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1 Introduction and summary

Einstein’s General Relativity (GR) is a simple, elegant and successful theory of the intrinsic

spacetime structure of the universe. Since its inauguration in 1916, it has been verified

by many experimental tests and found itself accountable for numerous technological ad-

vances. Yet the recent discovery of the accelerated cosmic expansion [1–3] and the need

to address the cosmological constant problem [4] sparked renewed interest in the search

for local infrared modifications of GR. Among these theoretical attempts, one possibility

is to give the graviton, the physical construction that is supposed to mediate interactions

in gravity, a small mass of order of the contemporary value of the Hubble constant. This

is the so-called massive gravity.1

The unique simplest linear theory of massive gravity was proposed by Fierz and Pauli in

1939 [5]. It describes to the linear order a single massive spin-2 particle with the consistent

mode functions (5 degrees of freedom: two helicity-2, two helicity-1 and one helicity-0) in

the high energy limit. In the past, various curiosities were raised about the Fierz-Pauli

(FP) theory, such as the van Dam-Veltman-Zakharov (vDVZ) discontinuity [6, 7], which

1For reviews on massive gravity, see refs. [28, 29].
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prevents the theory from reducing smoothly to GR in the massless limit, and the Boulware-

Deser ghost [8], which plagues the theory with a sixth degree of freedom. Hearteningly,

in the recent years a non-linear theory correcting FP with a 2-parameter family of higher

order potential terms has been proposed [10, 23]. This non-linear theory, first formulated

by de Rham, Gabadadze and Tolley (hence commonly known as dRGT), capitalizes on the

Vainshtein mechanism [11], one that screens the effect of fifth forces with the non-linearities

of the helicity-0 mode, as a cure to the vDVZ discontinuity. The theory is also proved to

be free of Boulware-Deser ghost around any background metric in a myriad of languages

and formalisms describing the theory [12–17, 36].

However, there remains the important point of contention about the ghost-free dRGT

massive gravity, which is whether the theory is free of superluminal fluctuations around

nontrivial background solutions. In the decoupling limit,2 dRGT eliminates the Boulware-

Deser ghost by introducing Galileon scalar self-interaction terms for the helicity-0 mode [18,

23]. In general, these Galileon terms may lead to solutions of the dRGT field equations

where the scalar excitations exhibit superluminal group and phase velocities, starting from

the cubic order terms onwards [18, 19, 22, 39]. This feature is present outside the decoupling

limit as well [42–44]. Yet many such solutions are shown to be unstable [20, 21, 45, 46].

Also, it can be argued that the superluminality in the scalar sector of Galileon theories and

massive gravity does not meddle with the usual notion of causality in local Lorentz invariant

theories [22, 24]. Meanwhile, as a side note, the freedom to choose the values of the two free

parameters in dRGT, named c3 and d5 as they appear in the metric formulation [23], would

circumvent the issue of scalar superluminality in the decoupling limit for a special choice of

the parameters.3 By setting c3 = 1/6 and d5 = −1/48, the scalar self-interaction and the

terms mixing spin-2 and -0 fields are completely eliminated from the dRGT Lagrangian [23,

28]. The resulting “minimal model” is then that of free helicity-2 and -0 modes.

With these technicalities extensively discussed in the previous literature, a natural step

is then to investigate superluminality in the vector sector of the dRGT massive gravity,

which we hope to cover as thoroughly as possible in this paper.

Our work is organized as follows. In section 2, we review the metric formulation

of dRGT theory and calculate the Stükelberg vector Lagrangian to the cubic order in

Minkowski background metric, keeping c3 explicitly as a free parameter in the process.

At the level of equation of motion, we show that the vector fluctuations cannot be su-

perluminal. In section 3, we go to the quartic order and derive the effective equations of

motion with the dangerous term, suppressing all other terms. We show that superluminal

propagating solutions näıvely exist at this order by constructing an example on a repre-

sentative background solution and characterizing the superluminal modes. In section 4, we

proceed in a gauge-independent fashion and analyze vector superluminality to all orders,

reinforcing and generalizing our results in section 3 by a degree of freedom count in the

Hamiltonian formalism. We then check the consistency of the superluminalities. We find

2See (2.8).
3In the vierbein formalism, which is dynamically equivalent to the metric formulation, the couplings

are related to c3 and d5 as follows, up to an irrelevant overall constant: β1 = 6 − 36c3 − 96d5, β2 =

−2 + 24c3 + 96d5, β3 = −12c3 − 96d5.
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that in the linear regime where perturbativity holds, superluminal vector excitations are

not physically observable, whereas in the non-linear strong coupling region, superluminal

signals could possibly arise and be detected. We discuss the implications of our findings to

the dRGT massive gravity as well as suggest possible future work in section 5.

2 Cubic order

2.1 dRGT ghost-free potential

The dRGT Lagrangian for a massive spin-2 field [23] is given by

L = M2
P

√−gR− M2
Pm

2

4

√−g (V2(g,H) + V3(g,H) + V4(g,H) + V5(g,H) + . . .) , (2.1)

where MP is the Planck mass, m the graviton mass, and Vi gives the interaction terms at

ith order in Hµν ,

V2(g,H) = [H2]− [H]2, (2.2)

V3(g,H) = c1[H
3] + c2[H][H2] + c3[H]3, (2.3)

V4(g,H) = d1[H
4] + d2[H][H3] + d3[H

2]2 + d4[H]2[H2] + d5[H]4, (2.4)

V5(g,H) = f1[H
5] + f2[H][H4] + f3[H]2[H3] + f4[H

2][H3]

+ f5[H][H2]2 + f6[H]3[H2] + f7[H]5, (2.5)

where the indices are contracted with the inverse metric, so that [H] = gµνHµν , [H
2] =

gµνgαβHµαHνβ, etc. The coefficients ci, di, fi are related such that no ghosts exist up to

the quintic order in the decoupling limit. By convention, c3, d5 and f7 are chosen to carry

the free parameters in the theory. In particular,

c1 = 2c3 +
1

2
and c2 = −3c3 −

1

2
. (2.6)

By requiring that the background metric g
(0)
µν is general coordinate covariant, one can

obtain the Stükelberg expansion for Hµν(x) = gµν(x)−g
(0)
αβ (Y (x))∂µY

α∂νY
β [9, 25], where

Y α(x) are the four fields that transform as scalars under diffeomorphisms [28]:

Hµν = hµν + ∂µAν + ∂νAµ + 2∂µ∂νφ

−∂µAα∂νAα − ∂µA
α∂ν∂αφ− ∂νA

α∂µ∂αφ− ∂µ∂
αφ∂ν∂αφ, (2.7)

where we expand around a flat metric. From here onwards, the indices are raised with ηµν .

The full dRGT Lagrangian in Stükelberg fields can then be derived by substituting (2.6)

and (2.7) into (2.1). The terms with helicity-2 and -0 modes in the decoupling limit,

m→ 0, MP →∞, Λ3 ≡ (m2MP)
1/3 and

Tµν

MP
fixed (2.8)

have been worked out in ref. [23].
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Here we need to emphasize that Λ3 is called the strong coupling scale of the dRGT

massive gravity; it signifies the scale at which perturbativity breaks down and and tree-

level calculations no longer give the full picture. However, Λ3 is not the energy cutoff of the

theory — it does not necessarily mean the beginning of new physics because quantum cor-

rections are still suppressed by powers of the Planck scale, and we need the scalar Stükelberg

field to take large values in a region where φ ∼ Λ3, ∂φ ∼ Λ2
3, ∂

2φ ∼ Λ3
3, ∂

nφ ≪ Λn+1
3 for

n ≥ 3 for the Vainshtein mechanism to take effect [26–28]. Presumably, the cutoff could be

below the Planck scale but much higher than the (redressed) strong coupling scale [29]. It

is crucial to recognize this in our discussion later on the physicality of superluminal modes.

2.2 dRGT vector Lagrangian up to the cubic order

Since the vector modes do not appear linearly in the full dRGT Lagrangian, they can be

savely set to zero in a trivial solution. However, vector fluctuations can still emerge around

nontrivial solutions and they might be superluminal. As a preliminary attempt to clarify

this, the vector Lagrangian in the decoupling limit up to the cubic order is calculated,4

LA = −1

4
FµνFµν −

1

4Λ3
3

∂µ∂νφ

[

(24c3 + 2)∂µA
α∂αAν

+(12c3 − 1)∂µA
α∂νAα + (12c3 − 1)∂αAµ∂αAν − 48c3∂µAν∂

αAα

]

− 1

4Λ3
3

�φ

[

− (12c3 + 2)∂µAν∂νAµ − (12c3 − 2)(∂µAν)
2 + 24c3(∂

αAα)
2

]

, (2.9)

after performing the canonical renormalization (with the convention in ref. [23]) given by

Aµ →
1

mMP
Aµ and φ→ 1

m2MP
φ =

1

Λ3
3

φ. (2.10)

This gives the dRGT vector Lagrangian with arbitrary c3 in the metric language. It is

consistent with the result obtained in ref. [30] eq. (22), where the model sets c3 = 1/4.

2.3 Equations of motion

With some effort, the dRGT vector Lagrangian (2.9) can be rewritten as, up to a total

derivative,

LA = −1

4
ηαβ

[

ηµν
(

1− 6c3 − 1

Λ3
3

�φ

)

+
12c3 − 1

Λ3
3

∂µ∂νφ

]

FµαFνβ , (2.11)

where Fµν = ∂µAν − ∂νAµ is the usual Maxwell field strength tensor. Note that in this

form, the vector Lagrangian is invariant under the change of indices µν ←→ αβ and the

U(1) gauge transformation Aµ → Aµ+∂µπ. Because (2.11) is quadratic in the vector field,

the Lagrangian for vector fluctuations around a nontrivial solution has the same form. For

simplicity, we still denote these fluctuations with Aµ for the rest of this paper.

4A maximally symmetric special case of this is given in ref. [38].
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The equations of motion for Aα, ∂µ
∂LA

∂(∂µAα)
= ∂LA

∂Aα
, with the symmetries mentioned

above, then read

(

ηαβ +
12c3 − 1

Λ3
3

∂α∂βφ

)[

�Aβ − ∂β(∂
νAν)

]

= 0, (2.12)

where we have dropped the correction to the flat metric for simplicity as it does not affect

the vector light cone [19]. We can then impose the Lorenz gauge ∂µAµ = 0 to set the

divergence to zero.5 As such, the equation of motion in Fourier space shows that the

momenta of the vector fluctuations do not couple to the effective metric in front, which

depends on some scalar solution φ = φ0(x), so their light cone remains the same as that in

the flat metric. This proves that the dRGT massive gravity does not manifest superluminal

vector fluctuations up to the cubic order, unlike the case with scalar fields [22].

However, (2.12) is proportional to the Maxwell equations ∂νFνβ = 0, which imply that

the vector excitations are exactly luminal at this order. It is therefore necessary to go to

higher orders to see whether superluminal vector signals actually exist in dRGT.

3 Quartic order and the rise of superluminality

3.1 Quartic dRGT vector Lagrangian

The recent progresses in the vierbein formalism have worked out the decoupling limit dRGT

action to all orders [34, 35], where it is clear that the full action depends on the helicity-1

mode only through terms manifestly quadratic in Fµν . By collecting relevant terms from

eq. (3.36) of ref. [35] and making proper changes in the field conventions, we are able to

reproduce (2.11). However, beginning with the quartic order, it will prove beneficial to

rewrite the vector Lagrangian in a more illuminating form before working out the relevant

terms with brute force.

In the decoupling limit, the helicity-1 terms are in the form ∼ (∂2φ)n(∂A)2 [28, 37], so

the vector Lagrangian looks like

LA = −1

4
T µναβFµαFνβ , (3.1)

where the 4-tensor T µναβ is constructed with only ηµν and powers of Πµν ≡ ∂µ∂νφ in a

perturbative expansion. Here the Stükelberg fields are those after performing the canonical

renormalization in (2.10). The full effective tensor then must take the form

T µναβ =
∑

p,q,~l

C
p,q,~l=(l1,l2,...,lN )

[Π]l1 [Π2]l2 · · · [ΠN ]lN
︸ ︷︷ ︸

≡F~l
(Π)

(Πµν)p(Παβ)q. (3.2)

Here the notation needs some elaboration. First, p and q are summed over all natural

numbers including zero, N ≡ {0} ∪ Z+, with p ≤ q, and we define (Πµν)0 ≡ ηµν . Second, ~l

5We are allowed to do this because fixing the gauge does not interfere with superluminalities in the

theory. Also, the result here is reaffirmed in a gauge-independent way in section 4.
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is summed over all finite-length natural number tuples whose last entries are nonzero (with

the only exception ~l = (0), whose meaning is obvious). For clarity, this is the set

{~l} = {(0)} ∪
⋃

n∈N

(Nn × Z+), (3.3)

whose countability follows from the theorems regarding countable sets.6 Thus we can

relabel the ~l’s with natural numbers r ∈ N,

T µναβ =
∑

p,q,r

CpqrFr(Π)(Π
µν)p(Παβ)q, (3.4)

where Cpqr are numerical constants and Fr(Π) are scalar quantities. The specific relabeling

scheme does not concern us here, but with some intuition we can let F0(Π) = 1. With

the tensor given in (3.4), (3.1) already represents the most general form of the vector

Lagrangian because of the identities

(Πµβ)p(Πνα)qFµαFνβ = −(Πµν)p(Παβ)qFµαFνβ (3.5)

and

(Πµν)q(Παβ)pFµαFνβ = (Πµν)p(Παβ)qFµαFνβ, (3.6)

which follow from the symmetry of Πµν , the antisymmetry of Fµν and the µν ←→ αβ

symmetry of FµαFνβ .

Next, we make an important observation. With the restriction p ≤ q, any term in the

expansion (3.4) must have p = 0 if it contains a factor of ηµν or ηαβ . Such terms do not

lead to superluminality because their contribution to the equation of motion of Aα is

∼ ∂(Fr(Π)η
µν(Παβ)qFµαFνβ)

∂(∂µAα)
∼ Fr(Π)η

µν(Παβ)q∂µFνβ ∝ ∂νFνβ , (3.7)

which is merely a correction to the Maxwell term. This sufficiently explains why superlu-

minality does not occur at the cubic order, as all the cubic order terms are characterized

by (p, q) = (0, 0) or (0, 1).

At the quartic order, we have the following possibilities for (p, q) : (0, 0), (0, 1), (0, 2)

and (1, 1), among which only (1,1) could be dangerous. So we are allowed to neglect the

other terms in a study of vector superluminality. The effective quartic Lagrangian then

becomes

LA,eff,quartic = −
1

4

(

FµνFµν + gΠµνΠαβFµαFνβ

)

, (3.8)

where g is a numerical constant that replaces the corresponding Cpqr.

3.2 Equations of motion

By (3.8), the equations of motion for Aα is

∂µF
µα + g∂µ(Π

µνΠαβFνβ) = 0. (3.9)

6See for instance [40].
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By construction, ∂µ(Π
µνΠαβ) is proportional to the third derivatives of the scalar field,

which have dubious physical meanings since in dRGT the equation of motion for φ is

always second order by the properties of Galileon self-interactions [18]. Therefore, without

loss of generality, we set

∂µ∂ν∂αφ = 0, (3.10)

upon which the matrix Πµν ≡ ∂µ∂νφ is constant. This ensures the existence of plane wave

solutions for (3.9). Then the effective equation of motion becomes

ηαβ∂νFνβ + gΠµνΠαβ∂µFνβ = 0. (3.11)

Note that the second term,

∼ ΠµνΠαβ∂µFνβ = ΠµνΠαβ∂µ∂νAβ −Παβ∂β(Π
µν∂µAν), (3.12)

cannot be entirely removed by a gauge choice in general. Therefore, the dangerous term

does not vanish unless g = 0. The g = 0 case then necessitates a discussion at higher

orders, which we will cover in section 4. In (3.12), one may choose the gauge condition

Πµν∂µAν = 0 to remove the corresponding part, but then the divergence term from ∂νFνβ

will be nonzero. In the following subsection, we still work in the Lorenz gauge ∂µAµ = 0

to enforce the well-known condition kµǫµ(k, σ) = 0 for polarization vectors.

3.3 Constructing superluminal solutions

At a given point in spacetime, we can always perform a global Lorentz transformation to

diagonalize Πµν because it is symmetric. For simplicity, we consider a static background

solution for the scalar field, or that

Πµν =








0 0 0 0

0 ρ 0 0

0 0 ρ 0

0 0 0 p








, (3.13)

where ρ and p are constants under our assumption in section 3.2. Here p = −2ρ+O( 1
Λ3
3

),

where the correction comes from the terms in the scalar equation of motion other than

�φ [21, 23, 28].7

To seek plane wave solutions, we also define the Fourier transform, Ãµ(k), of the vector

field by

Aµ(x) ≡
1

(2π)4

∫

d4keik·xÃµ(k), kµ ≡ (ω,k). (3.14)

7In particular, in a free theory of helicity-2 and -0 modes (c3 = 1/6, d5 = −1/48), no scalar self-interaction

exists and p = −2ρ is exact.
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Then the equation of motion (3.11) in Fourier space is equivalent to














−ω2+k2 0 0 0

0
−ω2 + k21

+(1+K)k22+(1+M)k23
−Kk1k2 −Mk1k3

0 −Kk1k2
−ω2+(1+K)k21
+k22+(1+M)k23

−Mk2k3

0 −Mk1k3 −Mk2k3
−ω2+(1+M)k21
+(1+M)k22+k23






















Ã0

Ã1

Ã2

Ã3







=0,

(3.15)

with

K ≡ gρ2 (3.16)

and

M ≡ gρp. (3.17)

To obtain (3.15), we have used the gauge condition ∂µA
µ = 0. In order for nontrivial

solutions to exist for the homogeneous system described by (3.15), the matrix

Υ≡















−ω2+k2 0 0 0

0
−ω2 + k21

+(1+K)k22+(1+M)k23
−Kk1k2 −Mk1k3

0 −Kk1k2
−ω2+(1+K)k21
+k22+(1+M)k23

−Mk2k3

0 −Mk1k3 −Mk2k3
−ω2+(1+M)k21
+(1+M)k22+k23















(3.18)

must have zero eigenvalues. In fact, its eigenvalues and eigenvectors are, with due corre-

spondence:

λ1 = −ω2 + (1 + gρ2)(k21 + k22) + (1 + gρp)k23,

λ2 = −ω2 + k2(1 + gρp),

λ3 = λ4 = −ω2 + k2;

vµ1 =








0

−k2
k1
0








, vµ2 =








0

−k1k3
−k2k3
k21 + k22








, vµ3 =








0

k1
k2
k3








, vµ4 =








1

0

0

0








.

(3.19)

Based on these we can work out the polarization vectors and their dispersion relations.

First, we consider λ3 = λ4 = −ω2+k2 = 0, giving the exactly luminal relation ω2 = k2.

In this case, any arbitrary linear combination v = av3 + bv4 is also an eigenvector with

the same dispersion relation. However, imposing the Lorenz gauge condition kµvµ = 0

sets b = ak2/ω = aω. This implies that vµ = akµ, which is not normalizable given the

dispersion relation. As a well-known fact, this mode, proportional to the momentum itself,

is merely a mathematical artifact originating from the residual gauge freedom allowed by

the Lorenz gauge. Thus, no nontrivial longitudinal mode can exist in the solution.

– 8 –
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On the other hand, one can easily check that the Lorenz gauge conditions kµv
µ
1 =

kµv
µ
2 = 0 are satisfied, so we can normalize v1 and v2 to obtain the two transverse polar-

ization vectors, respectively:

ǫµ(k, 1) =
1

√

k21 + k22
(0,−k2, k1, 0) ≡ (0, n̂(k, 1)),

ǫµ(k, 2) =
1

√

k2(k21 + k22)

(
0,−k1k3,−k2k3, k21 + k22

)
≡ (0, n̂(k, 2)).

(3.20)

These polarization vectors fulfill the following criteria (σ, σ′ ∈ {1, 2}):

(i) Orthonormality: ǫµ(k, σ)ǫ
µ∗(k, σ′) = δσσ′ ;

(ii) Lorenz gauge condition: kµǫ
µ(k, σ) = 0;

(iii) Completeness relation:

∑

σ

ǫµ(k, σ)ǫν(k, σ)∗ =









0 0 0 0

0 1− k21
k2 −k1k2

k2 −k1k3
k2

0 −k1k2
k2 1− k22

k2 −k2k3
k2

0 −k1k3
k2 −k2k3

k2 1− k23
k2









,

i.e.
∑

σ n̂i(k, σ)n̂
∗
j (k, σ) = δij − kikj

k2 .

So the solution is consistent with the physics of massless vector fields. The fact that only

two modes exist can be seen more generally in a degree of freedom count, which we will

present in section 4.

Now we are at a point to reveal superluminality for the transverse modes. We have

the following two possibilities:

Case I: σ = 1. In order for this mode to propagate, we impose λ1 = 0. The dispersion

relation is

ω2 = (1 + gρ2)(k21 + k22) + (1 + gρp)k23

≈ (1 + gρ2)(k21 + k22) + (1− 2gρ2)k23. (3.21)

If g > 0, then in the case k21 + k22 ≫ k23, ω
2 ≈ (1 + gρ2)(k21 + k22) ≈ (1 + gρ2)k2 is

superluminal. If g < 0, then in the case k23 ≫ k21+k22, ω
2 ≈ (1−2gρ2)k23 ≈ (1−2gρ2)k2

is superluminal.

Case II: σ = 2. In order for this mode to propagate, we impose λ2 = 0. Then ω2 =

(1 + gρp)k2 ≈ (1− 2gρ2)k2, which can be superluminal if g < 0.

Therefore, up to the quartic order in the fields, superluminal vector excitation modes exist

if and only if g 6= 0, and the conditions by which a mode or modes exhibit superluminality

are determined by the sign of g.

– 9 –
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Since a dRGT theory is specified by the values of free parameters c3 and d5 (or equiv-

alently, α3 and α4 in the language of refs. [12, 34, 35], with slightly different definitions),

it suffices to figure out the algebraic dependence of g on the free parameters. This can be

done by extracting the term ∼ ΠµνΠαβFµαFνβ = −[ΠFΠF ] from eq. (3.36) of ref. [35].

For example, in the minimal model specified by c3 = 1/6 and d5 = −1/48, we find that

g = 1
2Λ6

3

> 0, implying that the σ = 1 mode described above exhibits superluminality if

the vector’s momentum has sufficiently small 3-component.

In addition, and for the rigor of the argument, note that

kµ = (ω, 0, 0, k3) (3.22)

are the singular points in the momentum space for the polarization vectors in (3.20). So we

need to consider this situation in a separate case. For such momenta, (3.18) is reduced to

Υ ≡








−ω2 + k23 0 0 0

0 −ω2 + (1 +M)k23 0 0

0 0 −ω2 + (1 +M)k23 0

0 0 0 −ω2 + k23








, (3.23)

whose eigenvalues and eigenvectors are, with due correspondence:

λ1 = λ2 = −ω2 + k23(1 + gρp),

λ3 = λ4 = −ω2 + k23;

vµ1 =








0

1

0

0








, vµ2 =








0

0

1

0








, vµ3 =








0

0

0

1








, vµ4 =








1

0

0

0








.

(3.24)

In the case λ3 = λ4 = −ω2 + k23 = 0, it is easy to see that any linear combination of v3
and v4 which also fulfills the Lorenz gauge condition must be proportional to (1, 0, 0, 1),

which is just a gauge mode following from the residual gauge freedom of the Lorenz gauge.

Thus no nontrivial longitudinal mode can exist. For λ1 = λ2 = −ω2 + k23(1 + gρp) = 0, it

is natural to take the polarization vectors as

ǫµ(k, 1) = (0, 1, 0, 0),

ǫµ(k, 2) = (0, 0, 1, 0).
(3.25)

It is straightforward to check that they satisfy the orthonormality, Lorenz gauge, and

completeness relations. They share a common dispersion relation ω2 = (1 + gρp)k23 =

(1 + gρp)k2 ≈ (1 − 2gρ2)k2, which can be superluminal if g < 0. In the minimal model,

g = 1
2Λ6

3

> 0, and these transverse modes are safely subluminal.

The scaling (2.10) shows that g is always suppressed by the sixth power of the scale

Λ3. This implies that the superluminal shift in the propagation speed is of the order

∆c ∼ ρ2

Λ6
3

. (3.26)

A construction of superluminal solutions in a homogeneous scalar background can be found

in appendix A.
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4 Vector superluminality to all orders

4.1 Leading interaction and degree of freedom count

In this section, our goal is to obtain generalizations of the results derived in section 3 to all

orders. Given the formally resummed vector Lagrangian specified by (3.1) and (3.4) and

the line of argument leading to (3.7), we see that in general, all that matters to the issue

of vector superluminality are the leading nonzero interaction terms with p ≥ 1.8 For con-

venience, we define s as the order in the fields of such terms, so that our analysis in section

3 covers the case s = 4.9 Note that there could be more than one such terms in a model

with fixed free parameters. For instance, at the hexic order in the fields, both the terms

with (p, q) = (1, 3) and (2, 2) can contribute to superluminality. Meanwhile, there are only

finitely many such terms for a given s, since the set of allowed pairings {(p, q)|s}, of which
the dangerous pairings are elements, is finite. Thus, the generalized effective Lagrangian is

LA,eff = −1

4

(

FµνFµν +
N∑

n=1

gnFn(Π)(Π
µν)pn(Παβ)qnFµαFνβ

)

≡ −1

4

(

FµνFµν +GµναβFµαFνβ

)

, (4.1)

where the relabeled indices {n} run over all dangerous terms and gn 6= 0 for all n.

After this, we can, of course, repeat what we have done in section 3: derive equations of

motion, choose a representative background scalar solution and work out the superluminal

modes. However, this procedure can be very cumbersome given the complicated form

of (4.1) and only be carried out after choosing a gauge (In section 3, it is the Lorenz

gauge). Instead, we proceed with casting the effective action into Hamiltonian form and

counting the number of degrees of freedom. We will show that it propagates 2 degrees of

freedom, the right number for a massless vector.

To begin with, we can perform a global Lorentz transformation to diagonalize the

symmetric tensor Πµν at a given spacetime point. Then we Legendre transform (4.1) only

with respect to the spatial components Ai. The canonical momenta are

πi =
∂LA,eff

∂Ȧi

= F0i −G0νiβFνβ

= (1−G00ii)F0i

= (1−G00ii)(Ȧi − ∂iA0), (4.2)

where in the last two lines i’s are not summed. Inverting, we have

Ȧi =
πi

1−G00ii
+ ∂iA0. (4.3)

8Of course, in which case all dangerous terms at lower orders are set to zero by the choice of free

parameters, if possible.
9Due to the limited availability of free parameters (only two in the dRGT massive gravity), there might

be an upper limit for the value of s.
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In terms of these Hamiltonian variables, (4.1) becomes

LA,eff = −1

4




∑

i,j

(1 +Giijj)FijFij + 2
∑

k

(

1 +G00kk
)( πk

1−G00kk

)2


 ≡ −H1, (4.4)

which is independent of A0. Then the generalized effective action becomes

SA,eff =

∫

d4x

[

πiȦi −H1 −
∑

k

πk

(
πk

1−G00kk
+ ∂kA0

)]

by parts−−−−−→
∫

d4x









πiȦi −









H1 +
∑

k

π2
k

1−G00kk

︸ ︷︷ ︸

≡H









+A0∂iπi









. (4.5)

Since the timelike component A0 is multiplied by terms with no time derivatives, we can

regard it as a Lagrange multiplier enforcing the single constraint ∂iAi = 0, which is the

familiar Coulomb gauge. Clearly, this is a first class constraint, and the Hamiltonian H
defined by (4.5) is first class. So the action represents a first class gauge system. The

Ai and πi have three components each, so they span a 6-dimensional phase space. The

constraint ∂iAi = 0 then yields a 5-dimensional constraint surface. Also, the constraint

generates a gauge invariance, giving 1-dimensional gauge orbits, so that the gauge invariant

quotient by the orbits is 4-dimensional.10 These are the two polarizations of the massless

vector along with their conjugate momenta. This confirms the correctness of our explicit

mode solutions obtained in the special case s = 4.

4.2 Is the superluminality physical?

Now we have the knowledge that the effective action represents a first class gauge system

and gives rise to two transverse modes. This enables us to use power count in testing

physicality for the superluminal modes. The structure of (4.1) shows that any superluminal

mode, if existent as a solution to the effective equations of motion, has a shift in the

propagation speed of the order

∆c ∼ ρs−2

Λ3s−6
3

, (4.6)

where ρ is a typical value of the magnitude of Πµν .11 In particular, (3.26) gives the special

case s = 4.

For this result to be consistent, we have to check that the superluminal effect caused

by the shift in propagation speed is physically detectable. This dictates that the gain of

the superluminal propagating mode over an exactly luminal signal in its course of traveling

10An introduction to the terminology used here can be found in ref. [41].
11The argument presented in this section applies for all s ≥ 3, so it covers the gauge-dependent results

in sections 2 and 3 as well.
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the typical distance by which the background vector solution varies must be at least of

order of one wavelength [19]. In short, we need

∆c kL′ & 1. (4.7)

Here we denote the length scale of variation for vector mode by L′, and in the following

discussion, that for scalar mode L. Since both the scalar and the vector modes are the

Stükelberg fields of a massive graviton, we expect them to have similar length scale of

variation, L′ ∼ L. Plugging (4.6) into the l.h.s. of (4.7), we have

∆c kL′ ∼ (∂2φ)s−2

Λ3s−6
3

· kL′ ∼ φs−2L4−2s

Λ3s−6
3

· kL′. (4.8)

Note that the generalized effective Lagrangian in (4.1) (and thus the quartic order case

discussed in section 3) is obtained from a classical perturbative method based on order-by-

order calculation, so we first check whether the superluminal signal is observable within

the region where the perturbative expansion is valid. Therefore, locally we demand that

φ≪ Λ3, L≫ 1/Λ3. (4.9)

These conditions then imply that

∆c kL′ ∼ φs−2(L−1)2s−4

Λ3s−6
3

· kL≪ Λs−2
3 · Λ2s−5

3 · k
Λ3s−6
3

=
k

Λ3
, (4.10)

from which it is clear that if the vector momentum remains in the linear region of the

perturbation theory (k ≪ Λ3), the superluminal signal would not be detectable.

It may seem that a large vector momentum does not break the perturbativity of the

effective Lagrangian (4.1), where the vector excitation modes only show up quadratically.

However, higher order terms in the vector field would appear when one moves out of the

decoupling limit, and thus for concerns of continuity, the case of large k necessitates a

discussion in the strong coupling region.

It then follows that all physically observable superluminal propagating signals, if any,

must have frequencies at least comparable to the strong coupling scale of the dRGT massive

gravity. In the strong coupling region, while the perturbation theory breaks down, the

classical estimate made in (4.6) can still be trusted since no new operators enter the physical

picture, only that the non-linear operators become important [27–29]. This change can

be addressed by a redefinition of s, which essentially characterizes the most important

operators affecting superluminal solutions, and these operators are already included in the

effective Lagrangian (4.1). In the non-linear regime, we have at least

φ ∼ Λ3, L, L′ ∼ 1/Λ3. (4.11)

This implies that

∆c kL′ ∼ φs−2(L−1)2s−4

Λ3s−6
3

· kL ∼ Λs−2
3 · Λ2s−5

3 · k
Λ3s−6
3

=
k

Λ3
& 1 (4.12)
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as long as the magnitude of k lies in the strong coupling region. As such, the vector

superluminality characterized by (4.6) can be physically consistent in the classical non-

linear regime of the effective field theory.

Furthermore, due to the Vainshtein mechanism in dRGT, for background field config-

urations satisfying ∂2φ≫ Λ3
3, the strong coupling gets rescaled and assumes a much larger

value that could be several orders higher than Λ3. In the past, the redressing mechanism of

the strong coupling scale has been demonstrated in the helicity-0 Galileon models [18, 29].

In the scalar sector, the new strong coupling scale is symbolically Λ⋆ ∼ Z1/2Λ3, where

Zµν(π0) is the effective metric for scalar fluctuations around a background solution π0.

Similarly, the redressed strong coupling scale also manifests itself through the vector La-

grangian in the form of (3.1), where the tensor T µναβ goes like powers of ∂2φ
Λ3
3

and takes

large values in the strong coupling region. To see this mechanism for vector mode more

explicitly, we go a little outside the decoupling limit, so the vector coupling to a source

does not get eliminated. Plugging (2.7) and (2.10) into the original massive spin-2 source

term 1
Mp

HµνT
µν , the Lagrangian for vector fluctuation becomes

LA = −1

4
T µναβFµαFνβ −

∂µA
α∂νAα

MpΛ3
3

δTµν

Mp
, (4.13)

where δTµν is a perturbation giving rise to vector fluctuations. Then symbolically, per-

forming a canonical normalization for the vector mode results in an increase of the coupling

scale by the factor of T 1/2.12 Thus the vector mode frequencies k ∼ Λ3 are safely below

the redressed strong coupling scale, reinforcing the point that the vector superluminality

obtained previously can be trusted at the classical level.

5 Discussion and outlook

For the scalar fields in dRGT, it has been shown that the cubic and higher order Galileon

terms inevitably lead to superluminal group velocities [18, 19, 22, 39], and one needs fur-

ther considerations at the level of asymptotic conditions [22] or closed timelike curves

(CTCs) [24] to explore whether the scalar superluminalities are physically consistent. For

the vector fields, we see that while the superluminal fluctuations in the perturbation the-

ory do not produce measurable propagating signals, they could be a physical possibility in

the strong coupling region of dRGT where non-linear operators dominate. Fundamentally,

this is in agreement with the well-received observation that the non-linearities in interact-

ing massive gravity bring about superluminality, as both GR and FP theories are free of

tachyonic propagating modes.

Still, the issue of superluminality remains inconclusive for both scalar and vector fields

in the full dRGT theory. To determine whether superluminal propagating speeds eventu-

ally lead to causality violation, the ultimate measure is the high frequency limit of phase

velocity, vph(∞), which is also called the front velocity [29, 47]. In order to compute the

12Note that since we are outside the decoupling limit here, strictly speaking, operators more than

quadratic in the vector field could contribute to T µναβ , yet the mechanism by which the coupling scale gets

redressed remains valid.
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front velocity, one must work in an energy range even beyond the strong coupling region.

This is a regime where quantum corrections would dominate over the classical operators.

Therefore, the vector superluminalities computed previously, which are only low frequency

group and phase velocities, would no longer be valid for considerations at the quantum

level. The task of testifying the (a)causality of dRGT then requires a full knowledge of the

UV completion scheme for the effective field theory.

Besides, it has been claimed that if the Lagrangian of a field involves only self-

interactions, the existence of superluminal propagating modes is exclusively determined

by the leading order interaction term [39]. Indeed, for the scalar mode in the decoupling

limit dGRT, this statement is sufficient for the purpose of studying superluminality, since

the absence of terms linear in vector field allows one to safely set the vectors to zero at

the classical level. But we cannot do the same thing when studying vector superluminality

because of the tadpole cancellation condition for the scalar field. As vector self-interaction

terms are absent in the decoupling limit, the analysis in this paper seems to suggest that

we need to modify the statement above: vector superluminalities are determined not by the

leading mixing terms (the cubic terms, which are safe), but the relevant quartic or higher

order terms in the form ∼ [ΠFΠF ], [ΠFΠFΠ], etc.13 If we go outside the decoupling limit,

vector self-interaction terms like ∼ (FµνFµν)
2,(FµνF̃µν)

2 will reappear, and the previous

statement in ref. [39] about the relations between superluminality and leading order terms

are true again. It could be a good practice to explore vector superluminalities beyond the

decoupling limit by collecting these terms from the Stükelberg expansion of dRGT La-

grangian. It could also be interesting to look at the issue of vector superluminality in other

cosmological models of gravity, like the partially massless gravity in de Sitter background,

described in detail in refs. [31–33].14

Acknowledgments

The author would like to thank Alberto Nicolis, Rachel A. Rosen and Claudia de Rham for

valuable discussions, as well as Allan Blaer for support and encouragement. The author has

also benefited from communications with Andrew Waldron on topics related to the present

work. The author is funded in part by the Columbia Undergraduate Scholars Program.

A Quartic order superluminal solutions in a different background

Here we assume a homogeneous background solution for the scalar field, or that

Πµν =








p 0 0 0

0 ρ 0 0

0 0 ρ 0

0 0 0 ρ








, (A.1)

where p and ρ are constants and p = 3ρ+O( 1
Λ3
3

). In the minimal model, p = 3ρ is exact.

13Terms with two F ’s contracted together, like ∼ [ΠFFΠ] and ∼ [ΠFFΠΠ], do not affect vector super-

luminality since they contain a factor of ηµν .
14See refs. [37, 38] for relevant results about the (A)dS vector Lagrangian in the decoupling limit.
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Plugging (A.1) into (3.11) and transforming into Fourier space, we get








ω2 − k2 0 0 0

0 K +Mk21 Mk1k2 Mk1k3
0 Mk1k2 K +Mk22 Mk2k3
0 Mk1k3 Mk2k3 K +Mk23















Ã0

Ã1

Ã2

Ã3








= 0, (A.2)

with

K ≡ (1− gpρ)ω2 − (1 + gρ2)k2 (A.3)

and

M ≡ gρ(p+ ρ), (A.4)

where we have used the gauge condition ∂µA
µ = 0. In order for nontrivial solutions to

exist for the homogeneous system described by (A.2), the matrix

Υ ≡








ω2 − k2 0 0 0

0 K +Mk21 Mk1k2 Mk1k3
0 Mk1k2 K +Mk22 Mk2k3
0 Mk1k3 Mk2k3 K +Mk23








(A.5)

must have zero eigenvalues. Its eigenvalues and eigenvectors are, with due correspondence:

λ1 = λ2 = (1− gρp)ω2 − (1 + gρ2)k2,

λ3 = (1− gρp)(ω2 − k2),

λ4 = ω2 − k2;

vµ1 =








0

−k2
k1
0








, vµ2 =








0

−k3
0

k1








, vµ3 =








0

k1
k2
k3








, vµ4 =








1

0

0

0








.

(A.6)

Based on these we can work out the polarization vectors and their dispersion relations.

First, we see that v3 and v4 share the same dispersion relation ω2 = k2. In this case, any

arbitrary linear combination v = av3 + bv4 is also an eigenvector with the same dispersion

relation, because the dispersion relation sets the eigenvalues to zero. Then we impose the

Lorenz gauge condition kµvµ = 0, which sets b = ak2/ω = aω. This implies that vµ = akµ,

which represents merely a gauge mode. As such, no nontrivial longitudinal mode can exist.

On the other hand, one can easily check that the Lorenz gauge conditions kµv
µ
1 =

kµv
µ
2 = 0 are satisfied, so we can normalize v1 and v2 to obtain the two transverse polar-

ization vectors, respectively:

ǫµ(k, 1) =
1

√

k21 + k22
(0,−k2, k1, 0) ≡ (0, n̂(k, 1)),

ǫµ(k, 2) =
1

√

k21 + k23
(0,−k3, 0, k1) ≡ (0, n̂(k, 2)).

(A.7)

Similar to section 3.3, these polarization vectors fulfill the following criteria (σ, σ′ ∈ {1, 2}):
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(i) Orthonormality: ǫµ(k, σ)ǫ
µ∗(k, σ′) = δσσ′ ;

(ii) Lorenz gauge condition: kµǫ
µ(k, σ) = 0;

(iii) Completeness relation:

∑

σ

ǫµ(k, σ)ǫν(k, σ)∗ =









0 0 0 0

0 1− k21
k2 −k1k2

k2 −k1k3
k2

0 −k1k2
k2 1− k22

k2 −k2k3
k2

0 −k1k3
k2 −k2k3

k2 1− k23
k2









,

i.e.
∑

σ n̂i(k, σ)n̂
∗
j (k, σ) = δij − kikj

k2 .

So they are consistent with the physics of massless vectors.

Next, by setting λ1 = λ2 = 0, we find that the two transverse modes share the same

dispersion relation

ω2 =
1 + gρ2

1− gρp
k2

= (1 + gρ(p+ ρ))k2 +O(g2)
≈ (1 + 4gρ2)k2. (A.8)

which can be superluminal if g > 0. In the minimal model, g = 1
2Λ6

3

> 0, so both modes

exhibit superluminality.

For completeness, we see that kµ = (ω, 0, 0, k3) or k
µ = (ω, 0, k2, 0) makes a polarization

vector in (A.7) singular. Since the background scalar solution is homogeneous, all three

spatial directions are on the equal footing (this can also be seen from (A.5)). Without loss

of generality, it suffices to consider kµ = (ω, 0, 0, k3) here, under which (A.5) becomes

Υ ≡








ω2 − k23 0 0 0

0 J 0 0

0 0 J 0

0 0 0 J +Mk23








, (A.9)

with J ≡ (1 − gpρ)ω2 − (1 + gρ2)k23. The eigenvalues and eigenvectors are, with due

correspondence:

λ1 = λ2 = (1− gρp)ω2 − (1 + gρ2)k23,

λ3 = (1− gρp)(ω2 − k23),

λ4 = ω2 − k23;

vµ1 =








0

1

0

0








, vµ2 =








0

0

1

0








, vµ3 =








0

0

0

1








, vµ4 =








1

0

0

0








.

(A.10)
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Here v3 and v4 have the same dispersion relation ω2 = k23. In this case, it is easy to see that

any linear combination of v3 and v4 which also fulfills the Lorenz gauge condition must be

proportional to (1, 0, 0, 1), which is a gauge mode. Hence no nontrivial longitudinal mode

exists. For λ1 = λ2 = (1− gρp)ω2 − (1 + gρ2)k23 = 0, it is natural to take the polarization

vectors as
ǫµ(k, 1) = (0, 1, 0, 0),

ǫµ(k, 2) = (0, 0, 1, 0).
(A.11)

It is straightforward to check that they satisfy the orthonormality, Lorenz gauge, and

completeness relations. They share a common dispersion relation ω2 = 1+gρ2

1−gρpk
2
3 = (1 +

gρ(p+ ρ))k23 +O(g2) ≈ (1 + 4gρ2)k23, which can be superluminal if g > 0. In the minimal

model, g = 1
2Λ6

3

> 0, so both transverse modes are superluminal.

The discussion of the physicality of these superluminal modes follows that presented

in section 4.2.
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