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1 Introduction

There are many reasons to believe that supersymmetry is, ultimately, a symmetry of the

physical laws. The energy scale at which supersymmetry is broken is unknown and has

been a topic of extensive research in the last few decades. There are several types of “toy

models,” or “classes” of supersymmetry breaking models. These different models may

sometimes provide the basis for constructing realistic phenomenological models.

In this note we are primarily interested in a simple class of toy models of supersymme-

try breaking, namely those in which non-perturbative corrections play no significant role.

While in and by themselves they are not particularly interesting, they often arise as the

low energy effective theory of strongly coupled field theories (see e.g. [1–3]). Hence, it is

crucial to understand the possible dynamics of such simple perturbative models. As we

will show in this work, somewhat surprisingly, there are previously unnoticed important

facts about such perturbative models.

The simplest prototype of a calculable, perturbative model that breaks supersymmetry

was discovered by O’Raifeartaigh (O’R) more than three decades ago [4] . Many authors

studied generalizations of this model, including ones that are useful for phenomenology. A

common feature of such models [5, 6] is the existence (at tree-level) of infinite degeneracy of

SUSY-breaking vacua. The fate of such flat directions is decided by radiative corrections.

Such flat SUSY-breaking directions that exist at tree-level are called pseudomoduli. One in-

teresting application of these flat directions was discussed in [7], where it was demonstrated

that the vacuum of the theory can reside at a scale much larger than all the fundamental

scales of the O’R model, thereby potentially explaining the remarkable hierarchy between

the GUT scale and the electroweak scale.
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Spontaneous SUSY breaking implies the existence of an R-symmetry [8], which, if it

were unbroken, forbids gaugino mass terms. According to experimental data, gauginos

should be massive therefore R-symmetry must be broken predominantly spontaneously.

This is another constraint that needs to be borne in mind if we are after realistic models.

We consider the simplest low-energy models in which R-symmetry and supersymmetry

break spontaneously. Some examples for R-symmetry breaking at tree level are [9] and [10],

a more general analysis of these models is given by [6]. R-symmetry can also be broken

at one loop [11, 12] or higher loops [13–15]. Most of the existing literature considered

spontaneous SUSY breaking via F-terms alone, or where D-terms did not play a major

role. This leads to anomalously small gaugino masses [6].

We may ask, can D-terms can play a role in SUSY breaking at all? Can they change

the dynamics of the model? There is a well-known theorem that states that D-terms can be

set to zero as long as the F-terms have a solution.1 A generalization of this result appeared

in [21]. This gives the impression that they might not have an important role in SUSY

breaking. On the other hand there are examples in which D-terms can become important

and comparable to the F-terms. See for example [21–25].

Here we will study models where D-terms lead to dynamics remarkably different from

known examples. We describe simple models where the breaking of R-symmetry is achieved

effortlessly at one loop, and the breaking is parametrically large. This is phenomenolog-

ically desirable and different from some previous one loop mechanisms for breaking R-

symmetry (which happen to be somewhat tuned) [12]. Moreover, the fields in our model

have R-charge 0 or 2; for models with this R-charge assignment there are many known

UV dynamical completions. For theories with other R-charge assignments see the one loop

mechanism of [11]. In addition, as mentioned above, D-terms play an important role in

our analysis, providing more examples of the possible role of D-terms in SUSY breaking.

Our study is based on an observation by [26], where it was argued that gauging some

global symmetries of a theory generically leads to a runaway direction at tree level. We

find that at one-loop there is a minimum along this runaway which breaks supersymmetry

and R-symmetry. The simplest realization of a theory where this takes place is identical

to the original (vector-like version) of the O’R model. This model has been studied many

times before, indeed it is the simplest model of SUSY breaking. However, it appears that

such a fundamental feature in its phase diagram was overlooked. Phenomenologically, an

application of our study could be to utilize this new minimum in order to explain some mild

hierarchy problems (such as in split supersymmetry with the sfermions at 104 TeV, a model

that is receiving nowadays some interest due to the Higgs-like particle at 125 GeV [23]) in

the spirit of [7].

The simple example we analyze in detail in this paper admits various generalizations.

In fact, one can argue that the existence of such phases is rather generic.

The outline of this paper is as follows. We begin with a review of the O’R model

(before gauging) and remind how it breaks SUSY but not R-symmetry. Then we gauge the

1See ref. [16]. This is a result of a more general theorem, which states that the space of D-flat directions

is isomorphic to the space of holomorphic gauge invariants [17–20].
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theory and show that it has a runaway behavior that is stabilized by one-loop corrections.

This leads to a spontaneous breaking of both SUSY and R-symmetry. Next we calculate

the masses of the fields in the theory by using gauge invariant variables and we finish by

commenting on the phenomenological possibilities of realizing this model.

2 O’Raifeartaigh model (no gauging)

In this section we will examine the familiar O’R model, in which there is no gauge dynamics.

We will review that in this case SUSY is broken but R-symmetry is preserved by the

vacuum. The superpotential is given by:

W = hX(φχ̃− µ2) +m1φφ̃+m2χχ̃ , (2.1)

with canonical Kähler potential.

This model admits a global U(1) symmetry under which two chiral superfields (φ, χ)

are positively charged, two chiral fields are negatively charged (φ̃,χ̃), and X is singlet.

Additionally, there is an R-symmetry under which X, φ̃, χ carry charge 2, while the rest

are neutral. We will not discuss the natural SO(N) generalization of this model here. The

scalar potential is

VF = |FX |2 + |Fχ|2 + |Fφ̃|
2 + |Fφ|2 + |Fχ̃|2

= h2|φχ̃− µ2|2 +m2
2|χ̃|2 +m2

1|φ|2 + |hXχ̃+m1φ̃|2 + |hXφ+m2χ|2 .
(2.2)

SUSY is broken at tree level since we cannot set all terms to zero simultaneously: when

setting Fφ̃ = 0 we automatically get FX 6= 0.

The potential does have a supersymmetry-breaking minimum, we can find it in the

usual way. The last two terms of VF can be set to zero at no energy cost, from them we

get the relations:

φ̃ = −hX
m1

χ̃ , (2.3)

χ = −hX
m2

φ . (2.4)

Therefore we are left to find the values of φ, χ̃ and X which minimize |FX |2 + |Fχ|2 + |Fφ̃|
2.

There are two phases in this model. In the first one, φ = 0 and χ̃ = 0, while X is

undetermined. In this case VF = h2µ4 and it is the absolute minimum in the regime

µ2 < m1m2
h2

. Since all the charged fields have zero vevs, the U(1) symmetry is unbroken,

therefore we will call this phase the unbroken phase. The R-symmetry is unbroken at X = 0

but it is broken elsewhere.

In the second phase, it can be shown that the solutions are real fields and they get the

values

φ = −m2y

h

χ̃ = −m1y

h
,

(2.5)
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with y =

√
h2µ2−m1m2√

m1m2
. From (2.3) and (2.4) we immediately get χ = φ̃ = yX and X stays

undetermined. In this second case, the U(1) is broken while the R-symmetry is unbroken

at X = 0 but broken elsewhere. The vacuum energy is VF = 2µ2m1m2 −
m2

1m
2
2

h2
, it is the

global minimum in the regime µ2 > m1m2
h2

. We will refer to this phase as the broken phase.

To summarize, the global minima of the potential are

VF =

{
h2µ4 , µ2 < m1m2

h2

2µ2m1m2 −
m2

1m
2
2

h2
, µ2 > m1m2

h2

. (2.6)

The transition between these two phases is a second order phase transition i.e. the energy

density varies smoothly, but not its first derivatives.

We will now examine the dynamics of the undetermined pseudomodulus X when con-

sidering one-loop corrections [4]. We will review the known result that the degeneracy of

the vacuum is lifted in such a way that the R-symmetry is unbroken in both phases.

The one-loop effective potential is given by [27]

V
(1)

eff =
1

64π2
STr

(
M4 log

M2

m2
0

)
=

1

64π2

[
Tr

(
m4
B log

m2
B

m2
0

)
− Tr

(
m4
F log

m2
F

m2
0

)]
,

(2.7)

where m0 is the SUSY breaking scale. In the limit X ≈ 0 it takes the form Veff =

const + m2
XX

2 + O(X3) in both regimes of (2.6). mX is just a constant depending on

the masses of the model and is different in the two regimes. Since m2
X is positive, the

pseudomodulus has a minimum at 〈X〉 = 0.

In the limit X � m0 we can use the result given in [13] where the full expression (2.7)

is approximated by the contribution only to the effective Kähelr potential:

Veff(X) ≈ const.+ 2V0γ log
|X|
m0

, (2.8)

V0 is the tree level vacuum energy, given by (2.6) and γ is the anomalous dimension, which is

positive. We conclude that for X →∞ the one loop correction is proportional to log(|X|),
and so is an increasing function of X (for large enough X).

Finally, using the full expression from (2.7), it can be shown that the effective potential

is monotonic between these two limits. Therefore, we conclude that 〈X〉 = 0 is the global

minimum of the potential and in both phases, R-symmetry is unbroken.

3 Gauging the U(1), breaking R-symmetry spontaneously

When gauging the U(1) symmetry, R-symmetry can be broken in various ways in this

model. We begin with a general analysis which shows that there is a runaway behavior at

tree level in both phases of the model. This runaway happens to be a general phenomena

of gauged theories in which the F-flatness conditions are not satisfied [26, 28]. Then we

review the results of Matos [26] who showed a runaway at the broken phase. Furthermore,
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we give an example of a runaway in the unbroken phase. Then, we will show that all

these runaways are stabilized at one loop and we get a hierarchically large breaking of

R-symmetry enhanced by a loop factor. Finally, we’ll turn to examine the behavior of the

potential at the origin and show that due to the gauging, it can be smoothly connected to

the runaway that we found.

After gauging the U(1) symmetry in the model, the full potential is VF + VD with VF
given by (2.2) and

VD =
g2

2
(ξ + |φ|2 − |φ̃|2 + |χ|2 − |χ̃|2)2 , (3.1)

where g is the gauge coupling and ξ is the Fayet-Iliopoulos term.

3.1 Runaway to VD = 0

We shall denote the vevs of the fields φ and χ̃ by φ0 and χ̃0 respectively so that we can

carry out the analysis for both phases simultaneously. We can deform the vevs of the

fields (2.5) in the following way:

〈φ〉 = φ0 + ε1〈
φ̃
〉

= −hX
m1
〈χ̃〉+ η2

〈χ〉 = −hX
m2
〈φ〉+ η1

〈χ̃〉 = χ̃0 + ε2 .

(3.2)

By doing this deformation the scalar potential is:

V = V 0
F +O(εi, ηj) +

g2

2

[√
V 0
D − h

(
X(φ0 + ε1)η∗1

m2
− X(χ̃0 + ε2)η∗2

m1
+ c.c

)
(3.3)

+ h2|X|2
(
|ε1|2

m2
2

− |ε2|
2

m2
1

+

(
ε1φ
∗
0

m2
2

− ε2χ̃
∗
0

m2
1

+ c.c

))
+O(εi, ηj)

]2

. (3.4)

Where i, j = 1, 2 and V 0
F and

(
g2

2

)−1
V 0
D are the scalar potentials with no deformations.

We see that in both phases we can choose εi and ηj such that for very large |X|, the

potential exhibits a runaway behavior to V 0
D = 0 (figure 1). This behavior was presented

in [26] for the broken phase choosing η1 = −η2 = η, εi = 0 and X =
y2(m2

1−m2
2)−h2ξ

4h2yη
. For

a runaway in the unbroken phase we can choose, for example ε1 = ε2 = ε, ηj = 0 and

|X|2 = ξ
h2ε2

(
1
m2

1
− 1

m2
2

)−1
.

Notice that in the broken phase, the parameter ξ and the difference m1−m2 play the

same role in the dynamics of the model, therefore we can set either one of them (but not

both) to zero and still have a runaway. However, to get a runaway in the unbroken phase,

we must introduce a FI term: if ξ = 0 in the unbroken phase, VD = 0 so the D-terms don’t

play a role in the dynamics of this model; precisely, there is no runaway.

– 5 –
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X

VF

VD +VF

Figure 1. The potential at large X admits a runaway behavior: when X → ∞ the potential

approaches the value of the SUSY breaking vacuum of the ungauged theory, VF .

3.2 One loop corrections

We examine how the one loop corrections affect these runaway directions. At first, we will

calculate the corrections at leading order in g. We assume X � m0 therefore we can use

the approximated one loop contribution (2.8), and insert V0 from (2.6) and the anomalous

dimension which is given by

γ =
|FX |2γX + |Fφ̃|

2γφ̃ + |Fχ|2γχ + |Fφ|2γφ + |Fχ̃|2γχ̃
|FX |2 + |Fφ̃|2 + |Fχ|2 + |Fφ|2 + |Fχ̃|2

, (3.5)

estimated at the vevs along the runaway (2.5). This results in γ = h2

32π2
m1m2

2µ2h2−m1m2
for

the broken phase and γ = h2

32π2 for the unbroken phase. The effective potential is then

approximated by

∆V ≈

{
h4µ4

16π2 log |X|m0
, µ2 < m1m2

h2
m2

1m
2
2

16π2 log |X|m0
, µ2 > m1m2

h2

. (3.6)

If we follow Matos’s choice of deformation for the broken phase, then the full potential

takes the form

V ≈ 2m1m2µ
2 − m2

1m
2
2

h2
+

y2

4h2X2
(m2

1 +m2
2)(m2

1 −m2
2)2 +

m2
1m

2
2

16π2
log
|X|
m0

. (3.7)

This potential has a minimum at

h2X2 ≈ 2π2

h2

(m2
1 −m2

2)2(m2
1 +m2

2)(h2µ2 −m1m2)

m3
1m

3
2

. (3.8)

We can do a similar analysis for the unbroken phase, going back to section (3.1), and

using the example given there, we get

V ≈ h2µ4 +
ξ

h2X2
(m2

1 +m2
2 − 2h2µ2)

(
1

m2
1

− 1

m2
2

)−1

+
ξ2

h2X4

(
1

m2
1

− 1

m2
2

)−2

+
h4µ4

16π2
log
|X|
m0

.

(3.9)

– 6 –
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In this case, the minimum is balanced at

h2X2 ≈ 8πξ

h4µ4

(
1

m2
2

− 1

m2
1

)−1 (
2π(2h2µ2−m2

1−m2
2) +

√
h6µ4 + 4π2(2h2µ2 −m2

1 −m2
2)2
)

(3.10)

We see that in both phases the runaway direction is stabilized at 〈X〉 6= 0, this global

minimum breaks R-symmetry as well as supersymmetry. Moreover, a large energy scale is

generated dynamically, it is enhanced by a loop factor compared to the scales that appear

at tree level. This ensures that the approximation used to obtain this minimum is self

consistent.

The next order in g enters into the effective potential through the anomalous dimension.

Going back to (3.5), we get anomalous dimensions for the φ̃ and χ fields as well, with values

γφ̃ = γχ = − g2

8π2 . In the unbroken phase, there is no correction since Fφ̃ = Fχ = 0. In the

broken phase, the anomalous dimension is corrected to

γ =
1

4π2

1
8m

2
1m

2
2 −

g2

h2
m1m2(h2µ2 −m1m2)

2µ2m1m2 −
m2

1m
2
2

h2

. (3.11)

Therefore, the one-loop correction to the effective potential is

∆V =

(
m2

1m
2
2

16π2
− g2

h2

m1m2

2π2
(h2µ2 −m1m2)

)
log
|X|
m0

. (3.12)

This result is compatible with the result in [29] when considering two different masses. Only

when the log has a positive coefficient does the runaway stabilize and get a minimum. We

see that at this order in g there is a minimum only as long as (g2/h2)(h2µ2−m1m2) < 1/8.

To conclude, the theory has a tree-level runaway which is stabilized by one-loop effects.

In the broken phase, g must be smaller than a certain combination of the mass scales of

the theory in order to get a stable minimum along the runaway.

3.3 Potential at the origin

We turn to examine the behavior of the potential at the origin and see how it can be

embedded into a coherent picture along with the runaway. Recall that before gauging,

there is a stable minimum at X = 0.

In the unbroken phase, the gauging does not affect the minimum at the origin since

VD is just a constant. Therefore, the minimum at the origin is equal to VF + VD while on

the runaway VD −→ 0. The minimum at the origin is meta stable while the R- breaking

minimum is the absolute minimum of the theory (figure 2). Notice that this meta stable

minimum is long lived, having the distance between the minimums enhanced by a one

loop factor. Unlike other theories, where the meta stable minimum is made long lived by

introducing a small scale (for example [1]), in this model it arises dynamically.

– 7 –
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00
X

VF

VD +VF

V

Figure 2. The potential in the unbroken phase: one loop corrections give rise to a minimum along

the runaway, at large X. This is the absolute minimum of the potential, while the minimum at the

origin becomes meta stable.

In the broken phase, in order to examine the behavior at the origin when considering

gauging, we will consider small fluctuations of the vevs (2.5) at X = 0

φ = φ0 + δφ

φ̃ = δφ̃

χ = δχ

χ̃ = χ̃0 + δχ̃ .

(3.13)

Where φ0 and χ̃0 are the vevs we found (2.3) and (2.4). When inserting these into the

scalar potential, we get tadpole contributions from the R-uncharged fields φ and χ̃:

VD = const + 2g2
(

(φ0)2 − (χ̃0)2 + χ
)

(φ0δφ+ χ̃0δχ̃) + . . . . (3.14)

Where the ellipsis stand for higher terms in the fields’ fluctuations. Due to this tadpole

contribution, the minimum is shifted away from its original values. We will now show that

at least one of the R-charged fields becomes tachyonic at this point: we begin by calculating

the shifted vevs of φ and χ̃ by solving the equations ∂V
∂φ = 0 and ∂V

∂χ̃ = 0 at the origin, i.e.

at X = φ̃ = χ = 0. We get

φ =− m2y

h
+ g2 (y2(m2

1 −m2
2) + h2ξ)(m2

2(y2 − 1) +m2
1(y2 + 1))

4h3m1m2
2y

+
g4

32h5m4
1m

3
2y

3
(y2(m2

1 −m2
2)− h2ξ)(

y2
(
m6

1(7y4 − 3) +m4
1m

2
2(7y4 − 12y2 + 9) + 9m2

1m
4
2(y4 − 1) + 3m6

2(3y4 + 4y2 + 1)
)

− h2ξ
(
m4

1(3y4 + 1)− 2m2
1m

2
2(y2 + 1)2 −m4

2(5y4 + 4y2 − 1
))

+O(g6)

χ̃ =(m1 ↔ m2) .

(3.15)

– 8 –
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Then we insert these into the quadratic part of the scalar potential for the R-charged fields:

(
X∗ φ̃∗ χ∗

)
m2

Xφ̃
χ

 , (3.16)

with

m2 =

h2(|φ|2 + |χ̃|2) hm1χ̃
∗ hm2φ

∗

hm1χ̃ m2
1 − g2(|φ|2 − |χ̃|2 + ξ) 0

hm2φ 0 m2
2 + g2(|φ|2 − |χ̃|2 + ξ)

 . (3.17)

and calculate the determinant

det(m2) =
−2g2y2(m2

1 +m2
2)

h4
(m2

1y
2 −m2

2y
2 − h2ξ)2 . (3.18)

Unless y = 0, the determinant is negative therefore there is a negative eigenvalue. In other

words, upon gauging, the origin X = 0 is no longer a stable minimum of the theory.

We conclude that in the broken phase, the behavior of the potential near the origin

depends on the ratio between the gauge coupling g and the one-loop contribution: if one-

loop effects are larger than g, the pseudomodulus is lifted and we get a stable minimum at

X = 0 but if g is larger than one-loop effects, X = 0 is no longer a stable minimum. Hence

we expect to have a critical g for which there is a phase transition between these regimes.

It seems that there are no local minima although we have not proved this. Combing this

with the restrictions on g from the one loop calculations we conclude that in the broken

phase, the theory has a runaway which is stabilized only for certain gauge couplings: g

must be larger than one loop effects in order to get a runaway behavior. In addition, it

must be smaller than a certain combination of the mass scales of the theory in order to get

a stable minimum along the runaway. This regime in parameter space is large and contains

phenomenologically familiar values for g.

4 Field masses

Along the runaway direction VD is small, therefore we can switch to gauge invariant vari-

ables, for convenience we set ξ = 0. In this approximation we can easily calculate the

masses of the fields.

We will switch to these holomorphic gauge invariant binomials: M = φχ̃, L =

√
φ̃χ,

P = φφ̃,R = χχ̃, these satisfy a simple relation ML2 − PR = 0.

The Kähler potential and superpotential along the D-flat direction have the following

form:

K = X†X + 2
√
M †M + (L†L)2 + P †P +R†R , (4.1)

W = hX(M − µ2) +m1P +m2R . (4.2)

– 9 –
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The constraint can be used to solve for M (M = PR/L2):

K = X†X + 2

√
(L†L)2 + P †P +R†R+

(PR)†(PR)

(L†L)2
, (4.3)

W = hX

(
RP

L2
− µ2

)
+m1P +m2R . (4.4)

We can now take some limits in order to evaluate the fields masses at the minimum

that we found along the runaway (3.8). For large X we can integrate out P and R and

approximate the equations of motion by:

0 =
∂W

∂R
=
hXP

L2
+m2 ,

0 =
∂W

∂P
=
hXR

L2
+m1 .

(4.5)

This results in:

K = X†X + 2(L†L)

√
1 +

m2
1

X†X

√
1 +

m2
2

X†X
, (4.6)

W = −µ2hX − m1m2

h

L2

X
. (4.7)

We have reduced the model into one with two chiral superfields, and we can now minimize

the potential. We find that at leading order, the potential is the same as in (3.3):

L =

√
µ2h2 −m1m2√

m1m2
X +O

(
m3

X2

)
, (4.8)

V =
m1m2

h2
(2µ2h2 −m1m2) +

m1m2

4h2X4
(m2

1 −m2
2)2(µ2h2 −m1m2) + . . . . (4.9)

Here m stands for some masses in the Lagrangian.

The equations (4.5) and (4.8) suggest a change of variables: R = R̃L, P = P̃L, L =
1√
2
L̃ In terms of these variables the Käher potential and superpotential for large X are

well approximated by

K = X†X + L̃†L̃+ P̃ †P̃ + R̃†R̃ . . . , (4.10)

W = hX(R̃P̃ − µ2) +
m1√

2
P̃ L̃+

m2√
2
R̃L̃ . (4.11)

The model has now a simple form which enables us to calculate the masses of the

fields. We diagonalize the matrix of the quadratic terms of the Lagrangian to get the

masses of the scalars and fermions. These are summarized in table 1. The gauge field has

mass squared of 2g2 (h2µ2−m1m2)(m2
1+m2

2+2h2X2)
m1m2

. The massless fermion is no other than the

goldstino, arising from broken supersymmetry. The massless scalars are the pseudomoduli.

Furthermore, there are two scalar fields that become very massive when X gets large values

and another two which become very light. We examine the behavior of the light fields in

appendix A.

– 10 –



J
H
E
P
0
9
(
2
0
1
4
)
0
0
4

Scalars Fermions

0
0

0

2µ2(2µ2h2−m1m2)
X2 (2µ2h2−m1m2)2

X2
4h4µ4−6h2µ2m1m2+2m2

1m
2
2

h2X2

h2X2 +
µ2h2(m2

1+m2
2)

m1m2
± 2µ2h2 − 1

2(m2
1 +m2

2)
h2X2 + h2µ2 m2

1+m2
2

m1m2
− 1

2
(m2

1 +m2
2) ± (h2µ2 −m1m2)

h2X2 +
2h2µ2(m2

1+m2
2)−m1m2(m2

1+m2
2±4(h2µ2−m1m2))

2m1m2

Table 1. Scalar and Fermion masses at the minimum (3.8).

5 Phenomenological relevance

The model discussed can be embedded into a realistic model in two ways, which are sum-

marized in [30]. First we notice that in both phases there is a field S which has a non zero

vev and non zero F-term, this is known as a spurion field. We can introduce messenger

fields ψ, ψ̃ which are in the fundamental and anti-fundamental representation of SU(5)

respectively. These messengers couple directly to our supersymmetry breaking model via

the spurion ∫
d2θ(Sψψ̃ +mψψψ̃) . (5.1)

The coupling splits the spectrum of the messengers by ∼ 〈FS〉. Supersymmetry breaking

is then transmitted to the Minimal supersymmetric standard model section by radiative

corrections.

The second way to realize the model is via direct gauge mediation. This can be done

by generalizing the U(1) symmetry to SO(N) into which we embed an SU(5) gauge group

that breaks down to the SU(3)× SU(2)× U(1) gauge group. This realization needs to be

further investigated.
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A One loop corrections to the light fields

When calculating the fields masses along the runaway (table 1) we got fields with m ∼
1/X2. At large X, where the runaway is stabilized, these fields become light. We need to

make sure that the minimum is not destabilized in this direction when considering the one

loop corrections.

Since the massive fields are proportional to X, we can write the effective Kähler po-

tential as

Keff = ZX(Q; |X|)X†X + ZP̃ (Q; |X|)P̃ †P̃ + ZR̃(Q; |X|)R̃†R̃+ L̃†L̃ , (A.1)

where Q is the RG scale and the Z’s are the wavefunction renormalizations. Our mini-

mum (3.8) is in the regime

m0 � |X| � Λ , (A.2)

where Λ is the cutoff scale of the low-energy theory. Therefore, we can estimate the effective

potential in the following way [13]:

Veff = ZX(m0; |X|)−1|FX |2 + ZP̃ (m0; |X|)−1|FP̃ |
2 + ZR̃(m0; |X|)−1|FR̃|

2 + |FL̃|
2 , (A.3)

which leads to:

Veff =

(
1 + 2γX log

(
|X|
m0

))
|FX |2 +

(
1 + 2γR̃ log

(
|X|
m0

))
|FR̃|

2

+

(
1 + 2γP̃ log

(
|X|
m0

))
|FP̃ |

2 + |FL̃|
2 .

(A.4)

This gives rise to corrections of order one loop to the L̃ field’s mass. Since the corrections

only multiply the mass terms of the light fields, they cannot flip the sign of the potential,

therefore these corrections will not change the minima that we found.
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