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1 Introduction

Diffraction is one of the key tools to understand the dynamics of strong interaction, and
it has been studied since the sixties. In particular, the research program performed at
HERA has shown that semi-hard diffractive processes, in which a hard scale allows one
to deal with QCD in its perturbative regime, could provide a quantitative lever-arm to
understand the internal dynamics of the nucleon in a regime of very high gluon densities.
Among the whole set of v*p — X deep inelastic scattering (DIS) events, almost 10%
reveal a rapidity gap between the proton remnants and the hadrons coming from the
fragmentation region of the initial virtual photon, so that the process looks rather like
v'p — XY [3-10], where Y is the outgoing proton or one of its low-mass excited states.
This subset of events is called diffractive deep inelastic scattering (DDIS). DDIS can be
studied at the inclusive level, or further analyzed by considering diffractive jet production
as well as exclusive meson production. One of the main cornerstones of diffraction is
the concept of Pomeron, which carries the quantum numbers of vacuum and which is
exchanged at high energy between X and Y. Diffraction can be described according to

'For reviews, see refs. [1, 2].



several approaches, important for phenomenological applications. In the perturbative QCD
approach, justified by the existence of a hard scale (like the photon virtuality Q?), one can
rely on a QCD factorization theorem [11]. This is the essence of the first approach, which
involves a resolved Pomeron contribution: the diffractive structure function is expressed
as the convolution of a coefficient function with a diffractive parton distribution, which is
analogous to the usual parton distribution function (PDF), but with the proton replaced
by a Pomeron.

Besides, at high energies, it is natural to model the diffractive events by a direct
Pomeron contribution involving the coupling of a Pomeron with the diffractive state. The
diffractive states can be modelled in perturbation theory by a ¢g pair (for moderate M?2,
where M is the invariant mass of the diffractively produced state X) or by higher Fock
states as a ¢Gg state for larger values of M?2. Based on such a model, with a two-gluon
exchange picture for the Pomeron, a good description of HERA data for diffraction could
be achieved [12]. One of the important features of this approach is that the ¢g component
with a longitudinally polarized photon plays a crucial role in the region of small diffractive
mass M, although it is a twist-4 contribution. A further analysis was then performed,
combining both the resolved and the direct components [13, 14], including a ¢g exchange
on top of the gluon pair to model the Pomeron.

In the direct components considered there, the ggg diffractive state has been studied
in two particular limits. The first one, valid for very large Q2, corresponds to a collinear
approximation in which the transverse momentum of the gluon is assumed to be much
smaller than the transverse momentum of the emitter [15, 16]. This approximation allows
one to extract the leading logarithm in Q?, based on the strong ordering of transverse
momenta typical of DGLAP evolution [17-20]. The second one [21, 22], valid for very large
M?, is based on the assumption of a strong ordering of longitudinal momenta, encountered
in BFKL equation [23-26]. A model combining both these limits was elaborated and
applied to HERA data for DDIS in ref. [27].

The main aim of the present article is to compute the v* — ggg impact factor and
to rederive the v* — ¢¢ impact factor, both at tree level, with an arbitrary number of
t-channel gluons, here described within the Wilson line formalism, also called QCD shock-
wave approach [28-31]. In particular, the v* — ¢gg transition is computed without any
soft or collinear approximation for the emitted gluon, in contrast with the above mentioned
calculations. These results provide necessary generalization of buiding blocks for inclusive
DDIS as well as for two- and three-jet diffractive production, in the fragmentation region
of the scattered photon, i.e. in the forward rapidity region. Since the results we derived can
account for an arbitrary number of t-channel gluons, this could allow one to include higher
twist effects which are suspected to be rather important in DDIS for Q2 < 5 GeV? [32].

The QCD shock-wave approach on which we rely is an operator language based on the
concept of factorization of the scattering amplitude in rapidity space and on the extension
to high-energy (Regge limit) of the Operator Product Expansion (OPE) technique, which
was only known at moderate energy (Bjorken limit) before, as an expansion in terms of
local operators or in terms of light-ray operators [33]. In DIS off a hadron at high-energy,
the matrix elements made of Wilson line operators appearing in the OPE describe the



non perturbative part of the process, and their evolution in rapidity is related to the
evolution of the structure function of the target. The evolution equation can be obtained
relying on background field techniques. The Wilson-line operators in the high-energy OPE
evolve with respect to rapidity according to the Balitsky equation, which reduces to the
Balitsky-Kovchegov (BK) equation [28-31, 34, 35] in the large N, limit. According to the
best of our knowledge, this shock-wave approach was only used for evolution equations
and for impact factors at inclusive level for the v* — ~* impact factor at next-to-leading
order [36, 37], and at semi-inclusive level for p;-broadening in p— A collisions in refs. [38, 39)].
Its application shows that this method is very powerful [40] when compared with usual
methods based on summation of contributions of individual Feynman diagrams computed
in momentum space.

When describing a diffractive process, the above mentioned approach is natural in order
to implement saturation effects at high energies, since it is formulated in the coordinate
space. Indeed, in the dipole picture [41, 42], when probing a nucleon with a virtual photon
in the rest frame of the nucleon, due to the long life-time of the virtual ¢g pair produced
by the v* probe with respect to its scattering time, this pair is almost frozen during
its interaction. The inclusive cross-section (for DIS) as well as the scattering amplitude
(for DDIS) thus naturally factorizes in the coordinate space in terms of an impact factor
involving a dipole of given transverse size r convoluted with an effective dipole-nucleon
cross-section o(z,r), a function of Bjorken z and r. The same picture was extended
to the gqg intermediate state, at least in the collinear approximation in which case this
intermediate state can be considered as a gluon-gluon dipole [15, 16], the ¢g being an
effective gluon due to its localization in the transverse coordinate space (since the relative
transverse momentum of this pair is large with respect to the transverse momentum of
the emitted gluon). A step further in this spirit was done in the case of vector meson
electroproduction at twist 3 level, including the genuine twist 3 contribution which involves
a ¢qqg intermediate state [43, 44], for which a dipole picture was also obtained [45], based
on QCD equations of motion.

This dipole picture provides the natural framework for the formulation of saturation.
Indeed, the transverse size r of the dipole is the natural parameter in order to imple-
ment both color transparency (for small r) and saturation (for large 7). The analysis
of low-z saturation dynamics of the nucleon target was first introduced in refs. [46, 47]
by Golec-Biernat and Wiisthoff (GBW) to describe the inclusive and diffractive structure
functions of DIS. This is an additional reason to rely on the shock-wave analysis, which
naturaly provides a tool to evaluate the v* — ¢ and v* — ¢qg impact factors in transverse
coordinate space.

The paper is organized as follows. The section 2 contains the definitions and necessary
intermediate results. Section 3 briefly reproduces the leading order (LO) v* — ¢g¢ impact
factor. In section 4 we give the general expression for the v — ¢gg impact factor, which
is then calculated in sections 5 and 6. Section 7 discusses the linearized impact factor for
interaction with the color dipole. Section 8 is devoted to the impact factor in the momen-
tum space. Section 9 summarizes obtained results. Two appendices comprise necessary
technical details.



2 Definitions and necessary intermediate results

Throughout this paper, we use the following notations. We introduce the light cone vectors

ny and ng
1

np = (1,0,0,1), ng= 5(1,0,0,—1), nf=ny, =ny-np=1, (2.1)

and for any vector p we have

1 _

p*zp—:p-nzzi(p“rp‘?’), pr=p =p-n=p’ —p’ (2:2)
p=pni+p ne+pi, pP=2p"p —p° (2.3)
pk=ptky=p kT +p kT —p-k=pik_+p_ki— 5k (2.4)

The derivatives and the metric tensor have the form

d d ,_ 0 9
a:aq::7:7 ai:_az: = 2.5
= Dzt 0z’ 0z 0z 29
01 0 0
9" = gu = (1) 8 _? 8 , the indicesare 4+, —,1,2; (2.6)
0 0 0-1
eTBr— — _ 0873 _ _ B3 (2.7)

We denote the initial photon momentum as k, and the outgoing quark, antiquark, and
gluon momenta as pq, pg, and py. The corresponding longitudinal momentum fractions are

Py _  Pg

Py
=z

k+

For simplicity, we work with a photon in the forward kinematics

=g, =x4. (2.8)

- k2

k=0, K'=k"ni+—nb, -k*=@Q*>0. (2.9)
Its longitudinal and transverse polarization vectors read
1 k2 o o Q
= (v - gent) = @ =g (2:10)
1

et =¢e7, =—(0,1,75,0), s = =£1. 2.11
T =€T1 ﬂ( ) (2.11)

Here s is the helicity of the photon. For the outgoing gluon we work in the light cone gauge
A - ny = 0. Therefore

’ 9) PglLall2
Cqv = TWQV + Ezj_u - (gJ_Va - gpo;u) 5;a7 (2'12)
g

and we can use the same transverse polarization vectors as for the photon

*Q 1 .
EgL = 7(0, ]., —1 Sg,o), Sg = +1. (213)
2



It is convenient to introduce the following vectors

ﬁg ﬁtf > ﬁg ﬁq

p=Le_Pap_Po_Pg 2.14
Tomg owg T my my 21
Then « *
- g€ — - €
(Proey) =2, (Pgy) ="t (2.15)
q q

To simplify the vector products with the polarization vectors we will use the following
identities

@x&r]=is(@-&r), [ax&]=—is, (@&, (2.16)

where [Ei X 51 = ¢"3¢7b8 . The fermion propagator in the shock wave background can be

read from ref. [28] and is given by

G(Zl, Z2) =40 (zfz;) G() (212) — /d4Z3(5 (Z;_) Go (213) 'y+ G() (232)

x (0(:5) 0 (—2F) Uz, + 0 (—21) 0. () UL, ) - (2.17)

Here z;; = 2z; — zj . The free quark propagator reads

2i z ip
Go(z) = , G =), 2.18
ole) (2m)? (22 — i0)? o(p) p? + i0 (2.18)
and the Wilson lines
+oo

Ui=Ug =U(%,n) = Pexp [zg/ b, (zf,é}) dz; (2.19)
are integrated along the path z= = 0. The operator b, is the external shock-wave field

built from only slow gluons which momenta are limited by the longitudinal cut-off defined
by the rapidity n

d* ;
b, = / (2;;4 e b~ (p) 0 (" — |pt]). (2.20)

We use the light cone gauge
A-ng =0, (2.21)

with A being the sum of the external field b and the quantum field A
A=A+0b, V' (z)=0b" (z+,5) ngzé(z+)B(2)n§. (2.22)

Using the LSZ reduction formulas for the propagators from ref. [28] or summing the di-
agrams in this external shockwave field as in ref. [28] one can get the external fermion
lines in the shockwave background. In the following calculations, we will only need those
external lines for y* < 0, which read

10,y = [ 426 (") o UGy ). (2.23)
P
(P, Y)|osyt = — / d*z 6 (z+) e G (y — 2) U;r, ’y+\/1;pi+ . (2.24)
p



In the same way one can get the gluon external line in the shockwave background
*

o d*z5(zt) ez
] e

1 gJ_au(_y+) - (Z_y)l_an%/ 92.95
b2 ((z—y)P—i0)
where we have introduced the notation

1 _ [dp e~ ip(y—u)
‘gyf(y)_/%/du—ipf(u)’

(2.26)
In egs. (2.23), (2.24), the Wilson line is in the adjoint representation. If U — 1, then

U
u(p, y)losy+r — 0(p")—=

. v .
eV, u(p, Lo O(pT) 2=, 2.27
\/%ﬁ ( y)|0>y ( ) \/% ( )
0(pT)ep” PLan2 ; €p ;
* = /P _ PRV ) oy tY_PY_ ipy
ezz(p7 y)’0>y+ — \/ﬁ < Lav p+ ) € 9(]) ) 2p+€ ) (228)
and we recover the results without the shockwave.
Below, we will need the following integral? derived in ref. [37]
r—2z zY M Z2—9 —im? YV yat — aytga”
d4 w2V — 2.29
o= a5 o e (e 22
LB gy (0 = )y
y? 2
O =) oyt =yt
2 —
and the following representation of the McDonald functions
Vab 0 dz i(a—i0)z—i 210 /
2K, (2 ab) =/ % 2 K(r) = —KL(r), (2.30)
—0o0
together with the fact that they obey the Bessel equation
akor) = (25 4 22 ko) = Kolr) + 200 (7 (2.31)
I e r)= r o (7). .
0 or2 " ror) 0 0
We will also need the following Dirac structures
apq’y—i_ /qu = )\qapq’y—i_ 75 qu = 6)\(1,—)\5 \/ 2p;]i>2pq+’ )‘q = :l:]" (232)
o _ / Py Ph s Py Pg
Uy Y Uy, = Aglp, VYO0, =0 /203 2pg | e+ L ie N - ] |, (2.33)
Pq Py q™"Pq Py q q q q 2th{ 2]); q 2p(41r QP;
where ), is the quark helicity.

2The factor —i in eq. (2.29) corrects a misprint from ref. [37].
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Figure 1. LO v — ¢q impact factor.

3 LO impact factor for v — g@ transition

In this section we will briefly reproduce the known expression for the LO v* — ¢g im-
pact factor, see figure 1, for completeness of this paper. The LO matrix element for the
electromagnetic current in the shockwave background reads

<0|b§)§(apq)na (ZO) 'yo‘q/) (ZO) elfﬁz(z)dz|0>
(0et S £(=)dz|0)

NG =57 :/ledZQF(pq,pq,zo,;?l,;?z)atr (vnvf).

(3.1)
Here a and b are the quark and antiquark annihilation operators carrying colour indices
n and [,

ipq-21+ipg-22

F (pq, pg: 20, 21, 72)" = /dzl_dzfé(zf)/dz;dzgd(z;)e (3.2)

\/2pq 20}

X Up, v Go (210) Y Go (202) 7" vy,

0(py )0(py )e ™ PrAt P %
A(2m)H (5 2 2 20t

) L ? L 0
X Tip, v (@pﬁ ~i2 ) 7 (wl{ Y=g ) 7* v,
11

2 2
, _ —z5, +1i0 . _ | —%p +10
o [ (-4 =) o [ (55 4 =222
0 0

We now introduce M, built from M(? by substracting the non-interacting term, i.e.

Mg = / A5A%E (py,pg. 20 5. 5)° (1x (U10]) — VL) (3.3)



The Fourier transform of I w.r.t. zg is defined as
F (pqvp(ja ka 517 gQ)CM — /d4ZO e_ik.ZOF (pq7PQ) 20, 517 ZQ)Q . (34)

In the kinematics (2.9) we chose for the photon, we have

S i (kT —pf —pf BTy
F(pqg,pg k. 21, 22)" = 0(py )0(py) ( 1) s (3.5)
2k+<2w>2m
xp, (1077 = =2 |y (ipEr = oo 0| Qy/7qzqZ
Pq q Lazfl q Lazgl q-q 12

Calculating the derivatives with o = — we will encounter

Voo o (i) =8k ()

g Ko | Qy/xqxsZ Qr\/ 1157,

1 822L 82 qq~12 212 q+q~12

= Q2a:qa:qK0 (Q :rqxqz_'fz) + 276 (Z12), (3.6)

where we used (2.31) to derive this expression. However, the term with the ¢ distribution
will give no contribution to (3.3), therefore we can drop it. That being done, we get

S(kt —ph—p) .. . .
F k1,50 210 = 0 () 0 () 20 i

(27)?
X (=21)0x,,-2; Tq2q Q Ko (Q quqz"l%) (3.7)
and
o nd S(kT—pf —ph) .. . .
F (pqvp(77 k? 21, 22)] ETj - 0 (p;_) 0 (p(—;) ( d a ) e "Pq 21 71Pg %2 (38)

(2m)?

Z12 - 5T R
X 5>\q,—>\q (g —wg+5Ng) —55—Q 5Uq$(7Z122K1 <Q quqzu)

Using the identity

_2(kT)?
FY=F" = (3.9)
one can easily check that the electromagnetic gauge invariance
F(pq7p65k721722)a k;a =0 (310)

is satisfied. The results (3.7) and (3.8) are consistent with the well known result for the
v — qq wave-function which was derived for example in ref. [48].



4 General expression for v — ggg impact factor

We will extract the impact factor from the following matrix element

i — (1) Ul T ()7 o) 00
l <0’eif£(z)dz‘0>
= / dglengg F1 (pq,pq,pg, 20, 51, 52, Zg)a tr (UltaUgtb> U?I’)a
N2 -1

+/d51d52152 (Pgs Pg> Dgs 205 21, Z2) ™~
2N,

tr (U1U§> . (4.1)

Here (tb)fC is the projector to the color singlet state, and ¢, a, and b are the gluon, quark and
antiquark annihilation operators; F} describes the contribution of the first two diagrams
and Fj stands for diagrams 3 and 4. The space coordinates 2g 1 2.3 4 and the momenta p, 5 4
are defined in figure 2.

In this form M contains contributions from terms without interaction in which all
operators U are reduced to identity. To get the impact factor we have to subtract those
terms. This amounts in replacing M by M , which reads

N2 -1
M*® = /d21d22d53 B (pgs g, Pgs 20, 21, Z2, Z3)" [tr (Ult“Uthb) Ube — 02]

I L oL NE-1
+/dZIdZ2F2 (Pg> Pgs Pgs 20, 21, Z2)" SN (tr (UlUgT) _Nc> (4.2)
Cc

I O |
= /d21d22d23 F1 (pq:pg, g, 20, 21, %2, 23) 3 (tr (UlU:l:) tr (UgUQT) — N tr (U1U2T>)
2
=1

(tr (Ulvg) - NC) . (4.3)

oo o ova N,
+/dZIdZ2F2 (pqvp§>pgaz0721722)a
2N,

Here

FQ(pQ7p(j7pg7 20, Zlv ZQ)CY:FQ (pqqu;pga 20, 517 52)a+/d53 Fl(pQ7pQ7pga 20, 517 227 2—’3)057 (44)

and

N2 -1
2N,

tr(UeUge) Uga:% (tr (vavf) e (Us0]) = Not (00 )+ tr (U,0f) . (45)

The functions F; and F, are the two above mentioned components of the impact factor,
which we will calculate in the next two sections.

5 Diagrams with the gluon crossing the shockwave

Using egs. (2.23)—(2.25), the sum of the first two diagrams in figure 2 can be represented
in the following way

J N 1 _ — — o
Fi(zq, 25, pg, 20, Z1, %2, Z3) :# /dzfdzl dzi dzy dzi dz; 5(2?)5(2';)6(2;)%6]%]»6, (5.1)
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Figure 2. Impact factor for 3 jet production. The grey ellipse stands for the shockwave at 2T = 0.
The lines crossing the ellipse are calculated in the shock wave background (2.17), (2.23)—(2.25).

where
jo 1 gL,BVZ;Z; — 2341 pMN2w
Lgﬁ = /d24 ) 2 2 (5.2)
E (234 - ZO)
x [v* (Go(210)7* Gol200)7" Go(2a) + Go(z14)7" Go(za0)7* Go(z02)) v ]
and

*B ipg-z3+ipg-z1+ip, -2z, .
gq € 7
g {77“% © ﬂpﬂ*ﬂj : (5.3)

R =p;0 (p))
g g
' 2pg 2py 20

Using the integral (2.29) and the fact that 2i273 = 0 one can write

+ A~ A A A A A
jo _ 2235 1 [+<210’Y°‘Z30’M5232 2317182307 202

i3 4 9 4 .2 2 4 2 4 2.4
(2m) oz £30%32%20" %10 #31%30%701" 02
2 Z107%202 (23118 23218 e
+ =3 4,4 2 T T2 v . (5.4)
<30 %20 %10 <31 239 i

,10,



Integrating w.r.t. z; with the help of eq. (2.26) we have

22 i TN _ ~ ~
1o _ -1 /+°O dp* 6*1p+ (Zir zg 0) [74_ (2p+210’>’a (v~ 23y + 2301 ) V18232
4= <

(2m)* 223) 23220221,

o _ . . . . J
ipT 231718 (V290 + Z301) VB0 F107%%02 (#3118 23218 i
t 2 + 2.4 2 2.2 v , (5.5)

231 (2230) 201220 220" %10 231 232 ;

where o = €" is the longitudinal cutoff (2.20). As a result,
T i ke
Fl(pqap(77pg7207z1az27z3) :9(pg _U) 2 3€g
(2m) (22+)2 2p5 20+ 2p
x ﬂpnﬂ_?’u (pqv —na ; ) ( W5 ; )vmm
Z32

2311 . _
+ —»2 VLB (lp;r’y _’YJ_a p
231

)g**ww)

23118 Z32L,8 0
+2 0} - 1 —
( Z Z5 )(pq7 ’yLaZﬁ)V (p ! ﬂua g

e,

g Z3O+Pq+zl%+1’+z2o+10
774
T
X e 2% : (5.6)

Via eq. (2.30) we will calculate the Fourier transform of Fj

Fl (pQ7p§apgv ka Zlv 227 23)0[ = /d420 B_ik'ZOFl (pmpq?pg’ 20, 21’ ZQ’ 23)a (57)

for the photon in our kinematics (2.9). Using our notation (2.8) and denoting

Z193 = \/quq,?é + BTy 2 + T W05 (5.8)
we get
o g0(pT — o) o~ Do B1 Py 2y — iy Fs
Fi(pg, pg; pg» ks 21, 22, Z3)" :—#5 <k+ - p; - p,—; - pj) Zﬁ

\/ 204 2p+2pg
0
7“<ip+7‘—vﬁ
> g 823‘:L
2311 8.4+ -, 0O af. 4+ - 5 0
+ =5 (w YT - >’Y (lp’y -1 7=
zZ3 Lo, ! 029,

9 Zglj_ 32J_ I P 0 al: +_ — o 0
-+ 1 y — wp-y —
Z321 2322 pq ! ¢ f ! pq ¢ o1

X v vy, Ko(QZ123)- (5.9)

i )
Xty [_3% (zpq Lt >7fww

%32

As before for the v — ¢¢ impact factor, we encounter contributions involving § distributions
for « = —. Indeed, e.g.

O*Ko(QZ123) _0? (QZ123KH(QZ123)) 0Z123 0Z193
8zﬁ8z§l QZ123 027, 82&_

82 In Z123
029,028

+QZ123K((QZ123) (5.10)

— 11 —



and from eq. (2.31) we obtain

(QZ193K(QZ123))
QZ123

Again the term with the delta function gives a vanishing contribution to M introduced in

= Ko(QZ123) + 476 (Q° Z793) 6 (9) - (5.11)

eq. (4.2) and we drop it. Then, using eq. (2.31) and the matrix elements (2.32), we get

_2(kT)?
Ff=F 0 (5.12)
On one hand this implies the electromagnetic gauge invariance
Fl (p(Iap(77pg7k721722723)a ka :O) (513)

and on the second hand it gives the contribution to the impact factor for longitudinal
photon (2.10)

Fl (pqapévpgvkagl722723)a€l}a (514)

=0 (kr+ —py —pg —pf> 0(p, —0)Qg

q

o~ Pa-F1 =Py 2y —ifiy 23

™/ 2pd

«B [ 83 Zgl Z:;YQ 251 Z:fz
X Ong— A€y iA€' xy {xqﬂ—i—mqﬂ}—l— (2zg+xg) xgg—% — (2% + acg) xqg—Q .

Ko(QZ123)

31 %39 3 32

—

Expressing the vector products e??3q7b8 = [a X 5} through the scalar products using
eq. (2.16) we have

- - s\«
Fl (pqaptjapgaka'z17227z3) €La

e~ Pa-F1—iPy 2y iy 23

25(k+—p;—p;r—p;)0(p;_g) 2Qg Ko(QZ123)
o
m\/ 2pg
Z3g - €S F31 - EF
x 5)“1’_)‘@ {(gjq + $95_59Aq) ‘TQTQ - (.CUq + ngs—Sg/\Q) Te™ =2 ? } : (515)
“32 31

For transverse photon (2.11) we get the following contribution to the impact factor

- 5 s \Q
Fl(pQ7p(i7pg)kvzl7227Z3) ETa

= 2igQs (k+ —py —py —pZ) 0(py —0)

o WPq E1—iPg 2y —iPg-Z3

TZ1231/ 2pg

Zo3 - €, )(Z13 - €7)
X 5>‘q7_>\QK1 (Q2123) {_ ( 92232 IL‘q (‘/Eq _55>\17) ($q+$95_5g>\q)
(523 . 59*) (523 . 5T) _
_ EW TyTq (mq+xg6_sgAq —5S>\q) —(q + q), (5.16)
where
(g q) = (N, xq, 21, Pq & g, Tq, Z2,Dg) - (5.17)

One can check that the results (5.15) and (5.16) are compatible with the wave function
derived in ref. [49].
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6 Diagrams without the gluon crossing the shockwave

Here we will calculate Fh (4.3), which gives the contribution from diagrams 3 and 4 in
figure 2. It reads

Fy (24, 24, Dy, 20, 21, 22)* = lg/dzfdzl_dz;dzgé (27) 0 (25) L;jaR? (6.1)

where

Ly = [7+G0(210)’YQG0(ZO2)7+]]: ; (6.2)

7

and
/i o\ 4 5366ipg'24
W= [0t
2pg 2py 2pF

~ [7_7+ (ezpqﬂﬂpq'% Go(224)78vp, @ Up, et TP Up, ® ﬂpﬂﬂGo(zm)) 7+7_]j '

Integrating eq. (6.3) w.r.t. z4, we get

*f3 bl T (R
R;i _ .#ezpjzl —zpq~z1+zpéfz2 —Wpg 22 [’Y’Y+ (ezp;zQ —1Pg-22 ((R;:'pg))zyﬁqu @ Up,
2py 2pq 20} Fatle
_ (Bg +Pg) iptom—igyz ) o+ — |
—vUp @ Up, Yg7———~z€ P95 TPIEL ) 4Ty (6.4)
! * 7 (pg + pg)? j
As a result,

N
F2 (pQ7p§7p9720721a22)

B+
_ 9(p+ — o) g €g G(pg) 1 ei(p(}“rpr}Lﬂ’gﬂz(?*if"tz‘zﬂl*iﬁq'g2
9 1672 2 +2 +2 + (z+)2
pg Pq pq 0

— D 2o — + (. 4+ —
X{e P28,y (@pqv it

. . 0 (P4 +Dy)
>va<z (v +27 )y 152 >7+ 8,
21

029, (Pg+pg)
ikt @9*1(7)52%1%51%“0 ( A o o
P —ipyF1y PatDg) (v e o
xe #0 +e P,y vy +pg)v =1
Pq ﬁ(pq +pg)2 ( g q) 8zﬁ
ikt 1622%'*‘(19":‘_1(1)21%“0
x v (ipj’y 5.7 ) v up, e *0 (6.5)
21
Next we calculate the Fourier transform of Fg
FQ (pqvp(japga k) 217 ZQ)CM — /d4ZO e_ik.ZOFQ (pqvp(japg’ 20,5 51, ZZ)Q (66)
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for the photon in our kinematics (2.9)
FQ (plﬁp(jvpga k) zl) ZQ)Q
i
9

= (Py )5(k+—p+—p+—pf> £y —F——
v (i (p+ +pf> v~ =17 0 o
7 ! 023
(Pq + Pg)
(pq +pg)2

0
afy ir — _ AO
L)fy (pq’y ,Mazgi

, _ 0
x " <Z(p3+pq+)’y 15
1

P i

o 9
> [_eng.zzupq,)/+ (Zp;’y _ ,.ytj'_a _
211

(Pg + Py) i
X m’w% Ko(QZ122) + e~ 7" Uy, v

) ’y+quK0(Q2121)] . (67)
In the arguments of the McDonald functions we encounter the following structures
Z122 = 2123|320 = \/ch (z, + ) 73 = \/ﬂfq (1 —zq) 713, (6.8)

Zi21 = Z123] 552 = \/(% + 1) T, 207 = \/ — Tq) Ty 7). (6.9)
Again using the Bessel equation (2.31) as well as the matrix elements (2.32) and (2.33),

then dropping the corresponding ¢ distributions we can check the electromagnetic gauge
invariance

Fy (g, pgs Dgs by 21, 22)* ko = 0. (6.10)
Then taking into account Dirac equation and the gauge condition (2.12), we get the con-
tribution to the impact factor for longitudinal photon (2.10)

FQ (anPQupga k7 517 5\2)& €La

:42'9629(;0;—0)(5(lfr—p;—p;—pfr

o —iBy F1=iDy P
q

2pg

X Oy _» 7 (2 + q) (0—s,0, 79 + 7) Py - &
NG Tgly P’qg

e P2 K (QZ122) — (g <+ ), (6.11)

where P, 7 are defined in eq. (2.14). For transverse photons (2.11) we have

FQ (pqvp(japgak)zl)'g?)a ETa (612)

By F1—iDy F 5
——Ox,\g

:—499(p;—0)(5(/€+—p;'—p;'—p;
2py
(5/\58 - xq) (5—5gkq$g + xq) P Eg Z12 - €T

52
Tgly Pz 7

X

Q Z122K1(QZ122)e P52 — (q 5 q) .

7 Impact factor for interaction with a color dipole

In the 2- and 3-gluon approximations (BFKL and BKP) of exchanges in ¢-channel one
needs the Green function obeying the linear equation. In the color singlet channel, the
subtracted color dipole is the operator that plays this role

Uy = ]\1](:tr (Ulvg) 1. (7.1)
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The operator appearing in eq. (4.3) can be rewritten as
tr (UlUg) tr (UgUg) — N tr <U1U3> = NC2 (U32 4+ Uiz — U + U32U13) . (72)

Therefore in the 2- and 3-gluon approximations in which we neglect UzaUj3, eq. (4.2) reads

s N2 -1 - L 1 . Lo
Mag:/dzldzzUm{ 62 Fy (p(IaplppgaZOaZlaZZ)a_2/d23F1 (anpqapg,zo,zl,ZQ,Zs)a}

+;Nf/d51d53U13/d52F1 (Pg> P, Pg» 20, 21, Z2, 73)"

+ ;Nf/dzgdigUgg/leFl (Pgs Pgs Pgs 205 21, 2, Z3) (7.3)
which we write as
M g % /dé’leQUlQ {Fl (pq, Pg, Pgs 20, 21, 2’2)0‘4—(]\762—1) F (pq, Pg, Py, 20, 21, Zg)o‘} , (7.4)

where

Fi (pq,pg: P> 20, 21, 22)" = /d53 [NZFy (pg, Pgs Pgs 20, 21, 73, 25)° (7.5)
+Nc2F1 (pQ7ptj7pgv 20, 537 227 gl)a - Fl (pQ7p67pga ZOVgl) 52) 53)a:| .

The integrals required in order to calculate expression (7.5) are discussed in appendix A.
Using (A.1) and (A.3) for longitudinal photon (2.10) we have

/ A7 F1 (Dg, Dgy Dg» ks 15 7, 75)% €10 (7.6)

No(py — o)

= =02 0(K" —pg —pg —p])0(pg

2Qg
\/ 208

Zgig K Zygq
% <z (ﬁg'gg*) Qg () Zggqg Ky (Q2g (O‘)ﬂqqg) L Ta
zg (1 —24) Q% + apj TqtZg

izq(Z21-Pg)

1
— D21 — D2 S o _
X e P TR (1 4 2g6 g 0, )Tge P Z2/ doe  Tata
0

and

/d53 F1 (pg, g> gs ks 23, 22, 21)" € La (7.7)
2Qg

\/2p8

iy &) _;"aPaF2)tee(Pg-Z1) Qq (1) Zgg K1 (Z45Q, (1))

= dr,.2,0 (K =2y — 0 —p)) 0 (05 —0)

]

« oDy Zy g 1 [2‘7:‘1 ($q+$géfsg)\q) 271226 zg+ag g (1 — 2q) Q2 _|_ﬁq2
Lo iza(F1Pg)
- (xq + xgé—sghi)ﬂstie_zpq‘z1 /0 dae o
e o Qq (@) Zggq (@) q
X N K Zggq)———(#n1 - €;) K Zq '
<z<pq ) o) O e 1 (Qu (@) Zagg) =2 (B 27) Ko (@4 (@) Zus)
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Note that
/dg3 Fl (pfbplfvpgv ka 215 53752)04 ELa = _/dg?)Fl (pqapti)pgh ka 537 527 2l)a 5La|q(—>(j) (78)

which allows one to evaluate the third integral involved in eq. (7.5). In egs. (7.6), (7.7) we
use the notations

Ty, ri+(1—a)z;xy ap?
Zij= s 73, Ziij\/fL‘z ( Jzicy Zo2, Qz‘(Oé)Z\/Q2+(’. (7.9)

T, +x, xj+ 1— ),

For forward production p, = p; = py = 0 one can simplify these expressions with the help
of eq. (A.6)

Fy (pg, pas Pgs ks 21, 22)* € Loy =piy=p,=0 (7.10)
=~ (K" = pf —pf — ) 0 (pf —0)

4gNZ2 (721 - € ZyiK1 (QZyg
X Oxg,—Ag g ( =2 ) {— qqg]irgg o) + (a:q +xg(5_sg/\q)
2p 21 cxg
ZgqK1(ZggQ)  ZggK1 (QZqg) 1 1 _
— Z19a K VA4 — .
X < (-2, o + Z1220K1 (QZ122) N%cg (q < q)

For transverse photon (2.11) we can rewrite (5.16) as

Fl (pq7pq,pg,k,21,22,g3)a ETa (711)
. o~ FL iy 2~y s 203

= —2igd (k+—p;—p;—pf)9(p;—0) ]6T5)\ )

21?;— 223

X (V? (58>\q (xl? + x95—8g>\q) - ﬂCqéskq) - xqvgéskqé—sgkq) Ko(QZ123) — (g < q) -
Then using (A.3) and (A.8) we have

/%H%%%%&&@%m
= 2igd <k‘+ —py —pg — p'f) 0 (py — o) sgjs%

e WaF1—iPg %, mzq(l'g‘flz)_iﬁg,gz
X 5,\q,_,\q da e ratTa {(55)\§ (xq + xgé_sgxq) — xq5s,\q)

2 2
ipg? 212" Zggq Tq Ta__giu
< | K Zag - Tt
< 0 (QQ (a> qqg) ( 192 g (1 — xg) o <xq + xq) Zpg 212’ + Tq+ Tg )

2197 212" apy’py"
Qg (@) Zggg K1 (Qq () Zggg) ( > 5+ e ) ) —Zg0sx,0—s,7q

mq+wq 212 g (1—2g) Q*+apj
z12/212" (1= )zqzg apy’py”
X <ZngQg () K1 (Qq () Zgqg) ( 2192 x5+ (1 — @)z, * zg (1 —24) Q> + ap?
g

Ko (Q (@) Zagy) (5]‘“—@W+<1—a> %y ipgﬂ'mz”))}—(qw) (7.12)

Tq+ g Tq+ Tg
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as well as

— [N )
/dZ3F1 (pq,pq,pg,k,23,22,21) ETa
e—iﬁg‘z_’l—iﬁq‘z_’Q

\/2pg

Zl?jipqu Qq (1) ZggK1(Qq(1)Zgg)
212 zq (1 = 2q) Q* + 1}

= 2igd (k:+ —p;r —p;' —p?) 0 (p:; - O') 52j5%6>\q7_>\q

_;2q(Pa-Za)+ag(Pg-71)
X | 2e ratre {(59\(1 ($q+x95—$g)\q) _ajq(sSAQ)

Osag0—syrgTg 2127 u ipg"
(xqur;g;z 2,7 \ #1220 (Qq(1) Zg) + K(&)Z@KI (Qq(1)Zgg)

Vo jorq(afin) s
_/0 dae *at®g { (33(755/\q5—59/\q + (58)\‘1 (%gé—sg/\q N xq) - xéés}\q))

T3 2127 212" ap,’pg" >
X ) Laoa K o) Zs +
(55500 0) ZaI (@0 ) Zag) (255 +
K Q a Z* Zp jZ12uZ7 2 ZlQJZp Uax72 .
4 Ho (Qq (@) Zggq) < q 2ng _ L0 pz07" ) ) + Tg0sag0—s,2,
zg+ x4 Tq212 Tg+ g
apy’pg” 2197212 (1= )wgrg
X —Q o) L K1 Q o) Zg < +
< ¢ (@) Zggq K1 (Qq () Zggq) g (1 — 2) Q2 + af? 2, wg+ (1 —a)zgrg

. i u ] .
Ko (Qq (@) Zggq) <5J“ Pl e B R W z'pq]zu“)) } (7.13)

J)q—f—l'g l’q+l‘g

Note that
/d'gﬁ% Fl (anPQapg,k721753752)a ETOt:_/dZ_E% Fl (pqvptﬁpgv kag?ng?)gl)a 5Ta|q<—>¢ja (714)

which allows one to evaluate the third integral involved in eq. (7.5).

For forward production p; = p; = Py = 0 one can simplify these expressions via
egs. (A.6) and (A.9), thus obtaining

/d'g?) Fl (pqupéupga k;) 217 g27 23)04 €T (715)

0—Aghg

Tgy/ 2p3‘

(K2 (QZ4q) — 2(1 — 22g) K2 (QZ122)) (240sx, — 2051, )

:2ig5<k+—p;—p;—pf>9(p;—a)

q

- Z12)

wqés)\q
Tg+Tq

—0ss, <Kg (QZ122) (quqés)\q — (1 —xzy) 2(59\6) + Ky (Qqu)>] — (¢ q),
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as well as
/d53 Fi (pq,pg:Pg: K, 23, 22, Z1) €70 (7.16)

= 2ig8 (k* —p} —pf —p}) 0 (b

(Z12-€X) (e - Z12) x
X lzasgs 92122 <_ . jxg K> (QZzg)+(1—14) K (sz)> (24057, —2g0sx, )

2
—(Sssg (53/\q (qu_;;qxg> KO (QZQg) + (i‘qxqés)\q — (1 — IL‘q) 2(SS/\q) KO (QZlgl))] .

The expressions (7.10) and (7.16) can be used as a starting point for the description of e.g.
meson production within the QCD collinear factorization, see ref. [45].

8 Impact factor in the momentum space and in the linear approximation

Here we will calculate the Fourier transform of the impact factors. We can rewrite the
matrix element (4.2) as

I L . ol I
M :/dpldPde:S Fl(pq,pq*,pgaZo,plapz,p:%)ai [NZ (Usp+U13+UsoUss) — Us| (51, Po, P3)

N2 -1
2

+ /dﬁldﬁz F5 (pgs gs Pgs 205 D1, D2) ™ U (p1, p2) - (8.1)

Here the Fourier transforms are defined as

NS le dZQ d23 z[

Fl(plI7p¢77pgvZ(]aﬁlaﬁ%p?:) = 27'(' 271' 27T p1.21+ﬁ2'£2+ﬁ3.23]F1(pfhpq;pm2032'1752723)0[7 (82)

le dZ2 oilP1- 21+ Z2]F2 (

27'[' 271' pqapivpgvz()vzlagé)aﬂ (83)

FQ (pq,ptﬁpgv ZOaﬁlaﬁZ)a =
and

dzy dza dZs 5, .5 3 3
[NZ (Use+Us3+UsaUss) — Usa] (51, P2, 3) = / - 2 2P AR Al (g.g)

o 21 2m
x [N2 (Usy + Uz + UsUss) — Uy,
oL dzy dz il P2
U (p1,p2) = 2; 2; PrAitPe )y, (8.5)

To get the linearized impact factor, one should neglect the term U3oUjs and write

—

[NZ (Usz + Uz + UspUyg) — Uy 2,D3)
(P1,73)) — 6(p3)U (1, p2)] - (8.6)

(p1,
~ 21 [NZ (6(p1)U (53, o) + 6(p2) U

Then for the matrix element M< we get

1 D- D D D- a g g I — —
Ma:Q/dpldPZ U(p17p2) {Fl (pqvp67pg7207p17p2)a+(Ng_l) F2 (pq,pq,pg7 Zo7p1,p2)a} ,
(8.7)

,18,



where
Fl(pqapqapg7 ZO?ﬁlaﬁ2)a = 27TN02F1 (pqquvpga 20, Oaﬁ%ﬁl)a (88)
+27T-N02F1(pq7pljvpgv ZOaﬁlv Ovﬁ?)a*27TFl (pqapq’pga ZOaﬁlaﬁ2v 0)01
Taking the Fourier transform of eq. (5.15) via eq. (B.1) from appendix B we get for the
longitudinal photon
Fl (pqvpljvpgv ZU?ﬁlvﬁQaﬁ3)a ELa
=6 <k+ —py — vy —p;f) 6 (P1q + Pag + D3g )9(19; —0)

— %

» 5)\11,7)\11 4iQ g (xq + xg(s—sg )((ﬁ2 "Eg )Tg t (plq *) (1- xé))

T i (0 i) @+ 5 £ )

(q e Q> = (Aqquvﬁl:ﬁq <~ )‘qv xtﬁﬁ?vﬁﬁ) . (810)

One can check that this result is compatible with the wave function derived in ref. [49].

- (q AES ‘j)a (89)

where

Using eq. (B.2), we get

= I 4igQ L
Fy(pq, Pgs Pgs K, D1, 02) " €00 = 0(ps —0)d <k+ —py — Py — p;) 6(Prg + D2q — Py)

2pg
Ti+0 s AT 2 P &F
X Gy ag et S S (g ). (8.11)
Tate Qe 1Y
q q

For the transverse photon, using egs. (B.3) and (B.4) we have

Fl (pmpq:pgvzﬂvﬁlaﬁ%ﬁii)a ETw (812)

—4ig . . .
= +5(l€+—p;—p;—p§>5(p1q+pzq+pgg)9(p;—a)

2pg
% 6y (ﬁ2¢7 ) 5g*) (.%'q + $g) + (ﬁlq ’ é:’g*) Lq (xq - 63/\7) (.Tq + mgfsfsg)\q)
o (P2g (zq + xg) + ﬁquq)z Lq
o | PrqEr) (29 + -’L‘q) + (1725 €r)xq (P1q - €7)
P P P Pig?
BB ) ine (g )

(pag - €7) (2g + 74) + (P1q - ET) 24 _
+ (:Eq + :L"gé_sgkq — 55/\q) k Pra? ! ﬁ2§2g Fog? 4 ) 14— (q x4 C])
g (— + 20 4 B 4 Q )

Lq Tg

229 ) <k+ — p; - p; - p;) o (ﬁlq + ]72q +ﬁ3g) 0 (p;' — O') (5_)‘6)‘11 s s
D2g2 Do 5599sA\g
2p; Q2 (1—ay) (B + B 4 B 4 2)

(g = I5rq) (20—s,7, + Tq)

ﬁ‘ 2
(1—2q) xq”f’é%( 2+ (172)%

+2(phq - €7) ((ﬁmj : 59*)(117"‘%)"‘(171!1 g*) wq)

—(q < Q).
)
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Again, one can check that this result is compatible with the wave function derived in
ref. [49]. Finally, using eq. (B.5) we find

F2 (pqapljapg7 k7ﬁ17ﬁ2)a€TO¢

N Wy
=490 (pf —0) d (kz*—pg*—pq*—p;) 8 (P1q + Pog — Py) — ==
Vs

X (Orgs — q) (O—synTg +7q)  2mi(phg-é7) Py & (g q). (8.13)

vy (=2 Q42 P2

The formulas in the momentum space derived in this section constitute a convenient start-
ing point for calculations of phenomenologically important observables such as cross sec-
tions etc.

9 Conclusions

Based on the QCD shock-wave approach [28, 36, 37], we rederived the v* — ¢g impact
factor. Using the same approach, we computed the general expression for the v* — ¢qg
impact factor for the first time, without collinear of soft approximations. The contribution
of the diagrams with the gluons crossing the shock-wave, calculated using Balitsky’s for-
malism, are consistent with the results for the v* — ¢gg wave function obtained in ref. [49],
based on old-fashioned perturbation theory.

The results we obtained, in coordinate space, are very suitable for phenomenological
studies of diffractive processes since they allow for the implementation of saturation models,
when considering the color-singlet channel. The measurement of dijet production in DDIS
was recently performed [50], and a precise comparison of dijet versus triple-jet production,
which has not been performed yet at HERA [51], would be very useful to get a deeper
understanding of the QCD mechanism underlying diffraction. Such a ratio would provide
an observable possibly more independent of any saturation effect. A quantitative, first
principle analysis of this would require an evaluation of virtual corrections to the v* — ¢g
impact factor, which are left for further studies.

Our results could also be relevant for photo-production of diffractive jets [52, 53], the
hard scale being provided by the invariant mass of the produced state. Indeed, usual
collinear descriptions of this process rely on a resolved Pomeron contribution, which is
the sum of a direct interaction of the photon with quarks or gluons originating from the
pomeron, and a resolved photon-pomeron interaction. In the region z, ~ 1 (z is the
longitudinal momentum fraction carried by the partons coming from the photon), an addi-
tional direct coupling of a Pomeron to the impact factor could be important, in view of the
collinear factorization breaking of the above described picture which has been the matter
of discussions [54, 55]. Since our results are expressed in terms of a shock-wave factor, they
can be used both for inclusive (considering the color octet in the ¢-channel, by modifying
formula (4.2) and diffractive (in the color-singlet case) jet production, the ratio of ampli-
tudes providing an interesting observable to evaluate gap survival probabilities [54-56].
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Furthermore, our results, expressed in terms of a shock-wave factor, are a natural
starting point for studies of higher-twist effects, which could be investigated by an appro-
priate expansion of U operators in powers of the coupling, in order to study the effect of
multigluon exchange in the ¢-channel.

Finally, diffractive open charm production was measured at HERA [57] and studied in
the large M limit based on the direct coupling between a Pomeron and a qq or a qgg state,
with massive quarks [22]. The extension of our result to the case of massive quark, is left
for future analysis.

Our result is therefore a first step for phenomenological studies of diffraction, which
could be of relevance in future e — p and e — A colliders, like EIC and LHeC, as well as for

ultraperipheral processes, which could be studied at LHC.

Acknowledgments

We would like to thank A. Besse, G. Beuf, L. Motyka, Al Mueller, S. Munier and M. Sadzi-
kowski for discussions. A.V.G. thanks V.S. Fadin and A.V. Reznichenko for helpful dis-
cussions and the LPT Orsay and NCBJ in Warsaw for hospitality while part of this work
was being done. A.V.G. also acknowledges support of president grant MK-525.2013.2 and
RFBR grant 13-02-01023. This work was partially supported by the PEPS-PTT PHENO-
DIFF, the PRC0731 DIFF-QCD, the Polish Grant NCN No. DEC-2011/01/B/ST2/03915,
the COPIN-IN2P3 Agreement and the Joint Research Activity Study of Strongly Inter-
acting Matter (acronym HadronPhysics3, Grant Agreement n.283286) under the Seventh

Framework Programme of the European Community.

A Integrals necessary for linearization

We need the following integrals

x5 (Pq-Z2)+xg(Pg-21)
P 2 —i—= = 7 K (Z’ Q (1))
dz L2R3Y ¢ 7 R rgtzg a9 a9xq Al
[ a1 (@Zim) o = e o (A
where we define
xrixr. aﬁﬂz
A ——J F 2 () = R A 2 A2
1] xi 4 $j 12» Ql ( ) \/(1 _ -rz)xz + Q ( )
L i3 232
/dz;;e Py ZSETKO (QZ123) (A3)
32
0 itogeq@252  (sgteg)+io TP, + 24 iwq 7 A
— _ﬂ_ieiﬁg-%/ dte s q2 21 1 thgg 199732212 62(306—0—21;)15 (tpg+ ;21) _1
- (7 + )
e g 22 1 aimq(le'ﬁg) Zﬁ 7
= [ d vqteg  ( Z9TH99 pe Zya 701 K Zya
(=), /0 ae <Qg (@) 1(Qg (@) Zggg) +xg2¢721 K0 (Qq () Zggg) |
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where

z, + (1 —a)zgz,
Zagg = ! 72 . A4
qdyg \/ﬂcq 7, + 24 Z91 (A.4)
To get the previous result, we used the following parametrization
/ I A CL iy U R ( i 1)
e (267 - p)?
1 (2b5— )2
s =9 _ o H2bp—p)
=—— (25— p) e / doe” 3t A5
In the simpler case p; = 0 the integral can be fully reduced to
Z 2T Z
/dZ?, 32Ko (QZ123) = 321 (Z4qK1(QZyq) — Z122K1 (QZ122)) (A.6)
Z35 gqu 221
where
Z199 = qu(l'q + xg)2221. (A?)
Using the integral (A.5), we also get
a2 0 g0y A8
Z3e 229, 0(QZ123) (A.8)
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As before, in the simpler case py = 0 the integral can be fully reduced to
) 2 ' ! K (QZ Ky (QZ
/d 3Z?’1 Ko(QZ123) = — 2 (it 213212 ( 1{QZy) K0 (@ 121))
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QZ121 Za

The integrals (A.3) and (A.8) are convergent and can be evaluated numerically.
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B Integrals necessary for Fourier transform

We here provide the set of Fourier transforms of modified Bessel functions we used in our

calculation.
d21 dzg z
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