wp))(bq−bp+Bl(Wq)−Bk(Wp)+1)

)}1/2

. (A.11)

Λ(k,+2H),p(~Y )

=

{
2

β+1

N∏
q=1

( fq∏
`=1

(ap−aq+Ak(Yp)−B`(Yq)+ξ)(ap−aq+Ak(Yp)−B`(Yq)+ξ+β)

(ap−aq+Ak(Yp)−B`(Yq))(ap−aq+Ak(Yp)−B`(Yq)+β)

∏′f̃q

`=1

(ap−aq+Ak(Yp)−A`(Yq)−ξ)(ap−aq+Ak(Yp)−A`(Yq)−ξ+β)

(ap−aq+Ak(Yp)−A`(Yq))(ap−aq+Ak(Yp)−A`(Yq)+β)

)}1/2

(A.12)

Λ(k,+2V ),p(~Y )

=

{
2β

β+1

N∏
p=1

(f̃p+1∏
k=1

(ap−aq+Ak(Yp)−B`(Yq)+ξ)(ap−aq+Ak(Yp)−B`(Yq)+ξ−1)

(ap−aq+Ak(Yp)−B`(Yq))(ap−aq+Ak(Yp)−B`(Yq)−1)

∏′f̃p

k=1

(ap−aq+Ak(Yp)−A`(Yq)−ξ)(ap−aq+Ak(Yp)−A`(Yq)−ξ−1)

(ap−aq+Ak(Yp)−A`(Yq))(ap−aq+Ak(Yp)−A`(Yq)−1)

)}1/2

. (A.13)

For u < k,

Λ(u,+)
p (~Y (k,+),p)

=Λ(u,+)
p (~Y )×Au(Yp)−Ak(Yp)+ξ

Au(Yp)−Ak(Yp)
×Au(Yp)−Ak(Yp)+β

Au(Yp)−Ak(Yp)+1
× Au(Yp)−Ak(Yp)−1

Au(Yp)−Ak(Yp)−β
× Au(Yp)−Ak(Yp)

Au(Yp)−Ak(Yp)−ξ

(A.14)

Λ(k+1,+)
p (~Y (u,+),p)

=Λ(k,+)
p (~Y )×Ak(Yp)−Au(Yp)+ξ

Ak(Yp)−Au(Yp)
×Ak(Yp)−Au(Yp)+β

Ak(Yp)−Au(Yp)+1
×Ak(Yp)−Au(Yp)− 1

Ak(Yp)−Au(Yp)−β
× Ak(Yp)−Au(Yp)

Ak(Yp)−Au(Yp)−ξ
.

(A.15)
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For convenience, we set (this convention is only used in this appendix, different from (5.9))

xI =

{
{ap + ν +Ak(Yp)} 1 ≤ I ≤ N

{bp + ν + µ+Bk(Wp)} N + 1 ≤ I ≤ N +M

yI =

{
{ap + ν +Bk(Yp)− ξ} 1 ≤ I ≤ N −N

{bp + ν + µ+Ak(Wp) + ξ} N −N + 1 ≤ I ≤ N +M
.

Like the L1 case performed in [17, 18], anomalous terms arise both from the the

action on the ket basis and the modified vertex operator, and again cancels with each

other: 2ξ terms exactly cancel with the contribution of
√
NQVκ(z)α2, and the rest has the

following form

〈~a+ν~e, ~Y |L2Vκ(1)|~b+(ξ+ν+µ)~e, ~W 〉
〈~a+ν~e, ~Y |Vκ(1)|~b+(ξ+ν+µ)~e, ~W 〉

− 〈~a+ν~e, ~Y |Vκ(1)L2|~b+(ξ+ν+µ)~e, ~W 〉
〈~a+ν~e, ~Y |Vκ(1)|~b+(ξ+ν+µ)~e, ~W 〉

+
Nξ

2

〈~a+ν~e, ~Y |[J2, Vκ(1)]|~b+(ξ+ν+µ)~e, ~W 〉
〈~a+ν~e, ~Y |Vκ(1)|~b+(ξ+ν+µ)~e, ~W 〉

−
√
βQ
〈~a+ν~e, ~Y |Vκ(1)J1|~b+(ξ+ν+µ)~e, ~W 〉
〈~a+ν~e, ~Y |Vκ(1)|~b+(ξ+ν+µ)~e, ~W 〉

−
√
βQ
〈~a+ν~e, ~Y |Vκ(1)J2|~b+(ξ+ν+µ)~e, ~W 〉
〈~a+ν~e, ~Y |Vκ(1)|~b+(ξ+ν+µ)~e, ~W 〉

=− 1

2β(β+1)

N∑
I=1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

∏N+M
J=1 (xI−yJ−1)∏N+M
J 6=I (xI−xJ−1)

×(2xI−1)

− 1

2β(β+1)

N+M∑
I=N+1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

∏N+M
J=1 (xI−yJ−β)∏N+M
J 6=I (xI−xJ−β)

×(2xI−β)

+
1

2β(β+1)

N∑
I=1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

∏N+M
J=1 (xI−yJ+β)∏N+M
J 6=I (xI−xJ+β)

×(2xI+β)

+
1

2β(β+1)

N+M∑
I=N+1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

∏N+M
J=1 (xI−yJ+1)∏N+M
J 6=I (xI−xJ+1)

×(2xI+1)

+
1

4β2

N∑
I=1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

N∑
K 6=I

∏N+M
J=1 (xK−yJ)∏N+M
J 6=K (xK−xJ)

× (xK−xI)2(xK−xI+1−β)

(xK−xI+1)(xK−xI−β)
×(xK+xI)

− 1

4β2

N∑
I=1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

N∑
K 6=I

∏N+M
J=1 (xK−yJ)∏N+M
J 6=K (xK−xJ)

× (xK−xI)2(xK−xI−1+β)

(xK−xI−1)(xK−xI+β)
×(xK+xI)

− 1

4β2

N+M∑
I=N+1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

N+M∑
K=N+1,K 6=I

∏N+M
J=1 (xK−yJ)∏N+M
J 6=K (xK−xJ)

× (xK−xI)2(xK−xI+1−β)

(xK−xI+1)(xK−xI−β)
×(xK+xI)

+
1

4β2

N+M∑
I=N+1

∏N+M
J=1 (xI−yJ)∏N+M
J 6=I (xI−xJ)

N+M∑
K=N+1,K 6=I

∏N+M
J=1 (xK − yJ)∏N+M
J 6=K (xK−xJ)

× (xK−xI)2(xK−xI−1+β)

(xK−xI−1)(xK−xI+β)
×(xK+xI)

− 1−β
β

N+M∑
I=N+1

∏N+M
J=1 (xI − yJ)∏N+M
J 6=I (xI − xJ)

.

(A.16)
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Using some tricks like redefining x′I = x1, x2, . . . , xI−1, xI+1, . . . , xN+M plus xI −1, xI +β,

and y′I = y1, y2, . . . , yN+M plus xI − 1 + β, the above can be evaluated by (5.11), and

finally reduces to

√
β
−1 δ−2,1Z(~a, ~Y ;~b, ~W ;µ)

Z(~a, ~Y ;~b, ~W ;µ)
+
√
β
−1Nξ

2

δ−2,0Z(~a, ~Y ;~b, ~W ;µ)

Z(~a, ~Y ;~b, ~W ;µ)
.

On the other hand, the commutator part becomes

〈~a+ν~e, ~Y |[L2, Vκ(1)]|~b+(ξ+ν+µ)~e, ~W 〉+Nξ

2
〈~a+ν~e, ~Y |[J2, Vκ(1)]|~b+(ξ+ν+µ)~e, ~W 〉

=

{
∆

(
−~a+ν~e√

β
−Q~ρ+Q

N+1

2
~e

)
+|~Y |−∆

(
−
~b+(ν+µ)~e√

β
−Q~ρ+Q

N+1

2
~e

)
−| ~W |

+
(NQ−κ)2

N
+κ(κ−Q(N−1))− κ

2

N

}
Z(~a, ~Y ;~b, ~W ;µ)

+
√
βQ〈~a+ν~e, ~Y |Vκ(1)J1|~b+(ξ+ν+µ)~e, ~W 〉+

√
βQ〈~a+ν~e, ~Y |Vκ(1)J2|~b+(ξ+ν+µ)~e, ~W 〉

+
√
β
−1Nξ

2
U−2,0Z(~a, ~Y ;~b, ~W ;µ)

=
√
β
−1
U−2,1Z(~a, ~Y ;~b, ~W ;µ)+

√
β
−1Nξ

2
U−2,0Z(~a, ~Y ;~b, ~W ;µ)

+
√
βQ〈~a+ν~e, ~Y |Vκ(1)J1|~b+(ξ+ν+µ)~e, ~W 〉+

√
βQ〈~a+ν~e, ~Y |Vκ(1)J2|~b+(ξ+ν+µ)~e, ~W 〉.

(A.17)

Compare the above two equations, the Ward identity for L2 is obtained since it is

identified with the recursion formula δ−2,1Z~Y , ~W − U−2,1Z~Y , ~W = 0. L−2 totally follows the

same discussion.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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