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Abstract:We analyse hypercharge flux GUT breaking in F-theory/Type IIB GUTmodels

with regards to its implications for anomaly cancellation and gauge coupling unification.

To this aim we exploit the Type IIB limit and consider 7-brane configurations that for

the first time are guaranteed to exhibit net hypercharge flux restriction to matter curves.

We show that local F-theory models with anomalies of type U(1)Y −U(1)2 in the massless

spectrum can be consistent only if such additional U(1)s are globally geometrically massive

(in the sense that they arise from non-Kähler deformations of the Calabi-Yau four-fold).

Further, in such cases of geometrically massive U(1)s hypercharge flux can induce new

anomalies of type U(1)2Y − U(1) in the massless spectrum, violating constraints in local

models forbidding such anomalies. In particular this implies that it is possible to construct

models exhibiting a U(1)PQ global symmetry which have hypercharge flux doublet-triplet

splitting and no further exotics. We also show that the known hypercharge flux induced

splitting of the gauge couplings in IIB models at tree-level can be reduced by a factor of 5 by

employing a more F-theoretic twisting of U(1) flux by hypercharge flux bringing it to well

within MSSM 2-loop results. In the case of net restriction of hypercharge flux to matter

curves this tree-level splitting becomes more involved, is tied to the vacuum expectation

values of certain closed-string fields, and therefore gauge coupling unification becomes tied

to the question of moduli stabilisation.
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1 Introduction

Some of the most appealing qualities of string theory realisations of Grand Unified Theories

(GUTs) are that they offer new approaches to aspects of GUTs that are not available in

their four-dimensional versions. Perhaps the most immediate question arising in a GUT

is how the gauge group is broken to that of the Standard Model. A completely new,

and string theoretic in that it is not four-dimensional, mechanism for achieving this was

suggested relatively recently within the context of type IIB and F-theory GUTs which is

to turn on a background flux for the hypercharge generator along the compact internal

dimensions [1, 2]. What is most interesting about this mechanism is that it can be used for

the canonical embedding of hypercharge inside SU(5) thereby retaining the normalisation

of the generator that naturally leads to gauge coupling unification.1 The important point

which allows for this possibility while keeping the hypercharge generator massless is that

the GUT gauge group is localised on a submanifold of the full extra dimensions, the so-

called GUT brane which we denote by S. This implies that there are non-trivial flux

configurations supported on S which do not induce a Stückelberg mass for the hypercharge

gauge potential. The conditions on the hypercharge flux such that a mass is not induced

for the hypercharge gauge field were stated in [7] within a type IIB string theory setting.

These were generalised to an F-theory setting in [1, 2].

Apart from breaking the GUT group the hypercharge flux potentially offers a solution

to yet another puzzle: the absence of triplet partners to the SM Higgs doublets, known

1The use of hypercharge flux to break the GUT group but without retaining the appropriate normalisa-

tion naturally is a much older idea which was suggested already in [3] and first used in [4]. See [5, 6] for a

detailed discussion in the heterotic context.
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as doublet-triplet splitting [1, 2]. In F-theory models the Higgs fields typically localise on

so-called matter curves in S. A non-trivial restriction of the hypercharge flux to the matter

curves supporting the Higgs doublets can induce a massless spectrum which is in incomplete

GUT multiplets. Studies of hypercharge flux within an F-theory context however have

so far been rather implicit in the sense that they utilise a local effective gauge theory

description of the F-theory model, see [8–10] for reviews. Even though certain aspects

of hypercharge flux can be understood completely within a local effective theory, others

really require a full global understanding of the appropriate F-theory construction. This

is particularly the case for the restriction of the flux to the matter curves. And while the

conditions on the hypercharge flux for U(1)Y to remain massless have been studied in the

better understood type IIB context, the restriction to the matter curves has not. Indeed

before this work there were no global complete models where a non-trivial net restriction

of the hypercharge flux to matter curves was shown. Strictly speaking it was not even

clear if consistent compactifications with this property exist, both in IIB and in F-theory.

Given the difficulty of a full study in F-theory it is therefore natural to perform such a

study in the type IIB setting first, and this is the primary aim of this note. By moving to a

simpler, but better understood, setting we will be able to sharpen questions regarding the

possible spectrum that can be induced by hypercharge flux, in particular in the presence

of additional U(1) symmetries. We will show that indeed hypercharge flux can restrict

non-trivially to matter curves in a consistent setting. In turn answering these questions in

detail will have important implications for model building in F-theory.

An important result of this note is a clarification of an issue raised in [11] regarding

anomaly cancellation in the presence of hypercharge flux. The specific details are important

to fully understand the question raised, how it is resolved in IIB, how this resolution is

uplifted to F-theory, and finally what the implications are for model building. However

before delving into the details we present the main points here. The primary issue is that in

local F-theory models with U(1) symmetries - the precise nature of these symmetries will be

crucial as we will see below - it was pointed out in [11] that the Abelian anomaly involving

the hypercharge and two U(1) symmetries does not automatically vanish, AU(1)Y −U(1)2 6= 0.

This is surprising in the following sense: the hypercharge flux is expected not to couple

to the closed-string sector in order to not induce a Stückelberg mass for the U(1)Y gauge

field. This is sometimes stated as the constraint that it should be globally trivial. However,

as a consequence it cannot modify the Green-Schwarz anomaly cancellation mechanism,

and therefore should not induce any new anomalies. What leads to a puzzle is that the

analogous anomaly before the hypercharge flux is introduced vanishes, ASU(5)−U(1)2 = 0,

and so it seems a new anomaly is introduced by the flux.2 As a result, it was conjectured

2One might consider what happens if such a ‘local’ U(1) symmetry is spontaneously broken in the bulk

only, by the vevs of some U(1) charged singlets whose matter curve has no Yukawa point intersection with

the GUT divisor. Because pure bulk recombination in this sense cannot induce a mass for charged states

running in the anomaly, it cannot cancel a non-vanishing anomaly of the type we are considering. If the

matter curve of the recombination fields intersects the GUT brane, then charged states can become massive

through Yukawa type couplings to GUT singlets. However in this case also the matter curves ceases to be

split or are connected through monodromies. Put differently, we define a local U(1) as one which is only

(potentially) broken in the bulk.
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in [11] that in globally consistent F-theory models there are additional geometric constraints

which guarantee that AU(1)Y −U(1)2 = 0 in the matter spectrum. Imposing this condition

on the spectrum is very restrictive for model building.

In this work we will show that the described puzzle can be recreated in type IIB string

theory where the questions can be posed much more sharply because the U(1) symmetries

are well understood. We will find that there are models where indeed AU(1)Y −U(1)2 6= 0

and the anomaly is cancelled by the Green-Schwarz mechanism. We will show that this is

possible in IIB because the hypercharge flux can couple to the closed-string sector without

inducing a mass for the U(1)Y gauge potential as long as it couples only to the orientifold

odd sector. Put differently, in IIB the hypercharge flux is not globally trivial. The Green-

Schwarz mechanism can then cancel the anomaly as long as the additional U(1)s are what

was called geometrically massive in [12, 13], which means that they have a Stückelberg

mass even in the absence of any flux background. The uplift of such geometrically massive

U(1)s and the associated fluxes to F-theory is not well understood but some work on it has

been initiated in [12–15]. In particular it has been conjectured that geometrically massive

U(1)s are associated to non-Kähler deformations of the M-theory dual. The conclusion we

draw for F-theory model building is that the constraint AU(1)Y −U(1)2 = 0 in the matter

sector can be relaxed, at least partially if not fully, in the case where the U(1)s are precisely

of this type. In all other cases we expect that an explicit analysis of the interplay of matter

curves and hypercharge flux in a full global setup will ensure absence of the anomalies.

Analogously we will show further that results from local models found in [28] which

were interpreted in [30] as constraints which ensure that the following anomalies are pro-

portional

ASU(3)2−U(1) ∝ ASU(2)2−U(1) ∝ AU(1)2Y −U(1) ∝ ASU(5)2−U(1) , (1.1)

can be relaxed in the cases where the U(1)s are geometrically massive. This has important

implications for model building and in particular potentially allows to avoid the problem

of exotics in the presence of a U(1)PQ raised in [28]. Indeed we will present a toy model

which has a (massive) U(1)PQ symmetry, doublet-triplet splitting by hypercharge flux, and

no additional exotics.

In [37] another crucial aspect of hypercharge flux was found which is that it splits the

gauge couplings at tree level through F 4 type terms in the D7 DBI action. The calculation

performed was in a type IIB setting though it is expected that such a splitting survives in

F-theory up to possible modifications by D(−1) instantons and further threshold effects.

Within the IIB setting it was shown that hypercharge flux splits the gauge couplings at

roughly the 4-5% level, which is slightly too large to be consistent with MSSM results of a

3% splitting. As one of the results of this paper we will show that this splitting crucially

relies on a particular choice of twisting by the hypercharge flux. This choice is not the

only possibility and there exists an alternative choice which is the one more naturally

associated to F-theory. This latter choice we find reduces the splitting by a factor of 5

leading to an estimate of 1% splitting, much smaller than MSSM 2-loop results. Using our

understanding of the restriction of hypercharge flux to matter curves we will show that

in the case of non-trivial restriction the splitting is modified further by F 3 terms which

– 3 –



J
H
E
P
0
9
(
2
0
1
3
)
0
8
2

can induce an arbitrarily large splitting, the precise value depending on the full moduli

stabilisation prescription. Fortunately this splitting can vanish within appropriate and

natural frameworks. These results are discussed in section 3.

We now go on to review in more detail the properties of hypercharge flux in F-theory

before studying in the next section hypercharge flux in type IIB string theory.

1.1 Hypercharge flux in F-theory — local picture and anomalies

Since we are primarily motivated by F-theory constructions we begin by summarising

some of the relevant results in this setting. This will set the background for the type IIB

study that we perform. We refer to [8, 10] for reviews of the following. The constraints

on the hypercharge flux for the U(1)Y gauge potential to remain massless in F-theory

were presented in [1, 2]. In [1], and most of the ensuing local model building literature, the

hypercharge flux in F-theory models is specified simply by a line bundle in the gauge theory

on S, as in IIB. A full F-theoretic description should specify instead a four-form G4-flux

defined as an element of H2,2(Ŷ4), where Ŷ4 is the resolved Calabi-Yau four-fold. We will

provide such a description in section 4, which will turn out to be very similar to the analysis

in [2] of hypercharge G4 in the language of a local ALE fibration over the GUT divisor S.

In any case, either by analogy with IIB or via an explicit derivation, hypercharge flux

can be described by an element fY ∈ H2(S). The condition for masslessness is that the flux

should have vanishing intersection with the pullback of any globally non-trivial element of

the cohomology class H2(B) on base B of the elliptic fibration — see [1, 2] or section 4 for

derivation in the respective approaches. This condition is sometimes referred to as global

triviality of the hypercharge flux.

It is worth being precise about what this means. Consider the embedding ι : S → B

of the GUT surface S into the three-fold base B. This induces a map

ι∗ : H2(B) → H2(S) (1.2)

for the pullback of cohomology from B to S as well as the pushforward on homology as

ι∗ : H2(S) → H2(B). (1.3)

We can think of the latter as the embedding of curves in S into B. This allows us to

introduce the Gysin map, i.e. the pushforward on cohomology, as the map

ι! : H2(S) → H4(B) (1.4)

defined by taking the Poincaré dual on S, applying ι∗ and dualising again on B. The

pushforward and pullback on cohomology satisfy the relation
∫

B
ι!Ω ∧ ω =

∫

S
Ω ∧ ι∗ω ∀ ω ∈ H2(B) , Ω ∈ H2(S) . (1.5)

With this expression we see that the condition for the hypercharge flux to wedge to zero

with the pullback of any globally non-trivial two-form implies that its pushforward i!FY

must wedge to zero with all elements in H2(B) and therefore should be in the trivial class.
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Now we turn to the matter curves in F-theory. The elliptic fibration of an SU(5)

F-theory GUT model can be brought globally, at least to leading order in w [16], to the

Tate form

− y2 + x3 + b5xyz + b4wx
2z2 + b3w

2yz3 + b2w
3xz4 + b0w

5z6 = 0 . (1.6)

The elliptic fibre is described by this equation in the space P[2,3,1] with homogeneous coor-

dinates {x, y, z}. The coefficients w and bi are sections of certain bundles in the base B of

the fibration, pulled back to the four-fold Y4. Here w = 0 specifies the GUT divisor whose

projection to B gives the 4-cycle S. There is an SU(5) singularity at x = y = 0 in the fiber

over w = 0, and this singularity enhances over loci where additionally some combinations of

the bi vanish. Since this imposes one additional equation in the base these loci are curves

on S. As the enhancement of the singularity implies that additional massless matter is

localised there, they are denoted matter curves. The simplest such curves are where b5 = 0

and the singularity enhances to SO(10) and therefore states in the the 10 representation

of SU(5) localise there: C10 = S ∩ {b5 = 0}.

The net restriction of the hypercharge flux to the matter curves, which determines the

net non-GUT multiplets on them, is given by the expression

∫

S
fY ∧ ι∗ [b5] . (1.7)

Here ι∗ denotes the pullback to S of the two-form [b5] which is the Poincaré dual on B of

the divisor b5 = 0, and we denote the hypercharge flux by fY . This is the guess one would

make from the gauge theory description. We can now directly obtain the first simple

result regarding hypercharge restriction to matter curves which is that in this model it

can have no net restriction to the matter curve since [b5] is a globally non-trivial class in

B [2, 17]. It is simple to see that the same conclusion holds for the 5-matter curves as well

where [b5] is replaced by
[

b33b4 − b2b3b5 + b0b
2
5

]

, which is the locus where the gauge group

enhances to SU(6).

With this in mind it is not immediate to see how the hypercharge flux can even

in principle have net restriction to the matter curves. A way out of this was proposed

in [18, 19], in a local framework. The point is that in some cases the restriction of b5 to S

can be such that it splits into a number of components

b5|w=0 =
∏

i

ci , ci ∈ H2(S) . (1.8)

Now it is only the product of the ci, or the homological sum if we think in classes, which

must come from the pullback of a non-trivial element of the bulk. The Poincaré dual two-

form of each of the ci on S can have a component which not in the image of i∗ acting on

elements of H2(B), but the sum over such components of all the ci must vanish. Now the

hypercharge flux can have in principle non-trivial intersection with the [ci]

∫

S
fY ∧ [ci] 6= 0 . (1.9)
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The interpretation of such a possible split in terms of the gauge theory is that there is a

U(1) symmetry under which the matter localised on the different ci factors have different

charges. Such constructions are often terms split spectral cover models and have been

studied extensively in the literature, see [10] for a review. Note that since the splitting

occurs upon restricting to S, the associated U(1) symmetry is a local one in the sense that

whether it is preserved in the full global compact model remains unknown. While (1.8) is

in principle compatible with a non-trivial hypercharge flux restriction to the curves, more

work is required to determine if the this restriction is actually non-vanishing. In particular

in such a local framework a complete analysis of the consistent types of splittings cannot be

provided. As discussed below this is demonstrated by the appearance of extra field theoretic

consistency conditions which had not been detected by the local geometric analysis.

A general procedure to globally complete such local U(1)s was proposed in [20], gener-

alizing previous constructions of massless U(1) symmetries in F-theory GUTs [12, 21, 22].

The idea is to impose the factorisation of type (1.8) to hold to all globally, which means to

all orders in w. It was shown then that the local U(1)s give rise to global massless U(1)s.

E.g. the SU(5) × U(1) models of [20] are realized as P1,1,2[4]-fibrations (see also [23]). A

different class of SU(5)×U(1) models, given by a P1,1,1[3]-fibration, was found in [24]. As

it stands, all of these existing models share the important property that without further

modifications the components of the matter curves ci all come from globally non-trivial

classes and therefore can have no net hypercharge restriction due to splitting as in (1.8).

Returning to the general models with only local splitting, the fact that the hypercharge

flux must have no net restriction to the pull backs of the [bi] implies certain constraints on

its possible net restriction to the [ci] and therefore to the matter curves. These were studied

in [19, 25–27] and in particular in [28] it was shown for a general class of models (and later

proven for all models in [29]) that the following constraints hold on the restriction to the

matter curves
∑

i

Qi
A

∫

S
fY ∧ [C

5(i) ] +
∑

j

Qj
A

∫

S
fY ∧

[

C
10(j)

]

= 0 . (1.10)

Here we have introduced the notation for the matter curves C
5(i) and C

10(j) which for SU(5)

models carry matter in the 5 and 10 representations respectively. The expressions [C
5(i) ]

denote the two-forms Poincaré dual on S to the curves. The charges Qi
A are those of the

matter localised on the curves under any combination of the local U(1)s that correspond

to the splitting structure (1.8). Similarly we have the constraints just discussed that the

sum of the net restriction to the matter curves must vanish

∑

i

∫

S
fY ∧ [C

5(i) ] =
∑

j

∫

S
fY ∧

[

C
10(j)

]

= 0 . (1.11)

In [30] the geometric constraints (1.10) and (1.11) were given a physical interpretation

in terms of four-dimensional anomaly cancellation. The crucial point raised is that the

global triviality of the hypercharge flux implies that it cannot modify the Green-Schwarz

mechanism and therefore the anomalies in the massless spectrum after turning on hyper-

charge flux must be proportional to the anomalies without hypercharge flux. The con-

straints on the spectrum coming from (1.10) and (1.11) precisely ensure this for some of

– 6 –
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the anomalies. In [11] it was shown that (1.10) and (1.11) however do not ensure that all

the anomalies are proportional to the GUT ones, in particular the anomaly AU(1)Y −U(1)2 ,

and therefore a puzzle arose as to what guarantees full anomaly cancellation. Concretely

the anomalies map is

(1.10) =⇒ ASU(3)2−U(1) ∝ ASU(2)2−U(1) ∝ AU(1)2Y −U(1) ∝ ASU(5)2−U(1) , (1.12)

(1.11) =⇒ ASU(3)2−SU(3) ∝ . . . ∝ AU(1)2Y −U(1)Y
∝ ASU(5)2−SU(5) = 0 , (1.13)

(???) =⇒ AU(1)Y −U(1)2 ∝ ASU(3)−U(1)2 ∝ ASU(2)−U(1)2 ∝ ASU(5)−U(1)2 = 0 . (1.14)

Following the logic that the hypercharge flux should not modify anomaly cancellation

it was therefore proposed in [11] that the hypercharge is restricted so as to ensure that

AU(1)Y −U(1)2 = 0. This amounts to the constraint

∑

i

QA
i Q

B
i

∫

S
fY ∧

[

C5

i

]

+ 3
∑

j

QA
j Q

B
j

∫

S
fY ∧

[

C10

j

]

= 0 , (1.15)

where QA
j and QB

j denote the charges under any 2 combinations of local U(1)s. This

additional constraint was shown to be very restrictive on the possible models that could

support net hypercharge flux restriction. In particular it raises the question about the

geometric consistency conditions governing the splitting of curves and the restriction of

hypercharge flux.

The primary motivation for this work is to study this issue in a type IIB framework

where we have much better control and understanding of the U(1) symmetries. We will

show that indeed for some models the relation (1.14) is not satisfied. We will then explain

how this puzzle is resolved in the type IIB framework and therefore shed light on the

uplift of this solution to F-theory. We will see that imposing (1.15) on the spectrum is not

always necessary thereby relaxing the stringent constraints on model building in F-theory,

and further state exactly when this constraint can be relaxed. As a further important result

we will show that (1.12) can also be violated thereby implying that in some models (1.10)

does not hold. It is important to note that the hypercharge restriction we will find in IIB

is not nescessarily related to the splitting (1.8). Indeed it is more likely that a whole new

mechanism of hypercharge restriction in F-theory is avaialble as the uplift of our IIB results.

2 Hypercharge flux in type IIB string theory

In this section we study hypercharge flux in type IIB string theory. Although this is a signif-

icantly simpler setting than within F-theory models it has the crucial advantage that U(1)

symmetries are very well understood. In turn this means that the definition of the matter

curves from a global perspective is sharper than in F-theory. Indeed in thinking about the

restriction of the hypercharge flux to matter curves in IIB compared with F-theory one

is almost immediately faced with a puzzle: since the U(1) branes in IIB are localised on

globally non-trivial divisors the matter curve classes are by definition pullbacks of globally

non-trivial bulk forms. How can we have then any net hypercharge restriction to them at

all? The answer to this is very clean in IIB and is discussed in section 2.2. In section 2.3 we

– 7 –
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study the implications for anomaly cancellation and exemplify, in section 2.4, our findings

in a family of brane setups with SU(5) × U(1) gauge symmetry which generalise possible

charge assignments that have appeared in the F-theory literature. But first we summarise

the known constraints on hypercharge masslessness emphasising the important details.

2.1 Masslessness constraints

We consider SU(5) GUT models in the context of Type IIB orientifold compactifications

on a Calabi-Yau three-fold X. The gauge group U(5) = SU(5)×U(1)S arises from a stack

of five 7-branes along a holomorphic divisor S ⊂ X and its orientifold image stack on S′.

In addition the compactification contains extra branes along divisors Di and Di′ such as

to satisfy the D7-brane tadpole cancellation condition

5(S + S′) +
∑

i

(Di +Di′) = 8O7 (2.1)

in homology. Explicit constructions of this type of Calabi-Yau orientifolds have been worked

out in detail in [31], to which we refer for more details.

Our notation does not distinguish between a divisor and its Poincaré dual two-form.

It will prove convenient to introduce the index I = 0, i such that D0 = S. For simplicity we

do not consider additional non-Abelian gauge groups so that all extra brane stacks consist

of single branes. The described setup allows for a rich number of realisations corresponding

to different numbers of extra U(1) branes. Note that one or more of the brane pairs along

Di +Di′ can be replaced by 7-branes along invariant divisors Wi of Whitney type, which

carry no U(1) gauge group. In a generic model (2.1) is the only homological relation

between the brane divisors.

The idea of hypercharge flux breaking is to embed a line bundle LY on S into SU(5)

by identifying the generator of its structure group with the hypercharge generator TY of

SU(5). The corresponding hypercharge flux is described by the first Chern class c1(LY ) ≡

fY ∈ H2(S) and breaks SU(5) → SU(3) × SU(2) × U(1)Y . From the GUT brane stack S

therefore two U(1) field strengths arise and we decompose

FS = FS T 0
S + FY TY ≡ FS diag (1, 1, 1, 1, 1) +

1

6
FY diag (−2,−2,−2, 3, 3) , (2.2)

where FS and T 0
S refer to the diagonal U(1)S of U(5). In addition the Abelian sector

contains the diagonal U(1)i from the extra branes along Di + Di′ with associated field

strengths Fi and generators T 0
i so that

tr (TY ) = 0, tr
(

T 0
S

)

= 5, tr
(

T 0
i

)

= 1. (2.3)

For later use we note that with the above normalisation of the four-dimensional U(1) field

strengths the SU(5) representations decompose into SU(3) × SU(2) × U(1)Y representa-

tions as

5 → 3−1/3 + 21/2, 10 → (3,2)1/6 + (3̄, 1)−2/3 + (1, 1)1, (2.4)

24 → 80 + 30 + 10 + (3,2)−5/6 + (3̄,2)5/6. (2.5)

– 8 –
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To discuss the Abelian gauge symmetries we need to recall briefly the most important

features of the Stückelberg mechanism in compactifications with 7-branes. The Stückelberg

masses for the Abelian gauge factors are derived by dimensional reduction of the 7-brane

Chern-Simons (CS) action

SCS = µ7

∫

D7

(

tr eF
∑

p

ι∗C2p

)

√

Â(TD7)

Â(ND7)
, (2.6)

where the last factor denotes the curvature terms, which will not be of interest to us.

For a detailed exposition of this derivation and a list of original references on the mixed

Green-Schwarz mechanism see [13, 32]. The dimensional reduction expands the RR-fields

in terms of a basis ωα, α = 1, . . . h1,1+ (X) and ωa, a = 1, . . . h1,1− (X) of the orientifold even

and odd cohomology groups H1,1
± (X) as well as the dual four-forms ω̃α of H4

+(X) and ω̃a

of H4
−(X) as

C6 = c2a ∧ ω̃a + . . . , C4 = cα2 ∧ ωα + c0α ω̃
α + . . . , (2.7)

C2 = ca0 ωa + . . . . (2.8)

By slight abuse we denote the 4-dimensional field strengths by the symbols FI , FS , FY and

the corresponding internal fluxes by fI , fS , fY . The Stückelberg mass terms result from

4-dimensional couplings of the type F ∧ (two− form). Two very different contributions S1
St

and S2
St of this type follow from the CS-action, namely

S1
St ≃

∑

I

tr
(

T 0
I

)

Ca
I

∫

R1,3

FI ∧ c2a, (2.9)

S2
St ≃

∫

R1,3

tr(T 2
Y )FY ∧ cα2

∫

S
fY ∧ ι∗ωα +

∑

I

∫

R1,3

tr(T 0
I )

2FI ∧ cα2

∫

DI

fI ∧ ι∗ωα, (2.10)

where the Poincaré dual two-form to the divisor DI is DI = Ca
I ωa + Cα

I ωα.

Note that (2.9) is independent of any fluxes and thus gives rise to a geometric mass

term in the nomenclature of [13], which also initiated the study of analogous effects in

F-theory. Since trTY = 0, hypercharge cannot acquire a geometric Stückelberg mass

term (2.9). In order for U(1)Y to remain entirely massless one must also avoid the flux-

induced Stückelberg mass (2.10). This amounts to requiring that

∫

S
fY ∧ ι∗ωα = 0 ∀ ωα ∈ H2

+(X). (2.11)

The fact that fY ∈ H2(S) must have vanishing intersection with ι∗H2
+(X) does not preclude

a non-zero intersection with the pullback of orientifold-odd two-forms ωa ∈ H2
−(X). In

particular, in Type IIB orientifolds, unlike in F-theory, hypercharge flux is by no means

“globally trivial”, by which one usually means that fY would lie in the kernel of the

pushforward map ι! : H2(S) → H4(X). This important fact was noted already in [7],
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but in this paper we will present the first analysis of its implications for the restriction to

matter curves.

Note that since trTY = 0 hypercharge flux induces no D5-tadpole. However, as dis-

cussed in section 3, flux quantisation requires that we must turn on flux also along a U(1)

generator, with non-vanishing trace, which geometrically is the same as the hypercharge

flux. Therefore, in this way, the hypercharge flux induces a D5-tadpole by proxy. The

D5-tadpole explicitly reads
∑

I

[

καabTr(T
I)f I,αCa

I + καabTr(T
I)f I,aCα

I

]

. (2.12)

Here we have defined the even and odd components of the hypercharge flux

fY = fa
Y ωa + fα

Y ωα , (2.13)

and the intersection numbers

καβγ =

∫

X
wα ∧ wβ ∧ wγ , καbc =

∫

X
wα ∧ wb ∧ wc . (2.14)

The T I denote the diagonal U(1) generator of the gauge group supported on the brane

wrapping DI along which the flux is turned on.

2.2 Restriction to matter curves and chirality

In type IIB the matter curves are the intersection of bulk U(1) branes with the SU(5)

stack, and therefore their classes are by definition pullbacks of cohomologically non-trivial

bulk two-forms. A hypercharge flux satisfying (2.11) can in principle induce non-trivial

chiralities, but only along matter curves on S whose dual classes C ∈ H2(S) do not lie

completely in the image under pullback ι∗ of H2
+(X).

The matter curves are of the following form: the states in the 10-representation of

SU(5) arise exclusively at the intersection of the divisor S with S′. Note that since the

components of S ∩ S′ away from the O7-plane give rise to states both in the 10- and the

15-representation, we assume that no such components of S ∩ S′ exist to avoid the exotic

15-states. Therefore the 10-curve is C10 = S ∩ S′ = S ∩ O7 and thus in perturbative

models without 15-representation
∫

C10

fY =

∫

S
fY ∧ ι∗O7 = 0. (2.15)

The last equality is a consequence of (2.11) because the class of the O7-plane is in H1,1
+ (X).

For later purposes we note that absence of 15-states also implies that
∫

S
fY ∧ ι∗S =

∫

S
fY ∧ ι∗(S + S′)−

∫

S
fY ∧ ι∗S′ =

∫

S
fY ∧ ι∗(S + S′)−

∫

S
fY ∧ ι∗O7 = 0.

(2.16)

States in the 5-representation localise on

S ∩Di =
1

2
(S ∩D+

i + S ∩D−

i ), D± = D ±D′, (2.17)

S ∩Di′ =
1

2
(S ∩D+

i − S ∩D−

i ). (2.18)
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The dual two-form classes as elements in H2(S) have components in the pullback both of

H1,1
+ (X) and of H1,1

− (X). Only the latter components lead to non-trivial chirality in the

presence of massless hypercharge flux. We exemplify this in section 2.4.

The perturbative IIB SU(5) GUT models constructed in this way differ in two aspects

from their more general F-theory counterparts: first the states in the 10-representation all

carry the same charge under extra Abelian gauge groups in the model because they arise

exclusively at the intersection of the divisor S∩O7. In F-theory GUT models, on the other

hand, several 10-curves with different U(1) charges are possible. The first examples of such

F-theory compactifications with several 10-curves have been presented recently in [20]. Sec-

ond, the 10105 Yukawa coupling is absent perturbatively, while in generic F-theory models

this type of couplings is associated with E6-enhancements over points in the base B. Thus

the Type IIB models under consideration correspond to a special subset of F-theory models

with a single type of 10-matter curves and where the E6-enhancement points are absent

as a consequence of the intersection numbers of certain divisor classes [14]. The presence

of the Yukawas is most likely not of relevance for the questions of interest in this note.

2.3 Hypercharge anomalies

We now analyze possible hypercharge anomalies in a consistent 7-brane setup. We are

interested in the mixed anomalies of a linear combination

U(1)A =
∑

i

Qi
AU(1)i +QS

AU(1)S =
∑

I

QI
AU(1)I (2.19)

of the diagonal Abelian groups U(1)i and U(1)S with U(1)Y . Such a U(1)A is massless if

QI
A lies in the kernel of both matrices

MIα = tr
(

T 0
I

)2
∫

DI

FI ∧ ι∗ωα, Ma
I = tr

(

T 0
I

)

Ca
I . (2.20)

In particular, in the absence of any gauge flux, a linear combination U(1)A of the diagonal

U(1) groups is massless if

∑

I

tr
(

T
(0)
I

)

Ca
IQ

I
A = 0. (2.21)

It is these linear combinations which correspond to massless (in the absence of gauge flux)

U(1)s also in F-theory.

Conversely, given the natural splitting of the U(1)s into those with no components

along S and U(1)S it is worth noting that in a generic IIB compactification with an SU(5)

GUT and no other non-Abelian symmetries all the U(1)A with QS
A = 0 are geometrically

massive. By generic we mean that the only homological relation satisfied by the brane

divisors is the one implied by 7-brane tadpole cancellation (2.1). Let us define a single

divisor class DA as a suitable linear combination Qi
ADi of the brane divisor classes and

associate to it the Abelian group U(1)A. Then one can solve (2.1) for one of the Dk with

Qk
A 6= 0 in homology and finds

DA = Qk
A(4O7 + aS + bS′ + . . .) , (2.22)
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and analolgously for DA′ . Since a+ b = 5 we see that a− b 6= 0 and so the odd component

DA −DA′ ≃ (a− b)
(

S − S′
)

+ . . . (2.23)

always has a component along S−S′, which is a homologically non-trivial class. It therefore

couples to the appropriate axion in the geometric mass term. We stress again that this

assumes a generic configuration in the sense that no other divisor classes have further

homological relations involving S which could cancel this dependence.

As is well-known, the generalized Green-Schwarz mechanism combines the 4-

dimensional Stückelberg couplings involving one of the two-forms c2a or cα2 with couplings

of the dual axion to two gauge or curvature field strengths, schematically

(FI ∧ cα2 )− (c0α FJ ∧ FK) or (FI ∧ c2a)− (ca0 FJ ∧ FK). (2.24)

This gives rise to cubic terms which cancel the corresponding 4-dimensional mixed cubic

anomalies. For a detailed account of the resulting Green-Schwarz (GS) terms and the

cancellation of mixed anomalies associated with the diagonal U(1)I we refer to [32]. This

reference considers anomaly cancellation for Abelian gauge groups in the presence of diag-

onally embedded flux fI . For this setup, [32] demonstrates explicitly that every anomalous

diagonal U(1)I is necessarily Stückelberg massive and that the Green-Schwarz terms cancel

the anomaly provided D7-brane and D5-tadpole cancellation conditions are satisfied.

What we are interested in are the subtle consequences of the Green-Schwarz mechanism

for mixed anomalies involving U(1) gauge groups that arise for hypercharge flux in SU(5)

GUT models. As a warm-up let us first demonstrate the cancellation of the anomaly

AU(1)2Y −U(1) of (1.12), which is well understood also in F-theory. Since U(1)Y is massless,

no Stückelberg couplings of the type
∫

R1,3 FY ∧ cα2 or
∫

R1,3 FY ∧ c2a are possible. Therefore

FY can enter the Green-Schwarz terms only via the axionic vertices. This leaves us with

the following possibilities: the CS term involving ι∗C4 gives rise to couplings

tr
(

T 2
Y

)

Cα
S

∫

R1,3

c0α FY ∧ FY . (2.25)

In particular no mixed terms of the form
∫

R1,3 FY ∧ FB with FB some other U(1) field

strength are possible because Tr (TY TB) = 0 for all TB 6= TY . This axionic vertex combines

with the flux-induced Stückelberg mass
∫

R1,3 trFA ∧ cα2 of some other U(1)A into the cubic

Green-Schwarz term which couples FA − F 2
Y .

The second type of couplings arise from the CS coupling involving ι∗C2 and are

of the form
∫

R1,3

c0a FY ∧ FS

∫

S
2tr(T 2

Y )fY ∧ ι∗ωa + (2.26)

∫

R1,3

c0a FY ∧ FY

∫

S

(

tr(T 3
Y )fY + tr(T 2

Y )fS

)

∧ ι∗ωa (2.27)

plus a term involving only FS and fS . The terms (2.27) combine with Stückelberg couplings
∫

R1,3 trFA ∧ c2a into another set of GS-terms of the form FA −F 2
Y . Together with the terms

from (2.25) they cancel mixed U(1)A −U(1)2Y anomalies. In fact, the cancellation of these
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anomalies is guaranteed by cancellation of the mixed U(1)A − SU(5)2 anomalies in models

that satisfy the 7-brane and 5-brane tadpole cancellation conditions.

Of primary interest for us are anomalies of the form AU(1)Y −U(1)2 . To cancel these

we need the axionic vertex (2.26), which together with
∫

R1,3 trFA ∧ c2a induces a GS terms

that couples

FA − FY − FS . (2.28)

Here FA can be any linear combination of U(1)s which is geometrically massive. Conversely,

mixed anomalies of the type U(1)A − U(1)B − U(1)Y must always be of this form as no

other GS terms arise.

It is simple to check this by showing that all U(1)A −U(1)B −U(1)Y anomalies where

U(1)A and U(1)B do not contain a component of U(1)S vanish. As a result of (2.15) the

anomaly receives contributions only from the 5-curves S ∩Di and S ∩Di′ . The anomaly

is therefore proportional to

AU(1)Y −U(1)A−U(1)B ≃
∑

i

(

Qi
AQ

i
B

∫

S
fY ∧ ι∗Di +Qi′

AQ
i′

B

∫

S
fY ∧ ι∗Di′

)

. (2.29)

Here the Qi
A denote the component of the diagonal U(1) associated to the brane wrap-

ping the divisor Di inside U(1)A, with Qi
A = −Qi′

A being the analogous quantity for the

orientifold image. It follows that

AU(1)Y −U(1)A−U(1)B ≃
∑

i

Qi
AQ

i
B

∫

S
fY ∧ ι∗(Di +Di′) . (2.30)

But since the hypercharge flux had intersection only with the pullback of odd bulk com-

ponents this vanishes. This clearly applies also to the case A = B = S and so the only

anomalies which are relevant are those which mix the U(1)S and U(1)A. These can be

written as

AU(1)Y −U(1)S−U(1)A ≃
∑

i

Qi
A

∫

S
fY ∧ ι∗(Di −Di′) (2.31)

and are indeed cancelled by (2.28). The important aspect of this result is that not all such

anomalies are cancelled in the field theory. The geometry does impose constraints on the

possible hypercharge flux restriction to imply cancellation of a subset of these anomalies,

but not all of them! The remaining ones are cancelled by the orientifold odd GS mechanism.

This result has crucial implications for F-theory model building following from the

discussion in section 1.1. It implies that if the U(1)s in question are the F-theory uplift

of the geometrically massive U(1)s in IIB, then the constraints imposed in [11] that the

anomalies of type AU(1)Y −U(1)A−U(1)B must be cancelled completely in the field theory

spectrum can be relaxed. The mechanism which cancels the anomalies that do not vanish

in the field theory spectrum is the F-theory uplift of the orientifold odd GS mechanism of

type IIB. As yet this uplift is poorly understood, but we have seen that it has an important

role to play in model building.

This role gains further importance upon realising that hypercharge flux can also induce

new anomalies of type AU(1)2Y −U(1)A
in the massless spectrum. It is thus possible to violate
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the condition (1.12) for geometrically massive U(1)s so that (1.10) can be relaxed. Indeed

the only anomalies induced by hypercharge flux and involving geometrically massive U(1)s

that can be shown to generically vanish are of type AU(1)2Y −U(1)S
. This follows from Qi

S =

Qi′

S , which leads to a coupling
∫

S fY ∧ ι∗(Di +Di′) ≡ 0. Irrespective of this, in the case of

geometrically massless U(1)s (1.12) clearly continues to hold since the GS term cancelling

such non-universality in the anomalies (2.27) vanishes.

To conclude this section we turn to a related phenomenon also pointed out in [11],

where it was shown that similar constraints arise in the presence of U(1) fluxes other than

hypercharge charge as long as these do not induce a Stückelberg mass term. In this case

the relevant anomalies are pure GUT ones of SU(5)2 − U(1) type. We now show that a

similar resolution for these anomalies also applies.

Consider first turning on flux fi along a U(1)i which is the diagonal U(1) of a brane

wrapping the divisor Di 6= S. Then the chiral spectrum of 5 states is

5−1i : −

∫

Di

fi ∧ i∗S = −
1

2

∫

Di

fi ∧ i∗
(

S − S′
)

,

5+1i : −

∫

Di

fi ∧ i∗S′ =
1

2

∫

Di

fi ∧ i∗
(

S − S′
)

, (2.32)

where we have used the fact that by assumption the flux couples only to the odd components

in order to induce no Stückelberg mass term. Since the chirality index is opposite for the two

states the spectrum is always vector-like under SU(5) but not under the U(1)i. Therefore it

can not induce a non-Abelian anomaly but it can induce the mixed anomaly. This anomaly

can not be cancelled by the Green-Schwarz mechanism since the flux would have to appear

in the same trace as over the external SU(5) generators; this, however, is not possible since

the latter arise from different branes. The issue is resolved by noting that if we intersect

the D7-tadpole with fi ∧ (S − S′) and use fi ∧ S ∧Di′ = −fi ∧ S′ ∧Di we obtain

5fi ∧ S ∧ S + fi ∧
(

S − S′
)

∧
∑

j

Dj = 0 . (2.33)

The second term is nothing but the chirality induced by such a flux as in (2.32), and as

discussed around (2.16) in absence of exotic 15-curves the first term vanishes. We therefore

find that depending on the self-intersection of S either no chirality can be induced or if it

does there are additional states that cancel the anomaly.

What remains is to consider flux along U(1)S . Unlike the other fluxes this can induce

a mixed anomaly of type SU(5)2 − U(1)A, but the trace structure does allow for such

anomalies to be cancelled by the Green-Schwarz mechanism. It is straightforward to check

this cancellation, see [32] for a general calculation.

2.4 A family of SU(5) × U(1) models

In this section we present a model prototypical of the general constructions we have been

studying. Our brane setup gives a direct realisation of matter curves with orientifold odd

components and so supports net hypercharge flux restriction to the matter curves. We
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Curve Locus qX
State

a = b = 2
Curve Locus qX

State
a = b = 2

C10 S ∩O7 2a− 5 10−1 C
1(1) D1 ∩D1′ 5 1±5

C
5(1) S ∩D1 a− 5 5−3 C

1(2) D2 ∩D2′ 5− 10b 1±15

C
5(2) S ∩D1′ a 5+2 C

1(3) D1 ∩D2 5− 5b 1±5

C
5(3) S ∩D2 a− 5b 5−8 C

1(4) D1 ∩D2′ 5b 1±10

C
5(4) S ∩D2′ a+ 5b− 5 57

Table 1. Spectrum of SU(5)×U(1) model with 7-branes.

consider the brane configuration

5(S + S′), D1 +D1′ , D2 +D2′ . (2.34)

Tadpole cancellation (2.1) enforces that

D1 = 4O7− aS − (5− a)S′ − bD2 − (1− b)D2′ ,

D1′ = 4O7− (5− a)S − aS′ − (1− b)D2 − bD2′ . (2.35)

This is the most general solution if we assume that D1 has no contribution from negative

classes other than S−S′ and D2−D2′ . Such extra contributions would lead to a geometric

mass matrix Ma
I (2.20) of full rank and thus allow for no geometrically massless U(1).

If there are no further homological relations between the divisors, the only geometrically

massless combination of diagonal U(1)s is given by

U(1)X = −
1

2

(

(5− 2a)U(1)S − 5U(1)1 + (5− 10b)U(1)2

)

, (2.36)

where we have chosen a convenient normalization. In principle, every choice of a and

b gives rise to a different class of SU(5) × U(1) models provided one can find suitable

holomorphic divisors S and Di satisfying (2.35) on a given Calabi-Yau three-fold X and

orientifold projection. As an example, for a = 2, b = 2 the massless Abelian gauge group

is the combination

U(1)X = −
1

2

(

U(1)S − 5U(1)1 − 15U(1)2

)

. (2.37)

The described setup gives rise to the spectrum summarized in table 1.

It is not hard to construct explicit realizations of this brane setup for a concrete

compactification Calabi-Yau X and orientifold involution, e.g. along the lines of [31], but

we do not present such a construction here as it would not add much new to our general

understanding.

As pointed out already, the 5-matter curves have orientifold even and odd compo-

nents and thus hypercharge flux can consistently restrict to the matter curves as required

to realize doublet-triplet splitting. As a cross-check, the mixed (U(1)X)2 − U(1)Y and
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U(1)X − (U(1)Y )
2 anomalies vanish. Since

∫

C10
fY = 0 because of (2.11), the anomalies

are proportional to
∑

a q
2
X(5(a))

∫

C
5
(a)

fY and to
∑

a qX(5(a))
∫

C
5
(a)

fY , respectively. Both

sums vanish because as a consequence of (2.35) and (2.11) the integral over the matter

curves are related as

∫

C
5
(1)

fY = −
2b− 1

2

∫

S
fY ∧ ι∗(D2 −D2′) = −

∫

C
5
(2)

fY , (2.38)

∫

C
5
(3)

fY =
1

2

∫

S
fY ∧ ι∗(D2 −D2′) = −

∫

C
5
(4)

fY . (2.39)

Note that we have used
∫

S fY ∧ι∗S =
∫

S fY ∧ι∗S′ = 0, which follows from imposing absence

of exotic 15-matter curves (see the discussion around (2.16)).

The family of brane setups (2.34) is the Type IIB version of a number of SU(5)×U(1)

models that have featured prominently in the recent F-theory literature. The special choice

a = b = 2 corresponds to the charge assignments of the model presented in [24]. The

appearance of orientifold odd matter curve components in Type IIB makes us confident

that also in F-theory this class of models allows for a non-trivial restriction of hypercharge

flux to the 5-curves, even though this remains yet to be shown. If one replaces the 7-brane

pair along D2+D2′ by a single Whitney brane W , the spectrum reproduces what is called

in the F-theory literature the SU(5) × U(1)PQ model with three 5-curves in the version

with only a single 10-curve. This model was introduced in [25] in a local split spectral

cover and realized in a Calabi-Yau four-fold in [20]. Note that after replacing D2 + D2′

by W the orientifold odd components of the 5-matter curves vanish, in agreement with

the conclusions of [11] that no consistent hypercharge restrictions to the matter curves

are possible in the SU(5) × U(1)PQ with a single 10-curve. If the brane pair D2 +D2′ is

removed altogether, we arrive at the SU(5)×U(1)X model with a single 10-curve and two

5-curves studied in [19] and [14, 21, 22]. Similarly, one can add more brane-image brane

pairs to arrive at even more 5-curves.

A U(1)PQ model without exotics. It is important to point out that although (1.10)

holds for the case of U(1)X and also U(1)S , matching the general discussion in section 2.3,

it does not hold for all the U(1)s. For example in the cases of U(1)1 and U(1)2 it mani-

festly fails to hold since the states on C
5(1) and C

5(2) have opposite flux restriction but also

opposite charges. The resulting non-universality in the anomalies is canceled by the con-

tribution coming from (2.27). This opens up a way to bypass a problem highlighted in [28]

which is that the constraints (1.10) imply that the presence of a U(1)PQ symmetry, when

combined with hypercharge flux doublet-triplet splitting, leads to exotics in the massless

spectrum. Let us present a toy example of how this result is evaded. Consider modifying

the solution (2.35) by allowing for another arbitrary odd homology class χ

D1 = 4O7− aS − (5− a)S′ − bD2 − (1− b)D2′ + χ,

D1′ = 4O7− (5− a)S − aS′ − (1− b)D2 − bD2′ − χ. (2.40)
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This leaves the D7-tadpole invariant. The first implication of this is that all the U(1)s are

now geometrically massive. The fact that all the hypercharge flux restrictions in (2.43)

are proportional can be understood from the requirement that the hypercharge induce

no anomalies in the massless spectrum with respect to the massless U(1) in the model.

Having made all the U(1)s massive we expect more freedom since anomalies in the massless

spectrum can be canceled by (2.27). Indeed if we choose

∫

S
fY ∧ ι∗(D2 −D2′) = 0 , (2.41)

we now have
∫

C
5
(1)

fY =

∫

S
fY ∧ ι∗χ = −

∫

C
5
(2)

fY , (2.42)

∫

C
5
(3)

fY =

∫

C
5
(4)

fY = 0. (2.43)

Therefore we can induce doublet-triplet splitting on C
5(1) and C

5(2) with no other non-

GUT exotics present. The matter curves C
5(1) and C

5(2) are not vector-like with respect

to (massive) U(1) combinations, for example (2.37). Therefore we have an effective global

U(1)PQ symmetry, which can only be broken non-perturbatively, and doublet-triplet split-

ting with no implied exotics. It is important to note though that, as discussed in section 3,

we can not just turn on hypercharge flux as in (2.43) but must also include some U(1) flux

for quantisation. This latter flux induces a D5-tadpole which must be cancelled in a full

explicit model.

3 Hypercharge flux and gauge coupling unification

In this section we study some effects of hypercharge flux on gauge coupling unification. We

will work primarily in the IIB framework, much in the spirit of [37], but taking into account

the new hypercharge effects discussed in the previous section. The terms of interest for us

are the following couplings appearing in the CS action (2.6),

SCS ⊃
1

2
µ7

∫

D7
i∗C4 ∧ tr [F ∧ F ] +

1

6
µ7

∫

D7
i∗C2 ∧ tr [F ∧ F ∧ F ]

+
1

24
µ7

∫

D7
C0 tr [F ∧ F ∧ F ∧ F ] . (3.1)

Note that the first term also has a contribution from the NS B-field, which we drop for ease

of notation for now. It can be easily reinstated as it appears always in the combination

C2 − C0B. The above CS terms include the contributions

SCS ⊃
1

2

∫

R1,3

ca0 tr

[

F ∧ F

∫

S
i∗ωa ∧ f

]

+
1

4

∫

R1,3

C0 tr

[

F ∧ F

∫

S
f ∧ f

]

. (3.2)

These contributions can be used to calculate the tree-level effects of flux on the gauge

couplings in Type IIB [37] since by four-dimensional supersymmetry they appear together
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in the gauge kinetic function. We consider turning on internal flux along the generators

f = fS diag (1, 1, 1, 1, 1) +
1

5
fY diag (−2,−2,−2, 3, 3) . (3.3)

Note that our normalisation of the internal flux differs by a factor of 1
6 from that of the

external field strength in (2.2). It is convenient to define the quantity

f̃S ≡ fS −
2

5
fY . (3.4)

We decompose the external field-strengths in terms of the commutants of U(1)Y within

SU(5) as

F = F a
SU(3)T

SU(3)
a + F i

SU(2)T
SU(2)
i + FY TY + FST

0
S . (3.5)

In this notation we find for (3.2) the expression

1

4

(

tr
(

F 2
SU(3)

)

N+tr
(

F 2
SU(2)

)

[N+M ]+
5

6
F 2
Y

[

N+
3

5
M

]

+ 5F 2
S

[

N+
2

5
M

]

+FSFY M

)

(3.6)

with

N =

∫

S
f̃S ∧

(

C0f̃S + 2i∗C2

)

, M =

∫

S
fY ∧

(

2C0f̃S + C0fY + 2i∗C2

)

. (3.7)

There is a lot of interesting physics in the expression (3.6), which we outline below.

The internal flux induces kinetic mixing between FS and FY . This can be undone by an

appropriate shift of FY → FY + αFS . This shift retains the appropriate normalisation for

the hypercharge, which is important for gauge coupling unification. Note that this is the

appropriate shift, rather than a general rotation mixing the hypercharge and the diagonal

U(1)S , because it leaves the mass term for U(1)S invariant. It also has the interesting

effect of charging the SM fields under the diagonal U(1) by some fractional charge, in a

non-GUT universal way. Since the U(1) in this case is very massive the phenomenological

implications of this are not drastic, though it would be interesting to study this in more

detail. Note that the kinetic mixing is present already from just the second term of (3.2)

which means it can be induced even if the hypercharge does not couple to i∗C2. In fact in

this case its magnitude is fixed by the requirement of the absence of bulk exotics, at least

if S is taken to be a del Pezzo surface, [1, 2]

∫

S
fY ∧ fY = −2 . (3.8)

This implies significant mixing. It is interesting to note that in the case where the diagonal

U(1) is not anomalous, but still massive, its mass can be quite low for large values of the

volume, such as in the LARGE volume scenario [38] (though this is at odds with gauge

coupling unification at the usual GUT scale).

The aspect of (3.6) that we are most interested in at this point is its effect on gauge

coupling unification. We see that the tree-level expression for the non-GUT universal
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contribution to the real part of the gauge kinetic functions is

δRefi =
1

2
δi

∫

S
fY ∧

[

C0

(

2f̃S + fY

)

+ 2i∗C2

]

, (3.9)

with δSU(3) = 0, δSU(2) = 1, δU(1)Y = 3
5 .

3

If we set f̃S = i∗C2 = 0 we still find a tree-level splitting of the gauge couplings purely

due to hypercharge and the constraint (3.8). This was first pointed out in [37]. The splitting

can be estimated to be of order 4-5%: at the GUT scale the inverse gauge couplings take

the value 4π
g2

∼ 24 and this is the imaginary part of the gauge kinetic function, the real part

being C4, and therefore the splitting is relative to the C4 coefficient in (3.1). Furthermore

we have δSU3 − δSU2 = 1 and expect the dilaton superpartner to C0 to have an order

one vev in F-theory. Together with the factor of 2 from (3.8) the gauge coupling splitting

thus goes like 24 ± 1. Such a splitting is uncomfortably large when it comes to gauge

coupling unification which in the MSSM is of order 3% at two loops. It is important to

emphasise that this is really an estimate based exclusively on the tree-level contribution

to the gauge kinetic function and a naive extrapolation to F-theory of this IIB result. In a

full account this splitting of the gauge coupling receives further corrections. One source of

these are the usual field theory corrections due to threshold effects from massive Landau-

levels, which are expected to be small at least if the massive states are close to the GUT

scale. Another source of corrections arises because (3.1) is not the full expression for the F 4

terms that can arise in IIB and F-theory. This tree-level piece is corrected at 1-loop giving

a schematic term lnτF 4, and by D(−1) instantons leading to terms of type eiτF 4 (see [45]

for recent advances on calculating these). Here τ = C0 + is represents the axio-dilaton

superfield. These latter corrections are subdominant to (3.9) in the weak-coupling limit

s → ∞. However at strong coupling they can compete and alter the splitting. In order

to be able to estimate this a much better understanding of the origin of the F 4 terms in

F-theory is needed. Some work along these lines has utilised Heterotic/F-theory duality [2]

(see also [48]) and M-theory warping [39], though a detailed quantitative analysis of these

corrections for realistic F-theory models is still missing. On general grounds however it is

reasonable to require that the IIB tree-level correction which we study here should not give

too large a splitting of the gauge coupling. If it does then it is possible that in fully-fledged

realistic F-theory models all the other effects and corrections conspire to cancel this large

splitting, though in the absence of an explicit computation showing this one would prefer

to not rely on such a possibility. Fortunately, already in IIB it is clear that the tree-level

splitting (3.9) has additional structure further to the simplest case just discussed which

can change the conclusions regarding gauge coupling splitting.

3Note that the δi’s correspond to the contribution to the beta functions from a Higgs-type doublet

(1,2)1/2 (or equivalently its SU(5) triplet partner). This matches the results of [43] where in the context of

D3-branes at singularities the (N=1) twisted modes coupled in the gauge kinetic function proportional to

the β-function contribution of the associated open string subsector. Indeed the modes C2 here are precisely

the large volume versions of these twisted modes and the corresponding open string sector is the matter

on the 5-matter curves induced by the hypercharge flux. Note also that since the hypercharge flux can

couple to them, this presents a slight modification of the picture presented in [44] in the IIB case where the

hypercharge was taken to be trivial, however the running to the scale of the associated ‘tadpole’ remains. In

the F-theory picture the hypercharge truly is globally trivial and the conclusions of [44] hold more precisely.
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The first modification we would like to study is to consider f̃S 6= 0 but still i∗C2 = 0.

Already in [37] it was suggested that if we turn on globally trivial f̃S it can be arranged

for
∫

S fY ∧ f̃S = 1, which would the nullify the splitting (3.9). The requirement of global

triviality was presumably imposed because it was thought that no globally non-trivial

elements can have a non-vanishing intersection with the hypercharge flux. The first new

observation we can make is that using our current results we see that this is actually not

a necessary requirement because f̃S can have components in the image of the pullback of

the H1,1
− (X).

There is another interesting observation we can make regarding f̃S which relates to its

use rather than that of fS in (3.6). Recall the two are related by a shift in the hypercharge

flux (3.4). The reason was given in [1, 2] and relates to the quantisation of the flux.

The important point is that for all states in the theory sensitive to some combination of

flux, the flux appearing in the Dirac equation of the state should be integer quantised.

Let us consider the states in the theory and the flux combinations which they feel. We

turn on the flux 1
5fY along the hypercharge generator normalised as in (3.3), fS along

the diagonal U(1), and fi along the U(1) branes intersecting S along the 5-matter curves.

Then the matter states couple to the gauge bundles whose first Chern classes are given by

the following combination of fluxes,

(3,2)
−5/6 : −fY ,

(3,2)1/6 :
1

5
fY + 2fS , (3̄, 1)

−2/3 : −
4

5
fY + 2fS , (1, 1)1 :

6

5
fY + 2fS ,

(3, 1)
−1/3 : −

2

5
fY + fS − fi , (1,2)1/2 :

3

5
fY + fS − fi . (3.10)

These bundles are required to be integer quantised4 for all the states present in the theory.

A natural solution that guarantees this is to write fS = f̃S + 2
5fY , where now fY , f̃S , and

fi are integer quantised. This is the reason why f̃S is the natural integer quantised object

to work with. Let us denote this twisting of the diagonal U(1) flux as twisting of type 1.

Suppose now that the hypercharge bundle LY restricts trivially to the 10-curve. This

means that the Poincaré dual of fY ∈ H2(S) does not have any intersection with the

10-matter curve. This happens, for example, whenever the hypercharge flux is purely

orientifold odd because then it vanishes pointwise over the 10-matter curve, since the latter

lies on top of the orientifold. In this situation we can also take a solution fi = f̃i −
2
5fY

where now f̃i, fS and fY are integer quantised. We denote this as twisting of type 2.

Note that no problems occur for the GUT singlets because these arise at intersections

away from the GUT brane and therefore again the hypercharge flux vanishes geometrically

when restricted to such loci. In this case the splitting of the gauge kinetic function is most

conveniently written (still for vanishing ι∗C2) as

δRefi =
1

10
δiC0

∫

S
fY ∧ fY + δiC0

∫

S
fY ∧ fS . (3.11)

If in addition we arrange for
∫

S fY ∧ fS = 0, e.g. by ensuring that fS is in the pullback of

H1,1
+ (X), the only contribution is from the first term. But this is a factor of 5 smaller than

4We ignore here the possible overall shift due to the Freed-Witten anomaly.
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the case with f̃S = 0 and gives an estimate of only a 1% correction, which is well within

the MSSM 2-loop result.

In fact in F-theory compactifications the twisting of type 2 is easily implemented to the

extent that it amounts to considering a suitably quantised linear combination of G4 fluxes

associated with hypercharge and with the massless U(1)s of the model, see (4) for details.

For example consider the set of models corresponding to the brane setup of section 2.4. It

is simple to check that a single twisting of the U(1) flux makes the hypercharge flux for all

the matter curves integer. This is guaranteed by the fact that the charges of the matter

curves under the U(1) differ by multiples of 5.

So far we have discussed the gauge coupling splitting in the cases where
∫

S fY ∧ i∗C2 =

0. However, if fY has net restriction to the matter curves the situation is more complicated

because then necessarily
∫

S fY ∧i
∗C2 6= 0. In such a case gauge coupling unification depends

on the vacuum configuration of the moduli. Let us recall some of the structure of the

orientifold odd moduli sectors, following the discussion in [40]. In terms of the cohomology

decomposition on X introduced before (2.7) the Kähler form J of X and the NS-NS form

have an expansion

J = vαωα, C2 = caωa , (3.12)

B2 ≡ B+ +B− = bαωα + baωa . (3.13)

Here bα can only take the discrete values 0 or 1
2 consistent with the orientifold action. The

appropriate chiral fields for these compactifications are given by [41, 42]

Ga = ca0 − τba, (3.14)

Tα =
1

2
καβγv

βvγ + i
(

c0α − καbcc
b
0b

c
)

+
i

2
τκαbcb

b bc .

The relevant moduli for the splitting (3.9) are the ba. In order to work with the four-

dimensional superfields it is convenient to define the quantities

pY Y ≡

∫

S
fY ∧ fY , pY S ≡

∫

S
fY ∧ f̃S , pY a ≡

∫

S
fY ∧ i∗ωa . (3.15)

We can then write the splitting of Imfi =
4π
g2i

as

δImfi =
1

2
sδi (2pY S + pY Y − 2bapY a) . (3.16)

In order to determine the vacuum expectation values of the ba we should consider the

two sources of potentials for them. The first is the D-term contribution associated to

the diagonal U(1) of a brane wrapping the divisor DI carrying flux along the U(1) of

fI = fa
I ωa + fα

I ωα, which is given by [40]

DI =
ℓ2s
4πV

vα
(

καbc(b
b − f b

I )C
c
I − καβγf

β
I C

γ
I

)

with V the Calabi-Yau volume. Note that we have not displayed any charged matter fields

which have to be added to this supergravity contribution. Also the even fluxes here are the
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appropriate combination of flux and bα which are integer quantised. The other potential

contribution for the ba comes from fluxed instantons in the superpotential as studied in [40].

We do not go into the details here and refer to [40] for the appropriate expressions. The

determination of the vev of the ba is clearly a model dependent question, and it is interesting

to see this explicit connection between gauge coupling unification and moduli stabilisation.

It would be illuminating to study explicit models where all the fluxes and intersection

numbers are specified and to determine the effect on gauge coupling unification.

4 Hypercharge G4-flux in F-theory

A lot of progress has been made recently in the explicit description of G4 gauge fluxes that

do not break the SU(5) symmetry [21, 22, 34, 35], but the analysis of hypercharge flux in

the local model building literature has been mostly in the language of two-form flux fY
along the SU(5) divisor as inspired by the Type IIB picture (see section 1.1). In this section

we give a definition of hypercharge flux directly in terms of G4-flux defined by a class in

H2,2(Ŷ4) of the fully resolved Calabi-Yau four-fold Ŷ4. This includes the construction of

hypercharge flux in terms of the four-form classes dual to the matter surfaces of the resolved

Calabi-Yau Ŷ4. We will also briefly discuss the twisting pertinent to the quantization of

hypercharge flux.

The four-dimensional gauge potential AY associated with hypercharge arises via F/M-

theory duality by expanding the M-theory three-form C3 in terms of wY ∈ H1,1(Ŷ4) of the

resolved Calabi-Yau four-fold Ŷ4,

C3 =
1

6
AY ∧ wY + . . . , wY =

4
∑

i=1

liEi li = (−2,−4,−6,−3). (4.1)

Here Ei ∈ H1,1(Ŷ4) denote the two-forms dual to the exceptional divisors ei, i = 1, . . . , 4

introduced in the process of resolving the SU(5) singularity in the fiber over the GUT

brane. Their intersection numbers
∫

Ŷ4

Ei ∧ Ej ∧ π∗Da ∧ π∗Db = Cij

∫

B
S ∧Da ∧Db ∀Da ∈ H1,1(B) (4.2)

involve the Cartan matrix Cij of SU(5), with the convention that Cii = −2. The factor

of 1
6 is chosen such that the U(1)Y charges comply with the conventions in (2.2) Each

divisor ei is P
1-fibration over S, and we denote the fiber by P

1
i . The above definition of wY

ensures that
∫

P
1
i

wY = 5 δi 3. (4.3)

Note that this description is of course very similar to the analysis in [2] of hypercharge

G4-flux in the language of a local ALE-fibration over the GUT brane S.

The internal hypercharge flux is described by an element G4 ∈ H2,2(Ŷ4) which breaks

SU(5) → SU(3) × SU(2) × U(1)Y . In order to correspond to a gauge flux it is subject to
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the usual transversality constraint
∫

Ŷ4

G4 ∧ π∗Da ∧ π∗Db = 0 =

∫

Ŷ4

G4 ∧ Z ∧ π∗Da. (4.4)

To work out the requirements for G4 to break the SU(5) we consider the pullback of G4

to the divisor ei, take its dual two-cycle and use the projection map to push it forward

to the base. Because of (4.4) the 2-cycle remains a two-cycle under the projection. The

final two-form is defined as the dual to this projected curve on the base of ei, which is just

the GUT four-cycle S on B. Sloppily we refer to this operation as integrating G4 over P1
i

such as to produce an element in H1,1(S). With this understanding the group theoretic

condition for hypercharge breaking thus becomes, in analogy with (4.3),

∫

P
1
i

G4 = 0 i = 1, 2, 4,

∫

P
1
3

G4 = fY , fY ∈ H1,1(S). (4.5)

The two-form fY ∈ H1,1(S) is what is usually called hypercharge flux in Type IIB inspired

7-brane language. Note that the factor of 5 from (4.3) has been absorbed in fY .

We next turn to the condition for absence of Stückelberg masses. From the gauged

supergravity analysis [2, 13, 36] the masslessness constraint is that

∫

Ŷ4

G4 ∧ wY ∧ π∗Da = 0 ∀Da ∈ H1,1(B). (4.6)

The wedge product with wY can be worked out with the help of (4.3) to yield

∫

S
fY ∧ ι∗Da = 0 ∀Da ∈ H1,1(B), (4.7)

which is precisely the constraint that ι!fY = 0 [2]. Note that this constraint holds on the

base B of the elliptic fibration.

An explicit construction of hypercharge G4 is possible as follows: first one can simply

consider the 4-cycle CAi defined by fibering any of the P
1
i over an arbitrary curve CA in S

on B. This is nothing but the restriction of ei to CA, CAi = ei|CA
. The dual four-form is

denoted by [CAi] ∈ H2,2(Ŷ4). Any linear combination

G4 =
∑

A,i

li[CAi], li = (−2,−4,−6,−3) (4.8)

automatically satisfies (4.4) and thus defines a hypercharge flux in the above sense if

∑

A

∫

S
[CA] ∧ ι∗Da = 0 ∀Da ∈ H1,1(B) (4.9)

holds. Note in particular that fY =
∑

A[CA]. This description coincides with the form of

hypercharge fluxes given in the local ALE-analysis of [2].

In addition we now construct a hypercharge flux in terms of the four-forms dual to

the matter surfaces which appear in the process of the SU(5) resolution [21, 22, 35, 46].

Let us denote by Ca the curve on S on which matter states in the representation Ra of
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SU(5) are localised. In the resolved fiber over Ca, one or more of the P1
i split. The resolved

fiber over a generic point on Ca degenerates into a tree of P1
I (with certain multiplicities)

labelled by an index I. Let us denote the 4-cycle given by fibering P
1
I over Ca by ZaI with

dual four-form class [ZaI ] ∈ H2,2(Ŷ4). To the extent that not all of these ZaI are of the

form ei|Ca the use of such 4-cycles for G4-flux goes beyond the above approach. To each

of these ZaI one can associate a vector vaI [i] defined such that
∫

P
1
i

[ZaI ] = vaI [i][Ca] ∈ H1,1(S), i = 1, 2, 3, 4, (4.10)

where [Ca] is the two-form dual to the curve Ca. For completeness let us recall how

to construct out of these the matter surfaces: to each representation Ra we consider the

associated collection of weight vectors β(n), n = 1, . . . , dim(Ra). Each β(n) is a 4-vector and

can be written as a linear combination of β(n) =
∑

I α
(n)IvaI [i]. This defines a collection of

surfaces C
(n)
a =

∑

α(n)IZaI . The states correspond to M2-branes wrapping the associated

linear combinations of P1
I over Ca.

As an ansatz for hypercharge G4-flux we consider the element

G4 =
∑

xaI [ZaI ] ∈ H2,2(Ŷ4) (4.11)

subject to (4.5) and (4.6). In particular (4.5) implies that
∑

xaI [Ca]vaI [i] = 0 for i = 1, 2, 4,
∑

xaI [Ca]vaI [i = 3] = fY ∈ H1,1(S). (4.12)

This class fY ∈ H1,1(S) is furthermore subject to (4.6). Depending on the details of the

fibration (4.4) must be ensured as an extra constraint.

Consider now a representation Ra of SU(5) and suppose it decomposes into ⊕kRa,k

with hypercharge qa,k under SU(5) → SU(3) × U(1) × U(1)Y . The matter surfaces C
(nk)
a

associated with these states are fibrations over Ca. The weight vectors associated to the

representation Ra split under GUT breaking into the weight vectors of the representations

Ra,n. The hypercharge qa,k is then given by the inner product of li introduced in (4.1) with

these weight vectors times a factor of 1/6 from (4.1). Concretely, the charges obtained in

this way are given in (2.4). Then by construction the chiral index of the localised matter

is given by
∫

C
(nk)

a,k

G4 =
6

5
qa,n

∫

Ca

fY , (4.13)

where the result does not depend on the choice nk of course. The factor of 1
5 is due to the

factor of 5 in (4.1) which we have absorbed in fY .

Finally we turn to the quantisation condition and the twisting procedure. For the

G4-flux to be properly quantised it must satisfy [47]

G4 +
1

2
c2(Ŷ4) ∈ H4(Ŷ4,Z), (4.14)

which is tested by demanding that the integral of G4 + 1
2c2(Ŷ4) over a basis of integral

4-cycles on Ŷ4 be integer. Let us ignore the possible half-integer shift in the quantization
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of G4 due to the Freed-Witten anomaly if 1
2c2(Ŷ4) is not integer. From (4.5) fY can take

values in H2(S,Z), but this leads to fractional results from integration of G4 over the mat-

ter surfaces in view of (4.13) and the charges displayed in (2.4). This can be remedied by

a suitable fractional quantisation of the additional G4-flux needed to produce non-trivial

chirality. Since these fluxes do not break SU(5) no constraints from (4.5) arise, and the only

condition comes from integrality of the total flux integrated over the matter surfaces. This

can be satisfied explicitly once the extra fluxes are specified e.g. as in [21, 22, 34, 35]. Note

that the requirement of integrality of G4 integrated over the matter surfaces amounts to the

criterion, put forward in IIB language [1, 2], that the charged matter couples to integrally

quantised gauge bundles, or more generally as a consequence of the Freed-Witten quan-

tization condition as discussed in [31]. Indeed in G4-language this condition is naturally

seen to be the correct one in view of (4.14).

5 Summary

In this article we have studied the restriction of hypercharge flux to matter curves in inter-

secting brane models of type IIB string theory. The masslessness constraint on the hyper-

charge gauge field implies that its flux can only have a non-trivial restriction to components

of the matter curves that are pullbacks of elements of the odd cohomology H1,1
− (X). We

have shown that this constraint, along with the D5- and D7-tadpoles, guarantees the cancel-

lation of all anomalies with no other restrictions. In particular the cancellation of anomalies

of the type AU(1)Y −U(1)2 proceeds through the orientifold-odd Green-Schwarz mechanism,

which implies that the involved U(1) gauge fields (other than U(1)Y ) are necessarily geo-

metrically massive. We have exemplified this in a family of brane setups which admit non-

trivial hypercharge restriction to the matter curves as required for flux-induced doublet-

triplet splitting. To the extent that so far in all existing F-theory models a non-trivial

restriction of hypercharge flux has only been postulated, we have demonstrated for the first

time that doublet-triplet splitting by net hypercharge flux restriction can work consistently.

Our brane configurations are part of a whole class of such models in IIB which include and

generalise the charge assignments found in F-theory SU(5)×U(1) compactifications.

The calculations performed in this work are done in a type IIB string theory setting.

However our primary aim is to deduce implications for F-theory models and in particular to

study whether the anomaly AU(1)Y −U(1)2 must vanish in field theory. Our results show that

this is not necessary if the U(1)s are geometrically massive in F-theory which, according to

the studies [12, 13, 15], amounts to the statement that the U(1) gauge potentials arise by

expanding C3 with respect to non-closed forms on the Calabi-Yau four-fold associated with

non-Kähler deformations. This result brings such U(1)s to the centre of model building

in F-theory. It is important to note though that the primary interest for phenomenology

is the flux along the U(1)s which induces chirality and, unlike the U(1)s themselves, can

arise from harmonic four-forms. Indeed in [14] it was shown that for F-theory models with

a IIB limit the so-called universal spectral cover flux of [35] is precisely the flux along such

a geometrically massive U(1).
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Another important result with implications for F-theory models is that anomalies

of type AU(1)2Y −U(1) can be induced by hypercharge flux. This implies that in F-theory

models with geometrically massive U(1)s the constraints (1.10) can be relaxed. This opens

up the possibility of evading the problem raised in [28] regarding exotics and U(1)PQ

symmetry. Indeed we constructed a toy example which does precisely this: it exhibits a

massive U(1)PQ symmetry, which acts as a global symmetry at low energies and can only

be broken non-perturbatively, while also having doublet-triplet splitting by hypercharge

flux and no exotics.

Because the results are derived in a IIB setting they give only partial insights into

their F-theory counterparts and leave many questions for future study. A practically im-

portant question is whether all the anomalies of type AU(1)Y −U(1)2 can be cancelled by

this mechanism. In type IIB it is only the anomalies which mix the diagonal U(1) of

U(5) = SU(5) × U(1) with the other U(1)s that can be not vanishing, and this matches

perfectly the fact that the trace structure of the operator relevant for the Green-Schwarz

mechanism can only be non-vanishing for the diagonal U(1) of U(5). In local F-theory

models however the type of anomalies that can be induced in the massless spectrum are

not restricted to such a subset. Correspondingly, we would also expect that the trace

structure can be modified, for example from Heterotic/F-theory duality one would expect

that a trace over the full E8 is possible. However the analogue of the geometrically massive

U(1)s in heterotic compactifications is obscure and so the question of which anomalies are

forced to vanish through geometric constraints, and so must do so at the massless spectrum

level, and which can be cancelled by the GS mechanism remains open.

More generally the geometric mechanism for anomaly cancellation itself in F-theory,

i.e. the uplift of the orientifold odd Green-Schwarz mechanism, remains as yet poorly

understood. Given the important role we have highlighted for it, any understanding of its

microscopics, perhaps through an approach along the lines of [33], would be welcome.

At a deeper level the fact that the constraint (1.10) was violated in explicit models

shows that the uplift to F-theory of hypercharge flux restriction to orientifold odd com-

ponents in IIB is not nescessarily related to the hypercharge restriction due to a local

splitting, as discussed in section 1.1. The F-theory realisation of this restriction will likely

involve 3/5-chains or cycles as these are the natural uplifts of orientifold odd curves. How

these combine with matter curves to allow for net hypercharge flux restriction is a very in-

teresting topic for further study. It is possible that a whole new mechanism of hypercharge

restriction in F-theory can be identified as the uplift of our IIB results.

Our understanding of the restriction of hypercharge flux to matter curves also has

interesting implications for the flux-induced tree-level gauge non-universal corrections to

the gauge kinetic function. We have shown that a net restriction to the matter curves must

induce a moduli dependent splitting of the gauge coupling. Also, independently of this,

we have argued that an alternative twisting procedure reduces the tree-level split of the

gauge couplings observed in [37] by a factor of 5 to well within the 2-loop split within the

MSSM. This is encouraging in the sense that we need not rely on particular cancellation

coming from strong coupling effects for compatibility with precise tree-level unification.

Clearly a proper M/F-theoretic computation of these coupling corrections, possibly similar
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to [2, 39, 48], would be desirable in order to settle more precisely the important question

of gauge coupling unification in fully realistic F-theory GUT models.

Much remains to understand in F-theory concerning anomaly cancellation and hyper-

charge flux restriction to matter curves. In this note we have made some progress towards

this aim. Although modest, it nonetheless has important implications for model build-

ing because the requirement of imposing anomaly cancellation for anomalies of the type

AU(1)Y −U(1)2 is an extremely strong one [11] and left very few possible models. The pos-

sibility of using geometrically massive U(1)s to cancel such anomalies implies that many

local models in the literature, for which the anomaly did not vanish, can be considered

viable provided they have some global completion where the U(1)s are geometrically mas-

sive. Further, the problem of exotics in models with a U(1)PQ symmetry has plagued many

constructions and we have shown how this can be avoided.
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[16] S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory,

JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].

[17] B. Andreas and G. Curio, From Local to Global in F-theory Model Building,

J. Geom. Phys. 60 (2010) 1089 [arXiv:0902.4143] [INSPIRE].

[18] R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory,

arXiv:0904.1218 [INSPIRE].
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